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Abstract

We prove a two-dimensional version of the famous Pickands–Balkema–de Haan theorem of extreme value the
bivariate random variables are generated using the copula language. This representation of dependence structure
derive asymptotic results for bivariate excess distributions.
 2003 Elsevier SAS. All rights reserved.

Résumé

Une version en dimension 2 du célèbre théorème de Pickands–Balkema–de Haan sur la théorie des valeurs
est démontrée. Les variables aléatoires bivariées sont générées en utilisant le langage des copules. Cette représ
structures de dépendance permet de dériver des résultats asymptotiques pour les distributions d’excès bivariées.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

Copulas were originally introduced about 40 years ago in the context of probabilistic metric spaces.
the past years they have developped rapidly and they have attracted much interest (see, e.g., Kotz–N
[10]). Copulas are used to describe scale invariant dependencies between random variables. An unde
of such stochastic dependence structures has become very important in all fields of probability theory. Es
in the actuarial world, copulas have proven their usefulness for constructing appropriate multivariate mod
introduction and overviews over recent developments and applications can be found in Joe [7], Nelsen [1
and Valdez [4], Wüthrich [16], Embrechts, McNeil and Straumann [3] and the references therein.

In general it is quite difficult to fit an explicit model to real data. Therefore one is interested into asym
behaviours and theorems in order to approximate the true problem by its asymptotic results (central limit t
large deviations results, etc.). In this article we prove a two-dimensional generalizations of the Pickands–B
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de Haan theorem (see Pickands [12] and Balkema and de Haan [1]) stating that the generalized Pareto d
given by

Gζ,β(x)=
{

1− (1+ ζx/β)−1/ζ , ζ �= 0,

1− exp(−x/β), ζ = 0,
(1.1)

whereβ > 0, andx � 0 for ζ � 0 or 0� x � −β/ζ for ζ < 0, appears as the limit distribution of scaled exces
over high thresholds. More precisely, it can be shown (see [2], Theorem 3.4.13(b)) that for a large class of
variablesX there exists a functionβ(·) such that

lim
u→x0

sup
0�x<x0−u

∣∣P [X − u� x |X > u] −Gζ,β(u)(x)
∣∣ = 0, (1.2)

wherex0 � ∞ denotes the right endpoint of the distribution function ofX.
Organization of this paper.In the next section we give all definitions and our results (Theorem 2.5

Lemma 2.6). The idea is to define bivariate random variables via the copula construction, which “separa
marginal distributions from the dependence structure (see Theorem 2.2). This decomposition allows to se
analyze asymptotic behaviours of marginals and the dependence structure, respectively. This constructio
similar results as (1.2) in a bivariate context (see Theorem 2.5 below). The limiting distributions (which p
role of the generalized Pareto distribution in (1.2)) are analyzed in Lemma 2.6.

In Section 3 we give examples. The best known examples are the so-called Archimedean copulas w
considered in Section 3.1 and the Gaussian copula which is treated in Section 3.2. One main observati
Gaussian models usually underestimate joint extreme values in practice, since bivariate Gaussian random
are asymptotically independent (see also [3]).

Finally in Section 4 we give the proofs of all our results.

2. Definitions and results

2.1. Multivariate copulas

To generate bivariate random variables we use the copula approach. The idea behind the concept of co
separate a multivariate distribution function into two parts, one describing the dependence structure and
one describing marginal behaviours, respectively.

Definition 2.1 (Copula). Choosed � 2. A d-dimensional copula is ad-dimensional distribution function restricte
to [0,1]d with uniform-(0,1) marginals.

Theorem 2.2(Sklar [15,13,11]).For a given joint distribution functionF with continuous marginalsF1, . . . ,Fd
there exists a unique copulaC satisfying

F(x1, . . . , xd)= C
(
F1(x1), . . . ,Fd(xd)

)
. (2.1)

Conversely, for a given copulaC and marginalsF1, . . . ,Fd we have that(2.1) defines a distribution with
marginalsFi .

Sklar’s threorem is a motivation for calling a copula adependence structure. In fact, (2.1) means thatC couples
the marginalsFi to the joint distribution functionF . One important property of copulas is that they are invar
under monotonically increasing transformations (i.e. they do not depend on marginals).

There are several special copulas, e.g., the so calledcomonotoniccopula which corresponds to total positi
dependence or theindependentcopula which is the copula of independent random variables:

CI(x1, . . . , xd)= x1 · · ·xd, (2.2)

for more background information we refer to [3] (more examples are given below).
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In the Fisher–Tippett theorem and the Pickands–Balkema–de Haan theorem (see, e.g., Theore
and 3.4.13(b) in [2]) one sees that the one-dimensional distributions (marginals) can essentially be divi
three subclasses for analyzing extremal events. The crucial conditition is the rate of decay at±∞, i.e. the fatness
of the tails:

We introduce some notations: A functionh is regularly varying at−∞ with indexα, write h ∈Rα , if

lim
x→−∞

h(xt)

h(x)
= tα, t > 0. (2.3)

Let xF denote the left-endpoint of the distributionF . The three subclasses are given by

• Fréchet case: F(·) ∈ R−β for β > 0.
• Weibull case: AssumexF >−∞ andF(xF − 1/·) ∈ R−β for β > 0.
• Gumbel case: AssumexF � −∞ and there exists a positive functiona(·) such that fort ∈ R

lim
u↓xF

F (u+ ta(u))

F (u)
= et . (2.4)

For examples we refer to [2], Chapter 3. Some examples are given below.

2.3. Main results: bivariate excess distributions below low thresholds

In this subsection we state our main theorem. It gives a weak convergence result for the distribution o
below low thresholds. We remark that from a technical point of view it is easier to prove results for peaks
low thresholds than results for peaks over high thresholds. This comes from the fact that excess copula
symmetric for lower and upper tails. The upper tails are treated in a sequel of this work (see Juri and Wüthr

Assumption 2.3.Assume(X,Y ) is a symmetric random vector with copulaC(· , ·) and continuous marginalsF ,

i.e. (X,Y )
(d)= (Y,X) and

P [X � x, Y � y] = C
(
F(x),F (y)

)
. (2.5)

Furthermore we assume that there exists a continuous functiong :R+ → R+ with g(x) > 0 for all x > 0 and the
following limit exists with

lim
u→0

C(xu,u)

C(u,u)
= g(x), for all x ∈ R+. (2.6)

Remarks. Assumption 2.3 is quite natural if we think that we have exchangeable random variable
dependence structureC. If we take C(x, y) = CI (x, y) = x · y, which corresponds to independent rand
variables, theng(x) = x. We see below that the functiong characterizes the asymptotic behaviour of
dependence structure for extremal events.

Lemma 2.4.Assume(X,Y ) satisfies Assumption2.3. Theng is an increasing function withg(0)= 0 andg(1)= 1.
Furthermore there existsθ ∈ R such that

g(x)= xθg

(
1

x

)
for all x > 0.
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Now we are able to formulate our main theorem which is a bivariate version of the Pickands–Balkema–d
theorem (see [12,1]). For(X,Y ) satisfying Assumption 2.3 we findθ ∈ R such that Lemma 2.4 is satisfied. Th
we define forx, y � 0

G(x,y)=
{
yθg(x/y) x > 0 andy > 0,
0 x = 0 ory = 0.

(2.7)

Theorem 2.5(Excesses below low thresholds).Assume(X,Y ) satisfies Assumption2.3. Choose0< x1 � x2 and
0< y1 � y2. Then we have:

(a) Fréchet case:marginalsF(·) ∈ R−β , β > 0,

lim
u→−∞P

[
X � u

x1
, Y � u

y1

∣∣∣∣X � u

x2
, Y � u

y2

]
= G(x

β
1 , y

β
1 )

G(x
β
2 , y

β
2 )
. (2.8)

(b) Weibull case:marginalsF with xF >−∞ andF(xF − 1/·) ∈ R−β , β > 0,

lim
u→−∞P

[
X � xF − x1

u
, Y � xF − y1

u

∣∣∣∣X � xF − x2

u
, Y � xF − y2

u

]
= G(x

β

1 , y
β

1 )

G(x
β

2 , y
β

2 )
. (2.9)

(c) Gumbel case:marginalsF with xF � −∞ and there exists a positive functiona(·) such that(2.4)is satisfied,
we have

lim
u→−∞P

[
X � u+ x1a(u), Y � u+ y1a(u) |X � u+ x2a(u), Y � u+ y2a(u)

] = G(ex1,ey1)

G(ex2,ey2)
. (2.10)

Remark. Of course we have similar results for excess distributions over high thresholds. However the fo
become more complicated for peaks-over-thresholds since copulas are not symmetric under “sign flip”-op
X �→ −X (not all the signs point into the same direction). Therefore we omit the formulas for excess distrib
over high thresholds, rigorous results can be found in Juri and Wüthrich [9], Theorem 4.1.

For the limiting functionsG we have the following lemma:

Lemma 2.6.G(· , ·) is a positive, continuous, symmetric function which is increasing in both arguments
thermore it satisfies the two-increasing property. HenceG(· , ·)/G(x2, y2) defines a two-dimensional probabili
distribution on[0, x2] × [0, y2].
Remark. In Theorem 2.5 we have seen that the functionG plays the role of an attractor. Therefore one wo
believe thatG satisfies certain invariance properties. Indeed this is the case: if we consider the copula ge
byG, then one sees that this copula is invariant under “lower tail dependence copula”-transformations (for
results see Juri and Wüthrich [9], Theorem 2.9).

2.4. Interpretation and conclusions

Theorem 2.5 says that bivariate excess distributions can asymptotically be described byG (we have a weak
convergence result for excess distributions).G can solely be determined by the asymptotic behaviour of
dependence structure (definition ofg) and the asymptotic behaviour of the marginals. In the examples belo
see that the asymptotic behaviour of the copula can often be described by one parameter which plays th
the dependence strength, i.e. in these cases the limit distribution can be parameterized by two or three pa

For practical purposes this is quite an important result: Often one has not enough data to analyze the b
of extremal events, hence we approximate the true problem by its asymptotic bound (e.g., Pickands–Bal
Haan theorem). I.e. we have to estimate two or three parameters from the data to determine the limiting dis
This limiting distribution is then used to estimate the “true” problem. The remaining questions then are alg
to estimate the parameters and the question about speed of convergences. These are not studied in this a
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3. Examples

3.1. Archimedean copulas

There is an easy way to construct copulas, see also [4–6,11]. The so-called Archimedean copulas are
as follows:

Definition 3.1 (Archimedean copulas). Let ψ : [0,1] → [0,∞] be strictly decreasing, convex and such t
ψ(0)= ∞ andψ(1)= 0. Define forxi ∈ [0,1], i = 1,2,

Cψ(x1, x2)=ψ−1(ψ(x1)+ψ(x2)
)
. (3.1)

The functionψ is calledgeneratorof Cψ .

Remark. Cψ is a two-dimensional copula (see [5,6,11]). Archimedean copulas are interesting in practice b
they are very easy to construct, but still we obtain a rich family of dependence structures. Usually they ha
one parameter which is a great advantage when one needs to estimate parameters from data. We give two
for more examples we refer, e.g., to [8].

Examples of Archimedean copulas
• TheClayton copulawith α > 0 is generated byψ(t) = t−α − 1 and takes the form

CCl,α(x1, x2)= (x−α
1 + x−α

2 − 1)−1/α. (3.2)

• TheGumbel copulawith α � 1 is generated byψ(t) = (− log(t))α and takes the form

CGu,α(x1, x2)= exp
[−{

(− logx1)
α + (− logx2)

α
}1/α]

. (3.3)

For our two dependence structures we calculate the limit (2.6), which givesg(·).

Example 3.2(Clayton copula). We choosex > 0, then

lim
v→0

CCl,α(xv, v)

CCl,α(v, v)
= lim

v→0

(
(xv)−α + v−α − 1

2v−α − 1

)−1/α

=
(
x−α + 1

2

)−1/α

= g(x). (3.4)

An easy calculation shows thatθ = 1 in this example (see Lemma 2.4). Hence we calculate

GCl,α(x, y)= y · g
(
x

y

)
=

(
x−α + y−α

2

)−1/α

. (3.5)

Hence

GCl,α(· , ·)/GCl,α(x2, y2) (3.6)

defines a two-dimensional distribution on[0, x2] × [0, y2]. The remarkable thing is that this distribution has ag
Clayton copula (one can easily see this using Sklar’s theorem). In view of [8], Theorem 3.3, this resul
surprising because the Clayton copula is invariant under excess distribution transformations.

We choose marginals which belong to the Fréchet case. AssumeF is a Pareto distribution with paramete
θ,β > 0, i.e. forx � −θ we have

F(x)= (θ/− x)β ∈ Rβ. (3.7)

Hence for(X,Y )
(d)∼ CCl,α(F (·),F (·)) we find

lim
u→−∞P

[
X � u

x1
, Y � u

y1

∣∣∣∣X � u

x2
, Y � u

y2

]
=

(
x

−αβ
1 + y

−αβ
1

x
−αβ + y

−αβ

)−1/α

. (3.8)

2 2
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In this case we have a parametric family where we have to estimate only two parameters from the data.

Example 3.3(Gumbel copula). Choosex > 0. Setu= − logv → ∞ asv → 0.

lim
v→0

CGu,α(xv, v)

CGu,α(v, v)
= lim

v→0

exp[−{(− logxv)α + (− logv)α}1/α]
exp[−{2(− logv)α}1/α]

= lim
u→∞ exp

[−{
(u− logx)α + uα

}1/α + 21/αu
]

(3.9)

= exp
[
21/α−1 logx

] = x21/α−1 = g(x).

Hence

G(x,y)= x21/α−1 · y21/α−1
, (3.10)

which means that asymptotically the random variables are independent (see also [8], Theorem 3.5).
extreme value point of view this means, that the Gumbel copula generates excess values which are asym
independent. In practice this model may be problematic if one tries to analyze how dangereous joint extrem
are, since usually one underestimates the role of the dependence structure.

Remark. For Archimedean copulas the limit (2.6) is determined by the index of regular variation at zero ofψ (see
Theorem 3.3 in [8]).

3.2. Bivariate Gaussian distribution

We assume that(X,Y ) has a bivariate Gaussian distribution with standard normal marginals and correlaρ,
|ρ| < 1. We denote the marginals byΦ and its density byϕ. It follows from Sklar’s Theorem that the Gaussi
copula is given by

C(x, y)= P
[
X �Φ−1(x), Y �Φ−1(y)

]
. (3.11)

Unfortunately there is no closed form for the Gaussian copula. Nevertheless we are able to calculate the
g(·) given in (2.6).

g(x)= lim
v→0

C(xv, v)

C(v, v)
= lim

u→−∞
C(xΦ(u), Φ(u))

C(Φ(u), Φ(u))
= lim

u→−∞
P [X �Φ−1(xΦ(u)), Y � u]

P [X � u, Y � u] . (3.12)

Hence we need to analyze the asymptotic behaviour ofxΦ(u). From Mill’s ratio we obtain (see [2], (3.38))

Φ(u)∼ 1√
2π |u| exp

{
−u2

2

}
, asu→ −∞. (3.13)

Hence we see that

xΦ(u)∼Φ
(−(u2 − 2 logx)1/2

)
, asu→ −∞. (3.14)

This implies using l’Hôpital’s rule

g(x)= lim
u→−∞

P [X � −(u2 − 2 logx)1/2, Y � u]
P [X � u, Y � u]

= lim
u→−∞

P [X � −(u2 − 2 logx)1/2 | Y = u]ϕ(u)
2P [X � u | Y = u]ϕ(u)

− P [Y � u |X = −(u2 − 2 logx)1/2]ϕ(−(u2 − 2 logx)1/2)(u2 − 2 logx)−1/2u
. (3.15)
2P [X � u | Y = u]ϕ(u)
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Using a similar estimate for the densityϕ as in (3.13), (3.14) we see that the last term simplifies so that we
write

g(x)= lim
u→−∞

P [X � −(u2 − 2 logx)1/2 | Y = u] − xP [Y � u |X = −(u2 − 2 logx)1/2]
2P [X � u | Y = u]

= lim
u→−∞

Φ(− (u2−2 logx)1/2+ρu
(1−ρ2)1/2

)− xΦ(
u+ρ(u2−2 logx)1/2

(1−ρ2)1/2
)

2Φ( u−ρu
(1−ρ2)1/2

)
, (3.16)

where in the last step we have used that the conditional distribution ofX | {Y = y} is again normally distributed
with meanρy and variance 1−ρ2. Using l’Hôpital’s rule once again one finds that (we skip this tedious calcula

g(x)= x1/(1+ρ). (3.17)

Henceθ = −2/(1 + ρ) andG(x,y) = x1/(1+ρ) · y1/(1+ρ), which means that asymptotically bivariate Gauss
random variables are independent. Furthermore, the marginalsΦ belong to the Gumbel case witha(u) = −1/u
(see e.g. [2], Example 3.3.29). Hence using Theorem 2.5

lim
u→−∞P

[
X � u− x1

u
, Y � u− y1

u

∣∣∣∣X � u− x2

u
, Y � u− y2

u

]

= exp

{
1

1+ ρ
[x1 − x2]

}
· exp

{
1

1+ ρ
[y1 − y2]

}
. (3.18)

Conclusion. The Gaussian distribution defines a model which has asymptotically independent
distributions (the joint excess dependence structure converges to independence). In finance one often loga
the data and then one assumes multivariate normality: also this log-normal model is asymptotically indep
since logarithmizing the data has only an effect on the marginal distributions but not on the dependence
(see Sklar’s theorem (Theorem 2.2) which says that the copula is invariante under monotonically inc
transformations). I.e. also in this logarithmized world we have asymptotically independent excess distribut

4. Proofs

Proof of Lemma 2.4. SinceC is a distribution on the unit cube with uniform marginals it is clear thatg is
increasing withg(0)= 0 andg(1)= 1. Considerx, y > 0 then we have, using the symmetry of(X,Y )

lim
u→0

C(xu,yu)

C(u,u)
= lim

u→0

C(xu,y/x · xu)
C(xu, xu)

C(xu, xu)

C(xu,1/x · xu)
C(xu,u)

C(u,u)

= g

(
y

x

)
· 1/g

(
1

x

)
· g(x)

= g

(
x

y

)
· 1/g

(
1

y

)
· g(y), (4.1)

where in the last step we have used that the problem is completely symmetric inx andy.
For z > 0 we define (g(z) > 0 for z > 0)

f (z)= g(z)

g(1/z)
. (4.2)

Hencef satisfiesf (1)= 1 and (4.1) implies

f (y/x)= f (y)
. (4.3)
f (x)
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But this implies, if we sety = 1, thatf (1/x)= 1/f (x). Hence (4.3) can be rewriten as (setz = 1/x)

f (yz)= f (y/x)= f (y) · f (1/x)= f (y) · f (z). (4.4)

Formula (4.4) is known as Hamel’s functional equation whose unique solution isf (x) = xθ , for someθ ∈ R

(see, e.g., [14] Theorem 1.4). Hence from (4.2) we havezθ · g(1/z) = g(z) for z > 0. This finishes the proof o
Lemma 2.4. ✷
Proof of Theorem 2.5. Since we assume that the limit in (2.6) exists, we implicitely assume thatC(u,u) > 0 for
all u > 0 (C is increasing in both arguments). Hence the conditional probabilities in the statements of Theo
are well-defined.

(a)Fréchet case: AssumeF(·) ∈R−β , β > 0. Hence for allx, ε > 0 there existsu0 such that for allu < u0

(x − ε)βF (u)� F(u/x)� (x + ε)βF (u). (4.5)

This implies for allε > 0, 0< x1 � x2, 0< y1 � y2 andu < 0 sufficiently small

P

[
X � u

x1
, Y � u

y1

∣∣∣∣X � u

x2
, Y � u

y2

]
= P [X � u/x1, Y � u/y1]
P [X � u/x2, Y � u/y2]

= C(F(u/x1),F (u/y1))

C(F (u/x2),F (u/y2))

� C((x1 + ε)βF (u), (y1 + ε)βF (u))

C((x2 − ε)βF (u), (y2 − ε)βF (u))
. (4.6)

We setv = F(u)→ 0 (asu→ −∞). Using a similar decomposition as in Lemma 2.4 we obtain

lim sup
u→−∞

P

[
X � u

x1
, Y � u

y1

∣∣∣∣X � u

x2
, Y � u

y2

]
� lim sup

v→0

C((x1 + ε)βv, (y1 + ε)βv)

C((x2 − ε)βv, (y2 − ε)βv)

= g(((y1 + ε)/(x1 + ε))β) · 1/g((1/(x1 + ε))β) · g((x1 + ε)β)

g(((y2 − ε)/(x2 − ε))β) · 1/g((1/(x2 − ε))β) · g((x2 − ε)β)

= (x1 + ε)θβ · g(((y1 + ε)/(x1 + ε))β)

(x2 − ε)θβ · g(((y2 − ε)/(x2 − ε))β)
, (4.7)

whereθ is given by Lemma 2.4. Of course we can find a similar lower bound for the lim inf. Now sinceε > 0 can
be chosen arbitrarily small we find (using the continuity of the functiong)

lim
u→−∞P

[
X � u

x1
, Y � u

y1

∣∣∣∣X � u

x2
, Y � u

y2

]
= x

θβ
1 · g((y1/x1)

β)

x
θβ
2 · g((y2/x2)β)

= G(x
β
1 , y

β
1 )

G(x
β
2 , y

β
2 )
. (4.8)

This finishes the proof in the Fréchet case.
(b) Weibull case: AssumeF satisfiesxF > −∞ andF(xF − 1/·) ∈ R−β , β > 0. Hence for allx, ε > 0 there

existsu0 < 0 such that for allu < u0

(x − ε)βF (xF − 1/u)� F(xF − x/u)� (x + ε)βF (xF − 1/u). (4.9)

But then the claim follows as in the Fréchet case if we setv = F(xF − 1/u) → 0 asu → −∞. This finishes the
proof in the Weibull case.

(c) Gumbel case: AssumeF satisfiesxF � −∞ and there exists a positive functiona(·) such that (2.4) is
satisfied. Hence for allx, ε > 0 there existsu0 > xF such that for allxF < u < u0

ex−εF (u)� F
(
u+ xa(u)

)
� ex+εF (u). (4.10)
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But then the claim follows as in the Fréchet case if we replacexβ by ex and if we setv = F(u) → 0 asu→ xF .
This finishes the proof in the Gumbel case.

This finishes the proof of Theorem 2.5.✷
Proof of Lemma 2.6. The positivity ofG follows from the positivity ofg. We first prove thatG(· , ·) is symmetric:
If one coordinate is 0 the statement is clear. Hence choosex, y > 0. Using Lemma 2.4

G(x,y)= yθg

(
x

y

)
= yθ

(
x

y

)θ

g

(
y

x

)
= xθg

(
y

x

)
=G(y,x). (4.11)

Using the symmetry it suffices to prove the continuity and the increasing property for the first argume
continuity easily follows from the continuity ofg. For the increasing property we need to prove thatg is increasing,
but this is immediately clear sinceC(ux,u) is a distribution, hence increasing inx.

Finally, there remains to prove the two-increasing property: For 0� z1 � z2, 0�w1 �w2 the condition

G(z2,w2)−G(z2,w1)−G(z1,w2)+G(z1,w1)� 0 (4.12)

needs to be satisfied. This ensures that we obtain (after suitable normalization) a two dimensional pro

distribution. It essentially means that a random vector(Z1,Z2)
(d)∼ G(· , ·)/G(x2, y2) assigns positive weights t

the probabilitiesP [z1 � Z1 � z2,w1 � Z2 �w2].
ChooseF(·) ∈ R−1 hence we are in the Fréchet case (in the examples section we have seen the exis

such marginal distributions). Hence we define for 0< x1 � x2 and 0< y1 � y2

Pu(x1, y1;x2, y2)= P

[
X � u

x1
, Y � u

y1

∣∣∣∣X � u

x2
, Y � u

y2

]
. (4.13)

SincePu(· , · ;x2, y2) is a distribution on[0, x2] × [0, y2] for all u < 0, it satisfies the two-inceasing property f
all u < 0. But this implies that also the limit (asu→ −∞) G(· , ·)/G(x2, y2) satisfies the two-increasing proper
This finishes the proof of the lemma.✷
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