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ABSTRACT. — We compute the growth fluctuations in equilibrium of a wide class of deposition
models. These models also serve as general frame to several nearest-neighbor particle jur
processes, e.g. the simple exclusion or the zero range process, where our result turns to curr
fluctuations of the particles. We use martingale technique and coupling methods to show tha
rescaled by time, the variance of the growth as seen by a deterministic moving observer has tt
form |V — C| - D, whereV andC is the speed of the observer and the second class particle,
respectively, and is a constant connected to the equilibrium distribution of the model. Our
main result is a generalization of Ferrari and Fontes’ result for simple exclusion process. Law o
large numbers and central limit theorem are also proven. We need some properties of the motic
of the second class patrticle, which are known for simple exclusion and are partly known for zerc
range processes, and which are proven here for a type of deposition models and also for a tyj
of zero range processes.
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RESUME. — On calcule les fluctuations de la croissance dans I'état d’équilibre pour une vaste
classe de processus de sédimentation. On utilise des techniques de martingales et plusiel
méthodes de couplage. Notre résultat principal est une généralisation du résultat de Ferrari
Fontes pour le probléme de I'exclusion simple.
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1. Introduction

Stochastic deposition models can be used to obtain microscopic description of domai
growths, e.g. a colony of cells or an infected area of plants. The fluctuation of the growtt
is itself of great interest. Moreover, these models are in close connection to interacting
particle systems, where the particle diffusion corresponds to rescaled surface fluctuatio
As it is shown below, an additional feature of deposition models is the possibility of
handling antiparticles as well as particles in the particle representation of the proces:s
It has been known [1] for the simple exclusion process, that the current fluctuation is
in close connection to the motion of the so-called second class particle, and, divided b
time, its variance vanishes for an observer moving with the speed of this particle. In this
latter case, Prahofer and Spohn [2] suggest this quantity to be in the ondét. of

In the present note we consider a wide class of one-dimensional deposition models
parameterized by rate functions describing a column’s growth depending on the
neighboring columns’ relative heights. By monotonicity properties of the rate functions,
our models are attractive. For a treatment of these models in a hydrodynamical contex
without using attractivity, see Téth and Valko [3]; Toth and Werner [4]. Following
Rezakhanlou [5], we first show some conditions on the model in order to have produci
measures as stationary ones for the process. (By stationarity, we mean time-invarianc
in this paper.) Our description is general enough to include the asymmetric simple
exclusion process, some types of the zero range process, and a family of depositic
models, which we call bricklayers’ models. In this general frame, we compute the growth
fluctuations in orderO(r), hence generalize the result of Ferrari and Fontes [1]. In
the computations we couple two processes, which only differ at one site. This is the
position of the so-calledlefect tracer or also called second class particle. We need
law of large numbers and a second moment condition for the position of this extra
particle. These have been established for simple exclusion [6], but, as far as we knov
only L'-convergence is known for most kinds of zero range processes [5]. We pteve
convergence with any for the defect tracer of the totally asymmetric zero range process
and for our new bricklayers’ models via various coupling techniques.

1.1. Themodd

The class of models described here is a generalization of the so-called misanthrop
process. For-co < ™" < 0 and 1< o™ < oo (possibly infinite valued) integers, we
define

[:={z€Z: a)min—l<z<a)max+1}
and the phase space
Q={w= ()i o;el}=1"

For each pair of neighboring sitésandi + 1 of Z, we can imagine a column built of
bricks, above the edgg, i + 1). The height of this column is denoted hy. If w(r) € @

for afixed timer € R thenw; (¢t) = h;_1(t) — h; (t) € I is the negative discrete gradient of
the height of the “wall”. The growth of a column is described by jump processes. A brick
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}wiﬂ (Wi, wit1)
_—

Fig. 1. A possible move.

can be added:
(w;, wi+1) = (0; — 1, wiy1 + 1) with rater (w;, wi41).

Conditionally onw(?), these moves are independent. See Fig. 1 for some possible
instantaneous changes. For smglithe conditional expectation of the growth of the
column between andi + 1 in the time intervalr, t + ¢] is r(w; (¢), w;11(2))e + o(e).

The rates must satisfy

r(wmin’ ) = r(" wmaX) =0

whenever eithew™" or ™ is finite. We assume to be non-zero in all other cases.
We want the dynamics to smoothen our interface, that is why we assume monotonicit)
in the following way:

rz+1Ly)=>rzy), r(y,z+D<r@®»,2) 1)

for y, z, z4+1 € I. This means that the higher neighbors a column has, the faster it grows.
Our model is hencattractive

We are going to use product property of the model's stationary measure. For this
reason, similarly to Rezakhanlou [5], we assume that forany z € 1

r(x,y) +r(y,2) +r(z,x) =r(x,2) +r(z,y) +r(y, x), (2)
and foro™" < x, y,z < 0™+ 1
r(x,y—r(yv,z—Dr(z,x - =r(x,z—Dr(z,y — Dr(y,x — 1. )
These two conditions imply product structure of the stationary measure, see Section 1..
Eq. (3) is equivalent to the conditiotty, z) = s(y, z + 1) f (y) for some functionf and
a symmetric function.

At time ¢, the interface mentioned above is describeduy). Let ¢ : Q2 — R be a
finite cylinder function i.ep depends on a finite number of values«gf The growth of
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this interface is a Markov process, with the formal infinitesimal genetator

(Lo) (@)=Y rw,o)|el...o— Lo+l ..)—e(e). 4)
i€eZ

When constructing the process rigorously, problems may arise due to the unbounde
growth rates. The system being one-component and attractive, we assume that, wi
appropriate growth conditions on the rates, existence of dynamics on a set of tempere
configurationss2 (i.e. configurations obeying some restrictive growth conditions) can
be established by applying methods initiated by Liggett and Andjel [7,8]. Technically
we assume tha® is of full measure w.r.t. the canonical Gibbs measures defined in
Section 1.3. In fact this has been proved for some kinds of these models, see below. W
do not deal with questions of existence of dynamics in the present paper.

1.2. Examples

There are three essentially different cases of these models, all of them are of neare
neighbor type.
1. Generalized exclusion processae described by our models in case hofH' and
o™ are finite.
e The totally asymmetric simple exclusion proc€3E) introduced by Spitzer [9]
is described this way by™" = 0, ™ =1,

r(wi, wiy1) = w; - (1 — wiq1).

Herew; is the occupation number for the siteandr (w;, w;;1) is the rate for a
particle to jump from sité to i + 1. Conditions (1), (2) and (3) for these rates
are satisfied.

e A particle—antiparticle exclusion process also shown to demonstrate the
generality of the frame described above. Lt" = —1, ™ = 1. Fix ¢
(creation), a (annihilation) positive rates witlr < a/2. Put

(0,0) =c, r(O,—l):%, r(l,O):%, r(l,—1) =a,

and all other rates are zerodf is the number of particles at sitewith w; = —1
meaning the presence of an antiparticle, then this model describes a totally
asymmetric exclusion process of particles and antiparticles with annihilation and
particle—antiparticle pair creation. These rates also satisfy our conditions.
Other generalizations are possible allowing a bounded number of particles (ot
antiparticles) to jump to the same site. By the bounded jump rates and by nearest
neighbor type of interaction, the construction of dynamics of these processes i
well understood, see e.g. Liggett [10].
2. Generalized misanthrope processes obtained by choosing™" > —oco, ™ =
.
e The zero range proce$gR) is included byw™" = 0, ™ = oo,

r(z,y) = f(2)
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with an arbitrary f : Z* — R* nondecreasing function ant(0) = 0. Herew;
represents the number of particles at sifEhese rates trivially satisfy conditions
(1), (2), (3). The dynamics of this process is constructed by Andjel [8] under
the condition that the rate functiofi obeys the growth conditiohf(z + 1) —
f(2)| < K forsomeK > 0 and allz > 0.

3. General deposition processage the type of these models wher@" = —oo and
o™ = oco. In this case, the height difference between columns next to each other
can be arbitrary it%. Hence the presence of antiparticles cannot be avoided when
trying to give a particle representation of the process.

e Bricklayers’ model¢BL). Let

r(z,y):=f@+ f(=y)
with the property

f@Qf(=z+1) =1

for the nondecreasing functioff and for anyz € Z. This process can be
represented by bricklayers standing at eachisikeying a brick on the column

on their left with rate f(—w;) and laying a brick to their right with rate
f(w;). This interpretation gives reason to call these models bricklayers’ model.
Conditions (1), (2) and (3) hold for. Similarly to the ZR process, this model is
constructed by Booth and Quant [11] only in cagéz + 1) — f(z)| is bounded
inZ.

1.3. Trandation invariant stationary product measures

We are interested in translation invariant stationary measures for these processes, i
canonical Gibbs-measures. We construct such measures similarly to Rezakhanlou [5] «
the following form. Fix f (1) > 0 and define

,0
f(@): r(z.0)

= mf(l) ©)

for o™ < z < @™ 4 1. Then f is a nondecreasing strictly positive function. For
I > z > 0 we define

f@QU=1]ro.

y=1
while for7 >z <0 let
1

==
f ) 2:z+1f(y)

finally f(0)!:=1. Then we have

fO! f+D=fz+D!
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forallz € 1. Let
7 { ogliminf (/(2)*) = fim log( (@), i o™= o,
oo else,

and

=0

g { log(lim sup(f (~2)1)*") = lim log(f(~2)). ~if &™" = ~oc0,
N —00, else.

By monotonicity of f, we haved > 6. We assumé > 9. With a generic real parameter
0 €(0,0), we define

e’
Z(0) .= .
) ; f@)!
Let the product-measure , have marginals
1 &
= LW =z} i= ——— . 6
ne(2) = p {w o =z} Z0) 7@ (6)
By definition it has the property
pe(z+1) €&
Mo (z) fz+D
which implies
1 -1
r(z_i_l’y_l),ue(z‘i‘ )ig (y ):r(y’z) )

Mo (2) 1o ()
due to (5) and (3). Hence stationarity of, follows via (2).
As can be verified, the expectation valg€d) := Eq(w;) is a strictly increasing
function of@. We introduce its inverseé(p) and the function

H(o) :=Ego){r(w:i, wit+1)}, (8)

playing an important role in hydrodynamical considerations. For the SE model, the
construction leads to the well-known Bernoulli product-measure with marginals

ud) = plw: w; =1} :=0p,

n0) =p{w: w;=0}:=1-9
with a real numbep between zero and one (the density of the particles). In our notations,
—o describes the average slope of the interface.

For the particle—antiparticle exclusion process, the relative probability of having a
particle or an antiparticle as a function of the rates goeg@s:, independently for the
sites. The density of particles relative to antiparticles can be set by an arbitrary paramete

Both for the ZR process and for BL models, it turns out tfiatefined in (5) andf in
the definition of the rates agree.
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It is not hard to show ergodicity of these models, which also implies extremality of
the invariant measurgs, :

PropPoOsSITION 1.1. —The processes given in Sectiari, distributed according to
their stationary measures , (6), are ergodic.

Proof. —~We need to show that any (time-) stationary bounded measurable function
defined on the trajectories of the process is constant a.s. By Proposition V.2.4 o
Neveu [12], this follows once we see that any bounded funciioon 2 satisfying
Py = ¢ is constant foru-almost alle with the Markov-transition operatoP. Hence
ergodicity of the process follows ity = 0 implies ¢(w) = constant for almost all
w € . We compute the Dirichlet-form

1
—Eo(p-Lo) = EEQ{ Zr(a)i, i) [0 o= Lo +1,..) - (P(Q)]Z}-
i€Z
By positivity of the rates, this shows that assuming = 0 results in
(p("‘7a)i _1aa)l+l+1a)=(p(g)

for almost allw € 2. Consecutive use of this equation ‘shows that any function obeying
Ly =0 does a.s. not depend on any finite cylinder seirfEspecially, fors > 0 and a
constantk € Rar(g), the event

{p(w) € (K, K +¢l]}

does not depend on any finite cylinder set. Hence by Kolmogorov's 0-1 law, the
probability of these events is zero or one w.r.t. the product measuRartitioning the
bounded image ap, this shows that this function is constant for almostall O

1.4. Results

We start our model in a canonical Gibbs-distribution, with paramgtéfor a fixed
speed valu¢/ > 0 we define

JV(t) := hyy, (8) — ho(0),

the height of column at sitgV¢ | at timer, relative to the initial height of the column at
the origin. ForV < 0, we introduce

TV (@) := hpy (1) — ho(0),
which is the mirror-symmetric form aof ") defined above for positiv&’s. For V =0
we write
J (@) =IO @) := ho(1) — ho(0).

In particle notations of the models,V)(¢) is the current, i.e. the algebraic number of
particles jumping through the moving window positionedVat in the time interval
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[0, r]. We prove law of large numbers for this quantity:

JW

1—>00

We need law of large numbers and a second-moment condition for the pa8itipn
of the defect tracer (also called second class particle, see Section 3 for its definition) i
one of the coupled models is started from its canonical Gibbs-measure:

Condition 1.2. — With initial distributionge of w, weak law of large numbers

HmF%QQ() cwﬁ ) 0 (10)

1—00

for a speed valu€ (9) and for anys > 0 holds, and the bound

&(mm><K<m (11)

s

is satisfied for all large for the positionQ (¢) of the defect tracer.

Inequality (11) is obvious in case of bounded rates, since in this situation, the proces
|Q(1)| is bounded by some Poisson-process.

THEOREM 1.3 (Main). — Assume Conditiof.2 Then

)
im Yare (T ®)

t—00 t

= |V — C(®)|Vary(wo) =: D, (6) (12)

foranyV € R, whereVar, stands for the variance w.r.t.

THEOREM 1.4 (Central limit theorem). -Assuming Conditiof.2,

) J(V)(t) y e y/2

lim ( ) d(x) = / dy,

t—00 /D, () \/' . /27
i.e. JV(1)/4/7 converges in distribution taV(0, D, (6)), a centered normal random
variable with varianceD, (9) of (12). Tilde means here that the mean valug/8f (¢) is
subtracted.

For the SE model, (10) is proven in [6]. It is shown there that

lim @ =1-20 as.

t—>o00 f

Condition 1.2 is satisfied by this law, hence Theorem 1.3 gives

l‘—)OO

Var (J)
m D i g)a-20) - v
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and the central limit theorem 1.4 also holds. These results have been known for SE b
Ferrari and Fontes [1].
For the ZR and BL models, we need a condition on the growth rates:

Condition 1.5. — For ZR and BL processes defined above, the rate fungtiis
convex.

For the ZR process, under this condition and assuming either strict convexity or
concavity ofH (o) defined in (8), more than (10), namely.-tonvergence is established
by Rezakhanlou [5] with speed

C©O) =

. 13
Vary(w) (13)
As far as we know, the second-moment condition (11) has not yet been proven for thi:
model.

THEOREM 1.6. — For ZR and BL models satisfying Conditiagh5 with initial
distribution K, of w, and for anyn € Z+,

@ — C(@®) inL",

whereC(0) is defined in(13) for the ZR process, and
c®)=—= (14)

for the BL model.

Hence under Condition 1.5, Condition 1.2 and thus Theorems 1.3 and 1.4 hold for
both ZR and BL models witl@' (¢) defined in (13) and (14), respectively. As we expect
by mirror symmetric properties of the BL model, the sp&sg@) of the defect tracer is
zero in cas® = 0 in this model.

Our methods do not rely on hydrodynamic limie&#) is a nondecreasing function for
the totally asymmetric ZR process and BL model under Condition 1.5, see Remark 5.1C
This shows (non-strict) convexity of the functi@t(e) of (8) for these models, since

dH
C(6(e) = %

after some computations, afifp) is also a monotone function.

PrROPOSITION 1.7. — Under Conditionl.5, the functionH (o) is strictly convex for
the BL model. For the ZR process satisfyihgd, linearity of H(o) is equivalent to
linearity of the rate functionf on Z, which is the case of independent random walk
of the patrticles. If this is not the case, thef(p) is strictly convex.

This is an important observation for [13], since this property is only proved for small
0 values there. It is also remarkable for [5], where strict convexity is just assumed.
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We remark that rates for removal of the bricks can also be introduced to obtain a mode
with both growth and decrease of columns. In particle notations this represents possibl
left jumps of particles (or right jump of antiparticles, respectively). Therefore, not only
the totally asymmetric case, but the general asymmetric case of particle processes (SE
ZR, for example) can also be included in the description. The extension of the proof of
Theorems 1.3 and 1.4 to this case is straightforward. However, the coupling argument
used to establish Condition 1.2 for ZR and BL models in later sections are not applicable
in case of brick-removal.

We see that lim, ., Var(JY)(¢))/t vanishes if we observe this quantity from the
moving positionVr = C(0)t, having the characteristic speed of the hydrodynamical
equation. This has been known for the SE model with strongly restricted values of
and now it is proven for the class of more general models with possibdyall Z also.

The interesting question, of which the answer is strongly suggested for some models [2
is the correct exponent ofleading to nontrivial limit ofVar (J©)(1))/t?** ast — co. «

is believed to be 23, in close connection t¢”/2 order fluctuations of the positio@(7)

of the defect tracer.

The structure of the paper is the following: after some definitions on the reversed
chain, we begin with separating martingales frdfar (J(z)) in Section 2.2. Then we
proceed in Section 2.3 by computing the generator’s inverse on the rates and then
transformingVar (J (¢)) into nontrivial correlations. These correlations can be computed
using monotonicity thus coupling possibilities of the model, this is done in Section 3.
This section also includes a technical lemma showing an interesting relation of space
time correlations to the motion of the defect tracer. Afigr), we deal withJ " (¢),
the growth in non-vertical directions in Section 4. Our results are proven in this section,
except for Theorem 1.6, which is proven in the last section for the totally asymmetric ZR
process and for BL models. This last section includes the introduction of a new randon
walk depending on our processes, and new coupling techniques based on convexity
the rate functionf. As another consequence of these methods, this part is followed by a
proof of strict convexity of the functioft{ (o).

2. Thegrowth and correlations

In this section we obtain a formula f&far (J(¢)), which contains only space-time
correlations ofw; (¢)’s as nontrivial expressions.

2.1. Thereversed chain

The formal infinitesimal generatdr* for the reversed chain is of the form

(L*o) (@)=Y r* (o, o) [pC...oi+ Logi—1,..) —e(w)]
i€Z

on the finite cylinder functions. The rates of the reversed process w.itt., can be
determined by the equation

Eo (v(@)Lo(w)) =Ey(p(@)L*¥(w)).
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PROPOSITION 2.1. —For o™" < z, y < 0™,
ri(z,y) =r(y, 2). (15)

Note that the rates of the reversed process do not depend on the parérottbe
original process’ distribution.

Proof. —Let v, ¢ be finite cylinder functions, and I& C Z be afinite discrete interval
of which the size can be divided by three, and which contains the set

{i € Z: , or ¢ depends ow; or onw; _1}.

Then the summation indexin the definition (4) of the generator can be run on the set
Z.We begin by changing variables, w;1:

Eo (¥ (2)Lo(w))
=Ep ) {ri, o) (@)el...0i—Lou+l..)—v(o)e(w)}
iel
o (w; + Vg (wizr— 1)
=E i+ L w1 —1
9§{r(‘° D@

XY(..,oi+Lwi—1 .. .)<p(@)} - Ee{ (Zr(wi, wi+1))1/f(g)<0(g)}.

ieZ
Since|Z| can be divided by three, we can apply (2) in order to show that
> r(w o) =Y r(wiz1, o)
i€l ieZ
in the second term. By using (7) for the first term we finally obtain

Eo (¥ (@)Lo(w))
=B ) {rirr. o) [¥ (..o + Loy — 1. )e(e) — ¥ (w)e(w)]},

ieZ
which equals tdey (¢ (@) L*¥ (w)) by choosing* according to (15). O
Combining (7) with (15) leads to

ezt Due(y —1)

(z,y) = +1v-1), 16
@) Mo (2o (y) iz y=1b (16)

which is the natural formula suggested by considering conditional expectation values.
In order to simplify notations, let

r(t) :=r(wo(), w1(1)), re(t) == r*(wo(t), w1(1)).
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2.2. Preparatory computations
For a quantityA (w) with E|A| < oo, let
A=A(w):=A—EA.
LEMMA 2.2.—Var(J(t)) =tE@) + 2f(§ (t —v)EF(v)r*(0)) dv.
Proof. —By definition,E(J(¢) | (0)) = ¢ (0) + o(z), hence

t

M(@t):=J(t) — /r(s) ds

0

is a martingale with\/ (0) = 0. Using this,

Var (J (1)) = EM(t)2+2E<M(t)/F(s) ds) + E((/F(s) ds)
0 0

Due toE(M ()?|w(0)) = tr(0) + o(t), the process

2

) L@

t

N@):=M@)? — /r(s)ds

0

is also a martingale witlv (0) = 0. Hence
EM ()2 =tE(r).

Using the martingale property @f, the second term of (17) can be written as
t t
2/ E(M(1)F(s))ds = 2/ E(M(s)F(s)) ds.
0 0
Simply changing the limits of integration in the third term of (17), we have

t 2 t s
E((O/F(s)ds> > :2O/E<F(S)O/F(u)du> ds.

These calculations lead to
Var (J(t)) =tE(r) + 2/ E (F(s) (M(s) +/F(u) du)) ds
0 0

=tE@r) + 2/ E(7(s)J (s)) ds. (18)
0
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In order to handl€E(7 (s)J (s)), we introduceJ] ®)*, the quantity corresponding tb
in the reversed model by

JO*w)y:=J(s)—J(s —u) (s=>u>0).

This is the number of bricks removed from the column in the reversed model startec
from times. As in case of/ (1), a reversed martingale can be separated by

u

M*w) == J9* ) — /r*(s —v)dv.
0

For this reversed object,M®*(0) = 0 and E(M®*(u) | Fi;.00) = MO*(s — 1) if
0<s — 1t <u, whereF stands for the natural filtration of the (forward) process. In
view of this,

E(7(s)J () =E[FS)E(TV* ) | Fis.o0)]
=E (F(s) r*(s —v) dv) = [ E(F(v)r*(0)) dv,
/ /

where in the last step we used time-invariance of the measure. Using this result, wi
obtain

Var (J (1)) =tE(r) +2/(t —v)E(F(v)r*(0)) dv
0

from (18) by changing the order of integrationc
2.3. Occurrence of space-time correlations

In this subsection we denotéw;, w; 1) andr (w;, w;11) by r; andr;, respectively. For
keZ,let

di:Q—1; di(w)=uwy
be thekth coordinate of2. Then

(Ldi) (@) =r-1—r and (L'd)(w) = —ri_q +71y, (19)

whereL* is the infinitesimal generator (2.1) for the reversed process.
LEMMA 2.3. - For 0 < o < 1 the expressions
o0

Qo = Zak_ldln Wa = Zakd—k (20)
k=0

k=1
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exist a.s., and
liiﬂl(L%)(Q) =- liiﬂl(Ll/fa)(Q) =7,
iiiﬂl(L*llfa)(Q) =- liiﬂl(L*%)(Q) =7
in L2.

Proof. —The a.s. existence of the sums above can be easily shown by using the Borel
Cantelli lemma for the sets

A, ={w:|w,| =n}.

We show the first equation faq, . By (19)

(Loy)(w) =ro+ (¢ — 1) Z reak
k=1

=ro—Er+((@—-1 Z(rk — Er)otk_l
k=1

=fo+(@—1 Fa* (21)
k=1
By independence ab; andw; fori # j, E(r, - 7)) =0if || — k| > 1 and|E(7; - 7)| <
E(-7)= ||F||§, if |k — | =0 or 1. Hence the #-norm of the second term on the right-
hand side of (21) tends to zeroas— 1:

@—D) A" <(@-1 anknz X724 2 — 1)? ankn2 A3
k=1

k=1

_ (- )2
1-—
The proof of the other three equations is similari

17113 2(1+2a7h) — 0.

Now we can compute the integrals in our expressiorVian(J).

THEOREM 2.4. —

ar (J (1)) =tE(r) — 2E(r*(0)1(0)) + 2> nE(wo(0)@, (1))
n=1

=1E(r) + 2E(r*(0)0(0)) + 2> nE(wo(0)o_,(1)). (22)
n=1
As can be seen in the next session, the sums on the right-hand side are convergent.
Proof. —Using L? convergence stated in Lemma 2.3 and Cauchy’s inequality, we

rewrite the integral in the result of Lemma 2.2. We can wiit€0) instead ofr*(0)
there, sincdE(AB) = E(AB) if both sides exist.
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/(t —v)E(F(v)F*(0)) dv — Iiml/(t — V)E(Lgy(v)7*(0)) dv
0 0

< lim / (t — VVE(F©) — Loa)])E[F(0)2) dv
0

= lim \/E([7(0) ~ Ly (0] )E(7(0)?) / (t —v)dv =0,
0

hence we can apply integration by parts:

Var (J (1)) =tE(r) + 2 Iiml/(t — V)E(Lgy(v)7*(0)) dv
0
] d )
=tE@(r) + 20Il|_r)nlo/(t — v)aE(%(v)r*(O)) dv

= (E(r) — 21 M E(#(0)/7*(0)) +2 lim / E(¢ (0)7*(0)) dv
0

The last integral here can be transformed in the same way, using Lemma 2.3 again:

/ E(¢ (0)7*(0)) dv = / E(¢a (07 (—v)) dv
0 0

N o rd_
:}I/lTlO/E(%(O)L ¥, (—v)) dv=}|/|Lnlo/aE((pa(O)wy(—v)) dv

= lim E(¢e (0)9, (=) — lim E(¢. (0¥ (0).
Hence with definitions (20), the variance bft) can now be written as
Var (J (1)) =tE(r) — 2t IimlE((ﬁa(O)F*(O))

+2,lim E(G,(0)7,(~0) ~ 2 im, (7.0, (0))

=1E(r) — 2 lim E(Zak Lo (0)F (0))

k=1

+2 lim E(Zak 1wk(0)2ya) 1(— z))

ay—> — [0

-2 lim E(Zak Loy (O)Zoza) 1(0)>

1
a,y— =0
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Using product property of the measure at time 0 and the fact that* depends only on
wo and w1, most of our expressions become simple (recall that all quantities with tilde
are centered random variables):

[o. e ¢]

Var (J (1)) = 1E(r) — 2E(01(0)7*(0)) + 2 > "E(ax(Q)w—_i(—1)) — 0

k=11=0

o
=1E(r) — 20E(@1(0)7*(0)) + 2> nE(@,(1)ao(0)).
n=1
In the last step, we used translation- and time-invariance of the measure.

We neededL¢, — 7 and L*y, — 7* in L? so far. The properties-Lv,, — 7 and
—L*p, — F* can be used in a similar way to prove the second equation of the theorem.
However, we need both, andy,: using only one of them would have lead to a divergent
sum in the last step. O

The first two expressions of formula (22) can be computed easily. The difficulty is
in determining the space-time correlatioBéwo(0)w, (¢)). In order to do this, we use
coupling technique.

3. Coupling and correlations

In this section, we show how to couple a pair of our models, with the help of the
so-called second class particles. We can use second class particles to compute c
expressions containing space-time correlations.

3.1. Thebasic coupling

We consider two realizations of a model, namélgndy. We show the basic coupling
preserving

gi(t) = (1), (23)

if this property holds initially for = 0. We say that = ¢; (t) —n,; (+) > 0 is the number of
second class particlgsresent at siteé at timer. During the evolution of the processes,
the total number of these particles is preserved, and each of them performs a neare
neighbor random walk.

The height of the column of (or n) between sites andi + 1 is denoted byg;
(or h;, respectively). (These quantities are just used for easier understanding, they ar
not essential for the processes.) lgett (or k; 1) mean that the column af (or the
column ofp, respectively) between the sitesndi + 1 has grown by one brick. Then
the coupling rules are shown in Table 1. Each line of this table represents a possibl
move, with rate written in the first column. In the last column,(or .~) means that a
second class particle has jumped fromo i + 1 (or fromi + 1 to i, respectively). This
coupling for the SE model is described (with particle notations) in Liggett [14,10,15].
The rates of these steps are non-negative due to (23) and monotonicityr(1}ludse
rules clearly preserve property (23), since the rate of any move which could destroy
this condition becomes zero. Summing the rates corresponding to gither to z; 4
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Table 1

Growth coupling rules

With rate &t hi ® A second class particle
r(&i, Siv1) —r(mi, i+1) . ~

r(mi, ni+1) — r(mi, i+1) . 2

r(mis §i+1) . .

shows that each andn evolves according to its own rates. It would be possible to couple
models possessing rates for removal of bricks as well.

3.2. Correlations and the defect tracer

We introduce the notatiofi; € 2, a configuration being one at siteand zero at all
other sites. Let be a model distributed according_,]zoe, and¢ (0) =w(0) + 4, i.e. we
have a single one second class particle betweand w, initially at site 0. In order to
avoid confusions, we call this particle tHefect tracer According to the basic coupling,
this single defect tracer is conserved for any time

§(@)=w(t) +3px)- (24)

The quantityQ(¢) is the position of the defect tracer, performing a nearest neighbor
random walk orZ.

In this subsection we consider the process(z), Q(¢)), the model distributed
according to the Gibbs measure and the random wallQ(z) connected to it with
0(0) = 0. Using Condition 1.2, we prove Theorem 1.3 fidr= 0. We begin with a
technical lemma, showing how to make use of the defect tracer.

LEMMA 3.1.—For the pair(w(z), Q(¢)) defined above, and for a functidn: 7 — R
with F (0™®) = 0 and with finite expectation vallg F (z)u(z),

£ (w . {F(wo(o) ~ D@ -1
" 1 (wo(0))

(a)o(O))D _ E(1{ () = n} F(00(0))).
(25)
Proof. —We take conditional expectation value of (24):

E(2:(1) | 00(0) = z) = E(w, (1) | @0(0) = 2) + P(Q (1) = n | wo(0) =z). (26)

Initially, £(0) = w(0) + 8. Therefore{ itself is also a model with initial distributiop,
except for the origin. Hence

E(6n (1) | wo(0) =2) = E(£,(1) | $0(0) =z + 1) = E(w, (1) | wo(0) =z + 1),
and (26) can be written as

E(w, (1) |wo(0) =z+ 1) — E(w,(t) | w0(0) =z) =P(Q(t) =n | wo(0) =z).
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We multiply both sides withF (z) .« (z) and then add up for afl € I to obtain

> E(wn () | wo(0) =2) (F(z = Dz — 1) — F(2)u(2))

zel

=> P(Q@) =n|wo(0) =z)F(2)(2).

zel

Here we used thalf (™) = 0 and we writeu (™" — 1) = 0. We know thaP(wg(0) =
z) = u(z), hence the proof follows. O

COROLLARY 3.2. — We use the convention that the empty sum equals zero. Let

g@) i=z—Y yu(y).

yel

ForneZ,

E(cT)o(O)J)n(t))=E<1{Q(t)=n} 3 g(z):(cj)>.

o (wo)

Proof. —By the previous lemma, our goal is now to find the correct functigrfor
which

F(z—Du(z—1
u(z)

—F@=g8@=2—Y_yu)

yel

is satisfied. By inverting the operation on the left side, we find

wmax

F):= Y g0y )M

y=z+1 (Z)

This function satisfies the conditions of the lemma. Using (25),
E(@n (1)@0(0)) = E(w, (1)@0(0)) = E(w,(1)g(wo(0)))

F(0(0) — 1)p(wo(0) — 1) }
=E|ow, —F 0
G”ﬂ 1(0(0) @“”>

=E(1{ Q@) = n}F(wo(O)))

< w(y)
—E(1 —
( {0@) =n} E g(y) (0))>

y=wo(0)+1 (@

Now it becomes clear that we need to know something about the motion of the defec
tracer.c andw cannot be started together from their original stationary distribution due
to the initial difference between them, present at the origin. We could follow our defect
tracer. Knowing a measure stationary as seen fromgsite for all time ¢ would help us
to state the law of large numbers for tBEr) process. In general, we don’t know such
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a stationary measure which has the same asymptotics far on the left and far on the rigl
side. Itis shown in [13], that under some weak assumptions for BL models, this measur
can not be a product-distribution. (Instead, a shock-like stationary product-measure i
described there for certain type of rates, under which the slope of the surface differs o
the left side from that on the right side.)

For SE and some types of ZR processes, law of large numbers (10) is known. Thi:
law and the second moment condition (11) for BL and ZR models possessing convexity
Condition 1.5 are proven in Section 5. As shown in the next theorem, this allows us
to do further computations on the space-time correlations of the models. We need th
following properties of the canonical measure:

LEMMA 3.3.— (i) The sum

u(y)
zzel:yzz-:i-l v ,bL )

is convergent, and
(ii) the sum

>3 g(r(y) = Var(wo)

zel y=z+1

is convergent and the equality holds.

Proof. —For @ (6, 0), the tails of the measurne, (-) have exponential decay. Hence
the convergence in both expressions holds. The identity in (i) is straightforward and is
left to the reader. O

The next lemma shows the essential connection of the defect tracer to space-tim
correlations in the model.

LEMMA 3.4. — Assume Conditiod.2 with speed valu€'. Let B(¢) be a real-valued
function withlim; ..o B@) =B e R, ny,no€Z, AR, V; < Vo, in RU{—00, oo} and
the real intervaly := [V, V. If either

(I) C ;é Vl, Vg, or

(i) CeRandAC =—-B
holds, then

Lt Va]+no n
lim Z (;A + B(t)) E(cT)o(O)cT),,(t)) = (AC + B)1{C € V}Var (wy),

t—00
n=[tV1]+n1

whereVar (wg) is the variance ofvg w.r.t. the canonical Gibbs-measure.
Proof. —We define)’ by

V' {V1+— V2+
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By Corollary 3.2,

[#V2]+n2 n
lim > (?A—I—B(t)>E(cT)o(0)6~0n(l))

n=[tVi]+ny

. WValtna o o w(y)
—lim Y (%ass0)E(How=n) Y o)

t_)oon=|'tV1'|+n1 y=wo(0)+1 ,bL(a)o(O))

= lim E((A@+B(t))l{Q(t)/zth} > g £0) )

=0 o2 ws(0)

= I'L”JOZ E((A@ + B(t)) 1{0@)/t € V' }1{wo(0) = z})
zel

x 3 gl (27)

y=z+1 M(Z) .

We show that the limit and the summation can be interchanged in this expression. W
use Cauchy’s inequality to obtain

‘E((A@ + B(t)) {om/teV'}Hwo(0) = Z}> ’

2
VE((+ 224 50 )y P22 e anni0 -2
< K\/P(@ eV

for some constank’ by (11). Sinceg(y) is monotone iny and

wo(0) = z) Vi) < K'vVi@)

wmax

> g =0,

y:wmin

the sum

Y enG)
y=z+1
is non-negative for any € 7. Hence we can bound from above the absolute value of the
terms in (27) for each € I by

wmax

' u(y)
K ,
yziz+lg(y) me

and the sum

max

;] w(y)
K
YK gy s

zel y=z+1
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is convergent by Lemma 3.3. Using dominated convergence, we write

[tVo]+n2

lim 3 <3A+B(z>>E(a)o(0)an(t))
t_)oon:[tVﬂ—&-nl !
:Ztli_)rrgoE((A&—kB(t))l{Q(t)/teV’}l{wo(O):z}> Z gy )%
y=z+1

zel

We introduce the set! := V' N B,(C), where fore > 0, B,(C) =(C —¢,C +¢) CR.
HenceV' =V U (V' \ B.(C)):

[#V2]+n2 n
im Y (?A—I—B(t))E(cT)o(O)CTJn(Z))

n=[tVi]+n1

:ZtlLrgoE«A@JrB(z))l{Q(t)/zevg}l{wo(O):z}> Z g(y e

zel y=z+1 /J'( )

+ Ztli)rgoE<<A& + B(z)) 1{ Q) /1 € V' \ Bo(C)} 1{wo(0) = z})
zel

max

Z g(y >@ (28)

y=z+1

(28) contains two terms. We use Cauchy'’s inequality on the second term as we have dor
before:

‘E((A% n B(r)) 1{ 01/ € V' \ B.(C)}1{wo(0) = z}) ]

<K \/ (Q( ) ey \ B.(C) andwy(0) —z)

<K\/ (%ﬂg(c))

ast — oo by the law of large numbers (10). Only the first term of (28) remained, for
which we write

. [tV2]+n2 n
lim »" <7A + B(f)) E(@0(0)@, (1))
n=[tVq]+n1

= Ztan;O(Ac + B(t) + O())P(Q(t)/t € V' andwy(0) = 7)
zel

wmax

n(y)
‘ 29
yzz;—l 80 )'“( ) (29)

We have three possibilities.
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() If C eV, C#Vq, Vs, then for smalk and larger, V! = B,(C), and by (10),
lim P(Q(1)/1 € V; andwo(0) =2z)
= lim P(Q(1)/1 € B:(C) andwo(0) = z) = P(wo(0) = z) = 1(2).

Hence we can continue (29) by

[tVo]+n2

lim 3 (fA+B(z>>E(ao(0)a)n(t))
t_)oon:[tVﬂ—&-nl t

max

=3 lm (AC+B1)+0()) > g(In()
zel y=z+1

max

— (AC+B)Y Y g(u(y) = (AC + B)Var (wo)

zel y=z+1

ase — 0. The last equality is a result of Lemma 3.3.
(i) If AC = —B, then the right-hand side of (29) tends@e) ast — oo for all
¢ > 0, hence is zero in this limit. Here we used that

P(Q(1)/t € V; andwo(0) = z) < P(wo(0) = z) = u(2),

and that

wmax

S sr»)

zel y=z+1
is convergent.
(iii) In case C ¢ V, thenV! is empty fore small ands large enough, and hence the
right-hand side of (29) is zero.
The result of these three cases completes the proof the lemma.

Now we are able to compute lim., Var(JV(¢))/t for V. = 0. The proof of the
general formula (12) requires some more computations in the next subsection.

THEOREM 3.5. — Assume Conditiod.2 with speed”. Then
. Var(J
im ar(J())

lim ” =E(r) — 2E(r*(0)@1(0)) + 2C " Var (wo)
=E(r) + 2E(r*(0)@o(0)) + 2C~Var (wo). (30)
Here0 < C* is the positive or the negative part 6f, respectively.

Proof. —We consider the result of Theorem 2.4. Dividing (22 tand taking the limit
t — oo allows us to use the result of Lemma 3.4. For the first equality of (22), we use
this lemma with parametefg, =0, Vo =00, n1=1,n,=0,A =1, B(t) =0. Then we
obtain
. VarJ(t
lim @

t—00 t

= E(r) — 2E(r*(0)@1(0)) 4 2C1{C > O}Var (wp).
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For the second equality of (22), we rewrite the sum as

im Var J (1)

t—0o0

-1
=E@r) + 2E(r*(0)@o(0)) —2 > nE(@o(0)a, (1)),

n=—oo

in order to use Lemma 3.4 with parametéfs= —oco, Vo, =0, n1 =0, n, = -1,
A=1, B(t)=0.Hence

im Var J (1)

—>0o0

= E(r) + 2E(r*(0)a0(0)) — 2C1{C < O}Var (wp),

which proves the second equality of the theoremnm

We obtained two formulas for the variance&f). If the characteristic spedt exists,
then we can compute it by subtracting the two lines of (30).

4. Thegrowth in non-vertical directions

We have examined so fafar (J(t)), the growth fluctuation of a fixed column, i.e.
the fluctuation of vertical growth. In this section we deal with the growth fluctuation of
the surface in equilibrium, but considered in a slanting direction, nandahy(/ " (¢)).
From now on, we assume without loss of genekigy0) =

Proof of (9). —By definitionw; (t) = h;_1(t) — h;(t), we have

hi(t) =ho(1) =Y w;(1) (31)

j=1
for any sitei > 0, hence folvV > 0,

LVi] Vi)

TVE) = hyy (1) =ho(t) = Y w;(t) = ho(t) — | V1] Kz > w;().
j=1 j=1

By ergodicity, the first term has the limEr a.s. when divided by. The second
term is | V¢] times the average of an increasing number of different iid. variables.
These variables have finite moments, hence the fourth-moment argument (see e.g. [1
Theorem 7.1]) is applicable with the discretization serjes-n/V to show that

V]

lim . 1VJ Z w;j(ty) = lim = jz_:le(tn):E(w) a.s.

This shows(9) for the limit taken along the subsequengeFor anyr € R*, there is
a uniquen, € Z* for whicht,, <t < t,,,1, andJV (t) — JV)(z,,) is the number of
bricks laid on columm; in a time interval shorter tharyY, hence dividing it by leads
a.s. to zero in the limit. Therefor@) holds for the limit of 7)(¢) /¢ as well. Similar
computation works fov < 0, and finally, the cas& =0 is trivial. O
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Now we consider the fluctuations (with tilde meaning the mean value subtracted):
Var (JV (1) =E{(JV ) —EJV (1))?}
=E{ (7 0)*} = E{([Iys)(®) = hyye O] + vy (0)°)
= E{ (hyviy(®) = hyvy(0)*} — E{ (A1 ()}
+ 2E (R s ()R v (0)). (32)

By translation-invariance, the first term\iar (J (¢)), computed in the previous sections.
By (31) and by product structure of the measure, the second term of the right-hand sid
of (32) is

—E{(hy1(0))%} = — |Vt ]E(@0(0)%) = —|V¢]Var ().
The limit of the third term divided by in (32) is computed in the following two lemmas:
LEMMA 4.1.— ForV >0,

[Ve]-1
E(hygOhyg Q)= Y (LVt] —n)E(@,(t)a0(0))
-1
+ ) nE(@.(1)@0(0)). (33)

Proof. —Using (31) again,

LVi] LVi] LVi]
E (A (DR v (0) = —E (ho(l) > @ (0>> +E ( PO DINT (0>>

j=1 i=1 j=1
LVi] LVe] [Vi]

=—> E(ho()®;(0)) + > > E(@;(@;(0)). (34)

Jj=1 i=1 j=1

A martingale

t

H(t) :=ho(t) — /ro(s) ds
0
with H(0) = 0 can be separated in order to show that

t

E(ho(a;(0)) = E(H (1)@, (0)) + / E(ro(s)@; (0)) ds = / E(Fo(s)@; (0)) ds.
0 0

Now we use an argument very similar to the proof of Theorem 2.4. By Lemma 2.3, the
L2-convergence

— lim (L) (@) = o

can be used to replace our integral: for 1 we continue by
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E(ho()@;(0)) = / E (7ols)a; () ds = — lim / E(Lva()@;(0)) ds
0 0

1 d N N N
= — lim / L E(Va(9)8;(0) ds = E(4a (05,(0) ~ E(Va(0);(0)).
0

Using definition (20) of, and product structure of the canonical measure,

E(ho(t)@;(0)) =E (— > o, (0)) —E (— > w_ O, (0))

i=0 i=0

00 0
=—) E(o_i(0®;(0) =— > E(@:()@;(0)).
i=0

i=—00

Combining this expression with (34) leads to

0 Vi) V] LVt
E(hyvg Ol @)= > > E(@®a,;0)+ > > E(a;)@;(0)
i=—o0 j=1 i=1 j=1
LVi] Vi) LVt] Vi)
=Y Y E@®0a;0)= Y Y E(@-;(Hao(0)
i=—00 j=1 i=—o0 j=1

by translation-invariance. Changing the summation indices leads to the proof of the
lemma. O

LEMMA 4.2. — Assume Conditiot.2 Then forV > 0,
N S ~
Jim —E (k1 01y (0) = (V = C)*Var (o).

Proof. —We use Lemma 3.4 for the two terms on the right-hand side of (33). For the
firstone we seVy = —o0, Vo =V,n1=0,n,=-1,A=—1, B(¢t) = | Vt]/t, while for
the second term in (33) we plfy = —oo, Vo =0, n1 =0, n,=-1, A=1, B(t)=0.
One can easily check that for aiy € R and V > 0, one of the cases (i) or (ii) of
Lemma 3.4 apply. Consequently, we obtain

A S ~
tll[go ;E(hwu ()h |y (0))
= [(V—C)l{C< V}+C1{C<0}]Var(w):(V—C+)+Var(w). O

Now we divide Eq. (32) by and take the limit — oco. We use the result of Lemma 4.2
to obtain

V)
im Var (J' (1))

t—00 t

— fim Var (J (1)

—>00 t

+ [2(V — CHT — V]Var (w) (35)

for V> 0.
ForV < 0, we proceed as we did above with" for positive V's. The only important
difference is using, instead of—, in the proof of Lemma 4.1. The result of a similar
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lemmaforV <0is

E(hryn®hivn @) == > ([VH] =n)E(@,(0)a0(0)) — > nE(@,(1)@o(0)).
n=[Vt]+1 n=1

Therefore, Lemma 3.4 is applicable in a similar way as in Lemma 4.2 above. The resul
of this application is

N ~ -
tll)rgo ;E(l’l[vﬂ (l)h[vﬂ (0)) = (V +C ) Var(a))
ComputingVar (/) for V < 0 as we did in (32) leads then to

t—00 t t—00 t

_ Var(JV _ Var(J
m YATO) _ jyy YETO) oy 4oy £ vvar@).  (36)
Now, assuming Condition 1.2, we can prove (12) by the result of Theorem 3.5.

Proof of Theoreni..3. — All time arguments of our variables for this proof are thought
to be zero without mentioning it. By (16),

E(r* - (@0 — @1)) =E(r* - (wo — 1))

_ E<r(w0 1oy l)M(wo + Du(wr — 1)( B wl)>

u(wo) u(w1)
=E(r - (wo— w1)) — 2E(r) = E(r - (&0 — @1)) — 2E(r)
= —E(}"* . (CT)O — 67)1)) — 2E(I"),
we used (15) in the last step. Hence we obtain
E(F* . (&V)O - CT)]_)) = —E(I").
We have two formulas for the variandéar (J(¢)) by Theorem 3.5, which are used
together with (35) and (36) to obtain

V)
im Var(]; Q)]

t—0o0

=E(r) —2E(" - @1) + (|V - C|+ C)Var (o)
=E@r) +2E(r* - @) + (|V — C| — C)Var (w).
We take the average of these two formulas:

V)
im Var (Jt )

—>00

=E@) +E(r* - (@o— @1)) + |V — C|Var (w)
=|V = C|Var (w). O

Now it is easy to prove central limit theorem faf".
Proof of Theoreni.4. —We introduce the drifted form af © by i € Z:

JOW) == hyer)4i (1) — hi(0)
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for C >0, and

JO) == hiensi (@) — hi(0)

for C < 0. Due to translation-invariance, the distribution of this quantity is independent
of i. Hence by (12), foC > 0 andV > 0, the variance of

JL(SI)J_LCIJ ) =hyi @) = hviy—1c(0) = TV @) = hiyiy— 1) (0)

is o(t) ast — oo. Thus it follows that we only need central limit theorem for
hvij-1c:)(0), which is, by (31) and by:o(0) = 0, the sum of |[V¢] — [Ct]| number of
iid. w;(0) variables with finite moments. Hence the theorem followsWfor 0, C > 0.
ForvV >0, C <0,

JL(\?,)J_[CH ) =hyyvi ) = hive—1cn(© = TV ) = hyvij—1en (0),

here we have (and we only need) central limit theorem for the sumVaf] — [Ct]|
number of iid.w; (0) variables, which proves the theorem. Similar argument works for
V <0also. O

5. Themotion of the defect tracer

With the help of another type of coupling, with amy Z*, we proveL"-convergence
for Q(r)/t of BL and totally asymmetric ZR models in this section. This coupling only
works under convexity Condition 1.5, which we assume for the rest of the paper. The
idea of the proof is the following: we fix ouw, Q) pair and compare it with another
model ¢. The difference betweem and ¢ is realized by second class particles. The
current of these particles satisfies law of large numbers by separate ergodiignof
¢, and we compare their motion to our defect trageplaced onw. The main difficulty
is finding the way to couple the defect tracer to the second class particles. As show
later, this coupling can not be made directly; we need to introduce a new process calle
the S-particles a random process defined in terms of the second class particles.

We setf; < 6, then there exists a two-dimensional measuren Z x Z, which has
marginalsi,, and ug,, respectively, and for which(x, y) = 0 if x > y. We fix two
configurations; and¢ of our model, distributed initially according to a product measure
with marginalsP(»; (0) = x, &(0) = y) = u(x, y). Therefore,; is itself in distribution
Kg ¢ isin distributiongez, andn; (0) < ¢;(0) for each sitei is satisfied. According
to the basic coupling described in Section 3;4¢) < ¢ (¢) holds for all later times,
and we have a positive density of second class particles between these two models. T
number of these particles at sitds ¢; — n; > 0. Hence they are initially distributed
according to a product measure but, at later times, only the marginal distributions of
or of ¢ will possess a product structure. Note that the joint distribution of the processes
is translation invariant.
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5.1. ThePalm distribution

For further applications, we want to select “a typical second class particle”. We do it
as follows. We introduce the drifted form of the models: kar Z,

(Txn)i =Nty (Tkl)i = it

If N € Z" is large enough, we choose uniformly one second class particle among the
particles present at sitesN <i < N. We determine the distribution of the values of

a functiong depending onn, ¢), as seen from the positidnof the randomly selected
second class particle. Fof large enough, the total number

N

> @ —m)

j=—N
of second class particles at sitev <i < N is positive, and then

EY (g(zin, 7i0)) =E[E(g(zan, 7xd) |1, ¢ )]

N
&i — i
=E (Tin, T:{)
(i—z_:zvg ! _Z;V:—N(gj_nj)>
:E(TI-HZ;V:—Ng(TiﬂvTiQ)‘@i—771')>

Tl_,_lzy:_zv@j = ;)

For boundedg, the random variable we see in the last line of the display is bounded,
and is the quotient of two random variables, both having a.s. limilvas- co by
translation invariance and ergodicity of translations. Hence our expression converge
due to dominated convergence, and have the limit

E(g(1, ) - (Co— o))

37
E(%o — no) 37

Eg(n,0) = lim E™ (g(zin, i) =

The distribution it defined by (37) is called the Palm distribution of the process.
The Palm measure can be extended to non-negative functiosse [17]. Note that
P(z0(0) — no(0) > 0) = 1 according to this measure, i.e. we necessarily have at least one
second class particle at the origin, if looking the process “as seen from a typical secon
class particle”.

By initial product distribution of(n,¢), i is initially also a product measure,
consisting of the original marginajs for sitesi # 0, and of marginal

A y) = pu(x, y) - (y —x)
o E(Zo —n0)

(38)

for sitei = 0. For later use, we introduce the pair (1), ¢'(¢)) started from this initial
product distributior.
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5.2. Random walk on the second class particles

We label the second class particles betwgand¢ in space-order. Lt () denote
the position of thenth second class particle at timelnitially, we look for the first site
possessing second class particle on the right side of the origin. We choose one of tr
particles at this site, giving it labet = O:

UQ@©0):=min{i >0: & >n;}.

We label the particles at= 0 in such a way that/ ™ (0) < U™*+P(0) (Ym € Z) (the

order of particles at the same site is not important). We defﬁﬁng? (1) to be the algebraic
number of second class particles passing the column betivaadi + 1 in the time
interval[O, 7]. This quantity is determined by the evolution of the procegsasd¢ . For
t =0, we define -

m;(0) := max{m: U™ (0) <i}, (39)
while for¢ > 0,
mi (1) = m;(0) — 12 ).

We label the particles at later times such that (39) holds at anyr tamevell. This method
assures/ ™ (1) < U™V () for all time¢. The particles labeled from;_1 + 1 up tom;,
exactlys; — n; =m; —m;_1 of them are at sité. (At sitesi for whichm; = m;_4, there
is no second class particle.)

We have defined so far the coupled paimnd ¢ with the U (r) process of the
second class particles indexed in space order at any tirfitae latter will serve us
as a background environment for a new random proag&s(z)),.cz. Initially, we put
s™(0) := n for eachn. Assume that just before a second class particle jumps from a site
i atatimer, s™ ) € {m_1(t) + 1, m;_1(t) + 2, ..., m;(t)}, which mean®/ ¢ (t) = i
just before the jump. Then by the timet+ 0 of this jump,s™ (t + 0) := IT,(s" (1)),
whereTl; is a random uniform permutation on the integer{get () + 1, m;_1(¢) +
2,...,mi(0).

We can represent this new process as follows. Initially, we put an extra particle,
which we callS-particle, on each second class particle. Bhearticles are labeled by
n, and initially we put thezth S-particle on thenth second particles™ (¢) stands for
the index of the second class particle carrying #ltle S-particle. Whenever a jump
of second class particle happens from sjteve permute uniformly and randomly the
S-particles present at sitejust before the jump. According to the labeling of second
class particles, one jumping to the right (or to the left, respectively) fromi sitas
indexm; (t) (or m;_1(t) + 1, respectively) and is carrying exactly thth S-particle, for
whichs™ (¢t 4+0) = IT; (s (¢)) = m;(¢) (or m;_1(t) +1, respectively). Hence a uniformly
and randomly chose8-particle is taken from the sitewith the jumping second class
particle.

For simplicity, we defina(¢) := s©(¢) and S(¢) := U, and by simply saying the
S-particle, we mean the zerotfiparticle at siteS(z). ThenS(¢) represents a random
walk moving always together with a second class particle, but having always probability
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1/(m; —m;_1) = 1/(¢; — n;) of jumping together with a second class particle jumping
from the sitei. As can be derived from Table 1, the rate for a second class particle to
jump to the left (or to the right) isf (—n;) — f(—¢;) (or f(&) — f(n;), respectively).
Hence the rate for th&-particle to jump to the left (or to the right) together with the
jumping second class particle from site- S(¢) is

f(=n) — f(=&) (or f&) — f(’]i)’ respectivel)). (40)
S —mi & — i

Recall thatS(0) = U (0) = U©(0) is the first site on the right-hand side of the
origin initially with second class particles. We introduce the notatigh(z), ¢" (1)) :=
(Tson (), Ts¢ (1)), which is the(n(t), ¢ (t)) process shifted to this initial position
S(0) of the S-particle. We also introduce it§”-particle: $”(r) := S(t) — S(0). Hence
the initial distribution of(»”(0), ¢”(0)) is a product measure, consisting of the original
marginalsu for each site # 0, and of marginaligong for the sitei = 0 of the S”-particle.
The measurgicong is just i, conditioned oy > x}: forx,y e Z

n(x,y)
P(£0(0) > 10(0))

Using the Palm measures, we show that the expected rat§4dgump are bounded
in time.

LEMMA 5.1.—LetneZ™, ke Z, and

Meond(X, y) = P(ﬂg(o) =X, é’é/(o) = y) =1y > x} (41)

i) :=f(&@®) = f(n@®)+ f(=ni(®) — f(—=&(@)) (42)

the rate for any second class particle to jump from sit€hen

E([CS(z)(f)]n [Zs () — ﬂs(r)(f)]k) <K, k)

uniformly in time.

Proof. —First we consider the pai¢;’(0), ¢'(0)) defined following (38), which is
the pair(n(0), £(0)) at timer =0, as seen from “a typical second class particle”, or
equivalently, as seen from “a typic&iparticle”. In this pair, we have at least one second
class particle at the origin, which we call. We let our processr’, ¢') evolve, and
we follow this “typical” §’-particle. Started from the Palm-distribution, this taggéd
particle keeps on “being typical” (see [17]), i.e. for a functigf the process as seen
by &',

E(g(Tson'(®). st (1)) =E(g(n(t). £(1)))

with definition (37).
Now we first show the lemma for th&-particle. Let

g(n(), £)) = [eo®)]" [¢0(t) — o],
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and we denote by the positive part ok. We know thatzo(z) — no(r) > 1 holdsP-a.s.,
hence

E([cs (@] " [fé’(z)(f) - 77/5’(1) (1] k)

— E([eo()]" [60(t) — n0()]*) < E([co®)]" [50(t) — no®)]*")
_ E(lco®)]"[g0() — o)1 +Y)
E(Co(®) — no(?)) '

The functionco(r) consists of sums of (£no(¢)) and f (+Zo(¢)), hence the numerator
is an(n + k™ + 1)-order polinom of these functions and @f(z), no(r). These are all
random variables with all moments finite. Therefore, using Cauchy’s inequality, the
numerator can be bounded from above by products of moments of ¢ithe¢:)) or
f(2o(2)) or no(t), or Zo(¢). The models; and¢ are both separately in their stationary
distributions, hence these bounds are constants in time. The denominator is a positiy
number due t@, > 6; and strict monotonicity oE,(z) in 6. We see that we found a
bound, uniform in time for the functiog of (1/, ¢’) as seen frons’.

We need to find similar bound for a functignof the original pair(, ¢), as seen
from S. This is equivalent to finding a bound fgrof (", ¢”) defined above, as seen
from S” of this pair. Let us consider the initial difference betwegn0), ¢/(0)) and
(n"(0), ¢"(0)). Both have product distributions for different sitesFor each site # 0,
both pairs have the original two-dimensional marginal distribufiotror the site =0,
where theS” and S” particles initially are, we have margingl (38) of (15(0), £4(0)),
and zucond (41) of (n5(0), £5'(0)), respectively. Therefore, the expectations of a function
g conditioned on the initial configuration at the origin are the same:

E(g(TS/(z)Q/(t), TS/(z)Q/(f)) | 776(0) =X, §6(0) = y)
=E(g(rson”" @), 150" 1)) | 15(0) =x, 55 (0) = ).

Hence
E([Cs”(z)(l)]n B'S”(t)(t) — nS”(t)(t)]k)
=S E([esio®)]" [Es70 @) =m0 @] 1150) = x, ¢5/(©0) = ¥) roond(x, )
X,y

=S E([eso®]" [¢hin @ — e, 0] 1 750) = x, £5(0) = y) /it (x, y)

x<y
Mcond(X, y)

X ——_—.
vV i(x, y)

Using Cauchy’s inequality and definitions @f,,qand i, we continue by

E([csrin®)]" [¢s7y () — Tls”(t)(f)]k)

< {Z[E([CS/(I)(I)]}/! [é’é/(;)(t) - 77/5/(;)([)]]( | 776(0) =X, {'(/)(0) = y)]zﬂ(x’ y)

x<y

1/2

1/2

Heond(X, ¥)
X ————McondX, y)
LE:: fle,y) "
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1/2
<{E:ﬂkmdﬂﬁkhﬂﬂ—%wﬁﬂ%MM®=X£MD=ﬁﬁ&J4

x<y

){sz>ﬂ_amm—m@>

1/2
= y—x  P(o(0)>no(0)) Heond(¥, y)]

E%@—m@WM
P(%(0) > 10(0))|

The first factor here is bounded in time by the first part of the proof, while the second
factor is a positive constant.C

< [E(les ) 650 — s 0] 2|

Using the rates for thd-particle to move, we can prove the following bound for the
moments ofS(z):

PrOPOSITION5.2. —Forn e Z™,

E(IS(I)I”) <K(n) <oo (43)

tn

for all large ¢.

Proof. —For this proof, we denote the jumping rates (40) for fhparticle byrStett
and 519" respectively. For > 0, we consider the derivative of the quantity above,
using these rates:

d_/Is@l"
—E
dr < tn

n

n n 1d n n
>=_,n+lE(’S(’)’ )+ g EUSON) =—2=E(SOF)

+ %E[rs'eﬁ(]S(t) — 1" = [SO|") + S|S0y + 1" = |S@)|")].

For|S(t)| > 1, we can bound our expressions:

d /ISP w2 e
SE(BOD) < - e(s0l) + 2O s )

We continue by using Hélder’s inequality on the right-hand side:

%E(IS(M") < _?E(|S(t)|n) . ?{E[(W‘gh%rS'e“)"]}”"{E('Sg)'")}

" "

n—=1
n

(44)
Recall that

ST E) 4 S (1) = e (1) - [Cs0)(2) — US(t)(l)]_l,

hence Lemma 5.1 is applicable with= —n to show that

E [(rSright(t) + rSIeft(t)>”]
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is bounded in time. Therefore, (44) can be written in the form

n—1
E(IS(Z)I ) < QE(IS(I)I ) n K (n){E<IS(t)| )}
dr t t m t t
with some positive constaikt’ (n). This means tha (|S(¢)|" /") is bounded from above
by a solution of the differential equation

K’ n—1
( )y()_-

. n
y(t) = —;y(t) +
Observe that the right-hand side is negative whenever

o= (K0
n

hence assuming(zy) < oo for somery > 0, y(¢) is bounded (for alt > #g), which gives
the proof. O

Now we show law of large numbers fo(¢), and then we can show law of large
numbers forS(z). For what follows,E’ stands for the expectation values according to
the distribution ofy, ¢, {(U™),,¢z, i.e. our background process which determingr),
also. LetF(r) denote ther -field containing all information about these quantities at time
t. ThenF(t) contains all randomness except for the random permutatios'dm,z.
With (42), we also introduce the notations

Ci(1) == (mi(t) — mi_1()) ci (t),

p(y.t):=P(s@t)=y| F(t)), and (45)
A; (1) = max 1) — min t
( ) m,-,l(t)<y<m;(t)p(y ) m,-,l(t)<y<m,-(t)p(y )

if m;(t) —m;_1(¢t) > 1, andA; () := 0 otherwise.

LEMMA 5.3.—

(ys(z)y \IE’ A (t)\lE’ > AOCRD). (46)

i=—00 j=—00

Proof. —We use convention that the empty sum equals zero.

E(IS(t + ) —E(s®)D)
&

(!S(f>|)

o0

_iim 3 PECHO) =2zl Pl) =)k

8_)Oz=—oo &

mi(t) _ _ —
:”mE,Z 3 P(S(t+8)—zlf(t))lzgl P(S(t)—zlf(t))lzl.

e—0
i=—o00 z=m;_1(t)+1
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We know that uniform random permutation on the indices present atSditappens

at each jump of second class particles fromat time ¢. The basic idea is that this
permutation makes the probabilitiggy, 1) = P(s(t) = y | F(¢t)) equalized between
y=m;_1(t) +1...m; (). This jump happens with rate(s) defined in (42), hence for a
sitei with at least one second class particle andviory (1) + 1 < z < m; (1),

Pls(t+e)=z|F@))=(1—ec;(t))P(st) =z | F(1))
m;(t) _
veaw ST PEO=yIFO) |

y=m 2(t)+1 m;(t) —m;_1(1)

Then we obtain
oo m; (1) mi (1)
p(y, 1)
—E(s0)=E Y at) ( Yoz - pa. r>|z|>.
=0 a0+ \ yomn (2 M () = M1 (1)
There exists a; permutation of the numbefs:; _1(t) + 1...m;(¢)}, for which

m; (1) m; (1) m; (1)

Py, 1)
> > WMK > pEDmE)

z=mi_1()+1 y=m;_1(t)+1 mi-1(1) z=m;_1(1)+1

holds (by permuting higher values [aff on higher weights), and hence

00 m;(t)
—E(|sO)<E > a® > pen(m@]|-lz)
i=—00 z=m;_1(t)+1
00 m;(t)
=F (1 1) — min 1 (2] —
i:z—:ooc ( )z—mg:(t)+1(p(z ) mi—1(1)<y<mi(t)p(y ))(|r[ (Z)’ |Z|)
00 m;(t)
E’ (1 max 1) — min Jt
,-:z_:ooc ( )Z_mgz(t)+1(mi_1(t)<y<mi(t)p(y ) m;_1(t)<y<mi(t)p(y )>
X (mi(f) - mi—l(l))
=F (1 max 1) — min 1
2 i )(m,-_1<r)<y<mi<z>p 1) mi 1<y’ (1)

i mi(t)y>mj_1(t)+1

x (mi(t) —mi1 () =E Y A0Ci(1)

with definitions (45). Finally, we use Schwartz and Cauchy’s inequality (for simplicity
we do not denote time-dependence of the quantities below):

E(|s@)]) E’ZAC_E’ZW\/_C

i=—00 i=—00

E' N i A,-\J i Ajcfl <\IE’ i A,-\IE/ f: AjC: O

i=—00 j=—00 i=—00 Jj=—00
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LEMMA 5.4. — The expression

\IE’ > AOCEHD),

j=—00
which is the second factor on the right-hand sid€4®), is a bounded function of time.
Proof. —Due to definitions (45)A; can be bounded from above by
mi(t)

A< max  py.n< Y. p.n=PS@)=i|F®),

i—1(t)<y<m;(t
m;_1(t)<y<m; (1) y=mj_1(t)+1

the probability that ous-particle is at site. Hence

j:—oo j:—OO

JE/ 2 Af'(”cfz(”gJE/ Y PS®)=jI1F®)C30)

= EE(C3, 0 | F0)] = /E(CE,(0)).
The expectation in the last term is bounded in time by Lemma 5.1 with2, k = 4,
since
Ci=(mi—mi_1)* ci=c (& —n)® O

As we know, for any site, the probabilitiesp(y, ) can only change by equalizing
betweeny =m;_1(t) + 1...m;(¢), and the initial distribution is concentrated @ =
0) = 0}. Therefore, at every moment the functiony — p(y,t) is unimodal. This is
clearly the initial situation, and it stays true after each change of this function. By the
equalizing property of thép(y, 1)),z process at a jump of second class particle from
sitei,

max zZ,t
mi_1(t)<z<m;(t) P& 1)

can never increase. Hence the global maximum max(z, t) is also a non-increasing
function ofz, and it is bounded as well. Thus its limit exists, which we denot@blt is
believed thatP = 0 but we cannot prove this, and this is not necessary for our arguments.

LEMMA 5.5. —AssumeP > 0. Then the set
{xeZ: p(x,t)> P}

is always contained in the interv@l-1/P, 1/ P].

Proof. —The statement clearly holds initially. For a discrete interpaly] (with
possiblyx = y as well), we introduce the block-average

1 y
By (1) i= ———— 1),
e.y1(®) y—x+1;p(z)
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and we say thaltr, y] is agood blockif By, () < min.¢p. 1 1/]z| (for sitez =0, we
can write 1 instead of /1z]). Any interval is a good block initially. We show this for any
timer as well. More precisely, fix < y, and assume that at a momenan equalization
in the intervallu, v] happens:

p(Z7 t+ 0) = B[u,v](t)

for eachz € [u, v]. If each finite interval is a good block atthen we show thdtr, y] is
also a good block after this step,zat 0. There are four cases.
(i) If [u, v] and[x, y] are disjoint offu, v] C [x, y], then the block-average @f, y]
does not change by this step, hence it keeps on being a good block.
(i) If [x, y] C[u,v], thenBy, yi(t + 0) = By, ,(t + 0) = B, (?), and[u, v] was a
good block at time, hencelx, y] is also a good block after this step.
(i) Incaselx, y]\ [u, v]1 #0, [u, v]\[x, y] # D andBy, ,j(t) = By y)\u.v(t) before
the step, then

B, v1(t +0) = By, v1(t) = Bre yi\w,01(t) = Bpe y\ju, 01t + 0),

henceB, ,(t + 0) < By yjum,01(t + 0). The latter does not change by the step,
thus[x, y] U [u, v] keeps on being a good block, which shows thaty] is also
a good block after the step.

(iv) In case[x, y] \ [u,v] # @, [u,v]\ [x,y] # @ and By, ,j(t) < Brey\u.v1(t)
before the step, then by unimodali®, (1) < B, i, y1(t), Since the function
z — p(z, t) has no local minimum. This means ti}, ,i.,,) does not increase:

Bl vinpe,y1(t +0) = By, v1(t + 0) = By 1(t) < Bu,vingx, ().

Since B, y1\[u,»] dO€s not changes, ,; cannot increase either, afd, y] was a
good block before the step, thus it keeps on being a good block.
Applying this result shows the interval containing any single pgittt be a good block,
i.e.p(z,t) <1/P for z ¢ [-1/P, 1/ P], which completes the proof. O

LEMMA 5.6. —Assumdim,_,,, maxz p(z,t) = P > 0. Then there are;, y neigh-
boring sites in the interval—-1/P — 1,1/P + 1] and a timeT > 0, such that the sec-
ond class particles indexed hyand y cannot be at the same site aftér U@ (¢) #
UY(t) (vt > T).

Proof. —Let
A:={ze€Z: limsupp(z,t)= P} # .
=00

By the previous lemmad c [—1/P, 1/ P], and any indeXmax(t), for which p (zmax(), 1)

is maximal (and hence larger than or equal#)ois also contained i1/ P, 1/ P] for
any¢. With fixed P, < P large enough, there exists a momé&ntsuch thatp(x, ) < P,
foranyx ¢ A and for allz > T. Hence byp(zmax(?), t) = P, all indiceszmax(t) € A for
allt > T. Letus fixz € A andy ¢ A neighbors, and’ ¢ A the other neighbor oA.
Then infinitely often forr > T, p(z,t) > P > P1 > p(y,t) and P; > p(y’, t) happens.

In this situation, assume thaiz, r) decreases due to equalization with its neighbors in



M. BALAZS / Ann. I. H. Poincaré — PR 39 (2003) 639-685 675

A. Would the result of this step b2(z, t) < P, all indiceszmax(t) would be included in
this step by unimodality, henge(zmax(t + 0), ¢ + 0) < P would follow, a contradiction.
Thus we see thagt(z, t) > P can only be violated by an equalization includingr y’.

If this equalization also includes all indicegax(?), then the result must be(y, t) > P

or p(y',t) = P by p(zmax(t + 0),¢ + 0) > P, pulling out at leastP — P; probability
from the setA. If this step does not include aj .« indices, then it includes indices all
with probability at leastP, hence pulling out at leagtP — P;)/2 probability from the
setA. Sincer > T, zmax(t) € A, and hence by unimodality, the joint probability of the
setA can only decrease. We conclude that assuming equalizing of probabilities betwee
z€ Aandy or y’ ¢ A infinitely often results in decreasing the joint probability of the
finite setA infinitely often by a positive constant, which contradi@s< p(zmax(?), t)
andzmax(t) € A. O

Now we can prove law of large numbers for the indéx® of the second class patrticles
carrying ourS-particle:

PROPOSITION 5.7. —
. t
(V6 >0) tangOPQ?’ > 8) =0.

Proof. —By the previous lemma, we see that #®r> 0 there exists a neighboring pair
(z,y) e[—1/P —1,1/P +1] of second class particles which will never meet after some
T. After T, the process(¢) cannot cross such a pdai, y). By translation invariance,
it follows a.s. that such pairs appear with positive densityZan this case, thus(z) is
bounded a.s. and the statement is true. Hence we asBume for the rest of the proof.
By unimodality,

o0
Ai() = max  p(y,t) — min  p(y,t)
,-:z_:oo l i mi(,)gn:i_l(t)+l(m;—1(1)<y§mi(f) mi_1(t)<y<m;(t) )
<2maxp(z, t). (47)
Z€Z

Indirectly let's assume

(>0 3K >0 (VT >0) (3 > T): P(

ﬂl > 8) > K.
t
Then it follows that

E(|s(t)]) > K5t (48)
for infinitely many and arbitrarily large > 0. By (47) andP =0,

> A —0,

i=—00
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thus by dominated convergence theorem

E ) Awm—o0

(|s(t)| JE’ > A (I)J E/ Z A;(OC3(1) — 0

i=—00 j=—00

Hence by Lemma 5.3

whent — oo, as

\JE’ > AOCH)

j=—00

is bounded by Lemma 5.4. That means that

d
EE(’S(I)D

tends to zero as— oo, which contradicts (48). O

Now we show the law of large numbers 8(z), the random walk on the background
process; with parametep; and¢ with parametep,.

PROPOSITION 5.8. — Let

cosh6,) — cosh(6y)
01,05) =2 49
O 0D = ) — Enn0) (49)

for BL models, and

(03, 0) 1= — =" (50)
E92 (é‘O) E91 (7]0)

for the ZR process. Then for eveyy- 0

lim P(‘& — (61, 62)

—>0o0

> 5) 0. (51)

Proof. —We show the proposition for BL models, the modification for the ZR process
is straightforward. By the coupling rules, if a second class particle jumpsiftom+ 1
then the columry; of ¢ between siteg andi + 1 increases by one. If one jumps from

i +1toi then the colum; of n increases by one. Hence for the curréﬁ?d) of second
class particles defined earlier in this subsection,

1700 = (8:0) — 8:(0)) = (hi (1)) — hi(0)),
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i.e. it is the difference between the growth of coluniref ¢ and ofp until time . Due

to separate ergodicity of eaghandn, we have law of large numbers fgr(r) — g;(0)

and forh;(¢t) — h;(0), since each of these models is distributed according to its ergodic
stationary measure. Hence with the expectation of the column growth rates, we have

=Eq, (f(%0) + f(—¢0)) — Eo, (f (o) + f(—n0))
= 2(cosh8,) — coshby)) a.s. (52)
We extend definition (39) far € R:

—>0o0

J] i(znd) (1)
t

m,(t) == m () =max{m: U™ () < x}.

2nd

Obviously,m, (1) =m,(0) — J5(?). If K € Rthen

lim m(Kv)(O)

v—00 Kv

=E(%) — E(no) =: p a.s.

since at = 0, the starting distribution of the number of second class particles at different
sites is a product measure.

lim P(‘M + (c(6, 62) — K)p‘ > 8)

—>0o0

= lim P( M — Kp + 2cosh#,) — 2cosh6,)

—>0o0

~¢)

— Kp + 2cosh#,) — 2cosh6,)

~¢)

> 8) =0 (53)

=IlimP

—>0o0

nad
( mkn(0) — Jf[%zj)(t)
t

~¢)

7@
= lim P( LK’J © + 2 coshf,) — 2 coshdy)

—>0o0

—>00

. 7129
= lim P( -0 . @) + 2 cosh,) — 2 coshby)

by translation-invariance and by (52), for any 0. Recall thatS(z) is the position of the
zeroth S-particle, i.e. the position of the(r)th second class particlesi(r) = U ().

Hence
S UGO) (1)
(|20 et o] 5) =p(|V o 0] o)

=P(USD (1) > c(01, 0t +8t) + P(USD (1) < c(61,02)t — 8t).  (54)

In case
UCSON (1) > c(61, 0)t + 5t

it follows by definitions ofm, (t) and of p thats(t) > m (@, 0,)+s1) (1), hence
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t . t
P10 et -+ 1) <L Metussan®)

s() 6 M (coy,00)i4+50) () 8 )
<p(22 02, 4 p(Metariint) 0
< t ~ 2p> + < t = 2p

As time goes on, the first term goes to zero due to Proposition 5.7, and so does the seco
term by (53) (WithK = ¢ (61, 62) + ).
In case

USON(t) < c(01, 02)t — 8t

it follows thats (1) < my.0,)—s1)(t), hence

t _ t
P(UCD(1) < (61, 620 — 1) < P(? < Mectnoiin®) ))

t

s(1) ) M (¢ (6y,0)—51) (1) ) )
<P(Z2 < 2p) 4 p( Meutersnt 2 )
( t 2p> + ( t g 2p

The first term again goes to zero due to Proposition 5.7, and so does the second term |
(53) (with K = ¢(64, 62) — 8). Thus we see that both terms on the right-hand side of (54)
tend to zero as— oco. O

5.3. Coupling the defect tracer to the S-particles

We fix the modek in stationary distributioru ) with the defect trace () started
from the origin. We prove Theorem 1.6 for BL and (totally asymmetric) ZR models.
A natural idea would be to couple the defect tragerto the second class particles,
present at the same si@ The problem is that, either to the left or to the right, the rate
for any jump of second class particles form the gitanay be higher than the rate for
Q to jump. On the other hand, one second class particle always stays iahfige one
jump fromi, in case more than one of them were preseit @ihe solution is to couple
the defect tracer to th8-particle, for which the desired conditions are already proven
by Propositions 5.2 and 5.8. For simplicity reasons, in case of the ZR process we le
f(—z):=0forz >0, and hence.(—z) of ZR is also zero in these cases.

5.3.1. Theupper bound for Q

First, we identifyn distributed according te o with @ possessing the defect tracer
0, therefore we sef; := 0 < 6,. We have thenw; (z) < ¢; (¢) for all r according to the
basic coupling, and recall that(0) = 0 < S(0). In what follows, we are going to couple
the random permutations of tlseparticles, thus the random walir) of the zerothsS-
particle, with the defect trace® (¢+). We only couple them in cage(¢) = S(¢). The basic
observation we use is that the rates (40) for the jump oftparticle can be compared to
the rates for the jump of the defect tragg€:). As we have seen at the introduction of BL
models, it is enough to consider the “effect of bricklayers” standing at each poaition
That is to say, we are allowed to consider thedependent parts of(w;_1, w;) and
r(w;, w;i+1) only, since thew;-dependent parts are added to #)e;-dependent or to the
w;11-dependent parts in these rates. In the rest of the paper, we describe couplings |
giving rates of bricklayers standing at each sit€his observation also holds for the zero
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;Ztt):ai?orQ ands to step left and for bricklayers at site= S = Q to lay brick on their left

With rate hi—11 gi-11t 0+ S~ Asecond class particle
f—wi = 1) — f(=&) . ~

[f (o) = f (o = )] = LEE2LE . ~

fen—f o) . o o -

S (=& . .

Table 3

Rates forQ andS to step right and for bricklayers at site= S = Q to lay brick on their right
With rate hit gt O~ S~ Asecond class particle
SO (@) = f ()] . ~

HOZL — [f (@i +1) = f (@) . . ~

flwi +1) = f(wi) . . . ~

S (i) . .

range process (by saying rate for a particle to jump instead of saying rate for bricklayer:
to lay bricks).

In Tables 2 and 3, 1 means that the column of the modebetween andi + 1 has
increased by oneg; 1 means that this column gf has increased by oney means the
jump to the right fromi, .\~ means the jump to the left from

Note that byi = S = Q, ¢; > w; + 1. The rates are non-negative due to monotonicity
of f and convexity Condition 1.5. By summing the rates corresponding to any column
of the tables, one can verify that eastand¢ evolves according its original rateg, has
the jump rates according to the basic coupling described in Table 1§ atsb has the
appropriate rates (40). We see that once being at posititime defect trace® cannot
move right without movingS with it and S cannot move left without moving with it.
Hence our rules preserve the condition< S.

We have so far the upper bourilz) < S(¢), and we have the law of large humbers
(51) with speed:(6, 8,) defined in either (49) or in (50) for any, > 6, and thenth
moment condition (43) for this(z) process.

5.3.2. Thelower bound for Q

Now we show a similar coupling which results in a lower bound dorThe natural
idea would be to identify with w, and coupleQ to the S-particle. The rates fo@ and
S to jump with would allowQ(r) > S(r). However, this coupling cannot be realized in
a similar way that the coupling described above: there is no wayfand S to step
together, since only one brick can be laid at a time to a column.

Therefore, we need to modify the initial distribution of the models as follows. Let
u(x,y) be, as before, a two-dimensional distribution giving probability zere toy,
and having marginalg, andpu,,, respectively. Fix the paif, ¢), as before, with the
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product ofu (x, y) for different sites as initial distribution. Define

e, (y — 1)

55
Moy () (53)

w(y,x) = pu(x,y) -

Fix the pair(x’, ¢’), with the product ofu(x, y) for each site # 0 and ofu/(x, y) for

the sitei = 0 as initial distribution. Them;(0) < ¢/(0) holds a.s. for each site hence

the basic coupling is applicable for this pair of models. We have second class particle
betweeny” and¢’, and we introduce thé’-particles as well, starting; from the first

site on the left-hand side of the origin:

S'(0) = S§(0) := max{i < 0: ¢/(0) > 5(0)}.

Assume now that th&-particle of(, ¢) is also started from the first site on the left-hand
side of the origin, instead of starting it from the right-hand side of the origin:

S(0) = So(0) := max{i < 0: £(0) > n;(0) }.

Then it is clear, that Propositions 5.2 and 5.8 also hold for $hjzarticle. Now we
derive these statements f8ras well. Since initially(n’, ¢') only differs from(n, ¢) by
the distribution at the origin, the conditional expectations

E(S'(®) [ 16(0) = x, £(0) = y) =E(S() | no(0) = x, ¢0(0) =) (56)

agree. This is the basic idea of the following

LEMMA 5.9. —The moment conditio(43) and the law of large number&1) hold
for S’ as well.

Proof. —By the use of (56) and Cauchy'’s inequality in a similar way than in the proof
of Lemma 5.1,

S/ n S/ n
(' (”') ZE(' OF | o) = 45(0>=y)w(x,y>

X<y
SO ) Wx,y)
=) E 0) = 0
% ( | 10(0) = x, £o(0) = y ) /1 (x, y) - =
S)|" 2 1/2
<[S(E(58 - 500-5) )]
X<y
M/(x’y) ) ]1/2
x L;v e (x,y)
SO)M)T/T Wy ]1/2
<|E KO el
|: < t2n )z:ylu(x’y):u“(x y)

The first factor of the display is bounded by Proposition 5.2. For the second factor, by
(55) and (6) we write



M. BALAZS / Ann. I. H. Poincaré — PR 39 (2003) 639-685 681

;Ztt):ai‘florQ andS’ to step left and for bricklayers at site= S’ = Q to lay brick on their left
With rate W1t g_4t 0~ S~ Asecondclass
particle

_/ 7 f- n) — f(=¢)] . 2
W FG+D=f=2D] . A~
FE+D = (=g o . o 2
F=¢h . .
Table 5
Rates forQ andsS’ to step right and for bricklayers at site= S’ = Q to lay brick on their right
With rate h;t gt O~ S~ Asecond class particle
f&=1—fmp . .
/@) = 16 =] = L=L . . ~
o . .

/ , ) ) -1 , 2 -1
ZM(;C y)M(x’y)zzMﬂ(x,y)zzwuez(y—l)

<y ) < M) v Ma(y)
:Zf(y)eez(y—l). 1
S € f-D! Z(6)

which is again finite. Hence (43) holds 8t as well.
For the law of large numbers, we know that for any O,

®

—,Ln;OZP(]ﬁ ~ (61,62 > 8 10(0) =x.60(0) = ) u(x. )

x<y

—,'LTOZ P(’— — (61, 67)

x<y

1
= 25, En(FO)7),

= lim P(‘& —c(64,62)

1—00

> 8| ny(0) = x, £J(0) = y),u(x, -

hence (51) follows folS” as well by absolute continuity @f’ w.r.t. u. 0O

In order to obtain lower bound fa@ of w distributed according t ,, setf, =6 > 6;.
The marginal distribution ofy(0) is the second marginal qf’, namely,ugz(y -1 =
ue(y —1). Hence it is possible to fix the pain’, ;) defined above with

g =) +3pa) 00 =
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i.e.  is coupled toz” with the defect trace) between them. Note tha'(0) < 0=
0(0). We show the coupling that preservg4r) < Q(r) for all later times. We only
coupleQ to the random permutations acting 8rin caseQ = S’ for a sitei. For Tables 4
and 5,k 1 means that the column of the modglbetween’ andi + 1 has increased by
one, g/ 1 means that this column af has increased by one. Note thatiby S = Q,

¢/ > n; + 1. As at the coupling for the upper bound, the rates are non-negative due tc
monotonicity of f and convexity Condition 1.5. By summing the rates corresponding to
any column of the tables, one can verify that eacand;” evolves according its original
rates,Q has the jump rates according to the basic coupling described in Table 1 ¢hence
also evolves according its original rates), afidilso has the appropriate rates (40). We
see that once being at positi6h the defect trace® cannot move left without moving

S" with it and S” cannot move right without moving@ with it. Hence our rules preserve
the conditionQ > §'.

Proof of Theoren..6. — By the upper bound and the lower bound above, we have
S(t) = Q)= S'(1)

and for anyy, > 6 > 61, we have weak law of large numbers owith ¢(9, 6,), and for
S” with ¢(6,, ), respectively. Hence taking the limi#is 7 6 andf, ~\, 6 completes the
proof of the law of large nhumbers (10) by computing

elll%c(@l, 0) = elz@c(@, 62) =C(6)

both for BL and ZR models. Moreover, for anye Z*, we haventh moment condition
(43) for both S and S’, hence not only (11), but theth moment condition follows as
well for Q. This also showd.”-convergence 00 (¢)/t foranyn € Z*. O

5.4. Strict monotonicity of C (@)

As a consequence of the type of coupling methods shown above, we are able t
show strict convexity of the functioft (o) of (8). First we refer to the coupling which
shows (non strict) convexity, and then we complete the proof of strict convexity by some
analytic arguments.

Remark5.10. — Letw,w’ be two copies of a model (either BL or ZR model)
possessing Condition 1.5, with the defect traa@s) and Q’(¢), respectively. Assume
that for each sité and for timer =0

w;(0) <w;(0) and Q(0) < Q'(0).
Then it is possible to couple such way that forzatt 0 and anyi € Z,

wi(t) <wi(t) and Q@) < Q'(r) as.

is satisfied.
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This coupling is very similar to the ones shown in this subsection, we do not give the
details here. The paifw, »’) is coupled according to the basic coupling, and we can
apply this proposition for the case when their joint distribution has margpaland
K, respectively. Then we simply see that the motion of the defect tracer of a model
has a monotonicity in the parametgerof the model's stationary distribution. In the
introduction we saw that this implies convexity of the functitiio). We prove now
strict convexity of this function:

Proof of Propositionl.7. — First note that by the form (6) of the measurg we have
d
0(0) =Ey(w) = 7} log(Z(#)),

_ d
Ey(a?) = FE@ >0,

d d
Ey(@°) = —Ey(&°%) = — (Var :
0(0°) = Eo(@%) = 57 (Vary (@)
where tilde stands for the centered variable. For the BL model, we need to show stric
convexity of the function

H(0) =Ey(r) =€ (0) + €7 (0).
We compute its derivative

d w@+e’)  (@-e’)

_H ) = - ~ k]
do @ & Es @

and, similarly, the second derivative

2

d
——H() =

do? (& +e")Es (&%) — (¢ —e")Eo(a°)].

[Eo(@?)]3
Hence (strict) positivity of
(¢ +€7)Ey (@) — (¢ — ™)y (a°)] (57)

on an interval ofg is equivalent to (strict) convexity of(¢) on the corresponding
interval of o(0). (57) contains derivatives of 1@g (9)), which is by definition analytic,
hence (57) is also an analytic functiondofMoreover, by the previous remark, we know
convexity of H(p), hence non-negativity of (57). Since this function is strictly positive
atd = 0 by symmetry properties @f,, there are at most countably many isolated points
at which this analytic function is not strictly positive, hence we have at most countably
many isolated points at which the second derivativé{@d) is not strictly positive. This
completes the proof for the BL models.

As for the ZR process, similar computation leads to

[ Ey(0?) — & Ep(%)]
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in place of (57). As we know non-negativity of this function by convexityHjp), we
only need to shovE,(»?) # E»(@°) for someé, then the previous analytic argument
leads to strict convexity.

Indirectly, assume

Ey (@) = Ey(a°) (58)

for all & < 6. Since the right-hand side is the derivative of the left-hand side, it follows
that

Eo(@®)=A-€

for someA > 0. Integrating this we have
Egy(w)=A-€&

(the additive constant is zero as can be seen by taking thedimit—oo). Integrating
again we have

log(Zz@)) =A-&+K, ie.

ZO)=K'e&¥, ie.

o0 éz o0 Az.egz
:K/
;,f(z)! ; 2!

for all ® < 6, which leads tof (z)! = z!/A%, f(z) =z/A. Hence we see that if at least
for onez > 1 value we havef(z +1) — f(2) > f(z) — f(z — 1), then (58) is not true
for somef, and then strict convexity dft (o) holds. We also see linearity (o) when
fislinear. O
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