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Abstract

We give necessary and sufficient conditions, in terms of characteristics of the process, for finiteness of moments of passage
times of general Lévy processes above horizontal, linear or certain curved boundaries. They apply in particular to processes
which drift almost surely to infinity, and lead to estimates of the rate of growth of certain expectations, constituting generalised
kinds of renewal theorems. Further results concern the inverse local time at the maximum and the ladder height process, the
amount of time spent below a given level, and the overall minimum of the Lévy process.
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Résumé

Des conditions nécessaires et suffisantes sont données pour la finitude des moments de certains temps de passage des
processus de Lévy.
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1. Introduction and main results

Consider a Lévy process = {X,},>o with E€9Xr =&¥© ¢ > 0, where the Lévy exponetit is given by the
Lévy—Khintchine formula [1, pp. 12-13]
1 .
w(0)=iy0 — 50292 + / (€9 —1—i0x1_1 1)) [T (dx). (1.1)

(—00,00)
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The quantities’, o2 andIT are called theharacteristicof X. Eq. (1.1) is the analytic counterpart of the following
standard decompositiosde [11, p. 120]): we havg&y = 0 and

X, =yt +oB + XV +x2, (1.2)
whereB is a standard Brownian motioi,"? has Lévy exponent
v D@) = / (€% —1—i6x)1_1_1yd I (x), (1.3)
(—00,00)

and consequently has expectation 0 and finite moments of all order; @hi$ the compound Poisson process
with Lévy exponent

v @ @) = / (€% — 1) (L1, 00) + L(—00,—1)) dIT (x). (1.4)
(—00,00)
Our main objects of study are the fiestd last passage times, defined by
T,=inf{t: X;, >r}, r>0 (1.5)
(with 7, = oo if the set on the right-hand side is empty) and
Ar=sugt: X, <r}, r=0, (1.6)

and our main objective is to provide necessary and sufficient conditions, expressed in terms of the characteristics
of X, for these random variables to have finite moments. These lead to kinds of generalised renewal theorems.

In random walk theorygg, the first increasing ladder epoch in a discrete time random walk, plays a key role
in the study of first passage times, and is used in a crucial way in [8], which is our point of departure for the
present paper. Bufp, the analogous object in the continuous time context, defined as in (1.5){(wtB), in
many cases of interest equals 0 almost surely (a.sd)same of the methods of [8] fail. Thus our approach cannot
simply be a matter of transferring the random walk results into the continuous time framework in a mechanical
way. To bypass this difficulty we use an approach due to Doney [4] (see Proposition 8 below) which gives very
convenient stochastic bounds for the process in terms of random walks. In our context the analogous tg&ilt for
formulated by introducing the local time at the maximum, and an appropriate Lévy process version of the existence
of moments ofrg is in (1.17) below. For this purpose, et = (L~1(r), r > 0) denote the increasing ladder time
process (inverse local time at the maximumXofwith exponenk (¢) = — log E(e—qL_l(l)). The increasing ladder
height process will be denoted I8). See Bertoin [1], Chapter VI, for these.

To state our results we write, far> 0, [T+ (x) = IT((x, 0)), [T~ (x) = I1((—o0, —x)), and

AW =y + T Q) - T~ D) + / (T () — T~ () dy. (1.7)
1

which is a kind of truncated mean; whéhX1| < co thenA(x) — EX1 asx — oo. Let X¥ = (=X;, 1 > 0), and
denote its Lévy measure by*. We will also need

X #
- (l/)(ﬂ @ ffn ()’)dV) (@) ( )

(when the denominator is positive; otherwige need not be defined). This is relevant because it was shown in
Doney and Maller [5] that lim., ., X; = oo a.s. if and only if

o
J_<oo:/ﬁ+(y)dy or 0<EX1<E|X1| <oo, (1.9)
1
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which complements the less explicit criterion (Bertoin [1, p. 167]), that
o
/rlp(x, <0)dr < oo. (1.10)
1

[5] also shows that lim, o, X/t = co a.s. if and only if the first condition in (1.9) holds.
Since all our results are invariant under scaling, wiers not identically zero (so that does not reduce to
Brownian motion) we can and will assume that= 7+ (1) + I7~ (1) > 0. Then we write (see (1.2))

N
xP=0 x?=>"J >0 (1.11)
i=1

where theJ; are i.i.d. (independent and identically distributed) with
P(J1€dx) =7 L100) + Li—oo,—1) T (dx) (1.12)

and{N;, t > 0} is a Poisson process of rate The J;, {N;, t >0}, X'V andB are all independent of each other.
Our first task is to give a Lévy process version of Theorem 2.1 in [8].

Theorem 1.Fix & > 0. The following are equivalent
(0.¢]
/t“flP(X, <r)dt <oo for some(hence everyr > 0; (1.13)
1

there is anxg > 0 such thatA (x) > 0 for x > xg, and

/ ( al >l+a17#(dx) < 00; (1.14)
A(x)

(x0,00)

ETY® <00 for some(hence everyr > 0; (1.15)

EAY <oo for some(hence everyr > 0, if a > 0;

P(A, <o0)=1 forsomethence everyr >0, if « =0; (1.16)

E(L2 )" < . (1.17)

Remark. (i) By the definitions off, and A,, (1.15) is equivalent to

o
/t“P( sup X <r)dt <oo forsome(hence everyr > 0;
0<s <t
and the conditions in (1.16) are equivalent to
o
/t"“lP(ir;f X, <r)dt <oo for some(hence everyr >0, if « > 0,
s>t
0
lim P(inf X; <r)=0 forsome(hence everyr > 0,if « =0.
t—00 s>t

(i) Condition (1.13) implies (1.10), hence it implies lims X; = oo a.s. Thus Theorem 1 deals only with
processes that drift té-oo a.s., or equivalently, with processes satisfying (1.9). If the first condition in (1.9) holds
it is easy to verify thatA(x) ~ [ [TT(y)dy — oo asx — oo, while lim,_, A(x) = EX1 > 0 if the second
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condition in (1.9) holds. (See also Lemma 13 below.) NgWx+*17#(dx) converges if and only if£ (X )***
converges (Sato [11, p. 159]). Thdsx) > O for all largex and (1.14) holds if and only if

0<EX1<E|X1l<oco and E(X)*™ < oo, (1.18)
or
/ <_;)l+an#(dx) <oo= 7ﬁ+(x) dx. (1.19)
- L Ty dy J

The next theorem gives a condition fBI7,* to be finite when O< o < 1, and examines its rate of growth as
r— 00, 0<a < 1,whenitis. Its proof will make use of the relation (Bertoin [1, p. 174])

00
q/e‘q’P(T, >0 dt =k(q)ViQr), (1.20)
0
wherer > 0, ¢ > 0, and
00
vq(r)=/E(e*‘1L’1<’>1{H,<r})dt.
0

In what follows we will usex to mean that the ratio of two expressions is bounded below and above by two
positive, finite constants for all sufficiently large

Theorem 2. (i) (No assumptions oX.) Let0 <« < 1 andr > 0. ThenET® < oo if and only if¢g™* 1k (¢) €
L(0, 1), or, equivalently, if

1 00
/q*“ exp{/ e~ 1p(X, <0) dt} dq < oo. (1.21)
0 1

If this holds then
o0
Frl-—o)ET =« / q_o‘_llc(q)Vq (r)dq, forallr>O0. (1.22)
0

(i) If lim;— oo X; = 400 a.s.(so thatA(x) > O for large enoughx) then
r

= —— asr— oo. (1.23)
A(r)

r

Condition (1.21) is not completely explicit but it can be used for example whegfy < 0) — 1 — p € [0, 1]
ast — oo. Then it tells us thaET* < oo if @ < p (as also follows when & p < 1 from Bertoin [1, p. 173]).

In particular, if X, A oo ast — oo thenET* < oo for eacha < 1 (butET, < oo if and only if X; — oo a.s. as
t — o0). If we assume more we can get a completely explicit solution, as in the next theorem.

Theorem 3.(i) For a fixeda > O for which the integral in(1.24)converges, we hawu(x) > 0 for all large x, and,
asr — 09,
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o
o
/t (X: <r)dt in) (1.24)
1
r o
ETY < < ) ; (1.25)
A(r)
and
r o
EAY x( ) . (1.26)
A(r)
(ii) Assume only thdim,_, o, X; = co a.s. ThemM (x) > 0O for all large x and
o o
/flP(X, <r)dt x/flP( sup X, <r)dt = Iog( > asr — oo. (1.27)
) J 0<s<t A(r)

The next result adds to the equivalences in Theorem 1.

Theorem 4.Supposdim;_, ., X; = co a.s., so thatd (x) > 0 for all large x, and« > 0. Then(1.14)holds if and
only if the followingquantities have a finitmoment of ordew::

T(—r) L7 (=r)<oc}, WhereT(—r)=inf{t: X; <—r}, r 20; (1.28)
Tmin=inf{r: X; <Ixo0rX,_ <Iy}, wherel= inf Xj; (1.29)
O<s<oo
o0
0, = / Lix,<rydt, r 20. (1.30)
0

A further set of results in Proposition 4.1 of [8] gives afélient, but related necessary and sufficient condition
for some other quantities to have a finite moment of orde(See also [7].) To give the analogues for Lévy
processes we need to introduce the prod&és- (Hf*, s > 0), which is the ladder height process .

Theorem 5.Assumdim,_, o, X; = oo a.s., so thatA(x) > O for x large enoughx > xg, say, and fixx > 0. Then
the following are equivalent

1+

X
m*d ; 1.31

[ (G )man <o (131)
(x0,00)

E((HH*; H < oo) <oo for some(hence everyr > 0; (1.32)
E(|I]%) < (1.33)
E(IX7(- ,)| T( r)<oo) <oo for somethence evenyr > 0; (1.34)
E( sup |X;|*) <oo for somethence everyr > 0; (1.35)

o<r<A,

E( sup |X:|% T(—r) <oo) <oo forsome(hence everyr > (1.36)
0<1<T(—r)

Remark. (iii) In the case O< EX1 < E|X1]| < 00, so that lim_ A(x) = EX1 > O, for all largex, (1.31) and
(1.14) coincide, and reduce (X7 y2*t1 < 00, but in general they are different.
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The next two theorems consider curved boundaries which are bounded above by concave (possibly linear)
functions. Our method is to reduce the problem to oneowfstant boundaries, so Theorems 6 and 7 below can be
considered as applications of the foregoing results. To formulate the curved boundary resylts deta positive
nondecreasing function dn, co), with g(0) = 0, which is regularly varying with indeg ast — oo (write this as
g € RV,). Define

Tg(r,a)zinf{t>02 Xt>rg(t+a)}, r>0,a>0. (1.37)

Theorem 6.Fix o > 0 and supposg € RV, with 0 < p < 1. ThenE (T, (r, a))1t® < oo for some, hence every,
r>0,a >0, ifand only ifA(x) > O for all large x and (1.14)holds.

Remark. (iv) The constant: > 0 is introduced in (1.37) to keep the boundary away from 0; noteTth@t a) >

Tr¢(a) (With 7, asin (1.5)). We need this becawskévy process which has unboundediistion jumps immediately

over a boundary which increases at a linear or slower than linear rate near 0, by virtue of a result of Rogozin [10]
which states that, then,

o X . X
—oo=liminf =L < limsup=L =400 as. (1.38)
=0+ 1 t—0+

A similar principle applies in the next result, which treats linear boundaries. D&firea) to be the version of
To(r,a) wheng(t) =t.

Theorem 7.(i) E(T1(r,a)) < oo for all » > 0 and some: > 0 if and only if
o
J_<oo= / T (x)dx (1.39)
1

(see(1.8)for J_), and if this holds then, for eaah> 0, E(T1(r, a))}** < oo for some, hence eveny> 0, a > 0,
if and only if (1.19)holds.

(i) E(T1(r,a)) < oo for some but not all > 0, for somea > 0, if and only if0 < EX1 < E|X1| < 0o, and if
this holds then, for alle > 0, E(T1(r, a))}** < oo for somer > 0, hence for all0 < r < EX1 and alla > 0, if and
only if E(X;)**! < 0.

Remark. (v) Our methods do not give good estimates of the rate of groth(Gg(r,a))”“, asr — o0, in
Theorems 6 and 7 (and in part (i) of Theorem 7 we hB&V&: (r, a))1** = oo for r > E X1, in any case).

We conclude this section with some examples of interest.

Example 1.Spectrally positive processes/subordinatditse characteristics satisfye R, 02 > 0 andl ((—oo, 0)) =
0, SO A(x) =y + T (1) + [} Tt (y)dy. We have lim_oX; = co as. if [["ITT(x)dx = oo or if
J72 I (x)dx < oo and A(co) > 0. If either of these holds then(x) > 0 for all largex. So by Theorem 1,
in these cases; T} < oo for all « > 0 andr > 0.

Example 2.Symmetric processes plus drifhese havél*(-) = IT~(-), SOA(x) = y. We have
x[T*(dx) x[1(dx)
Jo T+ (y)dy Joo T dy
,00) (x0.00)

(xo

unless/;” ITT (x) dx < oo, in which caseE|X1| < oo, and so by (1.9), we have lim X, = oo a.s. if and only
if y > 0. If this is so thenET+* < oo if and only if S0 x1IT(dx) < oo, or, equivalently £ X 1|1 < .
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Example 3.Jump diffusion processease of the form

Ny
X, =at+0oB; —i—ZY-,
j=1

wherea € R, N, is a Poisson process of rateindependent of the Brownian motidh, and of theY;, which are
i.i.d. with c.d.f. F(-), also independent a&;. ThenIT* (x) = c(1 — F(x)), T~ (x) =cF(—x),x > 0, and

1
y=a+c / xdF(x)=a—c(1-F(@1)— F(-1) +c/(1— F(x) — F(—x))dx.
[-1,1] 0
Using (1.7) we can easily check that
x
AX)=a+ c/(l— F(y)— F(=y))dy=a+cAp(x),
0

say, whereAr(x) = E((Y1 A x) V (—=x)). Now lim;_, o X; = oo a.s. is equivalent to (1.9), which in turn is
equivalent to:) "] Yi/n 8% 0 asn — oo, or elseE|Y1| < oo anda + cEY1 =a + cAp(o0) > 0 [8]. These are
equivalent to requiring that the random walk with stéps= a + ¢¥; drift to oo a.s. By Theorem 1 and Remark (ii)

following it, ET}** < oo for somex > 0 if and only if one of the following hoIdsE(Yf)”“ < oo (if E|Y1| <00
anda + cEY1 > 0), or

x 14+«
/ <AF(X)) |F(—dx)| < o0

(1,00)

(if Y1Y;/n — oo a.s.). By Theorem 2.1 of [8], this is equivalent to the finitenesEdf+, where 7, =
infln >1: 1Y > r}.

Effectively, for the Jump Diffusion Process (Compound Poisson process avhen = 0), conditions for the
finiteness of the moments of passage times for the associated random walk transfer directly across to the same for
the Lévy process, as we would expect.

Example 4 (Stable processes of order 0 < v < 2). For theseg =0, [Tt (x) = ¢t /x” and [T~ (x) = ¢~ /x",
x >0, wherec™ >0,c¢” >0, and we allow a drifyy € R. If ¢~ =0 then we have Example 1, so keep> 0 and
¢~ >0.Now [ IT*(x) dx = oo if and only if v < 1, in which case

o
= x dx
J-= | = o =
1
so we can have a.s. drift tw only if £|X1| < oo, equivalently, if 1< v < 2, andE X1 > 0. TheA(-) function then
satisfies
lim A)=y + lim (¢t =) —x") /0= =y +v(ct—c)/(v-1).
X—>00 X—>00

So EX; > 0 if and only if y + v(¢c™ — ¢7)/(v — 1) > 0, and then the integral in (1.14) is finite if and
only if « < v — 1. Thus for this procesET,”“ < oo, forana >0, ifand only ifv > 1, ¢ <v —1 and

y +v(ct —c7)/(v—1) > 0. The conclusions remain the same if we also allow a Brownian companen0j in
the process.
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2. Proofs

Our basic technique is to show that conditions such as (1.13)—(1.17) are equivalent to similar conditions for a
certain random walk, and then appeal to results from [8]. Although at first sight this might seem mechanical or even
routine, transferring probabilistmonditions such as (1.15) to the random walk setting is in fact quite delicate. An
efficient way to proceed is by looking at the process aesirat which it makes large jumps. We use the following
recent result, taken from [4]. As previously mentioned, wiigis not identically zero we assume (without loss of
generality) thaty := IT([—1, 1]) = [T+ (1) + T~ (1) > 0. Now putrg = 0, and forn > 1 write 7, for the time at
which J,,, thenth jump in X whose absolute value exceeds 1, occurs. A random walk is then defined by

S:=(8,,n>0), whereS, =X(1,). (2.1)
Of course(r,, n > 1) are the successive jump times of a Poisson process otratich is independent of
(Jn,n = 1). We will write Y1, Yo, ... for the steps irf5, so that, withe, := 7, — 7,1, andn > 1, we have

A ~ ~ D ~

Yy =X () — X(tu-1) = Jn + X(t) — X(tp—1) = Jn + X(en), (2.2)
whereX is “X with the jumpsJi, J», ... removed”. This process is also a Lévy process which can be written, in
the notation of (1.2), as

FurthermoreX is mdependent of{/,, 7,),n > 1}, and since it has no large jumps, it follows tlﬁ(tef”‘f) is finite

for all real6. Thus the contribution oEl(X(t,) — X(zi_1)) to S, can be easily estimated, and for our purposes
S can be replaced by*, whereS! = "7 (J + 1), with i = EX(11) (to see this, use Lemma 11 below). Next we
introduce

L= inf X, and M,= sup X, (2.3)
T I <Tp41 T <E<Ty41
and also
in=__inf {X(ta+s)—X(z,)} and m,= sup {X(z,+s5)— X(w)}. (2.4)
0<S<en+l O<S<en+l

These quantities are independenspf and of course we have
=8, +,, and I,=38,+i,.
However there is a different representation for the random varialslesnd 7, which turns out to be more useful:

Proposition 8 (Doney [4]).Using the above notation, we have
M, =S 4o and I,=5" +io, n>0, (2.5)

where each of the processsst) = (S, n > 0) and SO = (S{7,n > 0) are random walks with the same
distribution asS. MoreoverS™ andsig are independent, as a~) andig.

For any random wall§ = (S,,, n > 0) (So = 0) we will use the notation
&, =min(n>0:85,>r), I=maxn>0:5,<r), r=0

(with @, = oo if S, < r for all n > 0), and the corrgmnding quatities for 5, S, and S will carry the
appropriate superfix. It is obwous that Proposit®should enable us to compare the moments &nd®,, and
the exact statement is:

Lemma 9.For anyr > 0, ET}® < co and E® 1 < oo are equivalent for > 0. For anyr > 0, EA? < oo and
ET® < oo are equivalent forr > 0. In addition, P(A, < oo) = 1ifand only if P(I}; < o0) =1
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Proof. Since
Li=S7 +io< X, <M, =S +img forz, <t <1, (2.6)
we deduce that for > 1
(tw < Tr < yg1) = {0 <1, <1>r(+,),, =n},
and hence, by Proposition 8,
r
> n*P(T, > 1) = / E(®1%)Pio € dy) < E(S}). (2.7)

n>1 0
Also, for somec > 0 and all large-,

Zn“P(Tr >1T,) > cE(qbrl/ga)P(mo r/2) = (qﬁ}fz"‘)

n>1
Next note that Theorem 2.1 of [8] implies that eithed+* < oo for all r > 0, or E®} = oo for all r > 0.
Thus to establish the first statement it suffices to show that

ETM" <00 & > n*P(T;21,) <oo.
Note that for any > 0,

(T = ne) C{(Tr = 1) N (nc > 1) } U (1, > ne),
so that

Zn“P(Tr > nc) < Zn P(T, > 1,) + Zn P(t, > nc).
Sincet, is Gamma#, c1), we see that the final term is finite whenever 1/c1, and this gives one implication.
For the other, note that

(T, 2 t,) C (T, = nc)U (1, <nc),

and choose & ¢ < 1/¢1; then)_ P(z, < nc) converges.
The results forA, depend on the observation that

= _
(th < Ar S Ty41) = {FHIO\ n} n=l,

and are proved in a similar fashionn

To connect up with the other conditions in Theorem 1 we state a minor extension of Theorem 2.1 df [i8]. If
a typical step in a random walk, we write A (x) = fo P(Y > y)dy, x > 0. We will also wrltecbr(‘”, F(‘” and

AS‘_”(x) for @,, I, and A, (x) evaluated for the random watk®) := (S, — ns, n > 0).

Proposition 10.Let S be any random walk withm,,_, o S,, = oo a.s., and writeu = ES1 € (0, 00) if E|S1] < o0,
and u = +oo otherwise. Then for each fixad > 0, either the following three conditions all hold for each
0< 8 < u, or else they all fail for each such

o0
Zn“‘lP(Sn <né+r)<oo for somethence evenyr > 0; (2.8)
1
° X 14
AP )

E(q>,(5))1+°‘ <oo for some(hence everyr > 0if « > 0. (2.10)
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Also equivalent t¢2.8)—(2.10for eachO < § < u, are

E(I')" <oo for some(hence eveiyr > 0, if « > 0,

P(I» <oco)=1 for some(hence evenyr > 0, if a =0. (2.11)
Proof. The restriction ons guarantees that lim, « S\’ = 0o a.s., so for a fixed the above conditions are
equivalent by virtue of Theorem 2.1 of [gWith reference to (2.9), note that since j}imy S,ﬂ‘s) = o0 a.s., the
first part of (2.5) of Theorem 2.1 of [8] is automatic, and Remark (i) thereof shows that we can rafisge by
AS‘_”(y) in the second part.) However, wh@gn< oo, we have O< Af)(oo) < oo for eachs, and whenu = co we

haveAf)(y) ~ Af)(y) asy — oo for eachd, so it is easy to see that (2.9) either holds for all allowabler for
none. O

We now prove several lemmas, preparing for the proof of Theorem 1.

Lemma 11.Let S, S be random walks with typical stepsY such that
YEy+w,

whereY and W are independeptEW =0and E€’V is finite for0 < || < 6o, somedy > 0. Thenlim, o0 S, =
oo a.s. if and only iflim,_ S, = co a.s., and fora > 0,r > 0, Y 7° n*1p(S, <r) < oo if and only if
Y P(S, <r) < o0

Proof. Since lim,—o0 S, = 0o a.s. occurs if and only =18, 25 11 € (0, 0o], (see [6]) andh~1(§, — S,) 23 0 by
the strong law, the first statement is immediate. For the second, note first that

n
~ 1
P(Sp<r) = P(Sy <r)P(E Wi <0> ~ EP(Sn <.
1

On the other hand, choositig= (0, 1) and using a standard exponential bound for sums of i.i.d. rvs with a finite
moment generating function,

n n
P(Sy<r)= P(S,@ +) (Wi +8) < r) <P(SPY <r)+ P(Z Wi < —na)

1 1
=P(SY <r)+0(e™) asn— o,

wherec > 0, and the result follows from Proposition 100

Lemma 12.Let S be any random walky/ an independent Poisson process of paramgter € R, andZ a Lévy

process which is independentS)jand M, hasEZ1 =0, and hasE€’“ finite for 0 < |6 < 6p, for somedp > 0.
DefineZ; = Sy, + a(M; — At) + Z;. Then (i) for« > 0, r >0,

00 o0
/to‘_lP(Z, <r)dt < Zna—lp(s,, <r), (2.12)
1 1

in the sense that if one side is finite, so is the other, and if one side is finite foedh then the ratio of the two
sides is bounded away from 0 and infinityras> co; (i) lim ;- o, Z; = co a.s. if and only ifim, . o, S, = cc a.s.
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Proof. (i) By the central limit theorem, lim, P(Z, <0)= 1/2, so we have, as— oo,
P(Z, <r) = P(Z <O)P(Sm, +a(My — wt) <r) ~ P(Sy, +a(M; — At) <r)/2.

Also, if a > 0,

)\,t n
P(Sm, +a(M; —At) <r) = P(Sy, <1 My — At <0) = Z e—“%P(s,l <r). (2.13)
n.
o<

Thus

o0 o0
/ t“7LP (S, +a(M; —ar) <r)dt = Z —P(S,, <r) / el gy
1

n>0 n/x

=1 Z P(Sngr)/ o= l

n>0

r
=2y MP(S,, <P P(Opiq > 1), (2.14)
n!
n=>0

where®,_, denotes a random variable having a Gamma distribution with parametessand 1. By the central
limit theorem again, we have limipf, o, P(®,4+4 > n) > 1/2, so, using Stirling’s formula, the summand in (2.14)
is seen to be bounded below by a constant timfest P(S, < r). Thus, assuming that > 0, the finiteness of
the left-hand side of (2.12) implies the finiteness of the right-hand side <f0, an analogous argument with
M; — it > 0 in (2.13) gives (2.14) withP (A < ©,+4 < n) in place of P(©,4+4 > n), and we reach the same
conclusion in a similar way.

For the reverse implication, assume that the series in (2.12) converges, so that li$n = co a.s., then choose
0 < 8§ < u = ES1, where the final equality is in the senssed in Proposition 10, and again writ€) = (S, — ns,
n>0). Then

P(Z; <r)=P(S}y) +6M; +a(M; — A1) + Z, <r)
<P(SY <r)+ P((L+a/8)(M, — i) + 8712, < 1)
= P(Sl(gf <r)+0(e™) uniformlyinr >0, ast — oo,

where we have again used a standard exponential bound, applicable bdcaus@) (M1 — 1) + §~1Z; has zero
mean and finite moment generating function(eip, o). However, by Proposition 10 we haye;” n"‘*lP(S,(,S) <
r) < oo, and we conclude by the calculation

o0
/ P (s <) dt</ 1o 1Ze*“ (M) P(S¥ <r)dt = Zir(n—:_a)P(S,(f) <r).
1 0 Vl>0 1120 n

(i) The second part follows since the left-hand side of (2.12) is finitexfer O if and only if lim,_ oo Z; = 00
a.s. by (1.10), and the right-hand side of (2.12) is finitecfet O if and only if lim,_, », S, = co a.s. by Spitzer's
theorem (or Theorem 2.1 of [8]).0

Lemma 13.(i) If A(x) > O for all large x and(1.14)holds thenim;_, . X; = o0 a.s.
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(i) Whenevelim;_, ., X; = oo a.s. it follows thatim, _, .o A(x) exists and is positivgpossibly+oo), thusA (x)
is positive for all large enough, and

A(x)x/ﬁ+(y)dy asx — oo. (2.15)
1

Proof. (i) SupposeA(x) > 0 for all x > xg and (1.14) holds. Then

X #
/ (A(x))n (dx) < o0. (2.16)

(x0,00)

If [7°IT*(x)dx = oo, then from (1.7)

A(x) < )/+17+(1)+/ﬁ+(y)dy~/ﬁ+(y)dy,
1 1

so by (2.16) (see (1.8) far_)
xIT#(dx)

Jfg — < X
Ji T+ (y)dy
,00)

@

(2.17)

If [{° T (x)dx < oo then (1.18) gives & EX1 < E|X1| < oco. Thus lim_.o X; = oo a.s., by (1.9).

(i) Assuming that lim_, o X; = co a.s. and/;” IT* (x) dx = oo, then, since 1 [ IT* (y) dy is nonincreasing,
it follows from the convergence of_ in (1.9) that ;" IT~(y)dy = o([; IT*(y)dy) asx — oo. So from (1.7),
A(x) ~ [{ TT(y)dy andA(co) = +o0 > 0. This gives (2.15).

If im ;00 X; = 00 @.s. and/;" T (x) dx < oo, then 0< EX1 < E|X1| < oo by (1.9), andA (co) = EX1, SO
A(x) > Oforlargex. O

Proof of Theorem 1. Fix o > 0 throughout. Assume (1.13) for some- 0, so that lim_, ., X; = co a.s. by (1.10).
Using the notation of Proposition 8 and Lemma 9, from the bound

Sy, +io < Xi < Sy + o, (2.18)

whereN; = maxXn: 1, <}, we see that lin., S](\,f) = 00 a.s. Part (i) of Lemma 12 (with = 0 andZ; = 0)

then gives lim_ .o S\™ = 0o a.s., S0 liM_ e S, = 00 a.s. By (2.1) and (2.2) we can write, wifh= EX (t1) =

EnEX1=y/c1,

n n n

Si=Y Ui+ + Y (X)) —X(mi-1)—f)=S;+ Y Wi, say (2.19)
i=1 i=1 i=1

Then Lemma 11 gives lim, « S = oo a.s. NowN; is the same as that occurring in (1.11), and we can rewrite

(2.2) in the form

Ny

X, =yt +0B+ XD+ 3 s =85 + cl(clt —N)+oB +xP =55 + cl(clt — N+ X,
N 1 1
i=1

whereX is independent o§* and N, and hast X1 = 0 and E€X1 finite for all realg. Thus we have precisely
the setup of Lemma 12, and we deduce from it thait’ n®"1P(S* < r) < oo, or equivalently, by Lemma 11,
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> n®=1p (S, <r) < co. By Lemma 9 and Proposition 10 applied$owith § = 0, this is equivalent to (1.15)
and the two conditions in (1.16), and also to

i X 4o
’“ ~ e ’ 2.20
0/<fo P(J1+M>y)dy> ((J1+ )~ €dx) <o 020

Thus (1.13), (1.15), and the two conditiang1.16), and (2.20), are equivalent.

Assuming any of these, we have Jimy, X; = co a.s., S0A(x) > O for all largex, in view of part (ii) of
Lemma 13. Also, (1.14) follows from (2.20). Indeed eithg¥ P(J1 + i > x) dx < oo, in Which caseA(co) =
EX; € (0,00) and both (2.20) and (1.14) reduce f§° x1+*T#(dx) < oo, or [;° P(J1 + fi > x)dx = oo, in
which casefy P(J1+ i > y)dy =< [; ITT(y)dy asx — oo, and the equivalence follows from Lemma 13.

Conversely, ifA(x) > O for all largex, and (1.14) holds, then Lemma 13 giveslim, X; = oo a.s. (and hence
lim,—o0 S, = 00 @.s.), and also enables us to check that (2.20) holds, whence the other statements, except (1.17),
follow.

Before dealing with (1.17), we need some notation.

Definition 14. Say that a real-valued functiofis in C,, wherea > 0, if, with k = [«], there exist real constants
c1,¢2, ..., c, such that

k
f) =) cjx) +ex), (2.21)
1

where, ifa is an integers (x) = o(x*) asx | 0, and otherwise

1
/|£(x)|x_°‘_ldx < 00. (2.22)
0

Note that if f € C, then for any integem > 1, x™ f (x) € Cy, and hencef™ (x) € C,. This leads to:

Definition 15. Say that a power series of the folPis) = > 7° a,s" with real coefficients is in clasB if (i) a1 # 0,
(ii) it has a positive radius of convergence and (iii) on some nondegenerate inf@r¥glit has a well-defined
inverseP~1 which is another power series which satisfies (i) and (ii).

Remark. (vi) The functionP (x) = — log(1—x), with inverseP ~1(x) = 1—exp(—x), has a power series expansion
whichisinP.

Lemma 16. A nonnegative random variablg has a finite moment of order > 0 if and only if, with¢ (¢) =
E(e™1),

P(1—¢())€Cqy, foreveryP eP.

Proof. From [2] (the result is also quoted as Theorem 8.18, p. 335, of [3]) we knowEthat< oo is equivalent
to 1— ¢(-) € Cy. But if this happens then fot = 1,2, ..., each of(1 — ¢(-))* € Cy, and hence so also does
>4 an(1—¢()" whenP e P. Sincel Y5 ; ays”| < c|s|F** for all sufficiently smallis|, we see thaP (1—(-)) €
Cy. On the other hand, i/ (-) :== P(1 — ¢(-)) € Cqy, then sinceP~1 € P, we have - ¢(-) = P~ 1y (-) € Cy, and
henceEY* <oco. O
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Lemma 17. Suppose the function8; and P, are each inP, and B(s) = Y .;" b,s" is another power series
satisfying conditiongi) and (ii) in Definition 15. Suppose tha¥; and Y> are nonnegative random variables,
andg;(¢) = E(e™?%),i =1, 2, satisfy

Pi(1—¢1(9)) = B(q)(1+ P2(1— ¢2(q))). ¢ =0. (2.23)

Then fora > 0, EY{ ™ < 0o & EY§ < o0,

Proof. AssumeEY3 < oo. Then by Lemma 16P2(1 — ¢2(+)) € Cy, and it follows easily that
Pi(1—¢1()) = BC)(1+ P2(1— ¢2()))) € Citas

SO EY11+°‘ < oo by Lemma 16 again. For the converse, aSSlE‘rY%JF"‘ < 00, so thatP1(1 — ¢1(+)) € C144, and
hence can be written in the form
k+1

Pi(1-¢1() =Y _cjq’ +2(q).

1
Then from (2.23)
1—im P23 =¢1@) _ Y
ql0 B(q) b1
and again it is easy to see that
Pi1—-¢1())

P21 = 42()) = ==

1€y,

and the result follows. O

To prove (1.17) equivalent with the other conditions in Theorem 1, let us first note that from the Weiner—Hopf
factorisation (Bertoin [1, p. 166]), we have
o
(aq) Y (g) = —(ag) Hog E(e"7L ') = exp:/ e —e")P(X, <0) dt}, (2.24)
0
for g > 0, for some constant > 0. Lettingg | 0 we see that
o0 o0
EL ) <0 <« /t_l(l— eNPX,<0)dt <oo & /flp(x, <0)dt < oo,
0 1
or, equivalently, by (1.10), lim, - X; = oo a.s. Thus when any of (1.13)—(1.17) hold, we have
o
K ;=/f1P(Xt <0)dt < o,
1
so that we can define a probability density functiorrgn0 by
P(X; <0)1y>1

f@= T{}

Next, write the integral in (2.24) as
00 00 1
—-K /(1 —e I f(r)dr + / 1 —eHPX, <0)dr + / ~Ye " — e P(X, <0)dt,
0 1 0
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so that
—logg1(g) :=x(q) = B(q) exp(—K (1 — ¢2(q))).
wherego(q) = [y~ €9 f(r)dt,
1
B(q) =aq exp{/ e —e ) P(X, <0) dt},
0

and
o0

a :anp:/tl(l— e HP(X,<0) dt}.
1

Thus, withP1(x) = —log(1 —x) and P2 (x) = —1 + exp(— K x) we have the setup of Lemma 17 with1(1) = Y3,
andY> having f (-) as its probability density function. Since it is easily seen that eadh of, and B satisfy the
assumptions in that lemma, a@idYy) = K~ [ 1*~1P(X, < 0) dt, the result follows. O

Proof of Theorem 2. (i) Keep O< @ < 1 andr > 0. Integrate by parts in (1.20) to get

(0.¢]
/(1—e"”)P(Tr edt) =k(q)VIir). (2.25)
0
Dividing by ¢**1 and integrating each side gives
o o o
ca ETY = / * (/ g ta- e—q)dq> P(T, edt) = / q " k(q@)Vi(r)dg.
0 0 0

in the sense that if one side is finite, so is the other, and they are equak,with' (1 — ) /o as the value of the
inner integral. This establishes (1.22).
Now by (2.25),k(¢)V4(r) <1 forallg > 0,r > 0, so, sincax > 0, the integravlmq—“—lx(q)vq(r) dq is
finite forall » > 0. ThusET* < oo if and only ifg=* Y (q)V7(r) € L(0, 1). But since, for each > 0, asq | 0,
(e.¢]
Vi(r)t V(r) :=/P(H, < r)dt € (0, 0),
0
we see thaET* < oo if and only if g1« (¢) € L(0, 1). From (2.24) we then see that (1.21) holds.
(i) Now assume lim_, ., X; = 400 a.s., or, equivalenthf 7, < oo. From (1.20) we get
ET, =a'V(r)
wherea’ =lim,_.0x(q)/q € (0, 00). By Bertoin [1, p. 74],
oo

r
O i dy

wherelTy (y) is the Lévy measure of the subordinafér Using Proposition 3.3 of Vigon [12], we can write

y(r)= / V*Ay) T (r +y) < V([0 00)) T3 (r) = ¢ IT (1),
0
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where V¥([0, 1) = [5° P(H} < r)dt. Note thatc’ = V#([0, 00)) < oo since X drifts to +occ a.s. In the other
direction, take: > 0 such tha?’#([0, ¢]) = ¢” > 0, as is possible sincE is not a subordinator, and get
c
u(r) > / VRAWIT{ (r +¢) = " (r + ).
0

From these we easily see thiif [Ty (y)dy = [] IT,; (y)dy and thus, sinced(r) < [o IT5 (y)dy, we have
JoMu(y)dy<A@r). O

Proof of Theorem 3. (i) Under the hypotheses of Theorem 3, we have ligy X; = oo a.s. andA(x) > 0 for
all large x. As in the proof of Theorem 1, again we have Jim, S, = oo a.s. and lim_.« S;; = co a.s. So
Theorem 2.2 of [8] gives, as— oo,

o0

a—1p,a _ r\* - a—1 * - r ¢
Z” p(s,lgr)A(A()> and ;n P(Sngr)A(A*(r)),

1 r

whena > 0, or with logarithmic terms on the right when= 0, provided the series converge; and this is the
case when the integral in (1.24) converges, by Theorem 1 and its proof (even£6). However, the proofs of
Proposition 10 and Lemma 11 show that we hae) ~ A (r) ~ A%(r) ~ A*(r) ~ A(r) asr — o, S0 (1.24)
and the outer relation in (1.27) follow from (2.12) of Lemma 12.

To get (1.25), use the argumentin Lemma 9 to see that for suitadrida > 0

o0

o o0
ETX :a/t“_lP(T, >1dt =< Zno‘_lP(T, > nc) < Zno‘_lP(T, > T, =< E((ﬁgfﬂzoﬁ)'
0 1 1

Since Theorem 2.2 of [8] also gives

c r o r o
Ed =< | = = | = asr — oo,
A(r) Ay (r)

we see, by dominated convergence and the factihg} < oo, that

E@f;_,;l )+ < <;)0‘ = ( r )“ asr — 00.
0 AL(r) A(r)

The proof of (1.26) follows the same lines.
(ii) For the remainder of (1.27): the inner integral ieatly smaller than the left-hand integral. In the other
direction, use (2.18) to write

sup X; < sup Sy +sio. (2.26)

0<s <t 0<s <t

Let ¥; be the steps iy ™. Now lim, oo S.7 = co a.s. 50 ¥~ = oY} ¥;") as., if E|Y1| = oo (see Pruitt [9]),
while Y1 Y, ~ (EY] /JEY1— D) Y1 Y; as.,if O< EY1 < E|Y1] <oco. ThusY 1 ¥H =0} ¥)) as., as — oo.
It follows that

N; NS
sup Sy = sup (Z Y,-) < sup (Z Yf)
: 7 o<s<r \#

0<s <t 0<s <t

N; N;
=y vt= o(Z Y,») =0(sy”) as. ast — co. (2.27)
i=1

i=
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Since S(+) and S( ) have the same distribution, (2.18) shows that we can replagg. supX, by X, for the
purposes of provmg (1.27). Then the result follows from the already-established outer “relation in (w27).

Proof of Theorem 4. The proofs that the quantities in (1.28) and (1.29) have finite moments of @raterbased
on the facts that

(tn < T(=r) < Tug1) = {liol <r. @ (=(r +i0)) =n}.
and
(tn < Tmin < Tn+l) = {IOO < 170’ gprgnlr)\ = n}

where® ™) (—r) andcbmm have their obvious meanings. We omit the details.
For (1.30), we hav®, < A,, so each of the conditions in (1.16) implies that (1.30) has a finite moment of the
corresponding order; conversely,

00 t
(o 00=/1{xs<0}ds= lim /l{x5<o}ds.
11— 00
0 0

However the Sparre—Andersen Identity (Bertoin [1, p. 170]) states that

t
/1{x.‘<0} ds 2 Tmin(t) :=inf{s: X, <L orX;,_ <I;} wherel; = inf Xj,

O<s<t

0

and we conclude tha®g 2 Tmin. Thus if O, has a finite moment of ordet, then so doe&min. O

Proof of Theorem 5. We start by observing that a minor variation of the proof of Theorem 1 shows that (1.31) is
equivalent to the condition (4.14) of [8] evaluated either§ar S*. Next, note that

et . -y D~ -
Io =io+minS{™ =ip+mins,,
n>0 n>0

where the two terms are independent. Sifigehas finite moments of all orders, it is clear that 1. |%) < 0o <
E(|min,>o $,41%) < 00, so the equivalence of (1.31) and (1.33) follows from Proposition 4.1 of [8].

Since lim_ « X; = o0 a.s., the procesH# is a subordinator © say, killed at an independent exponential
time z, and its final valueq(o) coincides with| I, | see [1, p. 172]. It follows that

E((HY HY <o) <coforafixedr >0 & E(HO) < oo
& E(HO) <coforallr>0 & E(H?)" <.

(One way to justify the last step is to relate the Laplace transformi,58)f to the Laplace transform of/; © and
then appeal to Lemma 16.) Thus (1.32)(1.33).

As for (1.34), first note that, on the evefit—r) < co, | X7(—r)| < |Is|. On the other hand, ip = P(T (—r) <
00), then|I| is stochastically dominated by’ ; Np) Z;, where theZ; are independent copies 7|, given
T (—r) < oo, andN(p) is an independent Geometrig(rv. SinceE ((>_] Zi)%) < n“EZ¢, the reverse implication
follows.

Finally, just as in the random walk case, we can show that for > 0,

P( sup X/ >1) <2P(|lc| >1—r),
0<r< A,

and then argue just as in [8, p. 30], to see that (1.34), (1.35), and (1.36) are equivalent.
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Proof of Theorem 6. Sinceg(a) > 0 andT, (r, a) > Tr4(a), the finiteness oE(Tg(r))”“ implies that ofETr”"‘
for anyr > 0 anda > 0. Then use Theorem 1.

Conversely, supposﬁT,lJF“ is finite for some, hence every> 0 and some > 0. Sinceg € RV (p) withp < 1
ast — oo we haveg(r) < t" for t > somerg(n) for somen < 1. Select such an < 1, thenrg(t +a) <r(t +a)”
for t > tp. Taketp > 1 without loss of generality. Now lim, o, X; = co a.s. implies lim_, o X;/t = u € (0, o0]
a.s. Thus liminf_, ., X, /¢ > 0 a.s. Hence we can findéa> 0 with P(X; < é¢ i.0. for t — o0) = 0. We can take
8 > 0 smaller if necessary and then finda(r, a, §) > 0 so that the straight line with interceptand slopes lies
entirely above the function

r(to+a) Ly <y +r(t +a) i)
Sinceg(-) is nondecreasing, this function in turn lies entirely aboyé + a), for all # > 0. Now define

7} =inf{t > 0: X, > ro+ §t}.

ThenT? > T,(r,a), so it will suffice to prove thak (7;} )™ < co. To see this, let®) = (x® ¢ > 0} where
x® = X, — 15; this Lévy process satisfie®(X> < 0i.0. for 1 — c0) = 0, thus lim_.o, X'* = o0 a.s. Also we
have
T8 —inf{t >0: X9~ p }
S = : X, oh

soT; is theT,, for x®_ Thus, by Theorem 1 (cf. (L.14)(T2) M < oo for eacha > 0 if and only if there is an
xo > 0 with

I4o
A%(x)>0forx>xy and / (%@)) |ﬁ57(dx)| < 00, (2.28)

(x0,00)

whereA? (-) and 7 (-) are theA(-) andI1(-) for the shifted procesk®). This process has the same characteristics
as X but with y replaced by — §. ThusIis(-) = I1(-), and

AS(x) = (y — &) + I (x) — Ty (x) + f(ﬁ;(y) — I (y))dy = A(x) — 6.
1

We haveA (co) > 0 (Lemma 13) and similarly®(co) > 0, S0A% (x) > a A(x) for somea > O for all largex. Thus
(2.28) follows from (1.14), and hend®&(72)** < co. O

Proof of Theorem 7. (i) SupposeETi(r, a) < oo forall r > 0 and some: > 0. ThenET, < o0, SO lim_ o X; =

oo a.s. and (1.9) holds. IE|X1] < oo andu := EX; > 0 thenP(X; > (u + &)t i.0.) =0 for all ¢ > 0, so given
8 € (0,1/2) there is arp(8) > 0 such thatP(sug%(Xs/s) > +¢) <6 forall r > 1. We can also assumnig so
large thatP (X, < 0) < 8. Now by Doob’s inequality

P( sup X;>ra)< sup E|X;|/(ra)<1-$§
0<t<1g 0<r<1g

providedr is large enoughy; > ro(f0(3)), say. Also choose > u + ¢. Now

P(sup(X;/(t +a)) <r) = P( sup X;<ra, sup((X; — Xy)/1) <pu+¢),
t>0 0<r<ro 1>1o

because if the event on theght-hand side occurs, theXy, < ra < r(t + a) for ¢t < tp, while also forr > 1,
Xi<+at+Xy<(u+et+ra<r(t+a). Thusforr > (u+¢e)Vvro,
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P(Ti(r,a) =00) = P( sup X, <r)P(sup((X; — X;,)/t) < +¢€)
0Lt t>1g

>8P (supX,/t) < u+e, Xi>0)
t>1o
>68(1—-25)>0.

This contradiction shows that the first conclusion in (1.9) must hold, i.e., (1.39) holds.
Conversely, (1.39) implies lim, , X;/t = oo a.s. Now we can equivalently write

Ti(r,a) = inf{t >0 X, >r(t —i—a)} = inf{t > 0: X,(r) > ra}, (2.29)

whereX,(’) = X; — tr. ThusTy(r, a) is T,, for Xt(’), and since Iim_mX,(’) = 0o a.8. we haveE Ty (r, a) < o0o.
This proves the equivalence with (1.39). By Theorem 1,fihefor Xt(r) has a finite moment of order# «, or, by
(2.29), the same is true fa@x (r, a), if and only if (2.28) holds with- in place ofs. As we saw following (2.28) this
is equivalent to (1.14), which in the present case is equivalent to (1.19).

(ii) Now supposeE (T1(r,a)) < oo for some but not aliF > 0 and some: > 0. ThenET, < co and (1.9)
holds, and by part (i) of the proof it must be the case that 8X1 < E|X1| < co. Conversely this implies
E(T1(r,a)) < oo for r < EX via (2.29) and the fact that lim, X,(’) =occas.whenOr <EX.If r > EXq,
liminf, .. X" = —cc a.s., s0 thd; for X" has infinite expectation, thus the same is tru@af a) via (2.29).

Finally suppose & EX; < E|X1] <ocoand O<r < EXj. ThenE(XY)) = EX1—r >0, so by Theorem 1,

the 7, for X,(’) has a finite moment of order + 1 if and only if the second condition in (1.18) holds, i.e., if and
only if E(X7)*™ <oco. O
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