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ABSTRACT. — We consider the processes obtained by (left and right) products of randomi.i.d.
affine transformations of the Euclidean sp&% Our main goal is to describe the geometrical
behavior at infinity of the trajectories of these processes in the critical case when the dilatation o
the random affinities is centred. Then we derive a proof of the uniqueness of the invariant Rado
measure for the Markov chain induced Bf by the left random walk and prove a stronger
property of divergence for the discrete time proces&éinduced by the right random walk.
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RESUME. — On considére le processus obtenu par produit (a droite et a gauche) de
transformations affines aléatoires de I'espace Euclidkénindépendantes et de méme loi.
Notre fin principale est de décrire le comportement geometrique a I'infini des trajectoires de
ces processus, lors que la dilatation des affinités altoires est centrée. On en déduit une nouve
démonstration de 'unicité de la mesure de Radon invariante pour la chaine de Markov induite
surR? par la marche aléaroire gauche et on démontre une plus forte propriété de divergence pol
le processus a temps discret induit par la marche aléatoire droite.
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We consider the group AfR?) of affine transformations of the spaié¢:
(a,b):x+—>ax+b

E-mail addressbrofferi@ccr.jussieu.fr (S. Brofferio).



372 S. BROFFERIO/ Ann. I. H. Poincaré — PR 39 (2003) 371-384

where a is a positive real number andl a vector of R?. Let {(A,, B,)},en be a
sequence of random independent and identically distributed affine transformations. W
are interested in the behavior of their composition products, that is in the behavior of the
right and left random walks on AfR?):

Rn = (AL Bl) T (Ana Bn) and Ln = (Am Bn) T (A]_, Bl)

We will identify the group Af{R?) with the half-spacél = R} x R?. General results
on random walks ensure that random walks on the affine group are transient, so th:
accumulation points of the trajectories are on the boundafy= R¢ U {co} of the
geometrical compactification dfl. In particular, it is known and easy to show that if
the mean of the logarithm of the component®h is positive, then the random walks
converge tooco, while, if this mean is negative, the right random walk converges to a
random element of the boundary different frar. Although random walks on this
group are well studied (e.g. Kesten [9], Grincevicius [7], Elie [3], Le Page and Peigné
[10], Goldie and Maller [6]), it was not yet known what happens in the so-called “critical
case” when the projection oR’ is recurrent. We will prove, under a weak moment
hypothesis, but without supposing that the step distribution has a density or is spread ou
that a centred right random walk converges to the psinfThe argument is inspired by
an analogous result on the affine group of a tree obtained by Cartwright, Kaimanovick
and Woess [2].

We will then apply this result to the study of the Markov chain induced by the left
random walk onR?, that is the procesgY,}, defined recursively by the sequence of
i.i.d. random variable$(A,, B,)}, as:

Y;}+1:An+lYg +Bn+lv Yg =)y
Besides its intrinsic interest, this process, also known as first order random coefficien
auto-regressive model, has various applications (especially in economy and biology, se
for instance Engle and Bollerslev [4], Nicholls and Quinn [11], Goldie [5]). M. Babillot,
Ph. Bougerol and L. Elie have already shown in [1] that even when the coefficignts
are centred, that iB[log(A,)] = 0, the trajectories of this process satisfy a property that
may be seen as a global stability at finite distance or as a local contraction, that is

Yy =Y |1k (Yy) > 0 asn— +oo

almost surely for all compact subs&t of R¢. As they had noticed, this property is
related to the uniqueness of an invariant Radon measure. We will show that the loce
contraction property is a straightforward geometrical consequence of the convergence «
the right random walk t@o, and we will give a proof of the uniqueness of the Radon
invariant measure for the chaji, },, via the Chacon—Ornstein theorem, thus correcting
an error in [1].

In the last section we will look at the projection of the right random walkRénthat
is the series

Z,ga,h) —b —|—aZA1--'Ak—1Bk- 1)
k=1
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Using a stronger moment hypothesis and a density condition for the margi®4l, ove

will prove thatZ$ is transient, in the sense that almost surely, li#f | = 4+-co. Although

Z$ is not Markov, it is of some interest for various problems. For instance if we consider
the continuous time proces%, = fé e’ dB,, where W, and B, are two independent
Brownian motions, and we look at it at integer times we obtain a series of the type (1).
Z is a well known economic model (cf. for instance [13] and [14]) and it is easy to
show that lim , . .Z, = —co andlim,_, .. Z, = +o0 so that, being continuoug, has to

visit infinitely often every open set &. The result of the last section implies that every
discretization of time leads to a transient process and shows therefore that the recurren
of this model is not very robust.

We can remark that the results of Section 2 and Section 3 are still valid, and car
be proved exactly with the same techniques, for a random walk on the group of affine
conformal transformations, that is when the variabdgsare not real positive numbers
but, more generally, matrices that live in a group that is direct produd@’ofind a
compact subgroup dBL(RY).

1. Notation and hypotheses

We will denote by AfiR?) the group of affine transformations of the Euclidean
spaceR?, that is transformations of the form— ax + b with a a positive number
and b a vector inR?; thus Aff(R¢) may be identified with the hyperbolic half-space
H =R, x R?. We will denote bya andb the projections of AffR?) on R* andR¢
respectively, so that = (a(g), b(g)) for eachg € Aff (R?).

Adding a sphere at infinity leads to the geometrical compactificatidfi, afhere the
boundary ofH is 9H = R¢ U {oo}. The group of hyperbolic isometries Hf that fix the
point co is nothing but the group of affine conformal transformations which contains
Aff (RY) as a subgroup. The action of AR¢) on dH — {oco} is then the canonical action
onRR? and will be denoted by

g-x=a(g)x +b(g).

We will sometimes use the fact that the action and the projectidR“ocoincide, in the
sense that - x = b(gh) for everyh = (a, x) € Aff (RY).
For the composition of two affinities we have the identity

(a1, b1)(az, by) = (araz, a1by + b1)

so that, from an algebraic point of view, ARt?) is a semi-direct product d@&* andR¢.

We consider a sequencég, = (A,, B,) of random variables from a probability space
(Q, F,P) to Aff(R?), that we suppose independent and identically distributed with
distribution . The right and left random walks with law are the Markov chains on
Aff (R?) defined respectively by

Rn+l = R11X11+lv RO =1
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and
Ln+1 = Xn+1Lna Lo= 1

For a fixedn, R, and L, are both distributed ag, then-th convolution power ofx.
The expected number of visits of these random walks in a Bora® sef is given by

+o0 +o00
U(B)=) P[R,€Bl=) P[L,€B]
n=0 n=0

that is by the potential measute= 3" 1. The potential kernels of the right and
left random walk give the expected numbers of visits when the random walks start from
a generic poingg € Aff (R?), and are respectively given ly"1;(g) = §, * U(B) and
U'lp(g) = U % 8,(B).

We observe that

a(Rn) =a(l,)=A1---A,

is a classical multiplicative random walk @, .

We will suppose that the random walk is non-degenerate in the sense that there exis
no y € R? fixed by X; and that we are really dealing with affinities and not just with
translations, i.e.

VyeR? P[X;-y=y]l<1l and Pla(X1)=1] <1 (HD)

Under this hypothesis the closed group generated by the suppois ofon-unimodular,
thus the random walks are transient and the expected number of UiskS, in every
compact sek is finite (cf. [8]).

We will not need, at least in the first part, any density hypothesis but only a weak
moment condition that is

E[[log(a(X1)|] <400 and E[log*|b(X1)|] < +oo. (H2)

As announced, we will only consider the most critical case for which the random walk
projected orR? is recurrent, that is

E[log(a(X1))] =0. (H3)

2. Convergence to infinity

In this section we shall prove:

THEOREM 1. — Under the hypothesd$il), (H2) and (H3), almost surely for every
g € Aff (RY):

lim gR,=o00ecdH

n—+00

in the hyperbolic topology dfi.
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To prove thatg R, converges tao is equivalent to show that the sequenck, is
definitely (i.e. for any sufficiently large) in every neighborhood afo, or equivalently
that every set of the forra, , = {g € Aff (R?): a(g) < s and|b(g)| < t}, with s andr real
positive numbers, is transient. On the other hand we will see that the left random walk
visits this set infinitely often, so that the potential measuré€ gfis infinite. Therefore
the number of visits o R, to Cy, is almost surely finite, but has infinite expectation. The
transience of the sef; , for the right random walk is thus a quite subtle phenomenon,
and instead to prove it directly we will show, following the ideas of [2], that the right
random walk can cross the border betwégn and its complement only a finite numbers
of times.

PROPOSITION 1. — Suppose that the hypotheqékl) and (H2) are verified. Then if
C ={gecAff(RY): a(g) <land|b(g)| <1}

PlgR,.1€C, gR, ¢ C infinitely ofterj =0 (2)

for almost allg e Aff (RY) with respect to the Haar measure.

This proposition cannot be proven as in [2] because in our case the group does n
act on a discrete space, such as the tree. So we have to find a different way and we w
need the following lemma that estimates the potential of integrable functions on a locally
compact group.

LEMMA 1.—Let U" be the potential kernel of a transient right random walk on a
locally compact second countable grotpanddg the right Haar measure of;. Then
for every non-negative functiofie L'(dg), U" f(g) is dg-almost surely finite.

Proof. ~-We will show thatU” f is locally dg-integrable and thus necessarify-
almost surely finite. Ifx is the distribution of the random walk, we recall that potential
measure i€/ = >0 u™. Let K be a compact set af. Then by the right invariance
of dg:

/ U” f (g1 Lx (g1) dg1 = / / F(g182) 1k (gD (dg2) dgy

G G

/ / F(g0 1k (21857 dgaU (dgo)
G G

/ FlenU" L (g) dgs

G

<supUr1K(g)/f(81) dg1
geG

whereU" is the potential kernel of the right random walk whose Jaus the image of
w under the mag — g~*. The transience of the random walk with lgifollows from

the transience of random walk with law by duality. Thereforel/" 1 (g) is finite and
thus uniformly bounded by the maximum principle (cf. [12], Corollary 3.6). Sifide

integrablef; U" f (g1)1k (g1) dg1 has to be finite. O
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Proof of Propositionl. —By the Borel-Cantelli Lemma, in order to prove (2), it is
sufficient to show that

o0

ZP[an—H €C, gR, ¢ C] < +o0.
n=0

On the other hand we can write
P[gR,11€C, gR, ¢ C1=E[P[gR, X1 € C | R,]1cc(gR,)] =E[p(gR))],
where
#(g) =P[gX1 € Cllce(g)
and therefore

ZP[ger+l € C! an ¢ C] = Urd)(g)
n=0

So, if U"¢ is almost everywhere finite, (2) will hold for almost gll Using the previous
lemma and [8] which insures tha&, is transient, we just need to show tigeis integrable
with respect to the right Haar measutg = 442 of Aff (R?). As

C={g e Aff(RY): a(g) > 1} U{g e Aff(RY): a(g) <1, |b(g)| >1}
we can split the integral of4 &) P(g) dg into two parts. On the first set we have

dbd dbd
/ $(a. D) Lusy 2 _E / / 1c((a. b)(Ay, BD)) “]

L1 Rd
- +00

dbda
=K / /1[aA1<l 1[|aBl+h|<1]

-1 Rd

=E _vd Iog(Ai v 1)} = v E[log™(A1)],
L 1

wherew, is the volume of the ball of radius 1 iR¢. On the second set we have that

dbda da
/ ¢(a,b)lja 1 p>1 <E [/ (/1[|b|>l LjaBy+b)<11 db) ]

An easy computation shows thAt 115 <1< db < min{v,, mvs_1|x|/2}, whence

dbda

1
d
<muy_1E [/min{l, |ClBl|}_a1
a
0

<mvg_1(1+E[log*(|B1))]). O

/ ¢ (a,b)1u1p>1

We are now able to prove Theorem 1.
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Proof of Theoreml. — A direct consequence of Proposition 1 is that, for almost all
g € Aff (R?), gR, is either definitely inC or definitely in C¢. As we assumed that
Ellog(a(X1))] =0, log(a(gR,)) is a recurrent random walk on the real line; hepég
visits the setf1, +o0] x R € C° infinitely often. Therefore we can conclude that for
almost allg, almost surelyg R, is definitely inC¢, or equivalently that for almost af,

R, is definitely ingC°.

Combining the fact thafg C“},cart (re) is @ base of open neighborhoodscofand the
fact that for every fixegq the set ofg such thatgC¢ c goC* has positive Haar measure,
it is possible to choose a sequengesuch that almost surelR, is definitely in every
grC¢ and such thafg, C¢}; remains a base of open neighborhoodswfHence almost
surely lim,_, o, R,, = c0.

To conclude that almost surely for everyn Aff (R¢), the random wallg R, converges
to oo we only need to notice that the action gfon H U 0H is continuous, so that
liMm, eogR,=g-0c0=00. O

3. Local contraction

Let yo be a random vector independent of §¢};. The left random walk induces a
Markov chain orR?

Ygo = Ln * Yo
for everyn > 0. SinceY, = X,, - Y,,_1, this process satisfies the random difference
equation
Yn = a(Xn)Yn—l + b(Xn)

From the geometrical viewpoint that we have adopted, this process may be seen as tl
projection onR¢ of the left random walk starting from a point whoBg component
iS yo, that is

ero :Ln . YO:b(Ln(av yO))

for everya in R%.

A consequence of the previous theorem concerns the dependence on the starting po
of the procesy;. Let us consider the distan¢g’ — Y| = a(L,)|x — y| between two
trajectories starting from two different poinisand y of R?; since we assumed that
E[log(A1))] =0, we have that

im|Yy —Y)|=+o0c0 while lim|y}—Y)|=0.
Thus it is not possible to globally control this distance. However M. Babillot,
Ph. Bougerol and L. Elie have noticed that if we look at the Markov chain only at the
times it visits a compact subskt, the procesd, becomes contractive, in the sense that
almost surely for every andy

lim |, =¥ Lk (1) =0,
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This property was obtained in [1] using an asymptotic estimate of the potential. The
proof we propose here is more geometrical and relies on the convergence of the rigt
random walk toco.

THEOREM 2. —Under the hypothesdbi1)—(H3), almost surely for every compact set
K c R? and everyr, y e R?

n—+00

Proof. —We first observe that

L= (X7t X ) =R
whereR, is the right random walk with layi, obtained fromu by composing with the
inversion on the group; therefore, @s b) 1 = (1, —2), we have

a’> a

b(jén) 4
b(L,) = ————=—a(L,)b(R),). 4
(Ly) %) a(L,)b(Ry) (4)

a(iy,

Letk be a real positive number such thgtis contained in the disc centred at the origin
and of radius; thenL, -y =a(L,)y + b(L,) € K implies thatjb(L,))| <k +a(L,)|y|.

Using the equality (4) we havé(R,)| < -~ + |y| so that:

L,-yekK = maxa(R,),b(R,)} < (kv

a(L) =+ |yl

As the right random walkr, satisfies the hypotheses of Theorem 1, we have that
maxXa(R,), b(R,)} converges tetoo and we conclude. O

Let us consider the attractor s&t{w, y) C R¢ of each trajectory, that is the set of
accumulation points ofL, (w) - y},. It is well known (cf. [3], Lemma 5.49) that if we
add to the hypotheses (H1)—(H3) a little stronger moment condition, that is

E[|log(a(X1)|’] <400 and E[(log"|b(X1)|)*""] < +oo (H4)

for somen > 0, then the Markov chait.,, - y is recurrent in the sense that the attractor
setsA(w, y) are almost surely non-empty. A direct consequence of the local contraction
property is that the set(w, y) does not depend on and then omw by the 0-1 law; thus
there exists a set C R? such thatA = A(w, y) P(dw)-almost surely for ally € R?.

Although in the centred casé,, - y is not positive recurrent and does not have an
invariant probability measure, M. Babillot, Ph. Bougerol and L. Elie have constructed
in [1] an invariant Radon measure for this process. We will see in the next theorem tha
the invariant Radon measure is unique and that its suppdrt is

THEOREM 3. —Under the hypothese@i1)—(H4) the Markov chainL, - y has a
unique invariant Radon measure &1 up to a multiplicative constant.
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Furthermore for every coupl¢ and# of continuous functions with compact support
such thatk is non-negative and not identically zero a@n there exists a constant;,
such that almost surely for eveyy

SieofLi-y) (5)
n——+o00 EZ:Oh(Lk . y)

Proof. —Let m be an invariant Radon measure BA. Its existence is guaranteed

by [1]. The (infinite) measuré,, on the spacgR?)" of trajectories of the Markov

chain Y,, obtained as the image of the measure< P on R? x (Aff (RY)N by the

mapping (yo, (x1, X2, ...)) = (Yo, X1 - Yo, X2X1 - Yo, -..), IS invariant by the shifé on

(RHN. Therefore the linear transformation induced by the shifL.é¢P,,) is a positive

contraction. Moreover the recurrence and the local contraction imply that this linear

transformation is also conservative. Indeed, if we consider the non-negative integrabl

function 1, where D is an open and relatively compact set such that D # ¢, we

have

Py Hye (RY)" ZlD (6"y) :ZlD(yk)<+ooH =0.

k=0
We can then apply the Chacon—Ornstein theorem and we have that for every nor
negative functionf andh in L1(m) on the se{(y, )| >f_oh(Li(w) - y) > O}:

im Sieo S (L y)  Enlf(Yo)lZ]

W S oh (L)~ Ealh(rgiz) )X Fraimostsurely (0

whereZ is theo -algebra of invariant sets for the shift gR?)N.

We now prove that the ratio limit in (6) does not depend on the starting point. We will
denoted=; _o f(Li - y) by S, f ().

Let f and 2 two continuous functions with compact support, such thas non-
negative and not identically zero of, and letK be a compact set which contains
their support. For every > 0, let K5 = {z € R | dist(z, K) < 8}. Since f is uniformly
continuous, using (3), almost surely for everyand x in R and for every positive
numbere there exists a randoiN € N such that ifc > N:

|f(Li-y) = f(Lg-x)| <emax{1x(Ly - y), Ix (Li - %)} < elg,(Ly - y).

As h is a non-negative function and not identically zeroAit is possible, using (6), to

choosey such thatP-almost surely’;’}f—g(f), converges. Therefore:

SO =Suf @[ _ i Sile ()
Suh(y) n—>+oo S,h(y)

As ¢ was chosen arbitrarily, we have that almost surely, fox all

im =

n—00

Suf ) = Suf @) | _
Swh(y)

n—00
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If f/h is bounded, we have:
Snf(y) Snf(x)

n—>+00| S,h(y)  Syh(x)
< iim (Snf(w—snf(x) Su f(xX) || Suh(y) = Syh(x) ) B
= nodoo Suh(y) Suh(x) Sah(y) -

because/) is bounded. So if we had chosersuch thaty-f*J converges to a random
varlablecfh then almost surely, for every,

SS@ e S O)
n—>+o0o S, h(x) T i doo Sph(y)

=Cf- (7)

To suppose thaf/ k is bounded, is not a restrictive hypothesis, as one can always obtain
the behaviour of5, f/S,h as ratio ofS,, f/S,(h + | f]) andS,h/S,(h + | f]).
The fact that the limit 4, is constant is due to the 0-1 law. In fact for evéry N

im ke S Xk X y) S f L)
nteo Z:i h(Xk e Xi+l . )’) n—>+00 EZ:I' h(LkLl_l . y)
H Sn L'_l' . S
= lim f(il—l lim JO) =t
n——400 th(Ll . ) n—>+oo § h(y)

because of (7), so that;, is measurable with respect to thealgebra of the X;}-;,
for eachi e N.
We now can easily deduce the uniqueness oBecause of (7) and (6), we have then

Enlf YOIT] _
E.[h(YolZ] "

dm(y) x P-almost surely

and this implies that for every invariant measureve have

m(f) :Em[ [f(YO) |I]] IEm [cfhEm [h(YO) |I]] :Cf,hm(g)

Thereforem is unique up to a constant.0

4. Divergence of theright projection

In this section we will reinforce the result of Theorem 1 by showing that, under some
density hypotheses, not only the right random walk goes to infinity but its projection
ontoR? do the same, in other words the process

n

Z8=b(gR,) =b(g)+a(g)Y A1+ Ar_1Bs
k=1

is transient. We can remark that it was known (cf. [13]) that in the centred case both
processZ,| and|Y,|, that have the same law for a fixad converge in probability to
~+o00; but while Y, is a recurrent process, we will prove tha, | converges almost surely

to +-o00.
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THEOREM 4. —Suppose that the hypothegg$l)—(H3) are satisfied, that the mar-
ginal of . onR?, that is the law ofB1, has a bounded density and tr&f| B1|”] is finite
for somep > 1. Then almost surely for evegyin Aff (R)

lim |b(gR,)| = +00.
n— o0

Proof. —-We first observe that the/-dimensional affine group AfRY) may be
projected on a one-dimensional affine group just taking the first coordingge of
the vectorb(g). As obviously when the first coordinate diverges also the vector diverge,
we can restrict to the cage= 1 without loss of generality.

We will proceed as in the proof of Theorem 1 and we will start to show that if
S ={g € Aff(R)||b(g)| < 1}, gR, does not cross the border §fbut a finite number
of times. As we have seen in Proposition 1, we only need to show that the potential o
the function

v (g) =PlgX1 € S]11s(g)
is finite. We will split the functiom in two parts and study their potentials with two
different techniques. Let

S1={g e Aff(R) | |b(g)| > 1,a(g) <1}

and
S,={g e Aff(R) | |b(g)| > L a(g) > 1}
so that:
Y =vls, +¥1ls, = Y1+ Vo

The integral ofyr; with respect with the right Haar measure was already calculated in
the proof of the Proposition 1 where we proved that

[[ v

so thatU” 1 (g) is finite for almost allg.
It is easily checked that, is not integrable for the right Haar measure so, to prove
that its potential is finite, we will need to use a more specific method. Let

1
dbda da
p :E[//l[lat?ﬁbldélbl]db; < c(1+Eflog™(1B4])])
0 R

Fi={geAff(R): 1<a(g) <2, 0<b(g) <1}
and for everyk € Aff (R)
Fir=kFy = {g e Aff(R): a(k) < a(g) <2a(k), b(k) <b(g) <a(k)+b(k)}.

As the random walk is transient and the sEtsare relatively compact, their potential is
bounded and we have for evety

U7, ]lo = sup |8, % UGFD| = [[U" 17| .
gEATFF (R)
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.

Fig. 1. Partition ofS> into “equipotential” squares.

We denote— Fon om,11) the image of the sefon on,11) Under the mappinga, b) —
(a,—b) and we observe that-F omopm,i1) = Fom _oma1y-1); thus the family
{Fom 2mpt1) bneN.men U {—Fn 2nni1) Inen.men 1S @ partition ofS, into “equipotential”
squares. We observe that

U= Y (U W2lp)+U (2l p))

k=(2",2"n41)
n,meN
< Z (HUrle Hoo”wlek lloo + HUrl—Fk Hoo”wzl—Fk ”00)
k=(2m,2mp4+1)
n,meN
<UD (IW2lglle + 121 F o) (8)
k=(2",2"n+1)
n,meN

so that to prove that the potential is bounded we need to estimate the furtgtmmthe
SetsF;.

It may be worth observing that this approach allows us to compare the right potential
kernel with something that roughly looks like a left invariant measure, in the sense tha
we sum the maximum of the function over a collection of sets obtained by left translation
(and v, is integrable for the left Haar measure). The problem is that the sizes of the
squares over which we sum are fixed and we need the fungtida be smooth enough
on them. Now iff is the bounded density of the law Bf, we have:

—-1-b 1-b 2
<Bi<— | <|Iflleo—-
a a

Pl(a,b)X1 €S| =}P’[

To control ¢, when |b| is big we observe that for every > 1 andg > 1 such that
1 1 .

24+ 2=1

P q

bl—1 —p/p
Pl(a.b)X1€S] < (L> E[|B1l”/"1 10 12,(By)]
a a ’ a
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1-b

a

b _1 —p/p Yq
<(2=) EﬂBnp]””( / f(x)dx>

—1-b

a

1p aP/P—1/4
(16l = 1)~/»

whenevernb| > 1. Therefore there existQ « < 8 andB > 1 and a suitable constaat
such that, for everya, b) € ¢, we have

<2Y4| £ | YIE[|By)”]

¥(a.b) < Ccminf{a®(1b| —1) " a1}
Then for everyg € Fom onyi1y U —Fom ompi1y
¥(g) < Cmin{22 D (2mp) P 27mL < € min{ 2@ Ay —B ommy
and using the decomposition (8) we have

Uy <||U"1g | ,2C Y- min{2@=PDy=F 27m} < 4oo.

m,neN

We proved that, for almost all € Aff (R), gR,, can cross the border ¢f only a finite
number of times.

Combining the recurrence of the real random walkR,) and the transience @fR,,,
we see thag R, visits an infinite number of times the s¢fl, 2] x R) N §¢ so that, for
almost allg, gR, is definitely inS¢. As for everys > 0 the set ofg such that

gS¢ C {(a.b) € Aff(R): |b] > s}

has positive Haar measure, we may conclude that for ever) almost surelyb(R,)|
is definitely greater tham, so that, lettings go to +oco on a countable sequence, we
obtain that, almost surely, for evegye Aff (R)

i (bR =l Ja@b(R) +b(@)] = +oo. O
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