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Abstract

This note deals with localized approximations of homogenized coefficients of second order divergence form elliptic operators
with random statistically homogeneous coefficients, by means of “periodization” and other “cut-off” procedures. For instance
in the case of periodic approximation, we consider a cubic safdpjel? of the random medium, extend it periodically in
R4 and use the effective coefficients of the obtained periodic operators as an approximation of the effective coefficients of the
original random operator. It is shown that this approximation converges aws—aso, and gives back the effective coefficients
of the original random operator. Moreover, under additional mixing conditions on the coefficients, the rate of convergence can
be estimated by some negative powepafhich only depends on the dimension, the ellipticity constant and the rate of decay
of the mixing coefficients. Similar results are established for approximations in terms of appropriate Dirichlet and Neumann
problems localized in a cubic samp p1¢.

0 2004 Elsevier SAS. All rights reserved.

Résumé

Nous étudions différentes procédures de périodisation ou troncature pour approcher les coefficients effectifs d'un opérateur
elliptique du second ordre a coefficients aléatoires stationnaires. Considérons par exemple la restriction d’'un environnement
aléatoire & un cubg0, p1¢ et son prolongement périodiqueR¥ tout entier. Nous montrons qu’alors, pour presque toute
réalisation de I'environnement aléatoire, les coefficients homogénéisés dans I'approximation périodique convergent quand
o — oo vers les coefficients effectifs de I'opérateur initial. Sous des hypothéses de mélange nous prouvons des bornes sur
la vitesse de convergence de la forme® ol « > 0 ne dépend que de la dimension, la constante d’ellipticité et du taux de
mélange. Nous obtenons aussi des résultats similaires pour des approximations basées sur des problémes de Neumann ou de
Dirichlet, localisées dans un cub@ p]d.
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Introduction

The main goal of this work is to provide a rigorous mathematical justification for the convergence and to give,
whenever possible, estimates for the rate of convergence of the various localization methods used in engineering
literature to approximate the effective tensor of random stationary media. The question on how to get the effective
parameters characterizing the constitutive equation in randomly heterogeneous media has been a subject of concern
in many scientific fields including solid and fluid mechanics, hydrogeology or thermics. It was a subject of interest
for engineers, in connection with applications in composite media [11,17,21], in oil recovery [9,1], in underground
pollutant transport [2,12]. All these practical methods are based on computing the average of either the energy or
the flux on a sufficiently big volume, called Representative Elementary Volume (or REV), with some boundary
conditions like for instance periodic or Dirichlet or Neumann boundary conditions. The same kind of averaging on
a finite volume is also systematically used, in the so called Volume Averaging method (see for instance [5]),
for deriving theoretical scaled up models from microscopic phenomenological descriptions. Clearly all these
approximated effective characteristics, obtained from a finite volume, are in general still random. And behind all
these computations there is no indication on how this averaging, on a finite part of only one realization, with one
of the mentioned boundary conditions, is related to the effective tensor given by the rigorous methods of stochastic
homogenization.

First mathematical results on stochastic homogenization of linear second order divergence form elliptic
operators were obtained in [14] and in [20]. Later on other stochastic models have been studied and new methods
have been developed in the works [3,6,7,13,15,18,21] and many others.

In these works it was proved that the homogenization result holds almost surely and that the effective operator
can be found in terms of a solution of a certain auxiliary problem. Since this auxiliary problem is stated in an
abstract probability space, this formal mathematical technique does not give any practical recipe for constructing
or approximating the effective characteristics. On the contrary to the random case, in the case of periodic media
there are many efficient numerical homogenization procedures.

One of the important aspect of homogenization theory, both in applications and from the theoretical point
of view, is the rate of convergence of homogenization procedure. This question is getting extremely difficult in
the random case. An important result was obtained in [24], where boundary value problems for a second order
divergence form operator were studied and, under proper mixing condition, polynomial bounds for the convergence
rate of boundary value problems solutions were achieved. For a system of equations only logarithmic bounds have
been obtained, see [22].

The estimate of discrepancy in various cut-off approximations procedures is another important problem. It
seems, according to the authors present knowledge, that there is still no rigorous result on that subject. In the present
paper we prove the convergence and estimate the rate of convergence for the typical “practical homogenization
procedures” applied to random second order uniformly elliptic operators with statistically homogeneous ergodic
coefficients.

The first section is devoted to a complete definition of the random media and to the precise description of the
effective coefficients obtained by homogenization as it appears in [14,20], and in [13]. Then, in the same section, we
recall the three widely used ways of approximating the effective tensors by averaging the operator on an elementary
volume with different boundary conditions.

In Section 2 we study the accuracy of all these approximations and prove their almost sure convergence, as the
elementary volume tends to infinity, to the effective characteristics obtained by homogenization of the original
stochastic operator. These results give also rigorous mathematical justification for most of the approximation
procedures used in the engineering literature [23]; see Remark 2 below.

It should be noted that the convergence of approximations by periodization has been studied by probabilistic
methods in the recent work [19]. However, our approach gives rise to a shorter proof and allows us, under certain
conditions, to estimate the rate of convergence.
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Finally, in the last section, under the additional uniform mixing conditions on coefficients similar to those

in [24], we estimate the rates of convergence of these approximations and show that the corresponding bounds only
depend on the ellipticity constant in the original problem, the space dimension, and the rate of decay of the uniform
mixing coefficients. To this end we penalize the original operator by adding a small positive potential and introduce
“effective auxiliary characteristics” associated to this penalized operator. These effective auxiliary characteristics
are then approximated by applying to the penalized operator one of the mentioned cut-off procedures. Finally we
show, that there is always a properly chosen potential depending on the sample size, such that all the discrepancies
involved admit polynomial bounds.

1. Definition of random media and approximation models

We begin by giving the general assumptions and definitions.
Let (£2, F, P) be a standard probability space, and assume thadianensional dynamical systef, z € R?,
is given ons2, i.e. a family of invertible measurable maps. 2 — 2, z € R?, such that

- Ty =TTy, To=1d;

— T, preserves the measupehat isP{(7,) ~1(A)} = P{A} for any A € F and anyx € R?;

— T, is a measurable mapping frdRf x 2 to £2, whereR? x £2 is equipped with the produet-algebra3 x F
andB is the Borelo -algebra inR?.

In the presence of such a dynamical system, a wide class of statistically homogeneous random fields can be
introduced as follows: for an arbitrary random varialfle- f(w) we definef (z, w) = f(T,w). It is then easy to
check thatf (z, w) is a statistically homogeneous random field. In this work we suppose that the coefficients of
random operators are defined in terms of a dynamical sygtem

Next we introduce the notion of ergodicity. By definition, a suhdet F is invariant if 7, (A) = A for any
z € R4, A dynamical systent is said to be ergodic if for any invariant sdte F we have eitheP(A) = 1 or
P(A) =0.

Although the homogenization result remains valid for nonergodic operators, the ergodicity assumption allows
us to simplify the calculations; in this connection, if the opposite is not indicated explicitly, we suppose in the
following sections that the dynamical systdnis ergodic.

We recall now the main results on homogenization of random operators.

1.1. Random operators

For a given matrix-function;; = a;; (w) such that

aij(@)nin; = rnl?, neR4, 10,

1
aij(w) <271 (1)
we define the following family of operators
ad ad
Ae= 8_x,~aij (Tx/s(w))g' (2)

J

It is then well known from the works [14], [20] (see also [13] and the quoted literature there) that the family
admits almost surely (a.s.), a§ 0, a homogenized limit also called theffective operatdt
R 9 9

A=ajj——, 3
a"’ax,- ax]' ( )
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wherea = {a;;} is a constant matrix. By definition, this means that for any Lipschitz bounded dahaiiR? and
any f € H~1(Q), a solution to the problem

Aquf(x) = f(x) inQ, u®(x)|sg =0 (4)
converges a.s., as|, 0, to a solution:? of the limit problem
Ay =f(x) inQ, w0l =0. (5)

The matrix{a;;} is known to be positive definite so that problem (5) has a unique solution.

In the ergodic case, this constant matgy; } is nonrandom. Without ergodicity assumption, the homogenization
result still holds with the only difference that the effective coefficiéntsare no more deterministic, but measurable
with respect to the -algebra of invariant sets

Finv={A€F|T.(A) =Aforall z e R?}.
1.2. Homogenization procedure

For the reader’s convenience we outline briefly the homogenization procedure in the random ergodic case. Let
U. be ad-parameter strongly continuous group of unitary operatofsif2) = L2(52, F, P), associated witf:

U N)@) = f(Tw), [eLl* )
We suppose that?(£2) is separable. Denote k% the generator o/, along jth coordinate direction, i.e.
0= lim §74(f (Tse;0) = f (@).

The domainsD; of 83; are dense ir.2(£2), and the intersectio® = ﬂ”f:l D; is also dense iiL2($2) (see [8]
Lemma VIII.1.8 and Ex. VIII.3.10, and [6]). '
For f e D andg= (g1, ..., ga) € (D)4 we define

d
Vof =(0nf....00f):  diveg=)_dle).
j=1

and then introduce the following subspacesiot(2))¢

Lin(2)={ve (L2(2))" [v="V,, f for somef ¢ D},

L2,(2) = {v e (D)? | div,v = 0},

sol
where the overline symbol means the closuréliA($2))?.
The effective coefficients could be then obtained from solutions of the following family of auxiliary problems:
givenn e RY, find v, € L5,($2)  such thati(w)(v, + ) € LZ($2). (6)

For any vector in R¢ this problem is well-posed and has a unique solution (see, for instance, [13]); it is also clear,
thatv,, is a linear function o). The coefficients;;; of effective operator (3) or, briefly, effective coefficients are
now computed as follows:

an = /a(a)) (V,, (w) + 77) Pldw). @)
2
If the medium is not ergodic, thefd;;} is a random matrix that can be found in terms of auxiliary problem (6) as
follows:

a(w)n = E{a(@)(n+vy(®)) | Finv}.
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According to the Birkhoff theorem, both in ergodic and nonergodic casasn be approximated by spatial
averages:

a= lim p~¢ / a(T,w) (n + vy (T (@) dz.

p—> 00
0.1
1.3. Approximation models

Since auxiliary problem (6), used for defining the effective coefficients, is stated in an abstract space, it does
not allow any natural direct approximation procedures. Due to this reason, in applications the cut-off technique is
used, and the solution of problem (6) is usually approximated by a solution of problems stated on a torus, or in a
bounded domain with Dirichlet, Neumann or appropriate mixed boundary conditions.

We consider here three typical approximation models used in practice, and for all of them we use a cubic sample
[0, p]¢ denoted bys,. However, it should be noted that the cubic sample is chosen just for notations convenience.
In the case of approximations based on boundary value problems in cut-off domains, with appropriate Dirichlet,
Neumann or mixed boundary conditions, all our claims remain valid if we use homothetic dilatations of a general
regular bounded domain instead of a cubic sample.

1.3.1. Periodic approximation
The coefficientsy;; (T;w) are first restricted onto the culsg and then extended from this cube to the whole
spaceR? periodically with periodp in each coordinate direction so that

abedz, ®) = a(T(mods,) @)

For eachw € £2 the family of operators

d X 0
r— p e -
AP = o (apem-j <8 , w)) o (8)

has periodic coefficients and thus can be homogenized in a standard way (see, for instance, [4]). The effective
operatorA” has constant coeﬁicierﬁ#, however, since the fielﬁﬁer(z, w) is not ergodic any more, the coefficients
could possibly not be deterministic.”
Let us recall that the matrikﬁi’;} can be found in terms of a solution of the following cell problem:

foranyn e R? find x/” € Hpo(S,) such that

—div(ager(z, ) (V)(,f +1))=0 in RY, 9)
WhereHF}er is the space of0, p]d-periodicHl}JC-functions. The effective matrix for this periodic operator is then
given by

a'n= p_d/a(z, o) (Vxf +n)dz, VneR?. (10)
Sp
Our aim is to show thai” approaches, a.s., ap — oo.
1.3.2. Approximation by Dirichlet problem

In this approximation model we make a truncation on a sanipleénd impose linear Dirichlet boundary
conditions o S,; namely we consider the equations

—div(a(z,w)(Vw) +71)) =0 ins,, (11)
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with the linear Dirichlet boundary conditions

(wﬁ(z)—l—noz)bspznoz, vn eRY. (12)
The approximate effective coefficients are now defiviget R, by
Ezpn:p_d/a(z,a))(ng —i—r))dz. (13)
Sp

Remark 1. It is interesting to notice that in [18] the a.s. limit af, as p — oo, was taken as a definition of
homogenized matrix.

1.3.3. Approximation by Neumann problem
In this model we make a truncation on a sample and impose Neumann boundary conditions; namely we consider
the following problems irf,,

—div(a(z,w)(Vyy +1)) =0 inS,,
d (14)
(W@ +n-2)=n-v onds, vy eRY,

wherev is the external conormal t8),. Then, the effective matrix approximation is computed as follows

an= ,o*d/a(z, )(Vyp +n)dz, Ve R (15)
SP

2. Convergence results

In this section we are going to show that the three approximafiénsd® anda” introduced in the preceding
section, converge a.s., as— oo, to the effective coefficientd obtained by stochastic homogenization of the
original random operator (2) as was described in Section 1.

We begin by studying the first model based on Periodic Approximation.

Theorem 1.Leta” be the effective matrix obtained {8) and (10) by Periodic Approximation method, then the
following limit relation holds
lim {5['(;} = {CAI,']'} a.s.

P—>00

Proof. Consider in the unit cubg; = [0, 1]¢ an auxiliary problem
—div(ager(px, w)Vu’) = f(x), x€ S,

16
u”|ys, =0. (16)

Since by the definition oager, we haveage,(,ox, w) = a(px,w) for x € §1, this problem is a particular case of
problem (4) withe = 1/p and S1 = Q. Thus the homogenization result (5) applies, and the effective operator
obtained by passage to the limit, as> oo, in (16), coincides withA.

It is convenient to rescale the variables in the cell problem (9) so that the rescaled equation is stated in the unit
cubes;. Denotexén(x) = %x,f(px). In the coordinates = z/p problem (9) reads

—div(afelpx, w) (Vx&n +7))=0 in RY, 17)
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wherexén(x) is a [0, 1]¢-periodic function. Denote({;j = Xée/, Wherexéei is a solution of (17) related to the
jth coordinate vecton = e; in R?, and lety § be the vector-functiofix( ;. ... x4 ,)- The solutiony is unique
up to an additive constant vector. In order to fix the choice f we assume thafs1 X6(x)dx = 0. A priori

estimates for (17) are straightforward. Indeed, multiplying (17))(@”)6, integrating by parts and applying the
Poincaré inequality, we get

x5 H(Hl(sl))d <C (18)

Hence, there is a subsequencexng that converges weakly i(1leer(Sl))d as p — oo. If we denote the limit
function x3° = x3°(x), then, by Theorem 5.2 in [13k° satisfies the equation

—div(a(Vxg+1))=0 in Sy, (19)

this equation can be easily solved explicitly. Its only zero average periodic solutipfy is- 0. Therefore, the
whole sequencgg converges a.s., as— oo. Moreover, by the same result in [13], the fluxes also converge a.s.,
that is

2
apx,0)(Vxh+1)—~a(VxF+1)=a in(L3Sn)" weakly. (20)
Integrating the last relation ové and taking into account formula (10) gives
a’ :/a(,ox,a))(ng +1)dx —> /&dx =a.
pP—>00

S1 S1
This completes the proof.O

We proceed with the second model.

Theorem 2.Let {ag} be the approximate effective coefficients, obtained by Dirichlet problem Approximation, as
defined in(13). Then{&i’;} converges a.s., §s— oo, to the matrixa.

Proof. The proof is similar to that of the preceding theorem. We introdu&g(x) = %wﬁ(,ox). In the rescaled
coordinates: = z/p problem (11)—(12) takes the form

—div(a(px, w) (ng’,] + n)) =0 inSy, 1)
wg!n|3sl =0.

Denotewg’j = wg,e,- andwg = (wg)l, s wé),d)- The estimatéwg || 1(s,)« < C is evident. Lewg® be the limit

of a weakly convergent subsequencewét Then, by Theorem 5.2 in [13lg° satisfies the equation
—div(a(Vw3® +1))=0 in Sy,

- (a( 0 + )) 1 (22)

wo las; =0,

and, a.s.
2

a(px, ) (VWG +1) —a(Vwg +1) in (L2(S)" weakly.
Clearly,wg® = 0, therefore,

dpzfa(px,a))(VWg+I)dx —_ &(VWOO+I)dx=&,

pP—>00
S1 S1

and the desired statement is proved:
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We study the third model by means of exactly the same procedure, and the following result holds.

Theorem 3.Let {‘75} be the approximate effective coefficients, obtained by Neumann problem Approximation, as
defined in(15). Then{éi’;} converges a.s., §s— oo, to the matrixa.

3. Estimates for the rate of convergence

We study the rate of convergence in the three models of Section 1 under the assumption that the random fields
a(z, w) satisfies uniform mixing condition. Our analysis relies essentially on the results obtained in [24].

For the reader’s convenience we recall the definition of uniform mixing condition.

Given a statistically homogeneous random figld w) in R?, we denoteF, theo-algebras {£(z), z € A}. The
function

a(s)=  sup sup  |[P(ANB) —PAP®B)|
A,BCRY, AcFu,BeFp
dist(A,B)>s

is said to be the uniform mixing coefficient &f
In what follows we denote by (s) the uniform mixing coefficient of the random fieldz, ) = a(T,w), and
suppose that(s) satisfies the inequality

a(s) <c(l+s5)"? Vs>0, (23)

for somef > 0.
Letv*(z, w) be a solution of the following “penalized” equationk{:

—div(a(z, a))VVK) + kv =diva(z, w), (24)

with « > 0. For each positive this equation has a unique solutigh € (ngc(Rd))d in the space of functions
of subexponential growth at infinity. Moreover, according to [14], this solution is statistically homogeneous,
V¥ (z, w) = V*(T,w), and the following a priori estimates hold
V¥ (z, w)| < Ck 1, (25)
Efvv| w2y S € (26)

here and in what follow<" stands for any generic honrandom constant. We introduce a “volume-average”
approximation ofi on S, =[O, p]? as follows

4P = p*d/a(z, w)(VV* (z, w) + 1) dz. (27)
Sp
As was shown in [24], Lemma 2.5,
B 1\ A2
E|&K’p—&|2<C(Kﬁ+(K,O2) ﬂl(log(—)) >, (28)
K
whereg, B1, B2 andC are strictly positive constants that only depend on the ellipticity conatahe exponerd

in (23), and the dimensiod.
We proceed with the Approximation by Dirichlet problem, and consider an auxiliary Dirichlet problem

—div(a(z, a))VWK’p) + WP =diva(z,w) inS,,

29
WK’plasp =0. ( )
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We now use a solutiow*:” to define
axr =,0_d/a(z,a))(VWK’p(z,w) +1)dz. (30)
Sp
Then the differencév® — w*-?) satisfies the equation
—div(a(z, 0)V(V* =W?)) +k(V —W")=0 inS,,
K K0 K (31)
(v —w )‘asp =V-1os, -

We will estimate a solution of this equation separately in a smaller Supes) = (0°, p — p°)? with 0 < 8 <1,
and in the boundary layes, \ S¢,_s)-

In a slightly bigger cub&p® — 1, p — p® + 1)¢, by (25) and the bounds for the Green function of (31) given by
Proposition 1 below, we obtain

V(2) =W’ ()| < et exp(—Crv/iep®) (32)

with nonrandom constants and C1 > 0. With the help of local elliptic estimates, based for instance on
Corollary 8.7. in [10], this implies the inequality

[vve — vwer|| w26, s” < ep Pt exp(—C1vi p?). (33)
(p

—p )))

To estimate the contribution of the boundary laygr\ S,_ ), we change the variables= z/p so thats, is
transformed inSq, and introduce the functions

1 1
Vo (x, 0) = ;V’((px, w); Wy (x, o) = ;Wk’p(px, w). (34)

These functions satisfy iy the equations

—div(a(px,a))va’p +p2/<V6"0 =diva(px, w),

35
—div(a(px,a))VW'é’p+p2KW'6’p=diVa(px,a)), (35)
and formula (27) and (30) read respectively
aP :/a(px,a))(VVg’p(x,a)) +1)dx, (36)
N
ar =/a(px,w)(VW'6’p(x,w) + I) dx. (37)
N

Standard energy estimates in (35) yield

[ 9057 25002 < C-

Using the notatiod(p, 8) for the boundary layes; \ (p°~1, 1 — p®~1)¢, and considering (25), (33) and the last
estimate, we get

2
Ela“? —a%*|* = E</ a(px, w)(Vwy” — va’p)dx)

N
2
< 3E< / a(px, w) (ng’p — va’p) dx)
p_ls(p—p5)
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2 2
+3E(/ a(,ox,a))VW'é’pdx> —|—3E(/ a(,ox,a))va’pdx)

(p,s) I (p,s)
ngleX[(—Clﬁpa)+CE( / ‘ng’p|2dx / 1dx)
II(p,8) I1(p,5)
—|—CE( / |VVE? P dx / 1dx)
I(p,8) I1(p,5)

< Ck~texp(—C1vip®) + Co® L + Cp L.
We summarize this in the following
Lemma 1.Leta*-* anda®-* be the matrices defined {87)and(30), respectively. Then, the differengg-* —a*-*)
admits the bound
Ela“* —a**|* < CrLexp(—C1v/ip®) + Cp° L.
Our next step is to estimate the difference betw@#ehanda” defined in (30) and (13) respectively. To this end
we rewrite Eq. (21) as follows
—div(a(px, ®)VW5) =diva(px,w) in S1, (38)
Wglas, = 0.
Equivalently, this equation can be written in the form
—div(a(px, a))V(WS + x)) =0.

This equation is a particular case of problem (4); thus it can be homogenized in a standard w@panderges,
asp — oo, to a solution of the effective problem

—div(avV(wg® +x)) =0, wg’lss, =0.
Clearly,wg® = 0, and according to [24], Theorem 3.1,
2 2 _
Efwp | (L2(Sp))d = Efwp —wg| (L2(spyd S €P . (39)
Subtracting (38) from the second equation in (35) gives
—div(a(px, a))V(Wg’p — Wg)) + 0%k (Wg’p — Wg) = —,02KW8. (40)
In view of (39), an energy estimate yields
, 2 2—
E[ VW’ — WG [ 205,02 < Co* P
Therefore, with the definitions (37) and (13) we have
Ela“* —a’|” < Cp?Pr. (41)

Now, combining (28), (41), and the estimate of Lemma 1, we arrive at the inequality
A~ =p|2 B 2\—B1 1\ -1 8 5—1 2—-8
E|a—a"‘ <C|l |« +(Kp ) |Og; +[K exp(—Clﬁp )+p ]—l—,o K ).

It remains to seleot ands. If we setk = p?” ~2 with sufficiently smally > 0, then

Ela — d"|2 <C([p7P@) 4 p7Priogp] +[p*Y exp(—Cl,o%‘l“) +p° 7] + o7 7P).
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Lettingy = & ands = 1— £, we obtain

Ela—a’|* < C([p"* 2 + 5~ 0g ] + [0 % expl(~C1p¥) + p75] +075).

Finally, the following statement holds

Theorem 4.Under the mixing conditio23), the difference between the homogenized matgxen by(7) and
its approximatiorz® given by(13), satisfies the estimate

E|& - Ez"|2 <CpP, B3>0,
with B3 = B3(6, A, d).
To make the proof of Theorem 4 complete, we proceed now to the Green function estimate used in (32). Let
A= a%a,»j (x)%j + ¢(x) be a uniformly elliptic operator if®” such that
AT <a(x) <AL c(x) < —p, u>0.
In a bounded domai® c R” consider a Dirichlet problem
Au=0, ulsg=0¢x). (42)
The proof of the following result can be found in [16], p. 61.
Proposition 1. Suppose thad < ¢(x) < 1 for all x € 3Q. Then the solutiom (x) of problem(42) satisfies the
estimate
u(x) < coexp(—c1/mdist(x, 3Q)), (43)
with constantgg > 0 andc1 > 0 only depending ot andn.
The other two models introduced in Section 1, namely Periodic Approximation and Approximation by Neumann

problem, can be studied in a similar way. We proceed with a brief description of the results for the periodic
approximation. In this case the following statement holds

Theorem 5.Under the mixing conditio23) the discrepancya — a”) with a given by(7) and its approximation
a® given by(10), satisfies the estimate

E|& — Ez"|2 < Cp P, B3>0,
with B3 = B3(6, 1, d).

”

We give only a sketch of the proof. We introduce a functidr’ being aS,-periodic solution of the “penalized
equation

—div(a(z, ) Vx*?) +k xF =diva(z, ), o

and define an intermediate approximation of effective coefficients by

ar=pd / a(z, )(VX“*(z, ) + 1) dz. (45)
Sp
The estimates for the fundamental solution of (44) imply the bound
|XK"'O(Z’ a))| <ckt (46)
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with a nonrandom constaagt. Denotexg’p(x, w) = %x’“p(,ox, ). In the same way as above one can estimate the
difference of matriced*-? anda*-? defined in (27) and (45) respectively:

Lemma 2.Leta*-* anda*-* be the matrices defined {87)and(45), respectively. Then, the differen@g&-* —a*-*)
admits the bound

Ela“? —a**|? < C(k Lexp(—C1v/ikp®) + p° 7).

Then we comparg’(‘)’p and aSi-periodic solution of the equation
—div(a(px, a))(ng + I)) =0,

which is just a vector form of Eqg. (17). As was shown in the proof of Theoremglconverges tg°=0in
(L?(51))¢, asp — oo. Moreover, the analysis of proof of Theorem 3.1 in [24] shows that the statement of this
theorem remains valid for a problem with periodic boundary condition instead of Dirichlet condition. Therefore,

2 _
E”XSH(LZ(Sl))d <CpF

with 8 > 0. The rest of the proof or Theorem 5 is just the same as that of Theorem 4, and we skip the details.
Similar result also holds for approximation by means of Neumann problem.

Theorem 6.Under mixing conditior{23) the discrepancy between the homogenized méatgien by(7) and its
Neumann problem approximatia® given by(15), satisfies the estimate

E|& —Zzp‘z < CpPs, B3>0,
with B3 = B3(0, A, d).

Remark 2. In order to construct the Dirichlet or Neumann problem Approximations one can deal with homothetic
dilatations of a regular bounded domain instead of the cubic samples used herein. In addition, any mixed boundary
condition could have been used for the truncated problem, instead of pure Dirichlet or Neumann boundary
conditions, as soon as these boundary conditions are satisfied by the function all those cases the techniques

of this work also apply and similar convergence results and error bounds would have been obtained.
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