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Abstract

We give necessary and sufficient conditions, in terms of characteristics of the process, for finiteness of moments o
times of general Lévy processes above horizontal, linear or certain curved boundaries. They apply in particular to p
which drift almost surely to infinity, and lead to estimates of the rate of growth of certain expectations, constituting gen
kinds of renewal theorems. Further results concern the inverse local time at the maximum and the ladder height pro
amount of time spent below a given level, and the overall minimum of the Lévy process.
 2004 Elsevier SAS. All rights reserved.

Résumé

Des conditions nécessaires et suffisantes sont données pour la finitude des moments de certains temps de p
processus de Lévy.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction and main results

Consider a Lévy processX = {Xt }t�0 with EeiθXt = etΨ (θ), t � 0, where the Lévy exponentΨ is given by the
Lévy–Khintchine formula [1, pp. 12–13]

Ψ (θ) = iγ θ − 1

2
σ 2θ2 +

∫
(−∞,∞)

(
eiθx − 1− iθx1[−1,−1]

)
Π(dx). (1.1)
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The quantitiesγ , σ 2 andΠ are called thecharacteristicsof X. Eq. (1.1) is the analytic counterpart of the followi
standard decomposition (see [11, p. 120]): we haveX0 = 0 and

Xt = γ t + σBt + X
(1)
t + X

(2)
t , (1.2)

whereB is a standard Brownian motion,X(1) has Lévy exponent

Ψ (1)(θ) =
∫

(−∞,∞)

(
eiθx − 1− iθx

)
1[−1,−1] dΠ(x), (1.3)

and consequently has expectation 0 and finite moments of all orders, andX(2) is the compound Poisson proce
with Lévy exponent

Ψ (2)(θ) =
∫

(−∞,∞)

(
eiθx − 1

)
(1(1,∞) + 1(−∞,−1)) dΠ(x). (1.4)

Our main objects of study are the firstand last passage times, defined by

Tr = inf{t : Xt > r}, r > 0 (1.5)

(with Tr = ∞ if the set on the right-hand side is empty) and

Λr = sup{t : Xt � r}, r � 0, (1.6)

and our main objective is to provide necessary and sufficient conditions, expressed in terms of the chara
of X, for these random variables to have finite moments. These lead to kinds of generalised renewal theor

In random walk theory,τ0, the first increasing ladder epoch in a discrete time random walk, plays a ke
in the study of first passage times, and is used in a crucial way in [8], which is our point of departure
present paper. ButT0, the analogous object in the continuous time context, defined as in (1.5) (withr = 0), in
many cases of interest equals 0 almost surely (a.s.), and some of the methods of [8] fail. Thus our approach can
simply be a matter of transferring the random walk results into the continuous time framework in a mec
way. To bypass this difficulty we use an approach due to Doney [4] (see Proposition 8 below) which giv
convenient stochastic bounds for the process in terms of random walks. In our context the analogous resulτ0 is
formulated by introducing the local time at the maximum, and an appropriate Lévy process version of the e
of moments ofτ0 is in (1.17) below. For this purpose, letL−1 = (L−1(t), t � 0) denote the increasing ladder tim
process (inverse local time at the maximum) ofX, with exponentκ(q) = − logE(e−qL−1(1)). The increasing ladde
height process will be denoted byH . See Bertoin [1], Chapter VI, for these.

To state our results we write, forx > 0, �Π+(x) = Π((x,∞)), �Π−(x) = Π((−∞,−x)), and

A(x) = γ + �Π+(1) − �Π−(1) +
x∫

1

( �Π+(y) − �Π−(y)
)
dy, (1.7)

which is a kind of truncated mean; whenE|X1| < ∞ thenA(x) → EX1 asx → ∞. Let X# = (−Xt, t � 0), and
denote its Lévy measure byΠ#. We will also need

J_=
∫

(1,∞)

(
x

�Π+(1) + ∫ x

1
�Π+(y) dy

)
Π#(dx) (1.8)

(when the denominator is positive; otherwiseJ− need not be defined). This is relevant because it was show
Doney and Maller [5] that limt→∞ Xt = ∞ a.s. if and only if

J_< ∞ =
∞∫

�Π+(y) dy or 0< EX1 � E|X1| < ∞, (1.9)
1
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which complements the less explicit criterion (Bertoin [1, p. 167]), that
∞∫

1

t−1P(Xt � 0) dt < ∞. (1.10)

[5] also shows that limt→∞ Xt/t = ∞ a.s. if and only if the first condition in (1.9) holds.
Since all our results are invariant under scaling, whenΠ is not identically zero (so thatX does not reduce t

Brownian motion) we can and will assume thatc1 = �Π+(1) + �Π−(1) > 0. Then we write (see (1.2))

X
(2)
0 = 0, X

(2)
t =

Nt∑
i=1

Ji, t > 0, (1.11)

where theJi are i.i.d. (independent and identically distributed) with

P(J1 ∈ dx) = c−1
1 (1(1,∞) + 1(−∞,−1))Π(dx) (1.12)

and{Nt, t � 0} is a Poisson process of ratec1. TheJi , {Nt , t � 0}, X(1) andB are all independent of each othe
Our first task is to give a Lévy process version of Theorem 2.1 in [8].

Theorem 1.Fix α � 0. The following are equivalent:
∞∫

1

tα−1P(Xt � r) dt < ∞ for some(hence every) r � 0; (1.13)

there is anx0 > 0 such thatA(x) > 0 for x � x0, and∫
(x0,∞)

(
x

A(x)

)1+α

Π#(dx) < ∞; (1.14)

ET 1+α
r < ∞ for some(hence every) r > 0; (1.15)

EΛα
r < ∞ for some(hence every) r � 0, if α > 0;

P(Λr < ∞) = 1 for some(hence every) r � 0, if α = 0; (1.16)

E
(
L−1(1)

)1+α
< ∞. (1.17)

Remark. (i) By the definitions ofTr andΛr , (1.15) is equivalent to
∞∫

0

tαP ( sup
0�s�t

Xs � r) dt < ∞ for some(hence every) r � 0;

and the conditions in (1.16) are equivalent to

∞∫
0

tα−1P( inf
s�t

Xs � r) dt < ∞ for some(hence every) r � 0, if α > 0,

lim
t→∞P( inf

s�t
Xs � r) = 0 for some(hence every) r � 0, if α = 0.

(ii) Condition (1.13) implies (1.10), hence it implies limt→∞ Xt = ∞ a.s. Thus Theorem 1 deals only wi
processes that drift to+∞ a.s., or equivalently, with processes satisfying (1.9). If the first condition in (1.9) h
it is easy to verify thatA(x) ∼ ∫ x �Π+(y) dy → ∞ asx → ∞, while limx→∞ A(x) = EX1 > 0 if the second
1
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condition in (1.9) holds. (See also Lemma 13 below.) Now
∫ ∞

1 x1+αΠ#(dx) converges if and only ifE(X−
1 )α+1

converges (Sato [11, p. 159]). ThusA(x) > 0 for all largex and (1.14) holds if and only if

0< EX1 � E|X1| < ∞ and E(X−
1 )α+1 < ∞, (1.18)

or

∫
(1,∞)

(
x∫ x

1
�Π+(y) dy

)1+α

Π#(dx) < ∞ =
∞∫

1

�Π+(x) dx. (1.19)

The next theorem gives a condition forET α
r to be finite when 0< α < 1, and examines its rate of growth

r → ∞, 0< α � 1, when it is. Its proof will make use of the relation (Bertoin [1, p. 174])

q

∞∫
0

e−qtP (Tr > t) dt = κ(q)V q(r), (1.20)

wherer > 0, q > 0, and

V q(r) =
∞∫

0

E
(
e−qL−1(t)1{Ht�r}

)
dt.

In what follows we will use� to mean that the ratio of two expressions is bounded below and above b
positive, finite constants for all sufficiently larger.

Theorem 2. (i) (No assumptions onX.) Let 0 < α < 1 and r > 0. ThenET α
r < ∞ if and only if q−α−1κ(q) ∈

L(0,1), or, equivalently, if

1∫
0

q−α exp

{ ∞∫
1

e−qt t−1P(Xt � 0) dt

}
dq < ∞. (1.21)

If this holds then


(1− α)ET α
r = α

∞∫
0

q−α−1κ(q)V q(r) dq, for all r > 0. (1.22)

(ii) If limt→∞ Xt = +∞ a.s.(so thatA(x) > 0 for large enoughx) then

ETr � r

A(r)
, asr → ∞. (1.23)

Condition (1.21) is not completely explicit but it can be used for example whenP(Xt < 0) → 1 − ρ ∈ [0,1]
as t → ∞. Then it tells us thatET α

r < ∞ if α < ρ (as also follows when 0< ρ < 1 from Bertoin [1, p. 173]).

In particular, ifXt
P→ ∞ ast → ∞ thenET α

r < ∞ for eachα < 1 (butETr < ∞ if and only if Xt → ∞ a.s. as
t → ∞). If we assume more we can get a completely explicit solution, as in the next theorem.

Theorem 3.(i) For a fixedα > 0 for which the integral in(1.24)converges, we haveA(x) > 0 for all large x, and,
asr → ∞,
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∞∫
1

tα−1P(Xt � r) dt �
(

r

A(r)

)α

; (1.24)

ET α
r �

(
r

A(r)

)α

; (1.25)

and

EΛα
r �

(
r

A(r)

)α

. (1.26)

(ii) Assume only thatlimt→∞ Xt = ∞ a.s. ThenA(x) > 0 for all large x and

∞∫
1

t−1P(Xt � r) dt �
∞∫

1

t−1P( sup
0�s�t

Xs � r) dt � log

(
r

A(r)

)
, asr → ∞. (1.27)

The next result adds to the equivalences in Theorem 1.

Theorem 4.Supposelimt→∞ Xt = ∞ a.s., so thatA(x) > 0 for all large x, andα > 0. Then(1.14)holds if and
only if the followingquantities have a finitemoment of orderα:

T (−r)1{T (−r)<∞}, whereT (−r) = inf{t : Xt < −r}, r � 0; (1.28)

Tmin = inf{t : Xt � I∞ or Xt− � I∞}, whereI∞ = inf
0<s<∞Xs; (1.29)

Or =
∞∫

0

1{Xt<r} dt, r � 0. (1.30)

A further set of results in Proposition 4.1 of [8] gives a different, but related necessary and sufficient condi
for some other quantities to have a finite moment of orderα. (See also [7].) To give the analogues for Lé
processes we need to introduce the processH # = (H #

s , s � 0), which is the ladder height process forX#.

Theorem 5.Assumelimt→∞ Xt = ∞ a.s., so thatA(x) > 0 for x large enough,x � x0, say, and fixα > 0. Then
the following are equivalent:∫

(x0,∞)

(
x

1+α

A(x)

)
Π#(dx) < ∞; (1.31)

E
(
(H #

r )α;H #
r < ∞)

< ∞ for some(hence every) r > 0; (1.32)

E
(|I∞|α)

< ∞; (1.33)

E
(|XT (−r)|α;T (−r) < ∞)

< ∞ for some(hence every) r � 0; (1.34)

E
(

sup
0�t�Λr

|Xt |α
)
< ∞ for some(hence every) r � 0; (1.35)

E
(

sup
0�t�T (−r)

|Xt |α;T (−r) < ∞)
< ∞ for some(hence every) r � 0. (1.36)

Remark. (iii) In the case 0< EX1 � E|X1| < ∞, so that limx→∞ A(x) = EX1 > 0, for all largex, (1.31) and
(1.14) coincide, and reduce toE(X−)α+1 < ∞, but in general they are different.
1
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The next two theorems consider curved boundaries which are bounded above by concave (possibl
functions. Our method is to reduce the problem to one ofconstant boundaries, so Theorems 6 and 7 below ca
considered as applications of the foregoing results. To formulate the curved boundary results, letg(t) be a positive
nondecreasing function on[0,∞), with g(0) = 0, which is regularly varying with indexρ ast → ∞ (write this as
g ∈ RVρ ). Define

Tg(r, a) = inf
{
t > 0: Xt > rg(t + a)

}
, r > 0, a > 0. (1.37)

Theorem 6.Fix α � 0 and supposeg ∈ RVρ with 0 � ρ < 1. ThenE(Tg(r, a))1+α < ∞ for some, hence ever
r > 0, a > 0, if and only ifA(x) > 0 for all large x and (1.14)holds.

Remark. (iv) The constanta > 0 is introduced in (1.37) to keep the boundary away from 0; note thatTg(r, a) �
Trg(a) (with Tr as in (1.5)). We need this becausea Lévy process which has unbounded variation jumps immediately
over a boundary which increases at a linear or slower than linear rate near 0, by virtue of a result of Rogo
which states that, then,

−∞ = lim inf
t→0+

Xt

t
< lim sup

t→0+
Xt

t
= +∞ a.s. (1.38)

A similar principle applies in the next result, which treats linear boundaries. DefineT1(r, a) to be the version o
Tg(r, a) wheng(t) = t .

Theorem 7.(i) E(T1(r, a)) < ∞ for all r > 0 and somea > 0 if and only if

J− < ∞ =
∞∫

1

�Π+(x) dx (1.39)

(see(1.8)for J−), and if this holds then, for eachα � 0, E(T1(r, a))1+α < ∞ for some, hence every,r > 0, a > 0,
if and only if (1.19)holds.

(ii) E(T1(r, a)) < ∞ for some but not allr > 0, for somea > 0, if and only if0 < EX1 � E|X1| < ∞, and if
this holds then, for allα � 0, E(T1(r, a))1+α < ∞ for somer > 0, hence for all0 < r < EX1 and alla > 0, if and
only if E(X−

1 )α+1 < ∞.

Remark. (v) Our methods do not give good estimates of the rate of growth ofE(Tg(r, a))1+α , as r → ∞, in
Theorems 6 and 7 (and in part (ii) of Theorem 7 we haveE(T1(r, a))1+α = ∞ for r � EX1, in any case).

We conclude this section with some examples of interest.

Example 1.Spectrally positive processes/subordinators. The characteristics satisfyγ ∈ R, σ 2 � 0 andΠ((−∞,0))

0, so A(x) = γ + �Π+(1) + ∫ x

1
�Π+(y) dy. We have limt→∞ Xt = ∞ a.s. if

∫ ∞
1

�Π+(x) dx = ∞ or if∫ ∞
1

�Π+(x) dx < ∞ and A(∞) > 0. If either of these holds thenA(x) > 0 for all largex. So by Theorem 1
in these cases,ET 1+α

r < ∞ for all α � 0 andr > 0.

Example 2.Symmetric processes plus drift. These have�Π+(·) = �Π−(·), soA(x) = γ . We have∫
(x0,∞)

xΠ#(dx)∫ x

x0
�Π+(y) dy

=
∫

(x0,∞)

xΠ(dx)∫ x

x0
�Π+(y) dy

= ∞

unless
∫ ∞

1
�Π+(x) dx < ∞, in which caseE|X1| < ∞, and so by (1.9), we have limt→∞ Xt = ∞ a.s. if and only

if γ > 0. If this is so thenET 1+α
r < ∞ if and only if

∫
(1,∞)

x1+αΠ(dx) < ∞, or, equivalently,E|X1|1+α < ∞.
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Example 3.Jump diffusion processesare of the form

Xt = at + σBt +
Nt∑

j=1

Yj ,

wherea ∈ R, Nt is a Poisson process of ratec, independent of the Brownian motionBt , and of theYj , which are
i.i.d. with c.d.f.F(·), also independent ofBt . Then �Π+(x) = c(1− F(x)), �Π−(x) = cF (−x), x > 0, and

γ = a + c

∫
[−1,1]

x dF(x) = a − c
(
1− F(1) − F(−1)

) + c

1∫
0

(
1− F(x) − F(−x)

)
dx.

Using (1.7) we can easily check that

A(x) = a + c

x∫
0

(
1− F(y) − F(−y)

)
dy = a + cAF (x),

say, whereAF(x) = E((Y1 ∧ x) ∨ (−x)). Now limt→∞ Xt = ∞ a.s. is equivalent to (1.9), which in turn
equivalent to:

∑n
1 Yi/n

a.s.→ ∞ asn → ∞, or elseE|Y1| < ∞ anda + cEY1 = a + cAF (∞) > 0 [8]. These are
equivalent to requiring that the random walk with stepsỸi := a + cYi drift to ∞ a.s. By Theorem 1 and Remark (
following it, ET 1+α

r < ∞ for someα � 0 if and only if one of the following holds:E(Y−
1 )1+α < ∞ (if E|Y1| < ∞

anda + cEY1 > 0), or∫
(1,∞)

(
x

AF (x)

)1+α∣∣F(−dx)
∣∣ < ∞

(if
∑n

1 Yi/n → ∞ a.s.). By Theorem 2.1 of [8], this is equivalent to the finiteness ofET̃ 1+α
r , where T̃r =

inf{n � 1:
∑n

1 Ỹi > r}.
Effectively, for the Jump Diffusion Process (Compound Poisson process whena = σ = 0), conditions for the

finiteness of the moments of passage times for the associated random walk transfer directly across to the
the Lévy process, as we would expect.

Example 4 (Stable processes of orderν, 0 < ν < 2). For these,σ = 0, �Π+(x) = c+/xν and �Π−(x) = c−/xν ,
x > 0, wherec+ � 0, c− � 0, and we allow a driftγ ∈ R. If c− = 0 then we have Example 1, so keepc+ � 0 and
c− > 0. Now

∫ ∞
1

�Π+(x) dx = ∞ if and only if ν � 1, in which case

J− �
∞∫

1

x

x1−ν

dx

xν+1 = ∞,

so we can have a.s. drift to∞ only if E|X1| < ∞, equivalently, if 1< ν < 2, andEX1 > 0. TheA(·) function then
satisfies

lim
x→∞A(x) = γ + lim

x→∞(c+ − c−)(ν − x1−ν)/(ν − 1) = γ + ν(c+ − c−)/(ν − 1).

So EX1 > 0 if and only if γ + ν(c+ − c−)/(ν − 1) > 0, and then the integral in (1.14) is finite if an
only if α < ν − 1. Thus for this processET 1+α

r < ∞, for an α � 0, if and only if ν > 1, α < ν − 1 and
γ + ν(c+ − c−)/(ν − 1) > 0. The conclusions remain the same if we also allow a Brownian component (σ > 0) in
the process.
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2. Proofs

Our basic technique is to show that conditions such as (1.13)–(1.17) are equivalent to similar conditio
certain random walk, and then appeal to results from [8]. Although at first sight this might seem mechanical
routine, transferring probabilisticconditions such as (1.15) to the random walk setting is in fact quite delicate
efficient way to proceed is by looking at the process at times at which it makes large jumps. We use the follow
recent result, taken from [4]. As previously mentioned, whenΠ is not identically zero we assume (without loss
generality) thatc1 := Π([−1,1]c) = �Π+(1) + �Π−(1) > 0. Now putτ0 = 0, and forn � 1 write τn for the time at
whichJn, thenth jump inX whose absolute value exceeds 1, occurs. A random walk is then defined by

Ŝ := (Ŝn, n � 0), whereŜn = X(τn). (2.1)

Of course(τn, n � 1) are the successive jump times of a Poisson process of ratec1 which is independent o
(Jn,n � 1). We will write Ŷ1, Ŷ2, . . . for the steps in̂S, so that, withen := τn − τn−1, andn � 1, we have

Ŷn = X(τn) − X(τn−1) = Jn + X̃(τn) − X̃(τn−1)
D= Jn + X̃(en), (2.2)

whereX̃ is “X with the jumpsJ1, J2, . . . removed”. This process is also a Lévy process which can be writte
the notation of (1.2), as

X̃t = γ t + σBt + X
(1)
t .

FurthermoreX̃ is independent of {(Jn, τn), n � 1}, and since it has no large jumps, it follows thatE(eθX̃t ) is finite
for all realθ . Thus the contribution of

∑n
1(X̃(τi) − X̃(τi−1)) to Ŝn can be easily estimated, and for our purpo

Ŝ can be replaced byS∗, whereS∗
n = ∑n

1(Jr + µ̃), with µ̃ = EX̃(τ1) (to see this, use Lemma 11 below). Next
introduce

In := inf
τn�t<τn+1

Xt and Mn = sup
τn�t<τn+1

Xt, (2.3)

and also

ĩn = inf
0�s<en+1

{
X̃(τn + s) − X̃(τn)

}
and m̃n = sup

0�s<en+1

{
X̃(τn + s) − X̃(τn)

}
. (2.4)

These quantities are independent ofŜn, and of course we have

Mn = Ŝn + m̃n, and In = Ŝn + ĩn.

However there is a different representation for the random variablesMn andIn which turns out to be more usefu

Proposition 8 (Doney [4]).Using the above notation, we have

Mn = S(+)
n + m̃0 and In = S(−)

n + ĩ0, n � 0, (2.5)

where each of the processesS(+) = (S
(+)
n , n � 0) and S(−) = (S

(−)
n , n � 0) are random walks with the sam

distribution asŜ. MoreoverS(+) andm̃0 are independent, as areS(−) and ĩ0.

For any random walkS = (Sn, n � 0) (S0 = 0) we will use the notation

Φr = min(n � 0: Sn > r), Γr = max(n � 0: Sn � r), r � 0

(with Φr = ∞ if Sn � r for all n � 0), and the corresponding quantities for Ŝ, S(+), and S(−) will carry the
appropriate superfix. It is obvious that Proposition 8 should enable us to compare the moments ofTr andΦ̂r , and
the exact statement is:

Lemma 9.For anyr > 0, ET 1+α
r < ∞ andEΦ̂1+α

r < ∞ are equivalent forα � 0. For anyr � 0, EΛα
r < ∞ and

EΓ̂ α
r < ∞ are equivalent forα > 0. In addition,P(Λr < ∞) = 1 if and only ifP(Γ̂r < ∞) = 1.
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ch
Proof. Since

In = S(−)
n + ĩ0 � Xt � Mn = S(+)

n + m̃0 for τn � t < τn+1, (2.6)

we deduce that forn � 1

(τn < Tr � τn+1) = {
m̃0 � r,Φ

(+)

r−m̃0
= n

}
,

and hence, by Proposition 8,

∑
n�1

nαP(Tr > τn) �
r∫

0

E
(
Φ̂1+α

r−y

)
P(m̃0 ∈ dy) � E

(
Φ̂1+α

r

)
. (2.7)

Also, for somec > 0 and all larger,∑
n�1

nαP(Tr > τn) � cE
(
Φ̂1+α

r/2

)
P(m̃0 � r/2) � E

(
Φ̂1+α

r/2

)
.

Next note that Theorem 2.1 of [8] implies that eitherEΦ̂1+α
r < ∞ for all r � 0, or EΦ̂1+α

r = ∞ for all r � 0.
Thus to establish the first statement it suffices to show that

ET 1+α
r < ∞ ⇔

∑
nαP(Tr � τn) < ∞.

Note that for anyc > 0,

(Tr � nc) ⊂ {
(Tr � τn) ∩ (nc � τn)

} ∪ (τn > nc),

so that∑
nαP(Tr � nc) �

∑
nαP(Tr � τn) +

∑
nαP(τn > nc).

Sinceτn is Gamma(n, c1), we see that the final term is finite wheneverc > 1/c1, and this gives one implication
For the other, note that

(Tr � τn) ⊂ (Tr � nc) ∪ (τn < nc),

and choose 0< c < 1/c1; then
∑

P(τn < nc) converges.
The results forΛr depend on the observation that

(τn < Λr � τn+1) = {
Γ

(−)

r+|ĩ0| = n
}
, n � 1,

and are proved in a similar fashion.�
To connect up with the other conditions in Theorem 1 we state a minor extension of Theorem 2.1 of [8].Y is

a typical step in a random walkS, we writeA+(x) = ∫ x

0 P(Y > y)dy, x � 0. We will also writeΦ
(δ)
r , Γ

(δ)
r and

A
(δ)
+ (x) for Φr , Γr andA+(x) evaluated for the random walkS(δ) := (Sn − nδ, n � 0).

Proposition 10.LetS be any random walk withlimn→∞ Sn = ∞ a.s., and writeµ = ES1 ∈ (0,∞) if E|S1| < ∞,
and µ = +∞ otherwise. Then for each fixedα � 0, either the following three conditions all hold for ea
0 � δ < µ, or else they all fail for each suchδ:

∞∑
1

nα−1P(Sn � nδ + r) < ∞ for some(hence every) r � 0; (2.8)

∞∫
1

(
x

A
(δ)
+ (x)

)1+α

P (Y− ∈ dx) < ∞; (2.9)

E
(
Φ(δ)

r

)1+α
< ∞ for some(hence every) r � 0 if α � 0. (2.10)
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e

finite
Also equivalent to(2.8)–(2.10)for each0 � δ < µ, are

E
(
Γ (δ)

r

)α
< ∞ for some(hence every) r � 0, if α > 0,

P
(
Γ (δ)

r < ∞) = 1 for some(hence every) r � 0, if α = 0. (2.11)

Proof. The restriction onδ guarantees that limn→∞ S
(δ)
n = ∞ a.s., so for a fixedδ the above conditions ar

equivalent by virtue of Theorem 2.1 of [8].(With reference to (2.9), note that since limn→∞ S
(δ)
n = ∞ a.s., the

first part of (2.5) of Theorem 2.1 of [8] is automatic, and Remark (ii) thereof shows that we can replaceA(δ)(y) by
A

(δ)
+ (y) in the second part.) However, whenµ < ∞, we have 0< A

(δ)
+ (∞) < ∞ for eachδ, and whenµ = ∞ we

haveA
(δ)
+ (y) ∼ A

(0)
+ (y) asy → ∞ for eachδ, so it is easy to see that (2.9) either holds for all allowableδ, or for

none. �
We now prove several lemmas, preparing for the proof of Theorem 1.

Lemma 11.LetS, S̃ be random walks with typical stepsY, Ỹ such that

Ỹ
D= Y + W,

whereY andW are independent,EW = 0 andEeθW is finite for0 � |θ | � θ0, someθ0 > 0. Thenlimn→∞ Sn =
∞ a.s. if and only iflimn→∞ S̃n = ∞ a.s., and forα � 0, r � 0,

∑∞
1 nα−1P(Sn � r) < ∞ if and only if∑∞

1 nα−1P(S̃n � r) < ∞.

Proof. Since limn→∞ Sn = ∞ a.s. occurs if and only ifn−1Sn
a.s.→ µ ∈ (0,∞], (see [6]) andn−1(S̃n − Sn)

a.s.→ 0 by
the strong law, the first statement is immediate. For the second, note first that

P(S̃n � r) � P(Sn � r)P

(
n∑
1

Wi � 0

)
∼

1

2
P(Sn � r).

On the other hand, choosingδ ∈ (0,µ) and using a standard exponential bound for sums of i.i.d. rvs with a
moment generating function,

P(S̃n � r) = P

(
S(δ)

n +
n∑
1

(Wi + δ) � r

)
� P

(
S(δ)

n � r
) + P

(
n∑
1

Wi � −nδ

)

= P
(
S(δ)

n � r
) + O

(
e−nc

)
asn → ∞,

wherec > 0, and the result follows from Proposition 10.�
Lemma 12.Let S be any random walk,M an independent Poisson process of parameterλ, a ∈ R, andZ̃ a Lévy
process which is independent ofS andM, hasEZ̃1 = 0, and hasEeθZ̃1 finite for 0 � |θ | � θ0, for someθ0 > 0.

DefineZt = SMt + a(Mt − λt) + Z̃t . Then: (i) for α � 0, r � 0,

∞∫
1

tα−1P(Zt � r) dt �
∞∑
1

nα−1P(Sn � r), (2.12)

in the sense that if one side is finite, so is the other, and if one side is finite for anr � 0, then the ratio of the two
sides is bounded away from 0 and infinity asr → ∞; (ii) lim t→∞ Zt = ∞ a.s. if and only iflimn→∞ Sn = ∞ a.s.
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Proof. (i) By the central limit theorem, limt→∞ P(Z̃t � 0) = 1/2, so we have, ast → ∞,

P(Zt � r) � P(Z̃t � 0)P
(
SMt + a(Mt − λt) � r

)
∼ P

(
SMt + a(Mt − λt) � r

)
/2.

Also, if a � 0,

P
(
SMt + a(Mt − λt) � r

)
� P(SMt � r,Mt − λt � 0) =

∑
0�n�λt

e−λt (λt)n

n! P(Sn � r). (2.13)

Thus

∞∫
1

tα−1P
(
SMt + a(Mt − λt) � r

)
dt �

∑
n�0

λn

n! P(Sn � r)

∞∫
n/λ

tn+α−1e−λt dt

= λ−α
∑
n�0

1

n!P(Sn � r)

∞∫
n

sn+α−1e−s ds

= λ−α
∑
n�0


(n + α)

n! P(Sn � r)P (Θn+α � n), (2.14)

whereΘn+α denotes a random variable having a Gamma distribution with parametersn + α and 1. By the centra
limit theorem again, we have lim infn→∞ P(Θn+α � n) � 1/2, so, using Stirling’s formula, the summand in (2.1
is seen to be bounded below by a constant timesnα−1P(Sn � r). Thus, assuming thata � 0, the finiteness o
the left-hand side of (2.12) implies the finiteness of the right-hand side. Ifa < 0, an analogous argument wi
Mt − λt > 0 in (2.13) gives (2.14) withP(λ < Θn+α � n) in place ofP(Θn+α � n), and we reach the sam
conclusion in a similar way.

For the reverse implication, assume that the series in (2.12) converges, so that limn→∞ Sn = ∞ a.s., then choos
0 < δ < µ = ES1, where the final equality is in the senseused in Proposition 10, and again writeS(δ) = (Sn − nδ,
n � 0). Then

P(Zt � r) = P
(
S

(δ)
Mt

+ δMt + a(Mt − λt) + Z̃t � r
)

� P
(
S

(δ)
Mt

� r
) + P

(
(1+ a/δ)(Mt − λt) + δ−1Z̃t � −λt

)
= P

(
S

(δ)
Mt

� r
) + O(e−ct ) uniformly in r � 0, ast → ∞,

where we have again used a standard exponential bound, applicable because(1+ a/δ)(M1 − λ) + δ−1Z̃1 has zero
mean and finite moment generating function on(−θ0, θ0). However, by Proposition 10 we have

∑∞
1 nα−1P(S

(δ)
n �

r) < ∞, and we conclude by the calculation

∞∫
1

tα−1P
(
S

(δ)
Mt

� r
)
dt �

∞∫
0

tα−1
∑
n�0

e−λt (λt)n

n! P
(
S(δ)

n � r
)
dt = λ−α

∑
n�0


(n + α)

n! P
(
S(δ)

n � r
)
.

(ii) The second part follows since the left-hand side of (2.12) is finite forα = 0 if and only if limt→∞ Zt = ∞
a.s. by (1.10), and the right-hand side of (2.12) is finite forα = 0 if and only if limn→∞ Sn = ∞ a.s. by Spitzer’s
theorem (or Theorem 2.1 of [8]).�
Lemma 13.(i) If A(x) > 0 for all large x and(1.14)holds thenlimt→∞ Xt = ∞ a.s.
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,

(ii) Wheneverlimt→∞ Xt = ∞ a.s. it follows thatlimx→∞ A(x) exists and is positive(possibly+∞), thusA(x)

is positive for all large enoughx, and

A(x) �
x∫

1

�Π+(y) dy asx → ∞. (2.15)

Proof. (i) SupposeA(x) > 0 for all x � x0 and (1.14) holds. Then∫
(x0,∞)

(
x

A(x)

)
Π#(dx) < ∞. (2.16)

If
∫ ∞

1
�Π+(x) dx = ∞, then from (1.7)

A(x) � γ + �Π+(1) +
x∫

1

�Π+(y) dy ∼
x∫

1

�Π+(y) dy,

so by (2.16) (see (1.8) forJ−)

J− �
∫

(1,∞)

xΠ#(dx)∫ x

1
�Π+(y) dy

< ∞. (2.17)

If
∫ ∞

1
�Π+(x) dx < ∞ then (1.18) gives 0< EX1 � E|X1| < ∞. Thus limt→∞ Xt = ∞ a.s., by (1.9).

(ii) Assuming that limt→∞ Xt = ∞ a.s. and
∫ ∞

1
�Π+(x) dx = ∞, then, sincex−1

∫ x

1
�Π+(y) dy is nonincreasing

it follows from the convergence ofJ− in (1.9) that
∫ x

1
�Π−(y) dy = o(

∫ x

1
�Π+(y) dy) asx → ∞. So from (1.7),

A(x) ∼ ∫ x

1
�Π+(y)dy andA(∞) = +∞ > 0. This gives (2.15).

If lim t→∞ Xt = ∞ a.s. and
∫ ∞

1
�Π+(x) dx < ∞, then 0< EX1 � E|X1| < ∞ by (1.9), andA(∞) = EX1, so

A(x) > 0 for largex. �
Proof of Theorem 1. Fix α � 0 throughout. Assume (1.13) for somer > 0, so that limt→∞ Xt = ∞ a.s. by (1.10).
Using the notation of Proposition 8 and Lemma 9, from the bound

S
(−)
Nt

+ ĩ0 � Xt � S
(+)
Nt

+ m̃0, (2.18)

whereNt = max{n: τn � t}, we see that limt→∞ S
(+)
Nt

= ∞ a.s. Part (ii) of Lemma 12 (witha = 0 andZ̃t ≡ 0)

then gives limn→∞ S
(+)
n = ∞ a.s., so limn→∞ Ŝn = ∞ a.s. By (2.1) and (2.2) we can write, with̃µ = EX̃(τ1) =

Eτ1EX̃1 = γ /c1,

Ŝn =
n∑

i=1

(Ji + µ̃) +
n∑

i=1

(
X̃(τi) − X̃(τi−1) − µ̃

) = S∗
n +

n∑
i=1

Wi, say. (2.19)

Then Lemma 11 gives limn→∞ S∗
n = ∞ a.s. NowNt is the same as that occurring in (1.11), and we can rew

(1.2) in the form

Xt = γ t + σBt + X
(1)
t +

Nt∑
i=1

Ji = S∗
Nt

+ γ

c1
(c1t − Nt) + σBt + X

(1)
t = S∗

Nt
+ γ

c1
(c1t − Nt) + X̄t ,

whereX̄ is independent ofS∗ andN , and hasEX̄1 = 0 andEeθX̄1 finite for all realθ . Thus we have precisel
the setup of Lemma 12, and we deduce from it that

∑∞
1 nα−1P(S∗

n � r) < ∞, or equivalently, by Lemma 11
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es
∑∞
1 nα−1P(Ŝn � r) < ∞. By Lemma 9 and Proposition 10 applied toŜ with δ = 0, this is equivalent to (1.15

and the two conditions in (1.16), and also to

∞∫
0

(
x∫ x

0 P(J1 + µ̃ > y) dy

)1+α

P
(
(J1 + µ̃)− ∈ dx

)
< ∞. (2.20)

Thus (1.13), (1.15), and the two conditionsin (1.16), and (2.20), are equivalent.
Assuming any of these, we have limt→∞ Xt = ∞ a.s., soA(x) > 0 for all largex, in view of part (ii) of

Lemma 13. Also, (1.14) follows from (2.20). Indeed either
∫ ∞

0 P(J1 + µ̃ > x) dx < ∞, in which caseA(∞) =
EX1 ∈ (0,∞) and both (2.20) and (1.14) reduce to

∫ ∞
1 x1+αΠ#(dx) < ∞, or

∫ ∞
0 P(J1 + µ̃ > x) dx = ∞, in

which case
∫ x

0 P(J1 + µ̃ > y) dy � ∫ x

1
�Π+(y) dy asx → ∞, and the equivalence follows from Lemma 13.

Conversely, ifA(x) > 0 for all largex, and (1.14) holds, then Lemma 13 gives limt→∞ Xt = ∞ a.s. (and henc
limn→∞ Ŝn = ∞ a.s.), and also enables us to check that (2.20) holds, whence the other statements, exce
follow.

Before dealing with (1.17), we need some notation.

Definition 14. Say that a real-valued functionf is in Cα , whereα � 0, if, with k = [α], there exist real constan
c1, c2, . . . , ck such that

f (x) =
k∑
1

cjx
j + ε(x), (2.21)

where, ifα is an integer,ε(x) = o(xk) asx ↓ 0, and otherwise

1∫
0

∣∣ε(x)
∣∣x−α−1 dx < ∞. (2.22)

Note that iff ∈ Cα then for any integerm � 1, xmf (x) ∈ Cα , and hencef m(x) ∈ Cα . This leads to:

Definition 15.Say that a power series of the formP(s) = ∑∞
1 ans

n with real coefficients is in classP if (i) a1 �= 0,
(ii) it has a positive radius of convergence and (iii) on some nondegenerate interval(0, δ) it has a well-defined
inverseP−1 which is another power series which satisfies (i) and (ii).

Remark. (vi) The functionP(x) = − log(1−x), with inverseP−1(x) = 1−exp(−x), has a power series expansi
which is inP .

Lemma 16. A nonnegative random variableY has a finite moment of orderα > 0 if and only if, withφ(q) =
E(e−qY ),

P
(
1− φ(·)) ∈ Cα, for everyP ∈P .

Proof. From [2] (the result is also quoted as Theorem 8.18, p. 335, of [3]) we know thatEYα < ∞ is equivalent
to 1− φ(·) ∈ Cα . But if this happens then fork = 1,2, . . . , each of(1 − φ(·))k ∈ Cα , and hence so also do∑k

1 an(1−φ(·))n whenP ∈ P . Since|∑∞
k+1 ans

n| � c|s|k+1 for all sufficiently small|s|, we see thatP(1−φ(·)) ∈
Cα . On the other hand, ifψ(·) := P(1 − φ(·)) ∈ Cα , then sinceP−1 ∈ P , we have 1− φ(·) = P−1ψ(·) ∈ Cα , and
henceEYα < ∞. �
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Lemma 17. Suppose the functionsP1 and P2 are each inP , and B(s) = ∑∞
1 bns

n is another power serie
satisfying conditions(i) and (ii) in Definition 15. Suppose thatY1 and Y2 are nonnegative random variable
andφi(q) = E(e−qYi ), i = 1,2, satisfy

P1
(
1− φ1(q)

) = B(q)
(
1+ P2

(
1− φ2(q)

))
, q � 0. (2.23)

Then forα > 0, EY 1+α
1 < ∞ ⇔ EYα

2 < ∞.

Proof. AssumeEYα
2 < ∞. Then by Lemma 16,P2(1− φ2(·)) ∈ Cα , and it follows easily that

P1
(
1− φ1(·)

) = B(·)(1+ P2
(
1− φ2(·)

)) ∈ C1+α,

so EY 1+α
1 < ∞ by Lemma 16 again. For the converse, assumeEY 1+α

1 < ∞, so thatP1(1 − φ1(·)) ∈ C1+α , and
hence can be written in the form

P1
(
1− φ1(q)

) =
k+1∑

1

cj q
j + ε(q).

Then from (2.23)

1= lim
q↓0

P1(1− φ1(q))

B(q)
= c1

b1
,

and again it is easy to see that

P2
(
1− φ2(·)

) = P1(1− φ1(·))
B(·) − 1 ∈ Cα,

and the result follows. �
To prove (1.17) equivalent with the other conditions in Theorem 1, let us first note that from the Weine

factorisation (Bertoin [1, p. 166]), we have

(aq)−1κ(q) = −(aq)−1 logE
(
e−qL−1(1)

) = exp

{ ∞∫
0

t−1(e−qt − e−t )P (Xt � 0) dt

}
, (2.24)

for q > 0, for some constanta > 0. Lettingq ↓ 0 we see that

EL−1(1) < ∞ ⇔
∞∫

0

t−1(1− e−t )P (Xt � 0) dt < ∞ ⇔
∞∫

1

t−1P(Xt � 0) dt < ∞,

or, equivalently, by (1.10), limt→∞ Xt = ∞ a.s. Thus when any of (1.13)–(1.17) hold, we have

K :=
∞∫

1

t−1P(Xt � 0) dt < ∞,

so that we can define a probability density function ont � 0 by

f (t) = P(Xt � 0)1{t�1}
tK

.

Next, write the integral in (2.24) as

−K

∞∫
(1− e−qt )f (t) dt +

∞∫
t−1(1− e−t )P (Xt � 0) dt +

1∫
t−1(e−qt − e−t )P (Xt � 0) dt,
0 1 0
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so that

− logφ1(q) := κ(q) = B(q)exp
(−K

(
1− φ2(q)

))
,

whereφ2(q) = ∫ ∞
0 e−qt f (t) dt ,

B(q) = ãq exp

{ 1∫
0

t−1(e−qt − e−t )P (Xt � 0) dt

}
,

and

ã = a exp

{ ∞∫
1

t−1(1− e−t )P (Xt � 0) dt

}
.

Thus, withP1(x) = − log(1−x) andP2(x) = −1+exp(−Kx) we have the setup of Lemma 17 withL−1(1) = Y1,
andY2 havingf (·) as its probability density function. Since it is easily seen that each ofP1, P2 andB satisfy the
assumptions in that lemma, andE(Yα

2 ) = K−1
∫ ∞

1 tα−1P(Xt � 0) dt , the result follows. �
Proof of Theorem 2. (i) Keep 0< α < 1 andr > 0. Integrate by parts in (1.20) to get

∞∫
0

(1− e−qt )P (Tr ∈ dt) = κ(q)V q(r). (2.25)

Dividing by qα+1 and integrating each side gives

cαET α
r =

∞∫
0

tα

( ∞∫
0

q−α−1(1− e−q) dq

)
P(Tr ∈ dt) =

∞∫
0

q−α−1κ(q)V q(r) dq,

in the sense that if one side is finite, so is the other, and they are equal, withcα = 
(1 − α)/α as the value of the
inner integral. This establishes (1.22).

Now by (2.25),κ(q)V q(r) � 1 for all q > 0, r � 0, so, sinceα > 0, the integral
∫ ∞

1 q−α−1κ(q)V q(r) dq is
finite for all r � 0. ThusET α

r < ∞ if and only if q−α−1κ(q)V q(r) ∈ L(0,1). But since, for eachr > 0, asq ↓ 0,

V q(r) ↑ V (r) :=
∞∫

0

P(Ht � r) dt ∈ (0,∞),

we see thatET α
r < ∞ if and only if q−α−1κ(q) ∈ L(0,1). From (2.24) we then see that (1.21) holds.

(ii) Now assume limt→∞ Xt = +∞ a.s., or, equivalently,ETr < ∞. From (1.20) we get

ETr = a′V (r)

wherea′ = limq→0 κ(q)/q ∈ (0,∞). By Bertoin [1, p. 74],

V (r) =
∞∫

0

P(Ht � r) dt � r∫ r

0
�ΠH (y) dy

,

whereΠH(y) is the Lévy measure of the subordinatorH . Using Proposition 3.3 of Vigon [12], we can write

�ΠH(r) =
∞∫

V #(dy) �Π+
X (r + y) � V #([0,∞)

)�Π+
X (r) = c′ �Π+

X (r),
0
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whereV #([0, r]) = ∫ ∞
0 P(H #

t � r) dt . Note thatc′ = V #([0,∞)) < ∞ sinceX drifts to +∞ a.s. In the othe
direction, takec > 0 such thatV #([0, c]) = c′′ > 0, as is possible sinceX is not a subordinator, and get

�ΠH(r) �
c∫

0

V #(dy) �Π+
X (r + c) � c′′ �Π+

X (r + c).

From these we easily see that
∫ r

0
�ΠH(y) dy � ∫ r

1
�Π+

X (y) dy and thus, sinceA(r) � ∫ r

0
�Π+

X (y) dy, we have∫ r

0
�ΠH(y) dy � A(r). �

Proof of Theorem 3. (i) Under the hypotheses of Theorem 3, we have limt→∞ Xt = ∞ a.s. andA(x) > 0 for
all large x. As in the proof of Theorem 1, again we have limn→∞ Ŝn = ∞ a.s. and limn→∞ S∗

n = ∞ a.s. So
Theorem 2.2 of [8] gives, asr → ∞,

∞∑
1

nα−1P(Ŝn � r) �
(

r

Â(r)

)α

and
∞∑
1

nα−1P(S∗
n � r) �

(
r

A∗(r)

)α

,

when α > 0, or with logarithmic terms on the right whenα = 0, provided the series converge; and this is
case when the integral in (1.24) converges, by Theorem 1 and its proof (even forα = 0). However, the proofs o
Proposition 10 and Lemma 11 show that we haveÂ(r) ∼ Â+(r) ∼ A∗+(r) ∼ A∗(r) ∼ A(r) asr → ∞, so (1.24)
and the outer relation in (1.27) follow from (2.12) of Lemma 12.

To get (1.25), use the argument in Lemma 9 to see that for suitablec andα > 0

ET α
r = α

∞∫
0

tα−1P(Tr > t) dt �
∞∑
1

nα−1P(Tr > nc) �
∞∑
1

nα−1P(Tr > τn) � E
(
Φ̂α

(r−m̃0)
+
)
.

Since Theorem 2.2 of [8] also gives

EΦ̂α
r �

(
r

Â(r)

)α

�
(

r

Â+(r)

)α

asr → ∞,

we see, by dominated convergence and the fact thatEm̃α
0 < ∞, that

EΦ̂α
(r−m̃0)

+ �
(

r

Â+(r)

)α

�
(

r

A(r)

)α

asr → ∞.

The proof of (1.26) follows the same lines.
(ii) For the remainder of (1.27): the inner integral is clearly smaller than the left-hand integral. In the ot

direction, use (2.18) to write

sup
0�s�t

Xs � sup
0�s�t

S
(+)
Ns

+ m̃0. (2.26)

Let Yi be the steps inS(+)
n . Now limn→∞ S

(+)
n = ∞ a.s. so

∑n
1 Y−

i = o(
∑n

1 Y+
i ) a.s., ifE|Y1| = ∞ (see Pruitt [9]),

while
∑n

1 Y−
i ∼ (EY+

1 /EY1 − 1)
∑n

1 Yi a.s., if 0< EY1 � E|Y1| < ∞. Thus
∑n

1 Y+
i = O(

∑n
1 Yi) a.s., asn → ∞.

It follows that

sup
0�s�t

S
(+)
Ns

= sup
0�s�t

(
Ns∑
i=1

Yi

)
� sup

0�s�t

(
Ns∑
i=1

Y+
i

)

=
Nt∑

Y+
i = O

(
Nt∑

Yi

)
= O

(
S

(+)
Nt

)
a.s., ast → ∞. (2.27)
i=1 1
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f the

31) is

tial
SinceS
(+)
Nt

and S
(−)
Nt

have the same distribution, (2.18) shows that we can replace sup0�s�t Xs by Xt for the
purposes of proving (1.27). Then the result follows from the already-established outer relation in (1.27).�
Proof of Theorem 4. The proofs that the quantities in (1.28) and (1.29) have finite moments of orderα are based
on the facts that(

τn < T (−r) � τn+1
) = {|ĩ0| � r,Φ(+)

(−(r + ĩ0)
) = n

}
,

and

(τn < Tmin � τn+1) = {
I∞ < ĩ0, Φ

(−)
min = n

}
,

whereΦ(+)(−r) andΦ
(−)
min have their obvious meanings. We omit the details.

For (1.30), we haveOr � Λr , so each of the conditions in (1.16) implies that (1.30) has a finite moment o
corresponding orderα; conversely,

Or � O0 =
∞∫

0

1{Xs<0} ds = lim
t→∞

t∫
0

1{Xs<0} ds.

However the Sparre–Andersen Identity (Bertoin [1, p. 170]) states that

t∫
0

1{Xs<0} ds
D= Tmin(t) := inf{s: Xs � It or Xs− � It } whereIt = inf

0�s<t
Xs,

and we conclude thatO0
D= Tmin. Thus ifOr has a finite moment of orderα, then so doesTmin. �

Proof of Theorem 5. We start by observing that a minor variation of the proof of Theorem 1 shows that (1.
equivalent to the condition (4.14) of [8] evaluated either forŜ or S∗. Next, note that

I∞ = ĩ0 + min
n�0

S(−)
n

D= ĩ0 + min
n�0

Ŝn,

where the two terms are independent. Since|ĩ0| has finite moments of all orders, it is clear thatE(|I∞|α) < ∞ ⇔
E(|minn�0 Ŝn|α) < ∞, so the equivalence of (1.31) and (1.33) follows from Proposition 4.1 of [8].

Since limt→∞ Xt = ∞ a.s., the processH # is a subordinator,H(0) say, killed at an independent exponen
time τ , and its final valueH(0)

τ coincides with|I∞| see [1, p. 172]. It follows that

E
(
(H #

r )α;H #
r < ∞)

< ∞ for a fixedr > 0 ⇔ E
(
H(0)

r

)α
< ∞

⇔ E
(
H(0)

r

)α
< ∞ for all r > 0 ⇔ E

(
H(0)

τ

)α
< ∞.

(One way to justify the last step is to relate the Laplace transform ofH
(0)
τ to the Laplace transform ofH(0)

1 and
then appeal to Lemma 16.) Thus (1.32)⇔ (1.33).

As for (1.34), first note that, on the eventT (−r) < ∞, |XT (−r)| < |I∞|. On the other hand, ifp = P(T (−r) <

∞), then|I∞| is stochastically dominated by
∑N(p)

1 Zi , where theZi are independent copies of|XT (−r)|, given
T (−r) < ∞, andN(p) is an independent Geometric(p) rv. SinceE((

∑n
1 Zi)

α) � nαEZα
1 , the reverse implication

follows.
Finally, just as in the random walk case, we can show that fort > r � 0,

P
(

sup
0�t�Λr

|Xt | > t
)
� 2P

(|I∞| > t − r
)
,

and then argue just as in [8, p. 30], to see that (1.34), (1.35), and (1.36) are equivalent.�
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Proof of Theorem 6. Sinceg(a) > 0 andTg(r, a) � Trg(a), the finiteness ofE(Tg(r))
1+α implies that ofET 1+α

r

for anyr > 0 andα � 0. Then use Theorem 1.
Conversely, supposeET 1+α

r is finite for some, hence every,r > 0 and someα � 0. Sinceg ∈ RV (ρ) with ρ < 1
ast → ∞ we haveg(t) � tη for t � somet0(η) for someη < 1. Select such anη < 1, thenrg(t + a) � r(t + a)η

for t � t0. Taket0 � 1 without loss of generality. Now limt→∞ Xt = ∞ a.s. implies limt→∞ Xt/t = µ ∈ (0,∞]
a.s. Thus lim inft→∞ Xt/t > 0 a.s. Hence we can find aδ > 0 with P(Xt < δt i.o. for t → ∞) = 0. We can take
δ > 0 smaller if necessary and then find anr0(r, a, δ) > 0 so that the straight line with interceptr0 and slopeδ lies
entirely above the function

r(t0 + a)η1{t<t0} + r(t + a)η1{t�t0}.

Sinceg(·) is nondecreasing, this function in turn lies entirely aboverg(t + a), for all t � 0. Now define

T δ
r0

= inf{t > 0: Xt > r0 + δt}.
ThenT δ

r0
� Tg(r, a), so it will suffice to prove thatE(T δ

r0
)1+α < ∞. To see this, letX(δ) = {X(δ)

t , t � 0} where

X
(δ)
t = Xt − tδ; this Lévy process satisfiesP(X

(δ)
t < 0 i.o. for t → ∞) = 0, thus limt→∞ X

(δ)
t = ∞ a.s. Also we

have

T δ
r0

= inf
{
t > 0: X

(δ)
t > r0

}
,

soT δ
r0

is theTr0 for X
(δ)
t . Thus, by Theorem 1 (cf. (1.14)),E(T δ

r0
)1+α < ∞ for eachα � 0 if and only if there is an

x0 > 0 with

Aδ(x) > 0 for x � x0 and
∫

(x0,∞)

(
x

Aδ(x)

)1+α∣∣ �Π−
δ (dx)

∣∣ < ∞, (2.28)

whereAδ(·) andΠδ(·) are theA(·) andΠ(·) for the shifted processX(δ). This process has the same characteris
asX but withγ replaced byγ − δ. ThusΠδ(·) = Π(·), and

Aδ(x) = (γ − δ) + �Π+
δ (x) − �Π−

δ (x) +
x∫

1

(�Π+
δ (y) − �Π−

δ (y)
)
dy = A(x) − δ.

We haveA(∞) > 0 (Lemma 13) and similarlyAδ(∞) > 0, soAδ(x) � aA(x) for somea > 0 for all largex. Thus
(2.28) follows from (1.14), and henceE(T δ

r0
)1+α < ∞. �

Proof of Theorem 7. (i) SupposeET1(r, a) < ∞ for all r > 0 and somea > 0. ThenETa < ∞, so limt→∞ Xt =
∞ a.s. and (1.9) holds. IfE|X1| < ∞ andµ := EX1 > 0 thenP(Xt > (µ + ε)t i.o.) = 0 for all ε > 0, so given
δ ∈ (0,1/2) there is at0(δ) > 0 such thatP(sups�t (Xs/s) > µ + ε) � δ for all t � t0. We can also assumet0 so
large thatP(Xt0 < 0) � δ. Now by Doob’s inequality

P( sup
0�t�t0

Xt > ra) � sup
0�t�t0

E|Xt |/(ra) � 1− δ

providedr is large enough,r � r0(t0(δ)), say. Also chooser > µ + ε. Now

P
(
sup
t>0

(
Xt/(t + a)

)
� r

)
� P

(
sup

0�t�t0

Xt � ra, sup
t>t0

(
(Xt − Xt0)/t

)
< µ + ε

)
,

because if the event on the right-hand side occurs, thenXt � ra � r(t + a) for t � t0, while also fort > t0,
Xt < (µ + ε)t + Xt0 � (µ + ε)t + ra � r(t + a). Thus forr > (µ + ε) ∨ r0,
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,

nd

me

ppl.

002)

dv.

96)
P
(
T1(r, a) = ∞)

� P( sup
0�t�t0

Xt � r)P
(
sup
t>t0

(
(Xt − Xt0)/t

)
� µ + ε

)
� δP

(
sup
t>t0

(Xt/t) � µ + ε, Xt0 > 0
)

� δ(1− 2δ) > 0.

This contradiction shows that the first conclusion in (1.9) must hold, i.e., (1.39) holds.
Conversely, (1.39) implies limt→∞ Xt/t = ∞ a.s. Now we can equivalently write

T1(r, a) = inf
{
t > 0: Xt > r(t + a)

} = inf
{
t > 0: X

(r)
t > ra

}
, (2.29)

whereX
(r)
t = Xt − tr. ThusT1(r, a) is Tra for X

(r)
t , and since limt→∞ X

(r)
t = ∞ a.s. we haveET1(r, a) < ∞.

This proves the equivalence with (1.39). By Theorem 1, theTra for X
(r)
t has a finite moment of order 1+ α, or, by

(2.29), the same is true forT1(r, a), if and only if (2.28) holds withr in place ofδ. As we saw following (2.28) this
is equivalent to (1.14), which in the present case is equivalent to (1.19).

(ii) Now supposeE(T1(r, a)) < ∞ for some but not allr > 0 and somea > 0. ThenETa < ∞ and (1.9)
holds, and by part (i) of the proof it must be the case that 0< EX1 � E|X1| < ∞. Conversely this implies
E(T1(r, a)) < ∞ for r < EX via (2.29) and the fact that limt→∞ X

(r)
t = ∞ a.s. when 0< r < EX. If r � EX1,

lim inf t→∞ X
(r)
t = −∞ a.s., so theTr for X

(r)
t has infinite expectation, thus the same is true ofT1(r, a) via (2.29).

Finally suppose 0< EX1 � E|X1| < ∞ and 0< r < EX1. ThenE(X
(r)
1 ) = EX1 − r > 0, so by Theorem 1

theTr for X
(r)
t has a finite moment of orderα + 1 if and only if the second condition in (1.18) holds, i.e., if a

only if E(X−
1 )α+1 < ∞. �
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