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Abstract

We prove a two-dimensional version of the famous Pickands—Balkema—de Haan theorem of extreme value theory. The
bivariate random variables are generated using the copula language. This representation of dependence structures allows to
derive asymptotic results for bivariate excess distributions.

0 2003 Elsevier SAS. All rights reserved.

Résumé

Une version en dimension 2 du célébre théoréme de Pickands—Balkema—de Haan sur la théorie des valeurs extrémes
est démontrée. Les variables aléatoires bivariées sont générées en utilisant le langage des copules. Cette représentation des
structures de dépendance permet de dériver des résultats asymptotiques pour les distributions d’exces bivariées.
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1. Introduction

Copulas were originally introduced about 40 years ago in the context of probabilistic metric spaces. During
the past years they have developped rapidly and they have attracted much interest (see, e.g., Kotz—Nadarajah
[10]). Copulas are used to describe scale invariant dependencies between random variables. An understanding
of such stochastic dependence structures has become very important in all fields of probability theory. Especially
in the actuarial world, copulas have proven their usefulness for constructing appropriate multivariate models. An
introduction and overviews over recent developments and applications can be found in Joe [7], Nelsen [11], Frees
and Valdez [4], Withrich [16], Embrechts, McNeil and Straumann [3] and the references therein.

In general it is quite difficult to fit an explicit model to real data. Therefore one is interested into asymptotic
behaviours and theorems in order to approximate the true problem by its asymptotic results (central limit theorem,
large deviations results, etc.). In this article we prove a two-dimensional generalizations of the Pickands—Balkema—
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de Haan theorem (see Pickands [12] and Balkema and de Haan [1]) stating that the generalized Pareto distribution

given by
{ 1-@+¢x/B7Y5, ¢ #0,
G;,/s(x) =
1—exp(—x/B), ¢=0,
whereg > 0, andx > 0for¢ > 0o0r 0< x < —B/¢ for ¢ <0, appears as the limit distribution of scaled excesses
over high thresholds. More precisely, it can be shown (see [2], Theorem 3.4.13(b)) that for a large class of random
variablesX there exists a functiofi(-) such that
lim  sup |P[X —u<x|X>ul—Gepux)|=0, (1.2)
U=X0 0L x <xg—u
wherexg < oo denotes the right endpoint of the distribution functionXof
Organization of this papein the next section we give all definitions and our results (Theorem 2.5 and
Lemma 2.6). The idea is to define bivariate random variables via the copula construction, which “separates” the
marginal distributions from the dependence structure (see Theorem 2.2). This decomposition allows to separately
analyze asymptotic behaviours of marginals and the dependence structure, respectively. This construction leads to
similar results as (1.2) in a bivariate context (see Theorem 2.5 below). The limiting distributions (which play the
role of the generalized Pareto distribution in (1.2)) are analyzed in Lemma 2.6.

In Section 3 we give examples. The best known examples are the so-called Archimedean copulas which are
considered in Section 3.1 and the Gaussian copula which is treated in Section 3.2. One main observation is that
Gaussian models usually underestimate joint extreme values in practice, since bivariate Gaussian random variables
are asymptotically independent (see also [3]).

Finally in Section 4 we give the proofs of all our results.

(1.1)

2. Definitions and results
2.1. Multivariate copulas

To generate bivariate random variables we use the copula approach. The idea behind the concept of copulas is to
separate a multivariate distribution function into two parts, one describing the dependence structure and the other
one describing marginal behaviours, respectively.

Definition 2.1 (Copulg). Choosel > 2. A d-dimensional copula is @-dimensional distribution function restricted
to [0, 1]¢ with uniform-(0, 1) marginals.

Theorem 2.2(Sklar [15,13,11])For a given joint distribution functiorF with continuous marginalés, ..., Fy
there exists a unique coput@ satisfying

F(x1,...,xq) = C(F1(x1), ..., Fa(xa)). (2.1)

Conversely, for a given copul& and marginalsFy, ..., F; we have that(2.1) defines a distribution with
marginalsF;.

Sklar’s threorem is a motivation for calling a copuldependence structurin fact, (2.1) means tha&t couples
the marginalgF; to the joint distribution functionF. One important property of copulas is that they are invariant
under monotonically increasing transformations (i.e. they do not depend on marginals).

There are several special copulas, e.g., the so catlatbnotoniaopula which corresponds to total positive
dependence or thiadependentopula which is the copula of independent random variables:

Ci(x1, ..., xd) =x1---x4, (2.2)
for more background information we refer to [3] (more examples are given below).
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2.2. Marginal behaviour

In the Fisher-Tippett theorem and the Pickands—Balkema—-de Haan theorem (see, e.g., Theorems 3.2.3
and 3.4.13(b) in [2]) one sees that the one-dimensional distributions (marginals) can essentially be divided into
three subclasses for analyzing extremal events. The crucial conditition is the rate of decay a¢. the fatness
of the tails:

We introduce some notations: A functiaris regularly varying at—oo with indexa, write h € R, if

im h(xt) _
x—>—00 h(x)

t*, t>0. (2.3)
Let xr denote the left-endpoint of the distributiéh The three subclasses are given by

e FréchetcaseF(-) e R_g for 8 > 0.
o Weibull caseAssumexr > —ooc andF(xyp —1/-) e R_g for g > 0.
o Gumbel caseAssumexr > —oo and there exists a positive functiax) such that for e R

F(u+ta(u)) _

l —¢. 2.4
u'fPF F(u) (2.4)

For examples we refer to [2], Chapter 3. Some examples are given below.
2.3. Main results: bivariate excess distributions below low thresholds

In this subsection we state our main theorem. It gives a weak convergence result for the distribution of peaks
below low thresholds. We remark that from a technical point of view it is easier to prove results for peaks below
low thresholds than results for peaks over high thresholds. This comes from the fact that excess copulas are not
symmetric for lower and upper tails. The upper tails are treated in a sequel of this work (see Juri and Wthrich [9]).

Assumption 2.3.Assume(X, Y) is a symmetric random vector with copulq-, -) and continuous marginals,

ie.(x.Y) ¥ (v, x) and

PIX <x, Y <yl=C(F(x), F(). (2.5)

Furthermore we assume that there exists a continuous fungtiin — R with g(x) > 0 for all x > 0 and the
following limit exists with
C(xu,u)

lim ——— 2 — forallx e R,. 2.
Iim, Cam g(x), forallx eRy (2.6)

Remarks. Assumption 2.3 is quite natural if we think that we have exchangeable random variables with
dependence structur€. If we take C(x,y) = C;(x,y) = x - y, which corresponds to independent random
variables, theng(x) = x. We see below that the functiog characterizes the asymptotic behaviour of the
dependence structure for extremal events.

Lemma 2.4.Assume&X, Y) satisfies Assumptidh3. Theng is an increasing function witg(0) = 0Oandg(1) = 1.
Furthermore there exist € R such that

1
g(x) =x9g(—> forall x > 0.
x
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Now we are able to formulate our main theorem which is a bivariate version of the Pickands—Balkema—de Haan
theorem (see [12,1]). FaX, Y) satisfying Assumption 2.3 we finglle R such that Lemma 2.4 is satisfied. Then
we define forx, y >0

0
_Jyex/y) x>0andy>0, 27
G(x’y)_{o x=00ry=0. 2.7)

Theorem 2.5(Excesses below low thresholdg&ssumeg X, Y) satisfies Assumptidh3. Choose) < x1 < x2 and
0 < y1 < y2. Then we have
(a) Fréchet casenarginalsF(-) e R_g, g > 0,

[ G
im Plx<t r<l|x<, Y<1:| M (2.8)
u—>—00 | X1 Y1 X2 y2 G(x2 yz)
(b) Weibull casemarginalsF with xp > —oc and F(xp —1/-) e R_g, 8 > 0,
[ G
im Pl X<xr—"2 v<ar—2| X <axp—22, Yng—B} M (2.9)
u——oo | u u u u G(xz yz)

(c) Gumbel casenarginalsF with x > —oo and there exists a positive functio) such thai(2.4)is satisfied,
we have
G(e1, et

uﬂrpoo P[X u+xiawm), Y<u+yaw)| X <u-+xzau), Y <u+ yza(u)] m (2.10)

Remark. Of course we have similar results for excess distributions over high thresholds. However the formulas
become more complicated for peaks-over-thresholds since copulas are not symmetric under “sign flip”-operations
X — —X (not all the signs point into the same direction). Therefore we omit the formulas for excess distributions
over high thresholds, rigorous results can be found in Juri and Wiithrich [9], Theorem 4.1.

For the limiting functionsG we have the following lemma:

Lemma 2.6.G(-, ) is a positive, continuous, symmetric function which is increasing in both arguments. Fur-
thermore it satisfies the two-increasing property. Hetie, )/ G (x2, y2) defines a two-dimensional probability
distribution on[0, x2] x [0, y2].

Remark. In Theorem 2.5 we have seen that the functidiplays the role of an attractor. Therefore one would
believe thatG satisfies certain invariance properties. Indeed this is the case: if we consider the copula generated
by G, then one sees that this copula is invariant under “lower tail dependence copula’-transformations (for detailed
results see Juri and Wuthrich [9], Theorem 2.9).

2.4. Interpretation and conclusions

Theorem 2.5 says that bivariate excess distributions can asymptotically be descriGe@Meyhave a weak
convergence result for excess distributions).can solely be determined by the asymptotic behaviour of the
dependence structure (definition gf and the asymptotic behaviour of the marginals. In the examples below we
see that the asymptotic behaviour of the copula can often be described by one parameter which plays the role of
the dependence strength, i.e. in these cases the limit distribution can be parameterized by two or three parameters.

For practical purposes this is quite an important result: Often one has not enough data to analyze the behaviour
of extremal events, hence we approximate the true problem by its asymptotic bound (e.g., Pickands—Balkema—de
Haan theorem). |.e. we have to estimate two or three parameters from the data to determine the limiting distribution.
This limiting distribution is then used to estimate the “true” problem. The remaining questions then are algorithms
to estimate the parameters and the question about speed of convergences. These are not studied in this article.
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3. Examples
3.1. Archimedean copulas

There is an easy way to construct copulas, see also [4—6,11]. The so-called Archimedean copulas are generated
as follows:

Definition 3.1 (Archimedean copulasLet v :[0,1] — [0, cc] be strictly decreasing, convex and such that
¥ (0) = oo andyr (1) = 0. Define forx; € [0,1],i =1, 2,

CY (x1,x2) = ¥ (¥ (x2) + ¥ (x2)). (3.1)
The functiony is calledgeneratorof CV.

Remark. CY is a two-dimensional copula (see [5,6,11]). Archimedean copulas are interesting in practice because
they are very easy to construct, but still we obtain a rich family of dependence structures. Usually they have only
one parameter which is a great advantage when one needs to estimate parameters from data. We give two examples,
for more examples we refer, e.g., to [8].

Examples of Archimedean copulas
e TheClayton copulawith @ > 0 is generated by (r) = r~* — 1 and takes the form

C (1, x0) = (a7 41, — )7V (3.2)
e TheGumbel copulavith @ > 1 is generated by (r) = (— log(¢))* and takes the form
CCU (x1, x2) = exp —{ (—logx1)® + (—logx2)* }*]. (3.3)

For our two dependence structures we calculate the limit (2.6), which gives

Example 3.2(Clayton copula We choose: > 0, then
CCL(xv,v) (xv)~% +v=% — 1\ Y x4 1\ Ve
m———==1Iim = = . 3.4
v—0 CCI’O[(U, v) v—>0( 207> —1 ) ( 2 > §(x) ( )
An easy calculation shows th@t= 1 in this example (see Lemma 2.4). Hence we calculate

—a —a\ —1/a
G (x,y)=y 'g(£> = (w) . (3.5)
y 2
Hence
GO,/ G (xz, ) (3.6)

defines a two-dimensional distribution @& x2] x [0, y2]. The remarkable thing is that this distribution has again
Clayton copula (one can easily see this using Sklar's theorem). In view of [8], Theorem 3.3, this result is not
surprising because the Clayton copula is invariant under excess distribution transformations.

We choose marginals which belong to the Fréchet case. Assulisea Pareto distribution with parameters
0,8 >0,i.e.forx <—06 we have

F(x)= 0/ —x)f eRp. (3.7)
Hence for(X, ¥) Y cCle(F (), F(-)) we find
—ap —af\ —1/a
lim P[Xgi,ygi Xgi,ygi}z(w> . (3.8)
U—>—00 X1 1 X2 y2 x;“ﬂ +y£aﬁ
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In this case we have a parametric family where we have to estimate only two parameters from the data.

Example 3.3(Gumbel copula Choosex > 0. Setu = —logv — oo asv — 0.
i CC%(xv,v) . expg—{(—logxv)* + (—logv)*}1/*]
v—0 COLe(y v)  v—>0 exp—{2(— logv)*}1/«]
= lim exp[—{(u —logx)® + u®}"/* + 2Y/y] (3.9)
u—0oQ

= edel/“_llogx] =2 2 g(x).

Hence

Glx,y) =222 (3.10)
which means that asymptotically the random variables are independent (see also [8], Theorem 3.5). From an
extreme value point of view this means, that the Gumbel copula generates excess values which are asymptotically
independent. In practice this model may be problematic if one tries to analyze how dangereous joint extreme values
are, since usually one underestimates the role of the dependence structure.

Remark. For Archimedean copulas the limit (2.6) is determined by the index of regular variation at zgr(seé
Theorem 3.3in [8]).

3.2. Bivariate Gaussian distribution

We assume thatX, Y) has a bivariate Gaussian distribution with standard normal marginals and correlation
|p| < 1. We denote the marginals & and its density by. It follows from Sklar's Theorem that the Gaussian
copula is given by

Cax.y)=P[Xx<o '), Y <o~y (3.11)

Unfortunately there is no closed form for the Gaussian copula. Nevertheless we are able to calculate the function
g(-) givenin (2.6).

2(0) = lim Chv,v) o CaPW), Pw) . PIX< & Lxd(u)), Y gu]’ (3.12)
v—=0 C(v,v) u——oco C(D(u), @u)) U——00 P[X <u, Y <u]
Hence we need to analyze the asymptotic behaviowdof:). From Mill's ratio we obtain (see [2], (3.38))
D(u) ~ ! exp{—u—z}, asu — —o0. (3.13)
V27 |ul 2
Hence we see that
x® ()~ @ (—u?—2logx)"/?), asu — —co. (3.14)

This implies using I'Hopital’s rule

PIX < —w?—2logx)V2, Y <ul

g(x)= lim

U—>—00 PIX <u, Y <u]
_ i PIX <2 —2l0gn)' 2| ¥ = ulp@)
T u——o0 2P[X <ul|Y =ulpu)

3 PIY <u|X =—u?—2logx)Y2)p(—w? — 2logx)Y/2)(u? — 2logx)~2u (3.15)
2P[X <u|Y =ulp(u) ’ '
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Using a similar estimate for the densityas in (3.13), (3.14) we see that the last term simplifies so that we can
write

PIX < —w?—2logx)Y2|Y =u]l —xP[Y <u| X = —(u?— 2logx)?

= lim
gty = lIim_ 2P[X <u|Y =ul
_ @P=2logn)Y24pu u+pw?—2logx)1/?
_ ||m QD( (17p2)l/2 ) x(p( (17p2)1/2 (3 16)
20

where in the last step we have used that the conditional distributich|dl = y} is again normally distributed
with meanpy and variance % p2. Using I'H6pital’s rule once again one finds that (we skip this tedious calculation)

g(x) = x40, (3.17)

Henced = —2/(1+ p) and G (x, y) = x¥/ A+, . ,1/A+p) "which means that asymptotically bivariate Gaussian
random variables are independent. Furthermore, the marginalkslong to the Gumbel case withu) = —1/u
(see e.g. [2], Example 3.3.29). Hence using Theorem 2.5

_n
u

1 1
=eXp{1+p[x1—xz]} 'eXp{m[M—yz]}. (3.18)

Conclusion. The Gaussian distribution defines a model which has asymptotically independent excess
distributions (the joint excess dependence structure converges to independence). In finance one often logarithmizes
the data and then one assumes multivariate normality: also this log-normal model is asymptotically independent,
since logarithmizing the data has only an effect on the marginal distributions but not on the dependence structure
(see Sklar’s theorem (Theorem 2.2) which says that the copula is invariante under monotonically increasing
transformations). l.e. also in this logarithmized world we have asymptotically independent excess distributions.

. X1
lim P[Xgu——,Ygu
u

u——00

X
X<u-—22 Ygu—E}
u u

4. Proofs
Proof of Lemma 2.4. SinceC is a distribution on the unit cube with uniform marginals it is clear thas
increasing withg(0) = 0 andg(1) = 1. Consider, y > 0 then we have, using the symmetry(af, Y)

lim C(xu,yu)_“m Cxu,y/x-xu) Cu,xu) C(xu,u)
u—0 Cu,u) u—s0 C(xu,xu) C(xu,1l/x-xu) C(u,u)

=g<z) : 1/g<3> -g(x)

X X

=g<f) - 1/g<3) s @.1)
y y

where in the last step we have used that the problem is completely symmaetramuhy.
Forz > 0 we define §(z) > 0 forz > 0)

8(2)
= . 42
f(@) e (4.2)
Hencef satisfiesf (1) =1 and (4.1) implies
o =1 (4.3)

fx)’
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But this implies, if we sey = 1, that f (1/x) = 1/f(x). Hence (4.3) can be rewriten as (set 1/x)
FOD=fO/x)=Ff) - fA/x)=F0O) - f@. (4.4)

Formula (4.4) is known as Hamel’s functional equation whose unique solutigitxis= x?, for somef € R
(see, e.g., [14] Theorem 1.4). Hence from (4.2) we hdveg(1/z) = g(z) for z > 0. This finishes the proof of
Lemmaz2.4. O

Proof of Theorem 2.5. Since we assume that the limit in (2.6) exists, we implicitely assumeathatu) > 0 for
all u > 0 (C is increasing in both arguments). Hence the conditional probabilities in the statements of Theorem 2.5
are well-defined.

(a) Fréchet caseAssumeF (-) e R_g, B > 0. Hence for allr, ¢ > O there existsg such that for alk: < ug

(x—&)PFw) <Fu/x) < (x+&)PFu). (4.5)
This implies for alle > 0, 0< x1 < x2, 0 < y1 < y2 andu < 0 sufficiently small
P[X u u u <1}_P[X<M/X1, Y <u/yil
X1 n x2' " T oyal PIX <u/x2, Y <ufyz)
_ C(F(u/x1), F(u/y1))
C(F(u/x2), F(u/y2))
C((x1+8)PFw), y1+ &P Fu))

T C(x2—e)f F(u), (y2— )P Fw)) (*.6)
We setv = F(u) — 0 (asu — —o0). Using a similar decomposition as in Lemma 2.4 we obtain
IimsupP[X < i, Y < Ylx < i, Y < i} < Iimsupc((xl+8)ﬁv’ (1t e)v)
U — 00 x1 1 x2 y2 v—0 C((x2—¢&)Pv, (y2 —&)Pv)
_ gt e)/+e)P) - 1/g((1/(x1+e)F) - g1 +)P)
T g2 —e)/(x2—€)P) - 1/g((1/(x2— £)P) - g((x2 — £)F)
_a+e” g((1+e)/(x146)P) @.7)

T (2= 8% g((y2— &)/ (x2—)P)’

whered is given by Lemma 2.4. Of course we can find a similar lower bound for the liminf. Now siscé can
be chosen arbitrarily small we find (using the continuity of the funcgipn

[ ’ ’ ’ u } _ o) Gty

X1 1 X2 Y2l xy" - g((yv2/x2)P)  G(x5,y5)

lim P

u——00

(4.8)

This finishes the proof in the Fréchet case.
(b) Weibull caseAssumeF satisfiesxp > —oco and F(xr — 1/-) € R_g, B > 0. Hence for allx, ¢ > 0 there
existsug < 0 such that for alli < ug

(x —e)PF(xp —1/u) < F(xp — x/u) < (x + )P F(xp — 1/u). (4.9)

But then the claim follows as in the Fréchet case if wewset F(xp — 1/u) — 0 asu — —oo. This finishes the
proof in the Weibull case.

(c) Gumbel caseAssumeF satisfiesxg > —oo and there exists a positive functieti-) such that (2.4) is
satisfied. Hence for alf, ¢ > 0 there exist&g > xg such thatforalkr < u < ug

e”‘SF(u)gF(u +xa(u)) <eETEF(u). (4.10)
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But then the claim follows as in the Fréchet case if we repldtby €' and if we setv = F(u) — 0 asu — xr.
This finishes the proof in the Gumbel case.
This finishes the proof of Theorem 2.50

Proof of Lemma 2.6. The positivity of G follows from the positivity ofg. We first prove thaG (-, -) is symmetric:
If one coordinate is 0 the statement is clear. Hence chepge- 0. Using Lemma 2.4

0
G(x,y) =y98(£> = y‘)(f) g<X) =xeg(X> =G(y,x). (4.11)
y y X X

Using the symmetry it suffices to prove the continuity and the increasing property for the first argument. The
continuity easily follows from the continuity @f. For the increasing property we need to prove thiatincreasing,
but this is immediately clear sin@&(ux, u) is a distribution, hence increasingain

Finally, there remains to prove the two-increasing property: Forz9 < z2, 0 < wi < wp the condition

G(z2, w2) — G(z2, w1) — G(z1, w2) + G(z1, w1) =0 (4.12)
needs to be satisfied. This ensures that we obtain (after suitable normalization) a two dimensional probability

distribution. It essentially means that a random ve¢®r, Z5) @ G(-,-)/G(x2, y2) assigns positive weights to
the probabilitiesP[z1 < Z1 < z2, w1 < Z2 < wa].

ChooseF (1) € R_1 hence we are in the Fréchet case (in the examples section we have seen the existence of
such marginal distributions). Hence we define fot 81 < x2 and O< y1 < y2

u u u u
Pu(xl,ylzxz,yz)=P[X<—, Y<—|X<—, Yé—}. (4.13)
X1 yi X2 y2

SinceP, (-, -; x2, y2) is a distribution o0, x2] x [0, y2] for all u < 0, it satisfies the two-inceasing property for
all u < 0. But this implies that also the limit (as— —o0) G(-, 1)/ G(x2, y2) satisfies the two-increasing property.
This finishes the proof of the lemman
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