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Abstract

We show that the asymptotics for the hitting time of 0 of the voter model started from a single 1 can be obtained from the
invariance principle for voter models and super-Brownian motion.
0 2003 Elsevier SAS. All rights reserved.
Résumé

Nous considérons le modéle du votant commengant avec un seul 1. Nous montrons qu'asymptotiquement le temps
d’'absorption en 0 peut étre obtenu a partir du principe d’invariance liant le modéle du votant au super-mouvement
brownien.
0 2003 Elsevier SAS. All rights reserved.
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1. Introduction and summary

The voter model (see Chapter IV of [6]) is one of the simpietgracting particle systemét has been studied
extensively since the 1970’s. An invariance principle has recently been established (see [2] and [4]) which shows
that appropriately rescaled voter models converge weakdyper-Brownian motionOur purpose here is to use
this invariance principle to give a new proof of a fundamental result of Bramson and Griffeath (see [3]) on the
asymptotic behavior of the voter model started from a single 1.
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We begin by describing the voter model. lggidenote the rate-1 voter model @d with voting kernelp(x, y)
satisfying

p(x,y) = p(0, y — x) is irreducible and symmetric, with(0, 0) =0,
and for some G< 0% < 00, Y p(0, x)x'x! =8(i, j)o? (1.1)
xezd

(8@, j)y=1fori = j,ands(i, j) = 0 otherwise). We think of; (x) as the opinion, either 0 or 1, of a voter at site
at timer, where the dynamics @ are given by: independently, at each site

0—1 at rateZ p(x, ) e, (»=1},
y

1—-0 at ratez p(x, ¥) g, (»)=0}-
B

We identify & with the set{x: & (x) =1}, and Ieté{‘ denote the voter model starting from 1's exactly 4n
55‘ = A. We write&;" for é,{”, and make use of the usual additive construction of the voter model (see Section 111.6

[6]),
g =&

X€eA

Itis easy to see that®| = 3" £%(x) is a martingale, and th&?| hits 0 eventually with probability one. Letting
pr = P(|§,0| > 0), it follows thatp; — 0 ast — co. Determination of the rate at whigh — 0 is not simple, since
the rate at which§,0| changes depends on thpatial configuratiorof the setgto. In the one-dimensional nearest
neighbor cas@t0 is always an interval, and it is straightforward to determine the asymptotic behavjpr vf
higher dimensions, even in the nearest neighbor case, the situation is far more complicated. Nevertheless, Bramson
and Griffeath in [3] were able to obtain precise asymptotics.

To state their results, define (foe- 0)

__ft/logr ind=2,
= {t ind >3, (1.2)

let y» = 202, and ford > 3, lety, be the probability that a random walk with jump kerpgk, y) starting at the
origin never returns to the origin. The notatigiiz) ~ g(¢) ast — oo means that linL. o f(¢)/g(t) = 1. Here is
the Bramson and Griffeath result.

Theorem 1. Assume! > 2. Ast — oo,
Pt~ 1/yam; (1.3)
and
P(p,|§,0|>u||§,0|>0)—>e7“, u>0. (1.4)
(Although the proof given in [3] was for the nearest-neighbor gagk x) = (1/2d) for |x| = 1, as noted in
Lemma 2 of [2], it is easily modified to cover kerneléx, y) satisfying (1.1).)

The asymptotics in Theorem 1 have proved to be important tools in the study of the voter model and its variants.
There were two key ingredients in Bramson and Griffeath’s proof. The first was their derivation of the upper bound

pr= O<i> asr — oo. (1.5)

m;
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The second was Theorem 1.1 of [8], which gave asymptotics for the “patch of the origin” for a general stepping
stone model. The proof of Sawyer's remarkable theorem proceded via the method of moments, using intricate
calculations of transforms of coalescing random walk probabilites. It gave little insight into the theorem’s
conclusions. By combining the upper bound (1.5) and Sawyer’s theorem, Bramson and Griffeath obtained (1.3)
and (1.4).

Our purpose here is to give a new proof of these asymptotics which we feel is more probabilistic in nature and
gives greater insight into why they hold. We make use of the upper bound (1.5), but avoid the use of Sawyer's
result. Instead, we show that these asymptotics follow from an invariance principle showing that rescaled voter
models converge to super-Brownian motion. (Unfortunately, it does not appear that the upper bound (1.5) can be
obtained from this invariance principle.)

We begin by defining rescaled voter modgf§, which are ratel voter models orSy = Z¢/+/N with voting
kernelspy (x,y) = p(x+/N, yv/N) for x,y € Sy. We assume throughout thi)| < co. Let X denote the
associated measure-valued processes

wheres, is the unit point mass as.

Now let X; denote super-Brownian motion with branching rate= 2y,; and diffusion coefficient2, taking
values inM r(R%), the space of finite measures BA. X, is obtained as the limit of rescaled critical branching
random walks or Brownian motions, and can be defined via the following martingale problem (see [7]): for all
¢ € CPRY),

t
2A
Mz(<15)=Xz(¢)—Xo(rzﬁ)—/xs<cy 5 ¢)ds
0

is a continuoud.? martingale withMo(¢) = 0 and square function

t

(M), = / X;(y¢?) ds.

0

(For a measurg onR?, u(¢) = [ ¢ (x)u(dx).)
We will make use of the explicit formulas

P(X;(1) > 0) = 1—exp(—2Xo(1)/y1) (1.6)
and
B 26 Xo(1)
E exp(—0X;(1)) _exp<— 2+9W)’ (1.7)

wherel is the function identically 1 oR?. These formulas are not difficult to derive, since the total mass process,
X;(1), is a Feller diffusion (see (11.5.11) and (11.5.12) of [7]).

Here is the invariance principle, Theorem 1.2 of [4]. The symbsldenotes weak convergence, and
D(R;, Mr(R%) is the Skorohod space of cadlad » (R?)-valued paths.

Theorem 2. Assumel > 2, and X} — Xo € Mp(RY) asN — co. ThenX) = X, in D(Ry, Mp(R?)).

Let us consider the cas¢ > 3 and see why Theorem 2 and the formulas (1.6) and (1.7) suggest that
(1.3) and (1.4) should hold. Lef denote law, and let denote “approximate equality”. L%N = {0}. Then
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L&) = E(Ié,%l), and in view of Theorem 2, we expect that|"|) ~ L(NX,(1)) for large N, where
Xo(1) = [£)'|/N = 1/N. Settingt = 1 and using (1.6), it follows that
pn=P(|EY| > 0)~ P(NX1()) > 0) =1 — exp(—1/Nya) ~ 1/Nyq

asN — oo. This is (1.3). Similarly, fo® > 0, we have

E(l_efepmsg\ 1€9] > 0) :p&lE(l_efepms,%\)

~ p;]lE(l _ e_epNle(l))

0
szll 1—ex _¢ ,
1+6Npnya

where we have used (1.7) and the fact thiafl) = 1/N. It is easy to see, singey ~ 1/Ny; asN — oo, that the
last expression convergesag(l + 0), which implies (1.4).
In order to make these arguments rigorous, we make use of the upper bound (1.5) and ideas from [2]. We also
require a corollary to Theorem 2, which says that the hitting times of @foconverge weakly to the hitting time
of O for X;. With these ingredients, we give a proof of Theorem 1 which avoids the use of Sawyer’s theorem.
We close the introduction by stating our hitting time result. &or 0 let ¥ andz, be the hitting times

tV =inf{t>0: XY (V) <a} and 7, =inf{r>0: X,(1) <al.

Corollary 3. Assume that > 2, and X} — Xo € Mp(RY). Then

Xo(1
lim P(zy >t)=P(ro>1) = 1—exp<— o )), t>0. (1.8)
N—o00 tYd

The reason that Corollary 3 does not follow immediately from Theorem 2 is that there is no “soft” way to ensure
that onceX N (1) reaches a level > 0 very close to 0, it doesn't linger there rather than reaching 0 fairly quickly.
We use (1.5) to take care of this problem.

2. Proofs
We first prove Corollary 3, then Theorem 1.
Proof of Corollary 3. The second equality is immediate from (1.6), so we only need prove the first equality. For
t > 0 define
IV =inf{ XY (D): 0<s <1}, I =inf{X,(1): 0< s <1}

It follows from Theorem 2 thak Y (1) = X,.(1) asN — oo, and since the infimum over a path is a continuous
function on the space of continuous paths, we also have, for fixe@, 7Y = I,. More specifically, ast.(1) is
continuous, this follows from Theorem 3.10.2 of [5]. For any 0, {7 > a} = (Y >t} and{I, > a} = {7, > t}.
Consequently,

liminf P(z{’ > t) > P(w0 > 1). (2.1)

N—o0

By (1.5) there is a constant such thatp; < C/m;. Consequently, for any initial stagg",
P(g)N >0)<Cl&)|/mni. (2.2)
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This follows from the additive construction of the voter model, since

P(&" >0) = ( Us )< > P& > 0) < Cl&|/m.

xEEéV

Now choose, a such thatr <7 and O< a < Xo(1). Then, making use of (2.2) and the strong Markov property at
time zV, for N large enough so tha(é"(l) > a, we have

P(rév>t)\ ( )—l—P(r <s, ) > 1)
T, >s)+sup{P(|$,]!S|>0). |§év|<amN}
)

P(z)’
P(tN >s)+Camy/mpy;—s)
P(

NN

a
ISN > a) + Camy/my;—s).

We now takea to be a continuity point for the distribution function &f, so thatP(I¥ > a) — P(I; > a) as
N — o0. SinceP(Iy > a) = P(t, > s) < P(t0 > ), using the definition ofiz, we therefore have

limsupP(z > 1) < P(t0>s) + Ca/(t — 3).
N—o0
We may now lets 1 ¢+ anda | 0 such thatz/(t — s) — O, to obtain (recall from (1.6) thafy has a continuous
distribution function)
limsupP (' > t) < P(z0 > 1). (2.3)
N—o0

Together, (2.1) and (2.3) imply (1.8).0

Proof of Theorem 1. Fore > 0, let By, . be the box inSy centered at the origin of side lengthwm )Y/ /N2,
so that|By | ~ emy as N — oo. Let & N-Bv.: denote the ratev voter model W|th§N Mo = By, With
corresponding measure-valued procé’é\é , and Ietét * denote the process with initial staié’ * = {x}. Let
X? denote super-Brownian motion witkip = 80, branching ratey = 2y,, and diffusion coefficient2. Since
Xy¢ — X§, by Corollary 3 it follows that

lim P(|§N Brel S 0)= P(XE >0)=1—e /%, (2.4)
Since
P = 0)< 3 P(E"|>0) = 1Bx.IP (6] > 0),
XEBN ¢
it follows that

_ @—¢/vat
I|m|nmeP(|g, 0|>0) 1%.

Lettinge — 0, we obtain
liminf my P(|&"°] > 0) > 1/yar. (2.5)
N—o0

For a bound in the other direction, we appeal to additivity and inclusion-exclusion,

P(le"™ >0 > Y P(g" >0~ Y. P(lg""|>0

X€EBN e x#y
X,YEBN ¢

SIN’}" > 0).
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By a correlation inequality, Lemma 1 of [1], far# y,

P(|e¥ >0, |gVY] > 0) < P(|EN*] > 0)P(|EY | > 0) = P(|"°| > 0)%. (2.6)

It therefore follows that
P(|&"P%| > 0) > |By | P(IEY0] > 0) — 1By 2P (|EN0] > 0)%.

Rearranging this inequality and using the boynd< C/m,, we obtain

Bl (8] = 0) < P(JE™

C2
>0)+ |BN,£|2—2~
min

Since|By.¢| ~emy andmy /my; — 1/t asN — oo, (2.4) implies that

] 1— e ¢&/vat
IlmsupmNP(\é,N’o| >0) < ——— +C%/12
N—o0
Lettinge — 0 now gives
limsupm y P(|&"°] > 0) < 1/yat. (2.7)
N—o0

Together, (2.5) and (2.7) implryNP(|$,N’0| > 0) —» 1/y4t asN — oo. Settingtr = 1 we obtain (1.3).
To prove (1.4), we fiXd > 0 and set) (1) =1 — e %%, u > 0. We will use several times without comment the
simple fact thaty (0) = 0. By Theorem 2,

Jim By (x,"F(D) = Ey (X (D).

In view of (1.7), this shows that

N,Bn.e
- & be
| EYy| —|)=1- - ). 2.8
Ninoo 1/f< my ) eXP( 1+9ydt) ( )

We will show that
NsBN,s

N,0 2
|BN,8|E1ﬁ(%) = E1//<M> +O(j—2> asN — oo. (2.9)
N

my

By (2.8) and the fact that; x| By | — &/vat @SN — oo, (2.9) implies

N.0 B B
|imsup{E<¢(%> ‘ |€;N’0\ - 0) _ J/dtl exp(—0e/(1+40yqt)) ‘ :OG)'
N

N—oo &

Lettinge — 0 gives

N.0
. ’ Oyat
im E(v & "1 ‘ |§tN,0|>O _ Vd .
N—oo mpy 1+ Oyat
That is, conditional ons,N’0| > 0, |§,N’°|/mN = y4tE(1), where£(1) denotes an exponential random variable
with mean 1. Since,ymy — 1/yat, this implies that, conditional o *°| > 0, p,n €Y% = £(1) asN — .

This proves (1.4).
To prove (2.9), we introduce the s&¥ = {x € By ;: |§,N’x| > 0} of surviving families ing,N’BN*g. Clearly,

N,e N,e N,e
Ew(v;, |>:E(I//<|s, |); SIN‘=1>+E(I//<|51 |);
my my mpy

SN > 2). (2.10)
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We use the correlation inequality (2.6) to handle the second term on the right side of (2.10). By additivity and the
fact thaty (0) =0,

N,¢e
(S

st1z2)<r( U (87]=0[6"]>0])

XFEY
X,YEBy ¢
< Y P[>0 €]~ 0)
xF#y
X,yEBN ¢
2 N.,0 2
< Byl P(‘E, | >0) .
Since the definition oBy . and (1.5) imply that
|Br.elpiv = OG) asN — o, 2.12)
we have shown that
IétN’sl N &2
E(’ﬁ( >; SH| = 2) = O(_z) asN — oo. (2.12)
mpy t

Consider now the first term on the right side of (2.10). The e\{wﬁﬂ > 0} is the disjoint union{S,N =
pu g >0, 15Y1> 1}, and

sVl=1< > P(E"| =0

yF#X
yEBN£

P(l&"*| > 0. &"| > 0) < By IP(|E"°] > 0)%, (2.13)

where we have again used the inequality (2.6). Consequently,

6N v L ENT . v
E(v e DSV =1)= > E(v — ;SN = (x)

xeBNf
_ Z E ISIN’X| . N,x 0
- w‘ InN ’ ét ‘>
XEBN$

étN,X| > O,

N,x
~e(v( ) -0 1)

= |BN,8|E(w(&O'>> +O((1Bn.clpni)°)

mny

it (s(0)) o) "

asN — oo, where (2.13) is used in the next to last equality and (2.11) is used in the last equality. Plugging (2.12)
and (2.14) into (2.10) yields (2.9), and we are dong.
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