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ABSTRACT. — We derive a moderate deviations principle for matrices of the f&mn=
Dy + Wy where Wy are Wigner matrices an®y is a sequence of deterministic matrices
whose spectral measures converge in a strong sense to aulimi©ur techniques are based
on a dynamical approach introduced by Cabanal-Duvillard and Guionnet.
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RESUME. — Nous démontrons un principe de déviations modérées pour la mesure spectrale
de matrices de la form&y = Dy + Wy ou Wy sont des matrices de Wigner By une suite
de matrices déterministes dont la mesure spectrale converge fortement vers une Iqi jimite
Nous utilisons pour cela des techniques basées sur I'approche dynamique introduite par Cabanal-
Duvillard et Guionnet.
0 2003 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Let My denote the set aV x N Hermitian matrices, and |&8¥y € My be a Gaussian
Wigner matrix, that is, a symmetric or Hermitian matrix with real (respectively, complex)
i.i.d. Gaussian entries of covarianse* above the diagonal. We consider

Xy=Dy+ Wy
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for a diagonal matrixDy with diagonal elementd” and spectral measur/@ﬁN =
N1 Z,N:l §,v converging towards a compactly supported probability meaguyein
such a way that

¢(e):=maxmax sup  Nitry(z—Dy)~' — /(z —x)dup(x)| <oco Ve>0

L2 N eC\R, [3(2)>¢
(A)

(where ty denotes the trace of the matrix, normalized by its #)e

Denote by;l)"éN the spectral measure &fy. Recall (see, e.g., [19]) thﬁf,}’N converges
weakly to the compactly supported probability measutewhere i} = up B8 oy, oy
denoting the Wigner semi-circular distributian(dx) = (2rt)"*v/4t — x2dx and B
denoting free convolution of measures.

Large deviations (in the scalé?) and CLT’s forjiy, are obtained in [5,6,9,12], by a
dynamical approach based on the observationWihatan be constructed as a Hermitian
or symmetric Brownian motion at time one. These large deviations are essential tools in
the study of so-called “matrix models” in physics, see [10]. It is our goal in this work to
extend this analysis to study moderate deviationdpf. Note that since exponentially
good approximations at the sca¥& are no longer such for the moderate deviation scales
considered here, this study is far from being a straight forward extension of the previous
analysis mentioned above. Our work can be considered as a non-commutative partial
analogue of the moderate deviations principle for the empirical measure of i.i.d. random
variables, see [21].

In order to state our results, we first introduce some notationsStielies(C) be the
complex vector space generated by the Stieljes funcigiis) = (z — x) ™1, z € C\R}
(with x € R), and denote bystieljies(R) C C;°(R) the subset of real valued functions in
Stieljes(C). Note thath (z — x) ! e Stieljes(R) for z € C\R.

To any f = f1 € Stieljes(C), we associate the function— f; that solves the
differential equation

8x s _8x s
nfiw == [ MO g pw=rw. ay

In Section 4 below we show that (1.1) has a unique solution whenf@uer= c(z —x) ™,
z € C\R (given by (4.1) and (4.2)). By the linearity of (1.1), the same applies for any
f € Stieljes(C).

For any f, g € Stieljes(R) and the corresponding solutioifs, g, of (1.1), define

Vi(f.g) = / / B £3) (0) (B,.80) (x) 1 (x) ds. (1.2)
0

In what follows, we letStieljes (R) := {f": f € Stielies(R)} and L?(R) denote the
subset ofL” (R) consisting of functions of compact support. Let

Fy(x) := pj((—o0,x]) — Ay ((—o0, x]),
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which is in L?(R) for any p > 1 wheneven, (and henceu}) is of compact support.
Integration by parts shows that for glle C1(R),

Xu(f) = [ f@da, 0 - [ f@duiw = [ £oFydx,

With some abuse of notation we &, G) denote the value of a linear functionél
at ¢ which is in a vector subspace 6f(R) (to be understood from the context of the
statement), using als@, G) = [ g(x)G(x) dx in the caseG € L1(R).

Our main result now reads

THEOREM 1.1. — For any ay — 0 such thatNay — oo, the sequence of random
variables {ay Fy}y in LY(R) equipped with theStieljes (R)-topology and the cor-
responding cylindew -field, satisfies the Large Deviation Princip{eDP) with speed
(Nay)~? and good rate functiod (-) defined by

1(Fy=t sup {(h’, F)— }Vl(h, h)} (1.3)
2 jeStieliesR) 2

with 8 =1 (resp. = 2) in the symmetri¢resp. Hermitian case.

(We refer to [8] for standard terminology concerning the LDP. Because the rate
function is the same for a range of speeds, we refer to the LDP in Theorem 1.1 as a
moderate deviation principle (MDP).)

Note that the topology for the MDP in Theorem 1.1 is weaker tha@fie)-topology
of convergence in law. Some strengthening of the former topology can be achieved by
considering theV-dependent centering

Fy(x) :=Eay, ((—o0,x]) — i}, ((—o0,x]).
Specifically, withC; (R) := { f': f € C}(R)} denoting the space of bounded continuous

functions which possess a bounded primitive, we have:

THEOREM 1.2. — For any ay — 0 such thatNay — oo, the sequence of random
variables{ayFy}y in LX(R) equipped with the; (R)-topology and the corresponding
cylinder o -field, satisfies the LDP with spe€d@ay)~2 and good rate functiorf (-)
of (1.3).

As the rate functior! (-) is not particularly transparent to work with, we provide next
some useful information about it. First, it follows from the CLT of [9, Section 6] that for
anyh e Stieljes(R),

Va(h.h) = lim NZE(Xy(h)?) = Jim_ Var(NXy(h)). (1.4)

Our proof of Theorems 1.1 and 1.2 provides also that for apy— O such that
Nay — o0,

Vi(h, h) =2Nlim (NaN)*ZlogE(eN%NYN(h))

=2 lim (Nay)™ logE (€ enXn ), (1.5)
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Recall thatu] has a densityp; (see [2, Corollary 2]), and foF = fp;1 with
f e L?uy) set

_ 2
1= [ roase+§ [[(FO2) aimade as

(which is well defined, though possibly infinite), settiigF) = oo for all F € LY(R)
not of the above form. Letl*(R) denote the subset df}(R) consisting of functions
whose support is contained in the supporif In Section 6 we prove that

LEMMA 1.3. - The function/ (-) is finite only for linear functionals owtieljes (R)
that are of the forma’, F) = [ F(x)h'(x) dx for someF € L}*(R), in which case

(e < f1ucre

Further, I (F) < J(F) for F = f p; with f € C}(R), and more generally, for all

FeP:={fp1: fe€ LZ(M*l‘), 30° polynomials such tha’ 5—>LO f
liminf J(Q°p1) < J(fp1)}-

Here, Q° aié f iff [ g(x)Q%(x)p1(x)dx converges towardy g(x) f (x)p1(x)dx for
any bounded continuous functigron R.

In the special casgp = 0, one can make the rate function more explicit. Indeed, in
this caseu; = o, and p1(y) = (27)~1\/4 — y2, and one obtains

LEMMA 1.4. — Suppose.p = 0. Then, for every: € Stieljes(R),

B h(x)h'(y) /4 — y?
Vith, h) = // o dydx. (1.8)
Moreover, assumé = f p; € L1(R) for somef € C3(R). Then
2
I(F):J(F):—gééF'(x)F’(y)loglx—yldxdy. (2.9)

The expression in the right-hand side of (1.9) resembles Voiculescu’s non-commutative
entropy of Dy + Wy taken at the measur® (x) dx.

The structure of the article is as follows. In Section 2, we introduce the (matrix val-
ued) Brownian motiorWy () and recall the elements of stochastic calculus we need.
Section 3 is devoted to the proof of a CLT type approximation for the empirical Stieljes
transformM” (z) of Xy(t) = Dy + Wy(2). Section 4 controls the influence of other
centerings on the convergence properties/df(z). Our moderate deviations results are
proved in Section 5. We present first in Theorem 5.1 a finite-dimensional moderate de-
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viations principle (forXy(f®), i =1,...,d) which among other things implies (1.5),
and then the projective limits argument leading to Theorems 1.1 and 1.2, deferring the
proofs of Lemma 1.3 (via free probability theory) and Lemma 1.4 to Section 6.

2. Itd'scalculus

Let Hy(-) (respectively,Sy(-)) be a N x N Hermitian (respectively, symmet-

ric) Brownian motion constructed via independent real valued Brownian motions
1<k<IKN

(Bi.js Br. Di<i<j<n BY

1 ~ .
ﬁ(ﬂk,l‘i-iﬂk,l) if k<lI,
k.l 1 .5 .
Hy' = ﬁ(ﬂl,k_lﬂl,k) if k>1,
1 .
ﬁﬂl’l if k=1
and
Ghl _ 1+ 8 P
NETUN ALKV

respectively. TakeéWy (t) = Hy(¢) in the Hermitian case an®Wy(r) = Sy(¢) in the
symmetric case. TheWy (1) is a complex (respectively, real), Wigner matrix. et
denote the spectral measureXf (r) = Dy + Wy (1) (note thatay = ¥, ), thenp)
can be studied by use of Ité’s calculus as we now explain.

It was proved in [3,6] thafi" satisfies an Itd’s formula (in the special case where
A% = 8o, assumption which is in fact clearly irrelevant). Then, if we denote, for any
f.g €CX(R x [0,1]), anys < ¢ € [0, 1], and anyv. € C([0, 1], P(R)),

551 (v, f)=/f(x,t)dvt(x)—/f(x,s)dvs(x)—/ Ou f (x, u) dvy (x) du

///8 L f(x, u) Oy f(y,u) dva(x) dv, (y) du, (2.1)

and

(o0 = [[ our adeg (0 dvirdu, 2.2)

we have

THEOREM 2.1 [6]. — In the Hermitian case, for any € N, any f € C2*(R x [0, 1])
and anys € [0, 1), (S (4", f), s <t < 1) is a bounded continuous martingale with
guadratic variation

1 AN
(™ (R 1)) =z )i (2.3)
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n the symmetric case, for any e N, any f < 62 YR x [0, 1]) and anys € [0, 1),
(SN, ) == SVAN, £) — @N)Y L[] £ (x) dad (x)du, s <t < 1) is a bounded
continuous martingale with quadratic variation

_ 2 o
(8% (N, ), = Nl P

Note that it is not hard to see (see [6] or [11]) that the lawidf is tight in both
Hermitian and symmetric settings. The limit points are characterized by

Y (u*, £)=0 (2.4)

for all functions f € C,f’l(]R x [0, 1]). It can be shown (see [6, Corollary 1.4] or [12]) that
such an equation has a unique solutign given by the free convolutiop; = up Hoy.
In the sequel, we shall be interested in specific test functions of the Stieljes type:

fx, 1) = (2.5)

Zr— X

with a complex-valued differentiable function:[0, 1] — C\R with non-vanishing
imaginary part and a complex-valued differentiable functipn[0, 1] — C. Observe
that in this case, for any € C([0, 1], P(R)),

8, f (x. u) 3, f(y oy
S / / dv, () dva(y)

=cu/ dvu(x)/( » dvu(x) (2.6)

3. Central limit approximation

Following Israelsson (see [13, Proposition 1]), we prove the following central limit
type approximation. Throughout, we set= 1 in the symmetric case argl= 2 in the
Hermitian case.

LEMMA 3.1. - Consider Hermitian or symmetric matrices such t(a} holds. Then,
for anyn > 0, there exists a finite constadt(n) such that for allNV andz € C\R, z =
a+ib, |b| =n,

Y2 o
] <5 (3.1)

max sup E[
Ji=L27¢[0,1

trw(z = Xu(@) 7 = =07 dui

Proof. —Israelsson [13] considers only the symmetric case with Ornstein—Uhlenbeck
entries. Hence, for completeness, we next adapt his approach to the context of the lemma.
The main idea, used also by [5] and [9] is to chodsez.) in such a way that the
finite variation term in Theorem 2.1 is negligible. Whereas Cabanal-Duvillard [5] and
Guionnet [9] choose a non-randon, z.) that is independent aV and then control
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the remainder term of finite variation, we follow Israelsson [13] in choosingz.)

randomly and depending a@¥i in such a way that this term completely vanishes.
We first consider the Hermitian case ahet 1 in (3.1). Forz € C \ R denote

M@=ty (@ = Xy0) " M@= [0 .
Applying Theorem 2.1 tgf (x, ¢) of (2.5), and using (2.6) it is easy to check that for any

continuously differentiable function@, z.) such that, stays uniformly away from the
real axis,

oMY (2) = coMY) (z0) + / [Bse) MY (20) + ¢ (3,208, MY (2,)

— CsMiv(Zg)azMsN(Zs)] ds + mﬁv(z., c)

with the bounded, complex valued, martingad® (z., c.) having the quadratic variations

(R(m"(z.,c))) NZ//%<(Z”— )2> diX (x)du,

(V@)= / [3( )2) di (x) du. (3.2)

Since|z — x| > |3(z)] for x € R, it follows thatM} (-) and M, (-) are uniformly Lipschitz
continuous orC \ R x [—1b|, |b|]. Specifically, there

(MY () — MNG)| v M, (2) — M,(2)| < b2z - 7. (3.3)

Fixing t € [0, 1], following Israelsson [13], we choosg., z.) = (cV, z") to be the
solution of

1

bzl = S (M) () + M), =Y == (3.4)
1

dcN = 2(3 MY (M) + o.M, (zV))eN, N =1, (3.5)

whose existence and uniqueness we next prove. Indeed, the sigMpf(&) + M, (§))
is opposite to that ofs(§). Thus, takingu,’, I = 0,1, ..., such that:’ = 7 for all

I, u® =z fortel0, 7] and

1
™Y = = (M) (u”) + M, ().
it is easy to see by induction thgt(u; l))| > |b| forall t € [0, ] and/ > 0. The uniform

Lipschitz property ofMN(-) + M,(-) implies by Gronwall's lemma that the sequence
u® converges uniformly ori0, 7] to the unique solution of (3.4). The existence of a
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unique solution of (3.5) is then clear. Note that |3(z")| is monotone non-increasing
on [0, z]. Moreover, by (2.4), it is easy to check that foz [0, 7],

¢ Mi(z") = co Mo(zg) + / [ My (27)0: M, (257) + (5" ) M, (27))
+ N (852Y)a, M, (zY)] ds
— Y Mo(zd) + / Yo M¥ () + MY ()0, M () ds. (3.6)
where (3.6) is a consequence of (3.4) and (3.5). Similarly, we find that
" MN(2)) = My (28 +/ (MY (Mo, M (2Y) + M, (zN)a, MM (z)) ds
+m, (ZNCN) (3.7)
Subtracting (3.6) from (3.7) we find that

o (M (2") = Mi(2")) = cg (Mg (29) — Mo(zg)) +m; (2", ). (3.8)

Let oY = J(z%), noting that|p¥| > |b| for t € [0, 7]. Let vV = |c¥|? and aV¥ =
R@,MN (zN) + 3.M,(z")), noting that

2 < i (3.9)

N(_N N <
‘a | |8ZMS (ZS )‘ +‘87MS(ZS )| ~ |b£\/|2 ~ |b|25

whereash, v =av}, v¥ =1, by (3.5). Since¥ =exp(— [ a ds), it follows that

t ‘[

sup M| < exp(|b] 7). (3.10)

Thus, by (3.2), for any € [0, 7],

(O (m™ (27, N))>,+<?( Y@, eM)),

NZ//.( Yy =

b|~2

i was< e

(3.11)

implying that

Elm! (¥, c¥) P = @ (m" (2, ), +E(3 (m" (. ~”>>>z<—§2:b_|4'

We have by (3.10) and assumption (A) that

e (MY (2)) = Mo(zd))| = [ |[try (2 — Dy) ™ = /<zg_x>*ld,m<x>
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e
N
With ¢V = 1, we thus see that (3.8) yields the bound

< gt ?e(p)) el

211/2
EHM%N(Z?/) - M. (ZN)‘ ] N N|b|2'

T

Sincez € C\R, N andr € [0, 1] are arbitrary, this completes the proof of (3.1) when
j =1, in the Hermitian case. Still in the Hermitian case, let us now prove ij fer2
and, without loss of generality, fare C, \R. First, observe that

_ 1 1
try(z— Xn(1)) 4N (Mgv (z + N) — Mgv(z)) ‘ < NIBR (3.12)

_ N 1 1
‘/(z—x) 2o+ v (e (2 + ) —Mr(Z)>‘<W- (3.13)

Therefore, it is enough to bound

o)) ) )
nr._N(Mr(z—irN MY@) = N(Me(z+ 1) - M),

We proceed as above by considering a martingale representatiopY,ofiven, if
(zN¥(z),cN(z)) are the functions constructed in (3.4) and (3.5) with terminal data
(2 (2), ) (2)) = (z, 1), by

e (e ) (w2 (2 (s 5)) ~mn (2 (o4 3))
— NN (M) (2} @) — M, (z) (2))).
By (3.8),

nN = név-l—N(me (Z_N <Z+%>,C,N (z-i—%)) - (mfvz,N(z),c_N(z))> =y +m(2).

Note that sinceX(z¥(z)) > J(z) =b>0forz =z orz =z+ N1, (3.3) and (3.4)

imply that
81<N< l) N( )>‘<|b|_2
! N !

whereas (3.5), (3.9) and (3.10) imply that
1
3 (c,N <z - N) - ctN(z)N
1
z¥ (z + N) -72M2)

Therefore, Gronwall's lemma gives fo t

’

N i)_ N
Z, <z+N Z; (2)

<3 + 16|72

1
e’ <z+ N) - (@)
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1 1 e
z <z + N) — V()| < Ne( L
N (Z + 1) — Mol < 1 —n+1)/Ib? (3.14)
! N ! E ‘ '

Using the above control, we can boungl. To this end, let

i = (e ) (o (58 (5 ) ) - e 0= (e (7))

1
= Mol} @) b+ 8 () (24 5 )~ F @) (M5 (@) ~ Mo(eh (2}
=1+l

The first term can be decomposed as follows

I=—Ncy (z + %) <zév (z + %) - zév(z)>
X {trN(zév(z) - DN)72 - /(Zév(z) —x)szD(x)}
2
+ Ncff (z + %) (zév (z + %) —Zév(z)>
1 -1 _
X {/(zév(z+ N) —x) (28 (2) — x) zd(,&év —MD)(X)} =1+ .

By (3.10), (3.14) and assumption (A) we find that

1 G
|I;] < N € z—e’/“"z—cﬂbl)
N N
and
et/ 1
LI< N Sl
| 12| T

so that we have found a finite constaht(b) such that

I1< 3.15
<= (3.15)
Moreover, by (3.14) and assumption (A),
M| <N 1 e<2r+1>/\b|25(|b|)
REYVE N
resulting, with (3.15), with the existence of a finite const@pt) such that
Ca(b
| < 22 (3.16)

N
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Moreoverm” (z) is a martingale whose martingale bracket can be computed. Following
(3.11), we find
(" @))), + (3(m" (2))),
1 // Nel@+NH Nl
e )1+ N-YH—x)? (V) —x)?

L (NI @+ N = @)
<32/ Y+ N )as

2
d,&;v (x)ds

0
T

b /<|csN<z>|2|N<zSN<z+N1>—zsN<z>)|2> .
N\ BN @I A BY G+ NP

< Cs(b)
N2’
where C3(b) is a finite constant derived from (3.10) and (3.14). From (3.12), (3.13),
(3.16) and (3.17), we conclude that
trw(e = Xu(0) = [ @ =072 (o)

?|
1/2
< " Ca(b) | C3(b) _ C4(b)
N|b|3 N N N
finishing the proof of the lemma in the Hermitian case. When we consider the symmetric
case (studied already by [13]), an extra term of the f@@i)~! [; cNo2MDY (zV)ds
appears in (3.8). This term is in turn bounded®¥ ~*log(1 + ﬁ) (see [13, p. 9] for
details), completing the proof of the lemmar

(3.17)

2] 1/2

4. A martingale representation for MV (z)

In Section 3, we used the martingale representation (3.8)%¢z") to estimate its
rate of convergence a8 — oo. Here, we shall follow more closely [9] and [5] to get
a similar representation but faleterministic functions (¢;, z;), independent ofV, in
order to study the moderate deviations of the sequémté(z) — M(z)}x. To this end,
let (c., z.) be the solution of

0zt =M (z,), z1=z=a-+Iib, (4.2)
0ic; = 0, M, (2:)c;, c1=c. 4.2)

By the same arguments as above, we see|fh@t)| is hon-increasing ofi0, 1], with
existence and unigueness @f, z;) as a result. Further, in analogy with (3.8) one finds
that

c(MY (z1) — M1(z1)) = co(M{) (z0) — Mo(20)) + 17 (z..¢) +m} (z.,¢.) (4.3)

with m¥ (z., c.) the martingale of (3.2) and
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1
Nz, e)=— / (MY (2) — M(2))8: (MY (2) — M(z,)) dt
0

1
+15-12N) 7t / ¢, 0’M) (z,) dt.
0

We claim that
LEMMA 4.1.—Foranyz € C\R, ¢ € C anday — 0 such thatNay — oo,

limsup(Nay) ?logP(|r)Y (z.,¢)| = ay) = —o0.

N—o0

Proof. —Let b, = J(z;). From (4.1) we see thab,b,| < |9;z;| < 1/]b;| < 1/]b|. So,
with by = b, we have that sypy 1, |b/| < co. In analogy with the derivation of (3.10),
we have by (4.1) and (4.2) that

C1=C1(b,c) := sup |¢;| < oo. (4.4)
t€[0,1]
Notice that
1
1p—1(2N)7* / c;2MY (z)ds| < N72Cq|b| 3,

0
so without loss of generality we may and shall ignore this term, considering hereafter
B = 2. Recall [11], that iff is Lipschitz of norm| f[IL := sup._., (| f (x) — fF)I/Ix —

y|), then

(@i (D) 1¢i e = (B @), By (D) 1< jon P (trn f(Xn(0) = Etry f (X ()

is Lipschitz for the Euclidean norm with constantf2|_ /N (this was shown in [11]

for Dy = 0, but the proof of [11, Lemma 1.2(b)] extends verbatim to the general
case, hence all conclusions of [11] extend as well). Considefing = (z — x)~* and

3. f (x) = —(z — x)~ 2 for which || f [l. < |3(z)|"? and||d. f | < |3(z)|~2 it follows that
forany& € C\R x [—|b|, |b|], andr € [0, 1],

(wi/(t))lgi,jgN = (MIN(E) - Mt(f))a and (wi/(t))lgi,jgN = 32(M,N($) - Mt(g))

are Lipschitz functions of norm at most/@»|?°N) and 2(|b|°N), respectively.
Therefore, [11] provides the existence of a universal constan0 such that for any
§ >0, N andr € [0, 1],

P(IMY (z) — M, (z) —E[(MY (z)) — M, (z)]| = 8) < &N, (4.5)
P(|0. (MY (z)) — My(2,)) — E[0. (M} (z) — M, (z)))]| = 8) <&M, (4.6)

By Lemma 3.1, we have that for some fin@g(|b|) and allN,

s[gg]m[(M,N (z) — My (z,))]| < C2(Ib) Nt 4.7)
tel0,
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and

sup sup E[a. (M) () — M)
t€[0,1] |3(z)|>1b]

Fixing ay — 0 such thatvay — oo, if we let

< Co(Ibl)N . (4.8)

wN . (Z, a)ij(t), s)lgi,jgN = (MIN(Z) — MS(Z))az(MtN(Z) - M.S‘(Z))v (49)
it follows from (4.5), (4.6), (4.7) and (4.8) that fé&f > Kq:= C,(|b])/infy(Nay),
P(|y (21 (1), 1)| > 4K %a3;)
<P(IMN(z) — M (z)| = 2Kay) + P(|3. (MY (z)) — M,(z))| > 2K ay)
< 2 KA AN @y N)?, (4.10)

Turning to estimate the integral appearingrjh(z., c.), note that|M" (z) — M;(z)| <
2/13@)1, 10:(MY (z) — My(2))| < 2/13(2)[%, whereasw (1) > (M} (z) — M,(z)) and
o(t) — 3,(MN(z) — M,(z)) are Lipschitz for the Euclidean norm with constants
bounded by 2(]3(z)|?N) and 2(|3(z)|3N), respectively. Hence,

Y (2. 0(t),s) — Yy (2. (), s () — ()|, (4.11)

)I< 13(z )|4N
(where|w||5:= "1« j<y ®). Moreover,
[M,(@) = M,(2)] = lim [Etry[(z = Xy(0) ] —Etry[(z = Xu() ]|

= lim [Etry[(z - Xy () " (Hy (1) — Hy(9)) (z — Xn () ]

<—— ! I|m Etry ||Hy(t) — H
SR v [[Hn (@) — Hy(s)|]
1 It —s|1/2
SEOEAM \/EtrN (| Hy(0) = Hy(o)|] = S0 ¢12
and similarly,
0.(My(2) - ()| < 2=
z t\Z s (& X |3(Z)|3 ’
implying that
1w (2, w(t) 1) — ¥n(z. 0(@),s)]
2
t s + Mt Ms
6|t —s|1/2
ETTAN 413
IS4 (4.13)

In view of (3.3) and the analogous bound

|8.MYN (z) — 9. MN (3)| Vv |0.My(2) — 3, M ()| < b3z — 2,
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for |3(2)| A IS(R)| = |b], it follows that
[Un (20, @ (1), 8) — Y (25, @ (1), 5)| <8Iz, — 2,1 < 8B ]t — 5] (4.14)

(the last inequality comes from (4.1), #z,| < 1/|b|). With n = Aay?, we have by
(4.4), (4.11), (4.13), and (4.14) that for large enough,
an n—1 i
<C1{—+max sup YN (Zi/n’w(s)’_)u
3 i=0 seli/n, (i+1)/n] n

1
/Cslﬁzv(zs,w(S),s) ds
an n—1 i i
<Ci|— +ma imol =), —
l{ 3 + i:O%WNG/ w(n) n)‘
+8b"*N"tax  sup w(s)_w<i)
=0 seli/n, (i+1)/n] n

0
So, by (4.10) withKk = Ky = (12ay)~Y?, for someC, = C4(b) > 0,

{

blayN
gzne—C4aNN2+nP( sup Hw(S)Hz?'l&)'
s€[0,1/n] 24

J

1
/CSWN(ZS,a)(s),s)ds
0

P> C10N>

(4.15)

Combining Brownian scaling, Chebyshev’s inequality and Désiré André reflection
principle, we see that for an§y = Cs(b),

N
nP( sup [|lo(s)||3 > ClayN)?) < an>< 3" sup w;0)? = ACN2>
s€[0,1/n] i’jZlGE[O,l]

< n{2e ACRR[en /3] }N2 <&

provided A > Aq(b) is large enough. Thus, witNay — oo anday — 0, it follows
from (4.15) that

limsup(Nay) 21ogP(|r (z., ¢.)| = Cian) < limsupay®[2ay|logay| — C4] = —o0,

N—oo N—o0

as needed to complete the proof]

5. Moderate deviations

Ford <ocoandf = (f, ..., fD), £ ¢ Stielies(R), let

Xy = (/f(x)d;lllv(x) — /f(x)d,u*(x)) eRY.

We next prove thatX (f) satisfies the moderate deviation principleRd per fixed
f e Stieljes(R)“.
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THEOREM 5.1. — For any ay — 0 such thatNay — oo, anyd < oo and f €
(Stielies(R))?, the sequence of random vectdts, X y (f)} y satisfies the LDP iR¢,
with speed Nay)~2 and the good rate function

(x)="2% sup {Zm, ZM Vi(f9, f<f>)} (5.1)

z;l

,...,

for V1(f, g) of (1.2).

In particular, considering = 1 andg = 2, we see that the good rate function for the
LDP of ay*Xy(h) in R is x2/(2V1(h, h)). SinceNay — oo andh € Stielies(R) is a
Lipschitz function, it follows from [11, Theorem 1.1(b)], after some algebra, that

lim SU[XNaN)fz |ogE(e?~N2aN7N(h)) < 00

N—o0

for all A < co. From Lemma 3.1 we see that the same applies wheh) is replaced
by X (h), and (1.5) then follows by applying Varadhan’s lemma (see, for example, [8,
Theorem 4.5.10]).

Proof. —Our strategy consists of applying theorem [17, Theorem 2.2] that yields the
moderate deviations principle for martingales. Some preparations are needed in order to
check that its conditions are satisfied in our setup. We first consider the Hermitian case
B=2.

Any h € Stieljes(R) is of the form

¢
hx) =Y e®(z® —x) 7 (5.2)
k=1

for somet < oo, c® e Candz® = a® +ib® with b £ 0. Combining assumption (A)
with (4.4) we have that

© (4N () g0y <«
|CO (Mg (z0") o(zo ))|\ N

for someC® < oo and allN. Applying Lemma 4.1 and the representation (4.3)fer
1,...,¢, it thus follows that{ay'm} (h)}y is exponentially equivalent thy* Xy (1)} x
at speedNay)~2 — 0, in the sense of [8, Definition 4.2.10], where,

m! (h) _Zm (k) (k)

is the continuous martingale®’ (", 1) (or 50”(;%", h)), of Theorem 2.1. Hence, by [8,
Theorem 4.2.13], it suffices to prove the LDP at spe¥d,) 2 and good rate function
Ii(x) for

aytmy () :=ayt(m) (fP),....m) (f?)) e R
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To this end, note that theontinuousmartingaleay'm " (f), with ay'm{ (f) = 0, trivially
satisfies Cramér’s condition [17, (2.6)] on the compensator, while the differentiable
everywhere function (i4, ..., Ay),

G/(h):=13 Z ik Vi(fO, f9),

1/1

satisfies the strict convexity condition [17, (G)] (see the discussion in [17, p. 49]). Hence,
with n = (Nay)?, by [17, Theorem 2.2] the sequenge,*m " (f)} satisfies the LDP of
speed(Nay)~2 in DI0, 1], equipped with the Skorohod topology, provided that for any

5 >0,

lim SupN "~ 2logIP’< sup|N2(m" (h)), — V,(h, )| >25) <0, (5.3)
N—>oo t€[0,1]
whereh(x) := Zl‘.’:l L fO(x) e Stielies(R) (after some algebra one sees that this is
exactly condition [17,(supf)] in our context). LetV, denote the matrix of entries
Vii(t) == 4y,(fO, f9). For eachx € R? and positive semi-definite matri¥ =
{Vij} =1, let

Lx,V):= sup {ka,—— ey V,,}
""" i,j=1

By [17, (2.4)], the good rate functiaf(-) for the LDP of{a;,lm_N(f)} is fol L($(t), V,)dt,
for ¢ (-) absolutely continuous witt (0) = 0, and infinite otherwise. Sineg(,lmfv(f) €
C[0, 1] and{¢: Ji(¢) < oo} C C[0, 1], it follows from [17, Theorem C] that the same
LDP applies inC[0, 1] equipped with the uniform topology. The LDP fouy m? (f))
with the good rate functiotk(x) = L(x, fol V. dt) then follows by the contraction prin-
ciple for ¢ (-) — ¢ (1) and the convexity ofx, V) +— L(x, V).

We turn to the remaining task of proving that (5.3) holds for @ny 0 andi e
Stieljes(R). Fixing § and i, since the monotone function— V,(k, k) is uniformly
continuous oo, 1],

sup {Vi(h,h) = V(h,h)} <6,

0L, t—s<1/n

for somen = n(8) < oo, so with N?(m” (h)), non-decreasing in, (5.3) follows as soon
as we show that

limsupN ~2logP(|[N?(m"™ (h)), — V,(h, h)| > §) <O, (5.4)

N—o0

for any fixedr € [0, 1]. Recall that

N (), ~Vith. ) = [ { [@hor@dal @~ [@h)2wdu; )| ds. 65)
0
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By the linearity ofh — hy via (1.1), the right-hand side of (5.5) is a quadratic form
inc®, k=1,...,¢, of the finite decomposition (5.2) for € Stieljes(R). Thus, for
proving (5.4), we may and shall repla@&h,)? in (5.5) byg(zs, Zs, X) 1= [(zs — X) (T —
x)]72, wherez, andz, are the solutions of (4.1) far; = z and z; = Z, respectively.
Doing so, we need only show that for any- 0 andz, 7 € C \ R,

N—o0

1
lim supN ~2 |OgIP’</‘¢N (25, 25 (), 5)| ds > 517) <0, (5.6)
0

where foru,v e C\ R, s €[0,1] andW € My,
on (v, W, s) > try g(u, v, W) — /g(u, v, x)du;(x).

Letb =|3(z)| A |J(Z)] > 0. Consider the bounded-Lipschitz norm

vl = sup{| [ 7 av

on the space of Borel measures RnNote that||a" — u¥||z;, — 0 in probability, as
N — oo, for eachr € [0, 1]. Since||g(zy. Zs. ) lloo < b~* and ||g(zs, Zs, ) IL < 407>, it
follows that

: ||f||L+||f||oo<1}

‘EtrNg(Ztht,XN(t)) —/g(zt,ZI,X)du?‘(X) <, (5.7)

for all N > No(n, t). It also follows by [11, Theorem 1.1b] that for some- 0 and all
N, n>0, t€][0,1],

P(|try g (20 2 Xn (@) — E(try g (20, 2 X (D)) = ) <&V (5.8)

By the same argument leading to (4.12) we seeltpét— ¥ 5. < /It — s|. Moreover,
Slnce”g(ZSv ZSv )”L g 4b_5! and|g(zs’ ZS’ X) _g(Zt’ ztv X)| < 2b—5(|zf _Zsl + |Zl‘ _Z.S'l)!
similarly to (4.11) and (4.14) we have that for solfie= C4(|b|) < o0,
|¢N(Zta Zt’ (,()(t), t) - ¢N(ZS’ ZS’ (,()(S), s)‘
< ‘(PN (Zt’ Zta Cl)(t), t) - ¢N (Zt’ Z[a Cl)(t), S)|

+|on (200 2, (1), 5) — P (20, 21 0(5), 8)
+ |¢N(Zta Zt’ (,()(S), S) - ¢N (Zla ZS’ (,()(S), S)
+ [on (2, Zsy (), 5) — (25, Zso 0(5), 5|
b+4 12 8

ps IS ey

1
< c4(ﬁ||w<r> — ()|, + 1t — s|1/2).

<

4 . 4
(@) — w(s)|,+ 251% — Ll + gl — 2

Takingn = A/n?, we then have for alt > Aq(b),
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1
~ n—1 . I i
/|¢>N (25, Zso 0(5),5) | ds <m+ T:%>4¢N (zi/n, Zi/no w(;) —) ‘
0

n

i
w(s) — a)(—)
n

We now have (5.6) by combining the latter inequality, (5.7), (5.8) applied=at/n, i =
0,...,n—1, and the fact that

+ 8 ik sup
SN =0 gc(i/n,(i+1)/n]

2

N
nP( sup o)y > CnPN?) < nIF’( 3 sup w;(0)% > ACN2> <eV,
s€[0,1/n] l»)j:l(-?e[o,l]

which holds for allA large enough. For symmetric matrices, note that the only difference
is that the bracket of the martingaled’ () is twice what it is in the Hermitian case (see
Theorem 2.1). O

Proof of Theorem 1.1.Equip the algebraic dualt’ of Stieljes(R) with the
Stieljes (R)-topology and the smallest-field A such thatF — (f’, F): X — By are
measurable for eacli’ € Stieljes(R). We note thatStieljes(R) is a separating family
for L7 (R): recall that%i(z — x)~ € Stielies(R) and hencei(z — x)~2 € Stielies (R).
But, if for f € LP(R) it holds thatR[[(z — x)~2f(x)dx] =0 for all z € C \ R then
R[[(z —x)"1f(x)dx] = C forall z € C\ R, andC = 0 by taking|z| — oco. Hence,
since on compact setStieljes(R) uniformly approximates any polynomial and since
the latter are dense in?(R), we conclude thayf = 0. Thus, we can identify, for any
p =1 LP(R) as a subset oft. In particular, we may and shall identif§fy with
{(f'= [ fx)Fy(x)dx} e X.

Fix ay — 0 such thatVay — co. Combining [8, Theorem 4.6.9] and Theorem 5.1 we
see that{a;,lFN}N satisfies the LDP irfX, A), with speedNay)~? and the good rate
function 7 () of (1.3). By Lemma 1.3 we know thdt(-) = oo outsideL*(R) c L1(R),
so with{ay*Fy} C LY(R), Theorem 1.1 follows from [8, Lemma 4.1.5(b)]O0

The following is an immediate corollary of Theorem 1.1 and Lemma 3.1:

COROLLARY 5.2. — The conclusion of Theorefin1 continues to hold true whefy
is replaced byFy (x) = Ej1}' ((—00, x]) — 1} ((—00, x]).

The advantage of working withy is that it allows us to strengthen the topology for
which moderate deviations hold. For ady< oo andf = (f@,..., f@) e (C}(R))“,
define

Xy():= /f’(x)FN(x)dx =try f(Xy) — Etry f(Xy) € RY, (5.9)

by integration by parts.

Let K' =[k_. — 1,k + 1], where K = [k_, k] is a compact interval containing
the support ofu;. We now have the following approximation lemma whose proof is
deferred:
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LEMMA 5.3.— Assumd,f, € (CE(R))?, d < oo, are such that

lim sup\a (f9 = f9)x)| =0 (5.10)

m—)oo
fori=1,...,d. Then, for any§ > 0 and anyay — 0 with Nay — oo,

limsuplimsup(Nay) 2logP(|Xn(f) — Xy (f,)| > Say) = —cc. (5.11)

m—0o0 N—o0

Proof of Theorem 1.2. Fixing ay — 0 such thatNay — oo andf € (C}(R))?,
there exists a sequence of functldl;;,se (Stielies(R))? for which (5.10) holds. Then,
by (5. 11) the random sequendes* Xy (f,,)} v are exponentially good approximations
of {ay* Xy (f)}y in RY. Recall Corollary 5.2, thafay' Fy )y satisfies the LDP iiL1(R)
equipped with theStieljes (R)-topology, with speedNay)~2 and the good rate function
I1(-) of (1.3). By (5.9),a;,1YN(fm) is for eachm the image oa;,lfN under the mag —

[f (x)F(x)dx:LYR) — RY which is continuous with respect to thgtielies(R)-
topology. If F € LY(R) hasI(F) < « then F/p; € L2(u}) with wi((F/p1)?) < 2«
(see (1.7)). By the Cauchy—Schwartz inequality i }) and (5.10) we thus have that

Sup{‘/f’(x)F(x) dx —/f,’n(x)F(x)dx ;

I(F) <a} < V2 i (If —f,’n|2)l/2—> 0

asm — oo for eacha < oco. Consequently, by [8, Theorem 4.2.23] it follows that
{ay*X y(f)}y satisfies the LDP ifiR? with speed(Nay)~2 and the good rate function

Ii(y) = inf{I(F): F e LXR), /f’(x)F(x)dx _ y},

With Stielies(R) c C,(R) a separating family for.}(R), similarly to the proof of
Theorem 1.1 we identify.}(R) as a subset of the algebraic dudlof C;(R), mapping
Fy to {f + [ f'(x)Fy(x)dx} € X. We equipX with the C,(R)-topology and the
corresponding cylindes -field. It then follows by [8, Theorem 4.6.9] and the above
LDPs for{ay* X v (f)}y that{ay*Fy}y satisfies the LDP itk’, with speed Nay) 2 and
the good rate function

[(G)=sup sup KL((f',G))
d<oofe(C;(R))d

=sup sup inf{I(F): F e LYR), /f/(x)F(x)dx = (f’,G)}. (5.12)
d<oofe(CL(R))?
In particular, by (1.7),
[(G)> sup inf{%;ﬁ(kz): he L1y, 1i(gh) = (g, G)}
8€C;(R)

9 G 2
B g .00
4 g€C)(R) ni(g?)

(5.13)
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Applying Lemma 6.2 for the functiof(-) and the vector spade) = C,(R), we see that
(5.13) implies that/ (G) < oo only if G € X belongs also ta.1*(R) (and moreover
G/p1 € L3(u})). Consequently, witHayFy}y U {G: I1(G) < oo} C LL(R), by [8,

Lemma 4.1.5(b)] the LDP we obtained f(:m;vlfN}N holds also withinL1(R). Since
(f',G) = [f'(x)G(x)dx for any G € LL(R), consideringF = G in (5.12) we clearly
see thatl (G) < I(G). On the other hand, by [8, Lemma 4.6.5],

I(G) = sup sup inf{I(F): Fe L%(R), /f’(x)F(x)dx = (f’, G)},

d<oo fe(StieljiesR))?

for any G € X, which in comparison with (5.12) shows thatG) > 1(G) for all
G € LL(R), completing the proof of the theoremn

Proof of Lemma 5.3. We bring the proof in the real (symmetric) case, the Hermitian
case being similar. By union of events bounds, it suffices to consider the cdse bf
in (5.11). To this end, sét € C1(R) such that/(x) = 1 for all x € K andé(x) = O for all
x ¢ K'. Fixing f, f,, € CX(R) for which (5.10) holds, leg,, (x) := 6 (x)(f(x) — fu(x)),
so thats,, = ||g,,llc = 0 asm — co. By (5.9) and [11, Theorem 1.1(b)], it then holds
that for someC > 0 and allm, N, § > 0,

X C82(Nay)?
P(|Xn(gm)| > day) < 2exp(—%)'

SinceXy (f) — Xy (fn) = Xn(8m) + Xy () fOF By (x) = (L= 60(x)) (f (x) — fu (X)), it
suffices to show thaX y (4,,) is exponentially negligible, i.e., that for amy ands > 0,

limsup(Nay) 210gP(| Xy (hy)| > Say) = —oc. (5.14)

N—o0

To see (5.14), séfy = Nay Xy (h,,) andZy (») = E€*'V. Denoting byX;; theij entry
of the matrix Xy, we use a variant of Herbst's argument, similar to the proof of [11,
Theorem 1.1(b)]. To this end, far> 0, let

a2 d _ Yy et
G (k) =222y (1) — (1 IogZN(A))_E<ef\ IOg(ZN(/\)))' (5.15)

With h,, a Lipschitz function, recall that

3 (B, trhn (Xn)* < 2ty (), (X3)?)

ISiSUSN

(see [11, (2.12)]). Consequently, applying the logarithmic Sobolev inequality for the
multivariate Gaussian distribution afX;;, 1 <i < j < N) and the differentiable
function exgAYy/2), we have by (5.9) that for some universal constart co and
allx>0,N,
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GyO)<cE( Y (ax,.je”N/Z)z)

1IN

=ck2(NaN)2E(e’\YN > (ox, trth(XN))z)

1IN
< 20)2a3E(try (B, (X n)?) €M), (5.16)

With &, boundedYy < ¢,, Nay for somec,, < oo and allN. Hence, for any., « > 0,

E(try (i, (Xy)?) €1%) < %ZN(A) + eN‘IHN“NP<trN (h (X)?) = %)
Sinceh,,(x) = 0 for x € K that contains the support of;, clearlyml‘((h;n)z) = 0. Note
that(h),)? € Cy(R), SO tiy (), (Xn)?) = 4% ((h},)») — ni((h),)?) (see, e.g., [19]). With
{ﬂﬁN}N exponentially tight at scal®&’? (see [1]), an application of [11, Theorem 1.1(b)]
after truncatinglf,gN to a large enough compact and uniformly approximatihg)? on
this set by a Lipschitz function, reveals that algg ((h},)?) — EaY, ((r,,)%]— 0, in
fact with probability decaying exponentially in sca\e, implying that

P12, (1)) - ()] > 5 ) <&,

for somec > O (this last conclusion can also be seen directly by mimicking the argument
for the upper bound in [6, Theorem 1.3 and Corollary 1.4], with initial conditiny).
With ay — 0 we thus deduce that for allx > 0, A € (0, e"IN]andN > No(m, k, €),

E(try (i, (Xy)?) €1) < %ZN(A). (5.17)

Combining (5.15), (5.16) and (5.17) we see that for exery0, ¢ > 0 and such. andN,

2
ckay

d
- (A tlogZy (1)) < 5>

SinceZy(0) = 1 andZ}, (0) = 0, it follows thatZy (1) < exp(cka?A?/2). Therefore, by
Chebysheff’s inequality,

P(Xy(hy) > Say) =P(Yy > SNa%) < Zy (1) e N < grai?/2-2Na,

Choosinge = cx /8 andx = ¢ 1N it follows (applying the above once far, and once
for —h,,) that

. _ 52
limsup(Nay) 21ogP(| Xy ()| > Say) < ——.
N—o0 2KC

Sincex is arbitrary, (5.14) follows, thus completing the proof of the lemma.



1034 A.DEMBO ET AL./Ann. I. H. Poincaré — PR 39 (2003) 1013-1042

6. Freeprobability: propertiesof V,(-,-) and I(-)

We have following [3] and [4], that if we leA be the differential operator aft(R)
with values inC°(R) given by

Ay f(x) = / f(x%f(”du;‘(y),

then (1.1) reads

05 fs(x) = — Ay 0 0, fi(x). (61)

Let M(R) denote the space of finite, complex, Borel measureRoConsider the
following vector subspaces 6F(R), k> 1,

G = {/éfww@ +>apx’in<o0, a,eC, ve MR), /|s|"d|v|<s> < oo}.

p=1

We let G C Gs be the vector space of functions:R — C for which a solution
f(x,s) = fi(x) € C3L(R x [0, 1]) of (6.1) with time marginalsf, € Gs and boundary
condition f1(x) = g(x) exists. Recall that wheti(z) > 0,

(z — x)fl —i /eié(zfx) d§ € Gs,

Ry

with analogous expression far—x)~! when3(z) < 0. Hence Stieljes(C) C Gs, which
as we have seen in (4.1) and (4.2) implies thiti¢ljes(C) c G. We next define

1
VIS, f) 1= / w10, £,12) ds
0

for any f = f1 € G. By our assumption that , is compactly supported, there exists a
compact sek C {x € R, d(x,supfup)) < 2} that contains the support of for all
s € [0,1]. For any f € G, the continuous function, f; is uniformly bounded on the
compactk x [0, 1], implying thatV,(f, f) is finite.

We use free probability theory to prove the following approximation lemma.

LEMMA 6.1.—Leth, g e G. Then,

Valh, Y2 = Vi(g, Y2 < i ([oc(h — o))",
Proof. —Eq. (6.1) implies that whenevef € G,
8s8xfs(-x):8xasfs(-x):_8XOAS(8xfs)(-x)- (62)

Let (A, t) be a non-commutative probability space on which a free Brownian m6tion
and a self-adjoint variabl® of law u p, free with S are defined. Recall that the operator
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X, with law p* can then be seen as the solution of the free differential equation
dX[:dS[, XOZD

For f € G; consider the stochastic integral

jéf(Xu)ﬂdSu ::i/t/l/ééaxudsu E-Xug gy (&) da
0 O0OR

n

p-1 1
a,,Z/XidSuX,f_l_l
1 I=0}

+
p

(cf. [3]). Then, for anyy (x, t) continuously differentiable with respect toand with
time marginalsy (-, t) € G, we have that,

w(x,,z)=w<xo,0)+/é:/f(xu,u>ﬁdsu+/aonm(xu,u)du+/a,:/f(xu,u)du.
0 0 0

(6.3)
The formula foryr(x) that does not depend on timds derived in [3, p. 392] (apart
from an erroneous factor of/2 in thedu term there). The generalization{ax, r) with
smooth time dependence is then straight forward. Talirg f1 € G and applying (6.3)
for ¥ (x, 1) = 9, f;(x), we find by (6.2) that

8, £,(X,) = s fo(Xo) + / 500, f,(X)EdS,.
0

By [3, Proposition 3.2.3] it then follows that— d, f;(X,):[0, 1] — (A, ) is an L?-
martingale with respect to the filtratiod;, generated byD and {S,; u < t}, i.e.,
9, f;(X;) = 19, fr(XD)|A,) foranyt € [0, 1] with t(-|.A4,) the projection onto4; in the
non-commutative.?(A, t) space (obtained by completion dfwith respect to the norm
(|- 1»)?). Consequently, withf denoting the complex conjugate ¢f for all 7 € [0, 1],

wi (18 fi1?) = 7 (3, £1 (X3 fi(X1)) = 7 (7 (3 Fr(XDIA) T (3 fr(XDIA))
< 7(0: (XD 0x f1(XD) = wi(10x f17),
and therefore

Vi(f, ) <ui(10cf ).
Fix h, g € G and apply this inequality fof =4 — g € G, to get

Vi(h, Y2 < Vi(g, )2+ Vi(h — g, h — Y2 < V(g Y2+ i (. (h — )] Y2

which completes the proof.O

The next lemma is a key ingredient in the proof of Lemma 1.3.
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LEMMA 6.2.—LetW c C,(R) be a vector space that separates pointg.jiiR) and
is dense inL2(u3). Suppose that

2
I(F)/ﬁ sup< F)

gEW 1( 2)

(6.4)

for everyF € W' (the algebraic dual o#V)). Then,I (-) is finite only forF € L}*(R), in
which casg1.7) holds.

Proof. —Let H be the Hilbert space equipped with the scalar product) = 17 (hg)
constructed by taking the quotient ¥ by the equivalence relatioth, ) = 0 and
completed for the nornj - L2t Then, the inequality (6.4) shows that for aiy
such that/ (F) < oo, the linear mag — (g, F): W — R has operator norm of at most
J2I(F) < oo for the || - ||L2W) norm, hence can be extended continuousl§{tarhus,
by Riesz’s theorem there exisisz M such that

(g, F)=ni(hg) = /g(X)(hpl(X)) dx, VgeH.

Further, if (g, g) = 0 for someg € W then we find directly from (6.4) thafg, F) =0
for otherwisel (F) = oo. We conclude that there exists anc H such that(g, F) =
J g(x)(hpi(x))dx forall g e W.

Letting F(x) = hpi(x), we deduce thalg, F) = [ F(x)g(x) dx and, sincep; is com-
pactly supported (see [2]) amde L?(u%), it follows thatF belongs taLl*(R). Sincew
separates points ih!(R) we may and shall identify” with g — i Fgdx € W, hence,
identifying in the sequeF and F. Further, with\V being a dense subset bf(uy),

B (g, )2 i 2 13 F?(x)
(P>t
(F)= 4o i) il /Pl(x)

proving the right inequality in (1.7). The left inequality in (1.7) is an immediate conse-
quence of the Cauchy—Schwartz inequality (). O

Proof of Lemma 1.3. Fo simplify the notations, we only consider the c#ise 2. Let
S = §; be a semicircular variable and self-adjoibtof law . p free with S, defined on
the non-commutative probability spacd, 7). LetC{D, S) denote the set of polynomial
functions inD and S with complex valued coefficients, witi(S + D) (R(S + D)),
denoting the subset of polynomials $h+ D, with complex (respectively, real) valued
coefficients.

Noting that the set of polynomial functions is closed with respect to the opetgtor
which reduces the degree of the polynomial, it is proved in [9] ®& + D) C G.
Moreover, an explicit non-negative operatar. C(D, S) — C(D, S) is constructed
there, such that(PEP) > 0 for any P € C(D, S), while foranyP € C(S + D),

Vi(P, P)=1(P'[(I+ E)"tP']), (6.5)
t(P(S+D)(I +E)P(S+ D))
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P(x)— P(y)\?
—wi(P) + [ ((’“x)iy(”) i) dii(). (6.6)

We assumed that,, is compactly supported, hence sqisand we can approximate,
in view of Weierstrass theorem, any functibre Stieljes(R) by polynomial functions
P! such that

wi((Oc(h— P <n2. (6.7)
By Lemma 6.1 and (6.5), then
Vih,h) = lim Vi(P, Py) = lim 7((8.P,)[(I + )7 (8. P,)])

<limsupz ((3, P1)?)
. % 2 * 2
i supni (8. 1)?) = i (347,

where we have used the fact that C(D, S) — C(D, S) is non-negative. Consequently,

I(F)= sup {(h’, F)—%Vl(h,h)}

heStieliesR)
1 (h', F)?
> su (W, F)y— =k ((h)? }: su {7} 6.8
heStiteEs(R){ 2 (%) hesneljgs(R) 2u3((h)?) (08)

The vector spaceV = Stielies(R) ¢ C,(R) is dense inL2(u}). Fixing a linear
functional F on W, we thus deduce from (6.8) and Lemma 6.2 théf) < co only
for F € L-*(R), in which case the inequalities of (1.7) hold.

We turn to prove thaf (F) < J(F) for all F € P. To this end, fixh € Stieljes(R).
Taking the polynomial function? = P" of (6.7), we find by Lemma 6.1 that for any

feL?uy),
1 1 1/2
(W', fp1) = SVah, ) (P, £ pr) = SVA(P, P) +n1< / f2<x>p1<x)dx>
+n "t (Va(P, PYY2 4+ Vi(h, h)Y?)
1
<P, fpa) = SVA(P, P) 1 fll iz

+n 7t (nT 4 2V1(h, W)Y,
Consideringn — oo we see that for ang € Stieljes(R),

1 1
(W', fp1) — évl(h, h) < sup {(P/’ fp)— §V1(P, P)}. (6.9)

PeR(S+D)

By the non-negativity ofg, (6.5) and (6.6), it follows that for any, O € R(S + D),

2
( / (h’Qpl)(x)dx)

= (z(h'(S+ D)Q(S + D)))?
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t(h'(I+E)")t(QU + 8)0Q)
= Vath. ) |3 (%) + | (%f(”)zdu’{(x)duﬂy) . (6.10)
Therefore, by (6.9) and (6.10), it follows that

1
I(Qp1) < sup {(P/,Qpﬁ_évl(P,P)}

PeR(S+D)

_L1 g Y2podn?
2 heR(S+D) Vi(h, h)

ir ., ) -0\, ., .
<5|men+ | (%) a0 0)| = I(@py. (611

Equipped with (6.11), letQ? be the polynomial functions appearing in the defi-
nition of F = fp; € P. Then, by (6.11) and the lower semi-continuity ¢f—

I(fpy):L3u)) — R,

I(f py) <liminf 1(Q° pr) <liminf J(Q°p1) < J(f po).

as stated. In particular, we have that foe C(R),

1 2
1 1
=3 [ famis [ ( [ £lax+@-ay) da) 00 i (y)
0

(see (1.6)). For suclf, by Weierstrass theorem there exist polynomi@fssuch that
9,(Q% — f) — 0 uniformly on the compact, convex hull of the support.df, hence
also J(Q°%p1) — J(fp1), implying that f p; € P and completing the proof of the
lemma. O

Proof of Lemma 1.4. Again, up to multiplying the rate function by 28, we can
only consider the case = 2. Forh € C2([—2, 2]), let

A(h) = dydx,

// h(x)h' (y) \/4 y?
—_2_2 o x2

and recall that by [14, Theorem 2.4] this is half the asymptotic variance in the CLT for
the spectral measure of Wigner matrid€s. Consequently, in view of (1.4) we see that
(1.8) holds whenup =0.

We provide instead a direct proof which is also the key to showingthat= J(-).
Recall that whenu, =0, thenuj(dy) = o1(dy) = (27) " /4 — y21,, <2 dy is the well
known semi-circle law. Our starting point is [9, Remark (6.2)], where it is shown that
Vi(h, h) = o1 (W'[(I + B)~1h’]) for polynomial functiong:, with E the integral operator
with domainD > C2([—2, 2]), such that forx| < 2 and f € C3([—2, 2]),
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2 =2pv [ L0y

=xf'(x) — 2///05]‘" nay + (1 —na)x)dadnoi(dy), (6.12)
=20
where PV stands for Cauchy’s principal value, and the second line follows from the
identity
PV / (x —y)to1(dy) =0.5x  V|x| <2, (6.13)

(see, e.g., [16, p. 74]), and the fact that

fO) —fx)— (y—X)f(X)
(x —y)?

11
//af” nay + (1 —na)x)dadn =
00

In particular, we see tha&f € C,([—2,2]) when f € cg([—z, 2]). Let C,}(al) denote

the subset of € C,([—2. 2]), such thaty;(y) := d,(g(y)\/4— y2) € L*((—2,2)). As
already noted in [9, Remark (6.2)], integrating by parts the first line of (6.12) and using

the fact that
2
PV/(x—y)_18y(\/4—y2)dy:rr (6.14)
22

for x € (-2, 2) (see [18, Eq. (6), p. 174]), we obtain the following formula, valid for all
8 € Cg.(al)i

2 /
(I +B)g](x) = 1F>v/ Mdy =h(x), —2<x<2 (6.15)
b4 , X—y

By [18, p. 178], for any given: € C2([—2,2]), Eq. (6.15) has a unique solution
¥.(-) € LX(—2,2)) such that/?, v, (x) dx = 0. This solution is given by

YL = —PV / dy. (6.16)

We thus see that for all € C2([—2,2]), ¢ = (I + E) A’ € C}(oy) is well defined and
satisfiesg(x) = (4 — x?)"Y/2 [*, 4 (1) dt. Moreover, we have from (6.15), (6.16) and

integration by parts, that fdr as above,

o1 (' [(I + E)7*h) /h (x)wg(x)dx———/h(x)w (x)dx = 2A(h).

(6.17)
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Using once more (6.14) resulting WiV [(x — y)~1(y/4— y2)~1dy = 0 for |x| < 2,
we note that for anyt € C2([—2, 2)),

2
A(ﬁ):—i/

dydx

/2 oy ) =) VA=
I, y—x V4 — x2

2 2 1
/ 2
= i//ﬁ/(y)/ft’(ax—i- (1-a)y)da 4 yz dydx. (6.18)
22 0 4-x
Since [%,(4 — x?)"Y2dx < oo, it is not hard to see, from (6.17) and (6.18), that
o1(Q.[(I + E)71Q!]) converges tooy(h'[(I + E)~1A']) for any h € C3(R) and
polynomial functionsQ, such thatQ, and Q! approximate. and i’ uniformly
on [—2,2]. By Lemma 6.1,V1(h, h) = lim,V1(Q,, Q,) as soon ag), approximate
uniformly 2 on[—2, 2] (being the support gi}), so in particular the equalityy (., h) =
o (W'[(I + E)"1h']) = 2A(h) extends to alk € Stieljes(R), resulting with (1.8).
Turning to prove (1.9), fixf € C3([—2, 2]) andh € Stieljes(R). Thenh :=h — (I +
E)f € CH([—2,2]) andg := (I + E)*h’ € C}(0y) exists, hence by (6.17),

2A(h) =o1((g — H[U + E)g — 1))
=o1(f[U+E)f]) +or(W[UI +E)H]) —au(g[ + B f])
—o1(f[UI+ BE)g]).

From the definition ofE in (6.12), we also have thdt+ E is a symmetric non-negative
operator on the functiong andg considered here, with

o1(g[(1 +8)f)) = [ 800 fxIond)

. (&x) —g) (f(x)—f() o1(dy)o1(dx)
(x—y) (x—y)
=o1(f[I + B)g]). (6.19)

So, with 0< o1((g — NHIUT + E)(g — f)]) < oo, we have that

~ 1 1
A = Sou(F[(U+B)f]) + 50 (W [+ D)) —or(fH) 20 (6:20)

SinceStieljes(R) is dense irCi([—2, 2]), approximatingd, ((/ + €) f) uniformly on
[—2,2] by a sequencé, with &, € Stieljes(R) (also approximating uniformly the
function (I + E) f and its primitive), it follows from (6.18) that theA(/z,) — 0. We
thus deduce from (6.20) that fdt = f py with f € C3([—2, 2)),

1
I(F):= sup {(h’,F) - —Vl(h,h)}
heStieljesR) 2

1
—  sup {o—lm’ f)—éol(h’[(l-i—E)‘lh’])}

heStieljesR)
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1 . ~ 1
=so(flU+Bf]) =, nf Al =Zoi(f[U +B)f])

heStieljesR)

2 2
:/{PV/ ) dy}F(x)dx,
J, (=)

where the last line comes from (6.15). Integrating by parts finally gives

2 2
I1(F)=— F'(y)F'(x)log|x — y|dx dy. O
4
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