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ABSTRACT. — This article studies the occurrence of cut times along the path of a random walk
(with finite support) on the discrete Heisenberg group. We establish the existence of an infinite
number of cut times almost surely, using sharp estimates of the Green function and its gradien
This example (up to some extensions) happens to be the last unsolved case in the study of c
times for random walks with finite support, on finitely generated groups.
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RESUME. — Cet article étudie I'occurrence des temps de coupure le long du chemin d’'une
marche aléatoire (& support fini) sur le groupe de Heisenberg discret. Nous établissons I'existen
d’'un nombre infini de temps de coupure, presque sirement, a I'aide d’estimations précises de
fonction de Green et de son gradient. Cet exemple (a quelques extensions pres) apparait com
le dernier cas non résolu dans I'étude des temps de coupure pour les marches aléatoires a supj
fini sur les groupes finiment engendrés.
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1. Introduction

Let start with the definition of cut times for random walks on discrete, finitely
generated groups. Then, we will give an overview of the known results about the
occurence of cut times along the path of such random walks.
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As we will not deal only with the Heisenberg group (see Definition 2.4), but also with
its finite extensions and finite extensionsZ¥andZ*, we present the definitions for a
random walkS(k) on a general grouy’ having polynomial growth of degreP (see
Definition 2.2). Then, we study the occurrence of cut times on the path of this random
walk.

DEFINITION 1.1.-A timen is acut timeif
S([0,n]) N S([n + 1, 00[) =1,

whereS([a, b]) = {S(k): a <k < b}.

We first remark that every recurrent random walk has no cut times, with probability 1.
Indeed, the existence of an infinite number of returns to the starting point implies that
this point belongs t&' ([0, n]) N S([n + 1, oo[) for all n, almost surely.

Lawler [13] studied the case of the simple random walkZdnFord < 2, the simple
random walk is recurrent, so the work deals with the ea$e3. He builds a two-sided
walk (denotedS) as an extension of the random walkite Z: for k negative,

P{Sk—1) =y|Sk) =x}=p(,x).

Then, each positive cut time fcf is a cut time forS. For S, the probability thatk

is a cut time does not depend énThus, takingk = 0, by symmetry, the problem is
reduced to the study of the non-intersection probability of two simple random walks
with the same starting point. This quantity has also been studied by Lawler [13]. Then,
Lawler proved that, forl > 5, simple random walk has an infinite number of cut times,
with probability 1. He also proved the same result for the simple random walk*on
with more complex methods (see [13]). Finally, James and Peres [11] solved the 3
dimensional case and extended the result:

THEOREM 1.2. —Every transient random walk df’ with finite range has an infinite
number of cut times, almost surely.

The case where the random walks are not centered is a simple consequence
the ergodic theorem. For centered random walks, they defined an infinite sequence ¢
spheres with an infinite subsequencecof spheresit means that after the first hitting
time of these spheres, with probability 1, the random walk does not come back within
the sphere. Hence, as each hitting time of a cut sphere is a cut time, they get the result

On groups having polynomial growth of degr&e< 2, every centered (see Defini-
tion 3.1) random walk is recurrent. Whdn > 5 (and for discrete groups with super-
polynomial growth), James and Peres [11] adapt the method used by Lawkt tm
get also the existence, with probability 1, of an infinite number of cut times for symmet-
ric irreducible random walk with finite range. Actually, this method needs only to have
a decay of the type

P{S(k) = e} = O(k/?).
Alexopoulos [1] proved that this occurs even for centered random walkvith5 and

for non-centered ones, with any degree (still with finite support). So we are left with the
case of centered random walks on groups of degree 3 or 4.
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When D = 3, the group ha¥Z® as a sub-group of finite index and whénh= 4,
the group has eitheZ* or the Heisenberg grougH; as a sub-group of finite index
(Proposition 2.5). As every nilpotent, torsion-free grol,is isomorphic to a discrete
lattice in a nilpotent simply connected Lie group. On this Lie group, we have an exact
formula for theGreen function(see [6]). Then we can compare its gradient with the
one computed on a finite extension of the discrete gfigCorollary 3.3) thanks to
the work of Alexopoulos [1]. Then, we build spheres corresponding to level lines of
the Green function. On a portion of such a sphere, the gradient of the Green functiol
has a lower bound (Proposition 3.5) similar to the oneZsh Thus, the techniques
developed by James and Peres can be applied to these portions of spheres, which appe
to be sufficient to prove the existence of an infinite number of cut times almost surely
(Theorem 4.1). We also note that the same techniques work on finite extensi@fs of
or Z*, which completes the study of cut times for random walks, with finite support, on
finitely generated groups (Corollary 4.8).

Finally, note that all these results deal with random walks on which transience
coincide with the existence, with probability 1, of an infinite number of cut times.
However, James [10] gave an example of a graph where the simple random wall
is transient but get only a finite number of cut times, with probability 1. Thus, this
coincidence cannot be a general property.

2. Discrete groups having polynomial growth

We give some definitions from geometric group theory.

DEFINITION 2.1.—LetI" be afinitely generated discrete group avicdbe a symmetric
finite generating set. We callord distancecorresponding td/) between two elements
x, y of " the minimal number of generators we need to go fegfidentity ofl") to x 1y
by right multiplication. We denote this distanpey|.

DEFINITION 2.2.—LetI" be afinitely generated discrete group avicbe a symmetric
finite generating set. We denodfel (n) = #B(e, n) the cardinality of the ball of radius
for the word distance associated #. We say thail” has apolynomial growthof
degreeD if there is a constanC such that for allx,

C~ P <\Vol(n) < CnP.

By left invariance, this property remains true if we center the balls atvany". The
original definition of the polynomial growth needs only the upper bound of the volume.
But since the famous article by Gromov [7], these two definitions are known to be
equivalent. Moreover, these groups are exactly the finitely generated virtually nilpotent
groups.

DEeFINITION 2.3.—A groupT is called virtually nilpotentif T has a nilpotent sub-
groupI'V of finite index.

LetT'N be ar-step nilpotent group. Then, its lower central series is

N _ pN N N _
M=ry2r;2---20 =e,
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where each”)Y /TN, is afinitely generated Abelian group. Bass [2] gives a formula for
the degree of growt (I'V) in term of the (torsion-free) rank of the quotiedts / '™

i+1-
Namely,

DY) =2 i-tk(D/T}4,). (1)
i=1
By [8, Theorem 7.8], a§'"¥ is nilpotent, it has a torsion-free subgroup of finite index.
Then, in any virtually nilpotent groujp’, there is a nilpotent torsion-free subgrolip
of ", of finite index.
Outside the Abelian case, a typical example of such a group is the Heisenberg grour

DEFINITION 2.4.— The Heisenberg groufil; is the group of the upper triangular
integer-valued3 x 3) matrices withl's on the diagonal

1 x z
M=|0 1 y|, (x,y,z)eZS.
0 0 1

It is easy to check thdtl; has polynomial growth of degree 4.

As the subgroug” of I" defined above, is torsion-free and nilpotent, it is isomorphic
to a cocompact lattice in a simply connected nilpotent Lie grdufsee [14]). Then, by
a classification, due to Dixmier [4], of these Lie groups for low dimension, we get the
following result (see [3] for a detailed proof).

PROPOSITION 2.5.— Let I' be a discrete group having polynomial growth of
degreeD. If D < 3, T has a subgroud” of finite index, which is isomorphic t&".
If D=4, T has asubgroug™ of finite index, which is isomorphic @ or Hs.

Using this proposition, we will answer the question of the existence of cut times for
random walks, with finite support, on finitely generated groups, only with a studison
(and some remarks on finite extensionglaf Z3 andZ4).

The method we use relies on sharp estimates of the Green function and its gradien
These estimates are obtained in Section 3, using exact computation of the Green functic
on the Heisenberg Lie group due to Folland [5] and Gaveau [6], and error estimates witl
the discrete setting, due to Alexopoulos [1]. In Section 4, we adapt the method by Jame
and Peres [11] to prove the existence of infinitely many cut times for random walks
on Hj, with probability 1.

3. Discrete gradient of the Green function

LetI" be a discrete group having polynomial growth. Cébe a torsion-free nilpotent
subgroup of" of finite index. We denote bi¥ the simply connected nilpotent Lie group
in which we can embed”.

The groupl’/[I", T'] is an Abelian subgroup df. Hence it can be written @* x 1,
with [ finite.

DEFINITION 3.1.— We say that a probability measure dn is centeredif its
canonical projection orZ* is centered.
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Let 1 be such a measure, with a finite supp@rtsuch thaty generateg™. We will
associate tqu a left-invariant sub-Laplaciad” on N. We denotep;' the heat kernel
on N associated td.” (i.e. the fundamental solution Qg + L*) f = 0). We define the
two Green functions

forall (hy, hy)inT,  G"(hy, hy) =Y w"(hi*hy)

n>0

and
o0
for all (hp, k) in N,  G*(ha, h’z):/p;*(hz, hy) dt,
0

wherep" = p*" thenth convolution power ofx anduf (x) = > r wx"y) f(v). By
translation invariance, we only need to consider

pl(h)y=pl(e,h); G"(h)y=G"(e,h); G"(h)=G"(e,h).
3.1. Construction of L*

We follow the construction of [1]. The Lie algebyd of N can be identified with a
vector space

Noo = @M /M+l
i=1
with the following Lie bracket:

forhe N; andh' e N;, [k, W' 1=T[h, 1],

where[h, k'] is the Lie bracket onV'.

Let X = {X1,..., X} be a basis of\, such that{X,, ,i1,...,X,,} is a basis of
N;/N;;1. Here,{n;: i =0 tor} is a finite increasing sequence witl = 0 and, for
i>1,

n;= dlm@./\/]/./\[]_H_
j=1
Fix {g;: I =0 to p} a coset representative of/ I/, with go =e. If h € T’, we can
identify 2 with an element of\/. Then, we can defin®; (k) as theith coordinate of:
in the basisX. We extendP; to I" by sayingP;(hg;) = P;(h). We define the following
coefficients:

bi(g) =) Pi(ghu(h), 1<i<ny
hel

aij(g) =Y _Pi(gh)Pj(ghyu(h), 1<i, j<ny;
hel

ai(g)="bi(g), 1<i<ny.
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Now, we define the first order correctopd (see [1]) by

v/ (hg) = Zu”aj(gl), 1<j<n.
n>0

We write

bij(g) => Vi (@) P(gihyu(h), 1<i,j<ny.
hell

Finally, we define the coefficients
gij = ((1/2)a;; + bij), 1<i,j<ny,
and
gi = (bi), ni1<i<ny,
where(f) = (1/(p + 1)) >I_o f(g)- Then, we define the sub-Laplacian as
L'=— > q;X:X;— > aX. (2)

1<i, j<ng ny<i<ny

It is constructed in such a way that we can compare the asymptotic behavidr of
andp. Itis called thehomogenized sub-Laplaci@ssociated tg (see [1]).

WhenT is nilpotent and torsion-free, we take the same definition Wwits I'". We
remark thaty’/ = 0 in this case.

3.2. Error estimates

We define the discrete gradient of a functigrin the directionw € U, by

Vo f(h) = f(hw) = f(h)].

And,
V f(h) =maxv, f(h).

Recall that any elemerit in I” can be identified with an element of. From [1], we
have

THEOREM 3.2. — LetT be a discrete group having polynomial growth of degfee
then for all ¢ € (0, 1), there exists a constart such that, for allw € U, h € T, and
gel’/T’

, h 2
Vot (hgr) = Vupli(h) = > (Vo ¥/ (€)X pli (h)| < Cn~PHH/2 exp(—'ci').
n

Jsny

From this, we deduce error estimates for the gradient of the Green function.
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CoROLLARY 3.3.—If T is a discrete group having polynomial growth of degiee

then for all ¢ € (0, 1), there exists a constar such that, for allw e U, h € T, and
gel/I’

Clhg|* P,

VwG“Mgﬂ-VwQ“Uw—-E:(waj@DU/XQP,M)dt
0

Jj<m

Proof. —We integrate the result of Theorem 3.2.

Vu G (hg) = VuG () = 3 (Vuyl @) [ X;plihds
0

J<ng

<2

Vw,un(hgl) - wpn (h) - Z (vaf] (6) jPn (h)’

n>0 j<ni
n+1
+Zu%W—/W “(hy dt
n>0

n+1
X pl(h) — /]nmm

n

+ > (Vuyie) Y

j<ni n=>0

By Theorem 3.2, the first term of the right hand side can be easily bounded by
clhg|*P~¢. For the second term, using [15, Theorem VIII 2.7], we get

n+1
2

www—/mnwm
n>0

n+1 t

-y //(—Vwaa—spf“(h))dsdt

n=0l 5 5

n+1l ¢

~xl]

n=0l 3

h 2
s (P+3/2 exp(— u) dsdt
Cs

n
< C/|h|_D_l-

Likewise for the third term, we get

D

n=>0

n+1
]mW—/]nWm

n

n+l t
<e)

2
// ‘(D+3)/2exp< 4] )d dt
n>0

< ch|~PL

This completes the proof. O
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Remark3.4.— WhenT is nilpotent and torsion-free, we can remove the term
depending on the /s in the previous results.

Now, we consider the case whdras finite extension oHl3, soD = 4. The associated
Lie groupN is R3 with the following product:

Ly, )Y, )= (x+x, y+ Y, 24+7 +(1/2)(xy —x'y)).
Let N be alsaR3, but with the product:
3,20y, )= (x+x, y+ Y, z2+7 = 2(xy —x'y)).

We give this other definition of the Heisenberg group in order to use results from Folland
[5] and Gaveau [6].

As I'/[T", I'] is finitely generated and Abelialt,/[T", I'] ~ Z? x I, wherel is finite.
Let 1 be the canonical projection of on Z2. By assumption; is centered with finite
supportl/;, which generateZ?. Let Q; be the symmetric positive definite matrix Wwhose
entries are the coefficientg;;) defined above. We define an isomorphigmV — N

¢(x7)’a1)=(ax+byabx+Cy7dZ) (3)

with a = | Q1Y%+ q22, b = —q12, ¢ = |01|Y? + q11, andd = —4[2| Q1] + | 01|Y?(q11 +
q220)]. Let

X 9 10 X 0 + and X 9 4
= — — =y, = — =X, = -
YT T 2% T ey T 2Ye: =9z

The setX = {X1, X5, X3} is a set of left-invariant vector fields, basis (of the Lie algebra
associated tov. We write p/‘ (x, y, z) the fundamental solution iV of (8% +L*) f=0.
The expression (2) af* is

L"* = —q11 X2 — q20X5 — q12(X1 X2 + X2X1) — q3X3.
Then, we check that! o ¢! is the fundamental solution iN of the equation

2 B o\ .
(E—EAK —ﬁSB—Z)f—O,

where

B=4011"*+2/01l(q11+¢20) and §=—2q3| 01|72
andAg is theKohn Laplacian defined by

92 92 9?2 9?2 9?2
+ 4(X2 + yz) P

Ag=—v L 44 _4
K=o T2 T V. P ayez 9z

Folland [5] and later Gaveau [6] have computed the explicit form of this solution, and
then the expression of the associated Green function. We get
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Gh(x.y.2)=G" o (x,y.2)
[(x2 + y2)2 + Z2]—1/2 (8 r<x2 + y2>)
= exp| = arcta . 5
B(1+ exp(—87/2)) P\2 z ®)
Leth = (hq, hy, h3). We define a distance from the oridin x onHg, called theKoranyi
distance

|k = [(h2+ h2)? +hYY". (6)

This distance can be compared to the word distanc& droughly-isometric toH;)
since, by [9, Theorem 5.1] and (5), there exists a congfastich that, for alk in Hs
and/,

CYhgi < Ihlx < Clhgl
wherehg, is the unique decomposition defined above. For positive real numbéfs
we define also the subsefsa, M) of I by
S(a, M) ={g =hg €T hi+h5> alhs|, cihy+ c2ha < —M, and
c3h1+ caho < —M},

where the constants, ¢, ¢3, ¢4 Will be fixed below.

PrRoOPOSITION 3.5. — There is a positive constant= c(«), such that for allg
S(a, 0),

VG*(g) = clg| 2.

Proof. —-We write ¢ (h) = H = (Hy, Ho, H3). Then
(c +b2)|Q21| H{+ (a Jrz)z)@hr2 2b(a + )@Hle
B B2 B2
=h24+h3> Ollhsl——l 3l.

It implies that there is a positive constgntwhich depends only op;, such that
H1 + Hz ya|Hz|. (7)

We write ¢(w) = W = (Wq, W, W3), and so¢(w)¢p(h) = WH = (Hy + Wy, Hy +
Wo, Hz + W3 — 2(W1H, — WoHy)). We need to bound from below

VWG (h) = |G" (p(w)p () — G (1)) |.
Using (7) and the boundednessg¢afU ), we get
|H|% — |WH |y =4((HZ + HZ)(W1Hy + WaHy) + H3(WoHy — WiHy)) +O(|H|%),

and
(HI% +|WHIZ)|H I IWH|% =2|H|% (1+ o(D),
where the ¢1) tends to 0 whemnH | ¢ goes to infinity.
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Let u = (Hy, Hp) andu’ = (—H,, Hy) be two vectors ifR2. Let W; and W, be the
coordinates of Wy, W) in the basis(u/||u||, u’/||«'||). Here,| .|| is the Euclidean norm
onR? Letv = ((H?+ H3)/|H|%, H3/|H|%) in the basigu/|u|, u'/|«|). We get

|H |2 — |WH| 2 =2(H2+ HZ) | H| X W, v) (1+ o(1)). (8)

Likewise we get
2 2 2 )
arctar<M>  arctar{ _(Ha+ WP+ (Ha £ Wo) )
Hz + W3 — 2(W H, — WoHy)
= 2(HE + H) | HIN W, (B/2v) (1 +0(), (©)

with v’ = (—Hg/|H|%, (H?+ H2)/|H|%) in the basisu/|u|, ' /||«'|). So, (7), (8) and
(9) yields

3
1/2

VG (h) = c(HZ+ HA) Y2 HIZ (W, (v+ (B/20) (1 + B2/4) %), (10)

At this point, we need a technical lemma. The@€l/;) is bounded and it generat&s.

LEMMA 3.6. - LetK = maxXycsw, | W]. There is a strictly positive constagt(K)
such that for allWw and W’ £ 0 in ¢(U;), non collinear, and for allv e V = {v €
R2 [jv]| =1},

max{|(W, v)|; (W', v)|} > C(K).

Proof. -We write W = (W1, W,) andW’ = (Wj, W;). We can takg|W| > [|W’||. As
W and W’ have integer coordinateW| > 1. Then

max{|(W, v)|: (W', v)|} > max{|cosv, W) |; |cosv, W")|}.

El ’

The infimum of the right term, ovar € V, is attained for

o WIWI = W/IW
I(W/IWI =W /W DI

So,
{max{|(W, v)|; (W', v)|}} =sin(|(W, W)|/2) > Esm[(W, W)
1 / /
> W|W1W2 — W Wal.

If Wy =0, thenWiW, # 0, and if W] =0, thenW, W, # 0. So,|W W5 — WiW>| > 1
is true in both cases. Now, suppoBgW; # 0. As there is a finite number of vectors in
¢ (Uyp), we get, under the hypothesis of the lemma,

min _|Wa/ W1 — W/ Wi| > c(K).
W1W]#0

The lemma follows. O
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As ¢ (U;) contains more than two elements, by Lemma 3.6 and (10), we ggi|fer
large enough,

—3/4
]

VG () = max V,G"(h) > c[(HE+HE + H Y > B (1)
e (Ur

Now, we computefy” X ; p;' (h) dt for j =1, 2. As p;*(h) andX p;‘ (h) are continuous
in r andh (see [6] for an explicit formula op!* (1)),

/ijt“(h)dt:ng“(h).
0

We denote
_ [(HP+ H?*+ HA™%% (6 r(Hf + H%) 2, 2
A(h) = BT exp_3n/2) exp(2 arcta 78 ) (Hf + H5).
For j =1, using (3), (4), (5) and the definition &f«, M),
X1G"(h) > —2A(h)[(a® + b?)hy + (b(a +c) — §/8) hz
+ c(@)|(a® + b%)8h1 + (b(a + )8 + 1/4) hy

],
and
X2G*(h) = —2A(h) [(b(a + ¢) + 8/8)h1 + (b? + c?)ha
+c(@)|(b(a + )8 — 1/4) h1 + (b* + c?)8ha],

where the constant(e) goes to 0 wherw tends to infinity. So,X,G*(h) > 0 and
XoG*(h) > 0 under the hypothesis

(a® 4+ b?)hy + (b(a +c) — 8/8)h,
+ c(@)|(a® + b%)8hy + (b(a + )8 +1/4)hy| <0

and
(b(a+c)+8/8)hy + (b*+ c?)hy
+c(@)|(b(a + )8 — 1/8) hy + (b* + c?)8hy| < 0.

The two lines ofR? defined by(a? 4+ b?)h1 + (b(a + ¢) — 8/8)h, =0 and(b(a + ¢) +
8/8)h1 + (b%> + ¢®)hy = 0 are not parallel becauge? + b%)(b? + c?) — b%(a + ¢)*> +
82/64 = | Q1| + 862/64 > 0. So, fora large enough, there exist constaniscy, c3, ca
such that, folk|g large enough, the above hypothesis is satisfied when

cith1+ coho <0, and czh1+ caho <O.
Finally, asV,, v/ (e) > 0 for all w and j (by definition ofV,,), we get

V¥t (e)X1G" (h) + V2 (e) X2G" (h) > O.

Then the result follows from Corollary 3.3 and (11)a
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WhenT is a finite extension of.¢, then the associated Lie groupR¢ with the usual
additive law. So, up to an isomorphism, wiy = 9;, L is the usual Laplacian and
then p;*(h) is the fundamental solution of the usuabimensional heat equation. If we
write 4 in an appropriated basis depending on the covariance n@irassociated te,
then, as soon ds; < 0, we get

/ijf‘(h)>0.
0

Using Corollary 3.3 and the well-known estima¥g* (h) > c||h|*~? (see [11] for
instance), we get

VG (g) = clglt
as soon ag; <0 for all j. Here|| - || denotes the Euclidean norm.

4, Cut timesfor random walks on H

Following the introduction, we study the occurrence of cut times for random walks
with finite support, which generatés;. Our result is the following

THEOREM 4.1. — Let S(k) be a random walk o, a finite extension oflz such
that the transition probability.(x) has a finite support and generatEs ThenS (k) has
infinitely many cut times, almost surely.

We adapt the proof given in [11] fé&*. For simplicity, we remove the exponemtfor
the Green function.

By translation invariance, we can tak¥0) = ¢, the identity of I'. We denote
G(x) = G(e, x) the Green function o’ associated tq, and U is the finite support
of u, which is also a finite generating setidf We define a sequence of sphedg¥(n)
which can be seen as “level lines” 6f(x) by setting

B(n)={xeTl: G(x) > (8/n)?}, (12)
dB(n) = {x € B(n): xU contains some ¢ B(n)}.

Here,$ is a suitable constant such that the following lemma is true. For completeness
we write its short proof taken from [11].

LEMMA 4.2 [11, Lemma 2.3]. —Let r(n) = (§/n)?> and R(n) = (1 + 1/n)(8/n)>.
Then for alln > 1 andx € d B(n), the Green function satisfiegn) < G(x) < R(n).

Proof. —Sincex € B(n), the definition ofB(n) gives the lower bound. As € dB(n),
it has a neighbory ¢ B(n). So, [9, Theorem 5.1] and (12) yiel@d|y|) > < G(y) <
(8/n)?, hencely| > n/(c18). Again by [9, Theorem 5.1], we g&8IG(y) < (8cico/n)3.
Finally,

2

3
G(x) <G() + VG () < (1+ ‘S(C;C” ) (%) <R,

as soon as < (cic2)"%. O
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The aim is to prove thai B(n) is a cut sphere for infinitely many, almost surely.
That implies the existence of infinitely many cut times, almost surely.

DEFINITION 4.3.—-The spherd B(n) is acut spherdor S(k) if
S([t(m) +1,00)) N B(n) =9,

wheret (n) = inf{k > 1: S(k) € B(n)).

In [11], James and Peres need to beZdro use a lower bound for the gradient of the
Green function of the type

VG(x) > Cd(x)73, (13)

where C is some positive constant anél(x) the smallest radius of a balB(n)
containingx. Such an inequality cannot hold in general. For instancédlgntaking

x =(0,0,z) with z > 0, leads tod(x) < ¢,/z by looking at the Koranyi distance.
With (5), we can comput&G(x) as in the proof of Proposition 3.5 and get, folarge
enough,VG(x) < ¢'z72 < ¢d(x)~*. Therefore, by Corollary 3.3 and Remark 3.4, for
all ¢ € (0, 1), there exists a constantsuch that

VG (x) < ed(x)™4.

OnT, by [9, Theorem 5.1] and Proposition 3.5, the inequality (13) is satisfied for
x € S(«, 0) with a constantC depending orw. It will appear to be sufficient to prove
Theorem 4.1.

Now, we use (13) to build a path of bounded length from a poidtBin) NS (2«, M)
(with M large enough) td B(n + 1) N S(«, 0).

LEMMA 4.4. — There exist three constanis No and M, such that for every > Ny,
M > My, and for anyx € dB(n) N S(2x, M), there is a finite pathg = x, x1, ..., x; of
lengthj < J that ends ind B(n + 1) N S(«, 0) and such thak; € x;_,U andx; ¢ B(n)
fori > 1.

Proof. —By the definition ofd B(n), there exists; € xU with x; ¢ B(n). Oncex; is
defined, we choose ;1 € x; U such thatG (x; 1) = min,e,,;y G(z). SinceG is harmonic
onT'\{e}, the sequencéG (x;)} is strictly decreasing. A& vanishes at infinity, we can
choosej such thatG(x;) > r(n + 1) > G(xj;1). We have

j+min[Gx) = Gxi)] < GOr) = G(x)).
By Lemma 4.2,

G(x1) —G(x;) <Rn) —r(n+1) < Cin3

for some constant’;. Moreover, by definition o G and harmonicity of5, we get that
there is a constan@y such that

G(xi) = G(xi41) 2 CoVG(x)).
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By (13), for allx € S(«, 0) N (B°(n) U 3 B(n)), there exists a constady such that
VG(x) > Con3.

We write J = CoC>/ C1. Ata bounded distance of= (a1, as, a3), the third coordinate
cannot change of more than a(\gﬁ;% +a?). In the same timeg? + a2 changes of a

bounded value. As € S(2a, M), for n and M large enough, we have € S(«, 0) for
all i < J, and the result follows. O

From this lemma and the fact that is bounded, we get that, for all € 9B(n) N
S(2a, M), with n large enough,
P*{S(k) visits d B(n + 1) befored B(n)} > piin
where pmin = min,cy P{S(1) = y}.
From [11], we get

LEMMA 4.5[11, Lemma 2.4]. -There exist a rea” and an integeV, such that for
all n,m (No <n <m) and all starting pointc € 9B(n + 1),

m Cm
—— < P*{S(k) visits0 B befored B < —
Cn(m —n) { (k) visi (m) (n)} n(m —n)
and consequently for al € 9 B(n + 1),

1 - C
— < P*{S(k) never visit9 B(n) } < —.
Cn n

We define new spherésB(n) C d B(n) as the “internal part” o B(n). Namely,
d'B(n) = {x € 9B(n): xUcontains some € B(n)\dB(n)}.

We need a lower bound for the harmonic measure:

LEMMA 4.6.— There exists a constark such that for every sebD € 3'B(n) N
SQa, M)
h(3'B(n),D) > K #D)n>,
whereh(d’B(n), .) is the hitting probability ob’B(n).
Proof. —We only need to prove the statement = {z} and conclude for a general

D by summing over all its elements. We deneté:) = t(n) A 1., wherer, is the first
hitting time ofe. We define thestopped Green function

Vx,yeB(n), Gu(x,y)=> P{Stk)=y, k<t(n)}.
k>0

By the same argument used in Lemma 4.4, there is a path of length at/nfostn
any point indB(n) N S(2a, M) to 9B(n — 1) N S(«, 0). So, if we denotes the reversed
random walk,
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h(9'B(n), {z}) =P{S(x(n)) =z}
P{S(o(n) =z} =P {S(c(n)) =e}

J ' VIS =
Prin _opomin o P {S(en)) =e}.

=
=

But
Gy, €) = Gle, )P {S(a(m) =e}.
And, fory € 9B(n — 1), by Lemma 4.2
G,(y,e)=G(y,e) — E)’{é(g(r(n)), e)

ki
=Gle.y) —E'{G(e, S(z(m))}
i >

() ()0 = ()

Hence, a5, (e, ¢) < G(e, ¢), we get for some constarit

h(3'B(n),{z}) > Kn3. O

LEMMA 4.7.— There exists constantg andy > 1 such that for any large enough,

J,erl

> Vol (3'B(n) N S(2a, M)) = c1y™. (14)

n:yl’

Proof. —Let B(n) be the balls of N (the Lie group associated t0, defined in
Section 3) defined lik&3 (n) in the discrete setting. We also define the balign) onT
as follows:

Br(n)={g=hg eTl: heBn)}.

Here, we identify the elements di; and N. As T is a finite extension ofi; and
VG(g) < c|g|~2 (see [9]), there is a consta@tsuch that for alk and!,

C~'G(h) < G(hg) < CG(h).

Moreover, the two Green functions, ihand inN, are of ordeits| 2 by [9, Theorem 5.1]
and (5). So, there is a constant- 1 such that for large enough,

B(n) C Br((y +2n/3) C Br((2y + Dn/3) C B(yn).

As we know the exact expression (5) of the Green funofian N, we deduce that
Vol ([B(yn)\B(n)| N S(4a, 2M))
> Vol ([B((y +2n/3)\B((y + n/3)] N S(da, 2M)) > 'n*,

for some constants andc¢’. The same argument used in Lemma 4.4 gives that, fer all
large enough and for each pointn [B(n + 1)\ B(n)] N S(4a, 2M), there is a path from
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ytod'B(n) NS(2x, M) of length at most/. And, as the random walk has finite support,
there exists a constantsuch that, each point has at mostccessible points. So,

Vol ([B(n + D\ B(n)| N S(4a, 2M)) <#{y: Ix € 3’ B(n) NS, M), [x~*
<v’/ Vol (3'B(n) N S(2a, M)).
So, if we denote; = ¢’/v”, for any p large enough,

<J}

yp+1

> Vol (3'B(n) N S(2a, M)) = c1y™. O

n=yP
We will now complete the proof of Theorem 4.1. We define the event Byt
Cut, = {dB(n) is a cut sphere an8i(t(n)) € S(2a, M) }.

By Lemma 4.5, we get
P{Cut,} < P{dB(n) is a cut spherp

< p* B
xe(%%n {S(k) never visitsd B(n) } <

=|<‘1

Then, forNg < n < m,
P{Cut, N Cut,} < gn?x P*{S(k) visits 3 B(m) befored B(n) }
xXe

max PY{S(k) never visitsB
XyeaB(n)il) {S(k) never visitsB(m) }
Cm C C?

Snm—n)ym S n(m—n)

So,

+ Z ¢ <C'InN,

n

N
> P{Cuy,NnCut,}<2 >

n(m—n)

n,m=Ng No<n<m<N n=Np
for some constant’. By Lemmata 4.4 and 4.5, we get
P
P{Cut, | S(t(n)) € S(2x, M)} > =0
n

So, Lemma 4.6 implies
P{Cut,} =P{Cut, | S(t(n)) € S2a, M) }P{S(t(n)) € S(2x, M)}
S cVoI(a/B(n) NSQ2ux, M))

= n4
Moreover,
N K yk+l
> P{Cut} > > D P(Cut,),
n=Ng k:KOI’l:yk

with Ko = [log, No] +1 andK =[log, N] — 1. Hence, by Lemma 4.7,
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. Vol (3'B(n) mS(za M))

Z p{Cum>cz Z

n=Ng k=Kon=yk
[h+l

>c Z y* DN " Vol (9'B(n) N S(20, M))

k=Ko n=Ik

>C"InN,

for some constant”. By the Kochen—Stone Lemma [12], there exists a strictly positive
constant such that,

N 2
P{Cut, i.0.} > limsup Q1 PICULD)
N—00 En m=1 P{Cut, N Cutﬂ}

Now, if we fix the firstk steps(e, x1, ..., x;) of the random walk, we can choo$
large enough so that we still have

P{Cut,i.0.| S©) =e,...,S(k)=x;} =& > 0.

But, whenn tends to infinity, the left hand side tendsitCut, i.0.}. Therefore we obtain
P{Cut, i.0.} =1, which implies the result.
The same argument works whEris a finite extension a4 using

SM)={g=hg el Vj hj<—-M},

where(h;) are the coordinates d@f in a basis depending on the covariance magix
associated t@.. The use of the consta appears, as for the extensionsHy, in the
proof of Lemma 4.4.

By Proposition 2.5, whem) = 3, I is isomorphic to a finite extension @®. When
D =4, T is isomorphic to a finite extension @* or Hs. Thus, Theorem 4.1 together
with [11] and the remark in the introduction about non-centered and centered (but non
symmetric) random walks, leads to the following corollary.

COROLLARY 4.8. — Every transient random walk, with finite support on a finitely
generated group, has infinitely many cut times, almost surely.
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