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ABSTRACT. – In this article, Internal DLA is studied with a random, homogeneous,distribution
of traps. Particles are injected at the origin of ad-dimensional Euclidean lattice and perform
independent random walks until they hit an unsaturated trap, at which time the particle dies
and the trap becomes saturated. It is proved that the large scale effect of the randomness of
the traps on the speed of growth of the set of saturated traps depends of the strength of the
injection, and separates into several regimes. In the subcritical regime, the set of saturated traps
is asymptotically an Euclidean ball whose radius is determined in a trivial way from the trap
density. In the critical regime, there is a nontrivial interplay between the density of traps and the
rate of growth of the ball. The supercritical regime is studied using order statistics for free random
walks. This restricts us tod = 1. In the supercritical, subexponential regime, there is an overall
effect of the traps, but their density does not affect the growth rate. Finally, in the supercritical,
superexponential regime, the traps have no effect at all, and the asymptotics is governed by that
of free random walks on the lattice.
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RÉSUMÉ. – Dans cet article on étudie le modèle d’Agrégation Limitée par Diffusion Interne
sous l’hypothèse d’une distribution aléatoire homogène de pièges. Ce modèle correspond à
l’injection de particules à l’origine d’un réseau euclidiend-dimensionnel ; chaque particule
évoluant ensuite, de façon indépendante, selon une marche aléatoire jusqu’à l’instant oú elle
tombe dans un piège non saturé. A ce moment la particule meurt et le piège devient saturé. Nous
prouvons que l’effet à grand échelle de l’aspect aléatoire de pièges sur la vitesse de croissance
de l’ensemble de pièges saturés dépend du taux d’injection, ce qui definit plusiers régimes
d’injection. Dans le régime sous-critique, l’ensemble de pièges saturés est asymptotiquement
égal à une boule euclidienne dont le rayon dépend trivialement de la densité de pièges. Dans le
régime critique, il y a un rapport non trivial entre la densité de pièges et le taux de croissance de
la boule. Le régime sur-critique est étudié à l’aide des techniques de statistiques d’ordre pour des
marches aléatoires libres. Pour ce faire on se restreint au casd = 1. Dans le régime sur-critique et
sous-exponentiel, on trouve un effet global des pièges, mais leur densité n’affecte pas le taux de
croissance. Finalement, dans le régime sur-critique et sous-exponentiel, les pièges n’ont aucun
effet, et le comportement asymptotique est régi par celui des marches aléatoires libres dans le
réseau.
 2003 Éditions scientifiques et médicales Elsevier SAS

0. Introduction

Internal DLA is a stochastic particle system in which traps are distributed on a
d-dimensional integer lattice, and particles are produced at the origin and move as
independent random walks until they hit a trap, at which time the particle stops, and
the trap becomes saturated.

The model arises in several applied problems, for example, nuclear waste manage-
ment: Radioactive waste is placed in a container and buried, but, since even the best
containers have some leakage, particles leave the container and as a rough approxima-
tion, perform independent random walks. In order to contain them, chemical traps are
distributed around the area. When a radioactive particle hits a trap it is destroyed and
the trap becomes saturated. Internal DLA also serves as a model for the behaviour of
the chemical reactionA + B →Inert, in the special case where there is a source ofA

particles, and theB particles are fixed. It has also been used to model erosion processes,
as well as melting processes, among others.

A basic problem in such a model is to understand the asymptotic shape and growth
rate for the set of saturated traps. Fixing the rate of the walks, and the field of traps,
we have as free parameter the rate of injection of particles at the origin. The way
in which the growth rate is affected by the presence of the trap field depends on
the rate of injection of particles at the origin. We identify four different regimes:
Subcritical, critical, supercritical with subexponential injection, and supercritical with
superexponential injection. The critical case is whenN(t), the number of particles
injected up to timet , is asymptotic totd/2, and the exponential case is whenN(t) ∼
exp{ct}.
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In the subcritical case, the asymptotic shape is a ball in any dimension. Asymptotically
there is a zero density of live particles, and therefore the size of the ball can be
determined easily: It has to contain as many traps as particles which have been injected,
up to a negligible error. By the law of large numbers the volume of the ball is clearly
N(t)/m wherem is the mean number of traps per site, and the radius can be read off
directly. Because the density of live particles is negligible, the model can be coupled to a
discrete time version, as was done in [6] (see also [3], where a discrete time asymmetric
version of the model is studied, and [5] where refinements of [6] are obtained). The shape
theorem follows from the analogous shape theorem for the discrete time case, following
the methods of [6]. This was proved in [1] (see also [2]).

In the critical case, the shape is still a ball in any dimension, but now there is a
nontrivial density of live particles inside the ball. The boundary, and density of particles
evolve together asymptotically according to a one-phase Stefan problem. This can
be solved explicitly, yielding the shape and the rate of growth, which is a nontrivial
function of the density of traps. This is proved here by an appropriate adaptation of the
hydrodynamic limit method introduced in [4] (see also [8]).

We also study here the supercritical case using order statistics. This restricts us to one
dimension. Two regimes are identified. In the subexponential regime, there is still a net
effect of the traps, but the density of traps plays no role. In the superexponential regime,
the traps play no role at all and the speed of propagation is controlled by the range of
free random walks. In dimensions greater than one, in the supercritical case, one expects
similar results. However, here the shape will not be a sphere, but a certain level set of the
rate function for large deviations of random walks on the lattice. This reflects the fact
that as the strength of the injection is increased, the range of random walks becomes the
dominant factor in the asymptotic shape and size of the saturated set. We do not prove
this fact here, as we decided to stress the application of order statistics: We study the
n(t)th rightmost particle at timet in a system of random walks on the integer lattice,
starting at the origin, at given times. Under quite general conditions it is shown that the
asymptotics of this particle is governed by an appropriate transform of the large deviation
rate function for a random walk on the lattice. This is then used to prove the asymptotics
for the internal DLA model in the one dimensional supercritical case.

Section 1 contains a more precise description of the model, and the main results.
We have stated these in the simplest cases in order to highlight the main point of the
article which is the identification of the different regimes. In Section 2 we explain how
the methods of [4] need to be adapted in order to handle the random trap field in the
critical case. In Section 3 we state the main results about order statistics of random
walks and from this obtain the asymptotics for internal DLA in the supercritical case in
one dimension. Section 4 contains the technical proofs of the order statistics results.

1. Model and main results

We start with a fieldζ of traps onZd . For eachx ∈ Zd , ζx ∈ {0,1} denotes the absence
or presence of a trap initially atx.
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Particles are injected at the origin at timest1, t2, . . . and then perform independent
continuous time random walks at rate 1. The rule is that the first particle which hits a
trap stops moving.

The position at timet of the particle produced at timetn will be denotedXn(t).
Sometimes it is convenient to use the convention thatXn(t)= 0 for 0� t � tn. Another
way to describe the model is through the occupation numberηx(t) =∑

n 1Xn(t)=x, the
number of particles at sitex at time t . This includes the particles which have stopped
moving, and clearlyξx(t)= (ηx(t)− ζx)+ is the number of ‘live’ particles atx at timet ,
and

At = {
x ∈ Zd : ζx = 1, ηx(t) � 1

}
is the set of saturated traps. We will make a convention that the occupation number at 0
will not include particles which are not yet born, so at 0 we modify the definition to be
η0(t)=∑

n 1Xn(t)=0, t�tn .
LetNt denote the number of particles created up to timet . We will call such anNt an

injection. For simplicity, in this article we will always takeNt to be deterministic, though
it is certainly not necessary. For each fieldζ of traps, and each injectionN we have a
processY (t) = {X1(t),X2(t), . . .} which also has a reduced descriptionηx(t), x ∈ Zd .
We will denote the distribution of this process byPζ .

In all cases we will assume that there is a positive density of traps – for simplicity we
assume thatζx , x ∈ Zd are independent, withP(ζx = 1)=m andP(ζx = 0)= 1−m for
some fixedm ∈ (0,1].

Our main question is how the distribution of the traps affects the growth rate of the
random set of saturated traps. We distinguish three cases, based on the strength of the
injection: If t−d/2Nt has a nontrivial limit ast →∞ we say the model iscritical and
use the notationNt ∼ td/2, if t−d/2Nt → 0 ast →∞ we say the model issubcritical
and use the notationNt � td/2 while if t−d/2Nt →∞ as t →∞ we say the model is
supercriticaland use the notationNt 
 td/2. Three regimes are displayed in Table 1.

In any dimensiond, we denote byB(x, r) the Euclidean ball of radiusr centered
at x. Note thatB(0, v1/dad) has volumev, where ad = d�(d/2)/2)1/d/

√
π . Here

�(α) = ∫∞
0 xα−1e−xdx is the Gamma function. We use the notationat � bt when

at/bt → 0 ast→∞ and�x� to denote the greatest integer less than or equal tox ∈ R.
We also will define the constantK as the unique solution of the equation,

�(d/2)exp
{−K2/4

}=mπd/2Kd. (1.1)

Table 1
Injection regimes

Subcritical Nt � td/2

Critical Nt ∼ td/2

Supercritical Nt 
 td/2
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The large deviation rate function of a continuous time simple symmetric total jump rate
one random walk will appear in some asymptotics. So let

I (x)= sup
λ∈R

{
λx − (coshλ− 1)

}= x sinh−1x −
√

1+ x2+ 1. (1.2)

Note that I : [0,∞) → [0,∞) is one to one and therefore has an inverse function
I−1 : [0,∞)→[0,∞). If nt is an increasing function define

wn·(t)= sup
0�y�t

(t − y)I−1
(

1

t − y
log

Ny

nt

)
, (1.3)

with the convention thatI−1(x) = 0 for x < 0. Finally, given two setU,V , we denote
by U�V their symmetric difference, and #[U ] the cardinality ofU .

We can now state our main results.

THEOREM 1.1. – (1) Subcritical case. In any dimensiond � 1 we have that,

At ∼ B
(
0, (Nt/m)1/dad

)

in the sense that for anyδ > 0, for almost everyζ , withPζ probability one, for sufficiently
large t ,

B
(
0, (1− δ)(Nt/m)1/dad

)∩ {ζx = 1} ⊂At ⊂ B
(
0, (1+ δ)(Nt/m)1/dad

)∩ {ζx = 1}.

(2) Critical case. In any dimensiond � 1, suppose thatNt = �td/2�. Then,

At ∼ B(0,K
√
t ),

in the sense that for almost every realizationζ of the trap field,

t−d/2#
[
At�B(0,K

√
t ad)∩ {ζx = 1}]→ 0, (1.4)

in Pζ -probability.
(3) Supercritical case. In dimensiond = 1, suppose that eitherlogNt 
 log t or that

Nt = �tα� for someα > 1/2. Furthermore, assume that there is aδ > 0 and a function
ft such that1� ft � t andN(ft )
 (logNt)

1+δ . Then

At ∼ B
(
0,w√t (t)

)

in the sense that ifrt and 't are the rightmost and leftmost particles, then for almost
every realizationζ of the trap field,

lim
t→∞ rt/w

√
t (t)= 1 and lim

t→∞'t/w
√
t (t)=−1 (1.5)

in Pζ -probability.
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Remarks. – (1) Note that part (3) of Theorem 1.1 does not cover the whole
supercritical case. In fact, by technical reasons which somehow simplify the proofs, we
have included the additional hypothesis that either logNt 
 log t or thatNt = �tα� for
someα > 1/2.

(2) The main conclusion is that the effect of the traps depends on the strength of the
injection.

In case (1), where the injection is subcritical, the occupied set is approximately a ball
of volumem−1Nt , which by the law of large numbers contains approximatelyNt traps.
Essentially all the particles at timet have been trapped. The influence of the random trap
field on the speed of growth is a fairly trivial averaging.

In case (2), where the injection is critical, the randomness in the trap field enters only
through the mean on a large scale but has a nontrivial effect (1.1) on the speed of growth.

In case (3), where the injection is supercritical, the densitym ∈ (0,1] of traps does not
enter at all. However from the asymptotics ofw√t (t) one finds a transition at exponential
injections. If logNt � t then for almost every trap configurationζ , in Pζ -probability,

lim
t→∞

rt

sup0�y�t

√
2(t − y) log(Ny/t1/2)

= 1. (1.6)

If t� logNt then for almost every trap configurationζ in Pζ -probability,

lim
t→∞

rt

sup0�y�t logNy/log
( logNy

t−y
) = 1. (1.7)

One can check that the latter corresponds to the rightmost particle for free random walks
with the same injection, but the former does not (the final denominatort1/2 would be
absent). Hence for subexponential injections, the traps slow down the growth rate in a
way which does not depend on the density. For superexponential injections, there is no
slowdown effect at all.

(3) The transition at exponential injections is also seen in the effect of the lattice.
We can replace the random walks in our model by Brownian motions. The traps live
at the integers, as before, and the first Brownian motion at a trap stops there forever.
One can check that in that case the asymptotic in case (3) is always as in (1.6). Hence
for injections much weaker than exponential large scale lattice effects are not seen, but
for stronger than exponential injection rates large scale lattice effects correspond to an
increase in the speed of growth with respect to the Brownian motion version of Internal
DLA just described. In other words, for givenNt stronger than exponential, the rate of
growth of Internal DLA is larger than the rate of growth of the corresponding model
of Brownian motions with traps at the integers. The simple point is that as the rate of
injection becomes larger, one has to look farther into the tails of the distribution of the
particles for the main contribution to the asymptotics.

(4) The difference in the formulation of the shape results in the three different regimes
reflects the different techniques used. The subcritical case (1) is proved in [1] using the
methods of [6]. In this article we prove the critical and supercritical cases. The critical
case is proved in Section 3 using the method of [4] where the theorem was proved
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before in the special caseζx = 1 for all x ∈ Zd . The supercritical case is proved in
Section 4 using order statistics. This complements the proof in [4] in the special case of
one dimension with injectionNt = t andζx = 1 for all x.

(5) The conclusion of case (3) (in particular concerningr(t)) is valid for any
distribution of traps satisfying lim infn→∞

∑n
x=0 ζx = m > 0 and does not depend on

the randomness of the trap distribution.
(6) Using the methods of [4] one can study a variant of the model where live particles

have a zero-range interaction, in the critical and subcritical case (see [4,8]). Analogous
results hold.

(7) If more than one trap is allowed at each site the same results hold, with analogous
proofs, withm = E[ζx]. It would be interesting to know what happens in the case
m=∞.

2. Critical case

Recall the reduced descriptionηx(t)=∑
n 1Xn(t)=x of our process. Since the field of

trapsζx is fixed throughout, the variable

ξx(t)= ηx(t)− ζx

together with the initial conditionξx(0) = −ζx gives a full description of our Markov
process. For any local functionf ,

f
(
ξ(t)

)−
t∫

0

Lf
(
ξ(s)

)
ds − ∑

{i: ti�t}

(
f

(
ξ0,+(ti)

)− f
(
ξ(ti)

))
, (2.1)

is a martingale, where the Markov generator is

Lf (ξ)=∑
x,e

(ξx)+
(
f (ξx,x+e)− f (ξ)

)
,

wheree are unit vectors in the lattice,x are sites inZd , ξx,x+e denotes the configuration
obtained fromξ by moving one particle from sitex to sitex + e, andξ0,+ denotes the
configuration obtained fromξ by adding one particle at 0,

ξx,x+e = ξ − δx + δx+e, ξ0,+ = ξ + δ0.

For any real numberx we use(x)+ or x+ to denote max(x,0). The last term of (2.1)
corresponds to the deterministic injection of particles, and 0� t1 < t2 < · · · are the times
when particles are added; the jumps of�td/2�.

Let ε be a small parameter and introduce macroscopic space and time variablesx= εx

andt= ε2t in Rd and[0,∞). The main result of this section is

THEOREM 2.1. – For almost every realizationζ of the trap field, asε→ 0,

[
ξ�ε−1x�

(
ε−2t

)]
+⇀ρ(x, t) (2.2)
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and

1ζ�ε−1x�>0,ξ�ε−1x�(ε−2t)�0 ⇀m1s(x)�t (2.3)

weakly inPζ probability, whereρ(x, t) � 0 and s(x) are the unique solutions of the
one-phase Stefan problem




∂ρ

∂t
=1ρ + t (d−2)/2δ0 s(x) < t,

ρ = 0 s(x) � t,
∇0ρ · ∇s =−m s(x)= t.

(2.4)

Remarks. – (1) The Stefan problem says that the expansion of the boundary is in
the normal direction with velocity proportional to the density gradient∇0ρ taken from
inside the region. The only large scale effect of the randomness of the traps is that this
expansion is slowed down by a factorm=E[ζx].

(2) The solution of (2.4) is given explicitly byρ(x, t)= �(d/2)
2πd/2

∫ K

|x|/√t s
1−de−s2/4ds and

s(x)=K−2|x|2 where�(d/2)e−K2/4=mπd/2Kd . Case (2) of Theorem 1.1 follows.
Theorem 2.1 is proved by suitably modifying the method of [4]. We indicate only the

main steps and differences from the earlier proof and refer the reader to [4] when the
proofs only require straightforward modifications.

2.1. Invariant measures

We consider the system without creation, i.e., with Markov generatorL.

LEMMA 2.2. – Letµ be any invariant measure forL. Then

µ
(∃ x, y ∈ Zd, ξx > 0, ξy < 0

)= 0.

Proof. –It suffices to show that for arbitrary sitesx andy, µ(ξx > 0, ξy < 0)= 0. We
will prove it by induction onn, the lattice distance betweenx andy.

To start the induction let us takex andy to be nearest neighbour sites. Consider the
functionf = 1ξy<0. Sincef is a bounded local function andµ is an invariant measure
we haveEµ[Lf ] = 0. NowLf =−∑

e(ξy+e)+1ξy<0. Since each term in the sum is non-
negative we haveEµ[(ξx)+1ξy<0] = 0 which we rewrite as 0=∑∞

k=1 k+µ(ξx = k, ξy <

0)= 0. This proves thatµ(ξx > 0, ξy < 0)= 0.
Now suppose the statement holds for sites at distancen and letx be at distancen+ 1

from y. Then there exists a sitez of distancen from x and 1 fromy. By the inductive
hypothesisf = 1ξz>0,ξx<0= 0 almost surely with respect toµ. Therefore for any lattice
siteu and unite, Lu,u+ef = (ξu)+(f (ξu,u+e)− f (ξ)) � 0 almost surely with respect to
µ as well. However sincef is a bounded local function andµ is invariant we have also
Eµ[L0f ] = 0 and it follows that eachLu,u+ef = 0 almost surely with respect toµ. In
particular,Eµ[Ly,zf ] = 0, or

0=Eµ

[
(ξy)+1ξz=0,ξx<0

]=
∞∑
k=1

k+µ(ξy = k, ξz = 0, ξx < 0).
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By the induction hypothesis,µ(ξy = k, ξz = 0, ξx < 0)= µ(ξy = k, ξx < 0). But then we
must haveµ(ξy = k, ξx < 0)= 0 for all k which completes the induction.

COROLLARY 2.3. – The set of extremal invariant measures forL consists of
(i) the Dirac mass on any configurationξ with ξx � 0 for all x ∈ Zd ,
(ii) density anyρ > 0.

Proof. –All the measures in group i are clearly invariant. Supposeµ is some other
extremal invariant measure. Thenξx > 0 for somex, and by the previous lemma,ξx � 0
for all x, µ almost surely. Hence,L is the generator of independent random walks on the
support ofµ, and it therefore follows thatµ must be an extremal invariant measure for
independent random walks, which are known to be product Poisson measures [7].

2.2. Hydrodynamic limit

TheH−1,ε norm is defined on functionsf : εZd →R of meanεd
∑

x∈εZd fx = 0 by

‖f ‖2
−1,ε = sup

φ

εd
∑

x∈εZd

{
2fxφx − 1

2
ε−2

∑
|e|=ε

|φx+e − φx|2
}

= ε2d
∑

x,y∈εZd

gε
y−xfxfy, (2.5)

wheregε
x = ε2 ∑∞

n=0p
n
x in d � 3 andgε

x = limN→∞ ε2 ∑N
n=0p

n
x −pn

0 in d = 1 or 2. Here
pn are then step transition probabilities of a symmetric nearest neighbour discrete time
random walk onεZd . Note that in [4] the factorsε2 are missing in the definition ofgε.

We can observe our system on the latticeεZd by defining

ξ εx (t)= ξ�ε−1x�
(
ε−2t

)
.

LEMMA 2.4. – For almost every realizationζ of the traps, for eacht � 0, asε→ 0,
ξ ε(t)− ρε(t) ⇀ 0 weakly, in probability, whereρε

x(t), x ∈ εZd , t � 0, is the solution of
the lattice Stefan problem

∂ρε

∂t
=1ε(ρ

ε)+ + dP ε, ρε(t= 0)=−m. (2.6)

Here1εφx = ε−2 ∑
|e|=ε φx+e − φx is the lattice Laplacian andε2P ε(t) is the number of

particles created in the microscopic system up to timet.

In Sections 2 and 4 of [4] it is explained in detail how part (2) of Theorem 1.1 follows
from this lemma. The weak convergence (2.2) of the density field follows rather easily
because the solution of (2.6) converges to the solution of (2.4) away from the creation
points. However there is a fair amount of work to do to obtain the weak convergence (2.3)
of the saturated set, as well as (1.4). This is done in [4].

Proof of lemma. – Step1. Fix a large timeT. There is a finiteB such that if the initial
condition in (2.6) are replaced byρε

x(t= 0) =−ζx if |x|> BT andρε
x(t= 0) =−m if

|x|� BT then the solution remains the same up to timeT (finite propagation speed). In
the following we work with the modified initial conditions forρε.
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Let qε be the solution of (2.6) with the initial condition changed toqε(t = 0) =
−ζ everywhere. Note thatεd

∑
x∈εZd [qε

x − ρε
x] is constant in time and given by

Zε = εd
∑
|x|�ε−1BT(m − ζx). Note thatZε = O(εd/2) and vanishes for almost every

realization ζ of the traps, by the law of large numbers. Now theH−1,ε norm of
qε − ρε −Zε makes sense and it is straightforward to check that

∥∥qε − ρε −Zε
∥∥2
−1,ε

∣∣t=T
t=0 =−2

T∫
0

∑
x∈εZd

(
(qε

x)+ − (ρε
x)+

)
(qε

x − ρε
x) dt

+ 2Zε

T∫
0

∑
x∈εZd

(
(qε

x)+ − (ρε
x)+

)
dt.

The last integral is bounded uniformly inε, for fixedT. SinceZε → 0, the last term goes
to zero and we see thatqε − ρε tends weakly to 0. As in [4] it can be shown from this
thatqε+ converges strongly to the solutionρ of (2.4).

Step2. By direct computation one shows that

∥∥ξ ε − qε
∥∥2
−1,ε

∣∣t=T
t=0 = 2

T∫
0

εd
∑

x∈εZd

V
(
ξ εx (t), q

ε
x(t)

)
dt+Mε(T)

whereMε(T) is a martingale and

V (ξ, q)=−(ξ − q)(ξ+ − q+)+ ξ+.

Step3. We cut off a small region around the creation site, as well as large values
of V , and perform some time averaging using the strong convergence ofρε to ρ, and the
apriori smoothness ofρ away from 0. The result is that

E
[∥∥ξ ε − qε

∥∥2
−1,ε

]∣∣t=T
t=0 � 2

T∫
0

∫
|x|�δ

Eµ̄
ε,σ
x,t

[
V'(ξ0, ρ(x, t))

]
dtdx+?(ε, ', σ, δ),

whereµ̄ε,σ
x,t denotes the average overBσ (t)= {, s ∈ [0,T]: |s− t|� σ } of τxµs whereµs

is the distribution ofξ(s) and

lim sup
δ↓0

lim sup
σ↓0

lim sup
'↑∞

lim sup
ε↓0

?(ε, ', σ, δ)= 0.

Here

V'(ξ, ρ)=−φ'

(
(ξ − ρ)(ξ+ − ρ+)

)+ φ'(ξ+)

whereφ'(x)= x if x � ' and' otherwise. Finally one shows that the familyµ̄ε,σ
x,t , ε > 0

is tight.
Step4. Let µ̄σ

x,t be any weak limit ofµ̄ε,σ
x,t asε→ 0. Letf be any local function and

|x|� δ. Recall thatL is the generator of the dynamics without creation, andσ is much
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smaller thanδ. We have

Eµ̄σ
x,t
[Lf ] = lim

ε→0
Av|s−t|�σE

[
Lf (τxξs)

]
.

The latter term can be written as the limit asε→ 0 of

∣∣[t− σ, t+ σ ] ∩ [0,T]∣∣−1
∫

[t−σ,t+σ ]∩[0,T]
E

[
Lf (τxξs)

]
.

By the definition of the generator this becomes,

ε2∣∣[t− σ, t+ σ ] ∩ [0,T]∣∣−1
E

[
Av|y−x|�σε−1f (τyξs)

]∣∣s=(t+σ)∨T
s=(t−σ)∧0 .

Note thatτyf never depends onξ0, and therefore the creation part of theξ dynamics
does not appear in the last expression. Takingε→ 0 we obtainEµ̄σ

x,t
[Lf ] = 0 for any

bounded localf and thereforēµσ
x,t is invariant forL.

Step5. We arrive at

∫
|x|�δ

T∫
0

∫
B

Eµβ

[
V'(ξ0, ρ(x, t)

]
Bx,t(dβ) dtdx

where eachBx,t is a probability measure on the parameter spaceB parametrizing the
extremal invariant measuresL. We let ' → ∞ and use the monotone convergence
theorem to remove the cutoff' onV . Since

Eµβ

[
V (ξ0, ρ)

]
� 0

for any suchµβ , and anyρ, we have shown thatE[‖ξ ε(t)− qε(t)‖2−1,ε]|t=T
t=0 vanishes in

the limit of small ε. Henceξ ε − qε tends to zero weakly in probability. From step 1,
we know that for almost every realizationζ of the traps,qε − ρε tend to zero weakly as
well, and this completes the proof.

3. Asymptotics for order statistic of free random walks and supercritical IDLA in
one dimension

In this section we state asymptotic estimates on the position of free random walks and
use this to compute the size of supercritical IDLA in dimensiond = 1.

We begin by defining an order statistics on a sequence of real numbersa1, a2, . . . . Let
M ∈N andaM(1) be the largest among the firstM members of such sequence,

aM(1) = sup
1�n�M

{an}

and recursively define thekth largestaM(k) among the firstM members of this sequence

aM(k) = sup
1�n�M

{
an: an �= aM(j) for 1 � j � k − 1

}
.
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Let Y1(t), Y2(t), . . . be independent continuous time simple symmetric random walks
on Z created at timest1, t2, . . . and jumping after that at rate 1. LetNt =max{i: ti � t}.
We can add a convention thatYn(t)= 0 for 0� t � tn. Then, we have an order statistics
on the firstM born random walks at timet , given by{YM

(k)(t): k ∈N}. Similarly we have
an order statistics on the rightmost positions attained by each random walk between
time 0 andt , and denoted by{ YM

(k)(t): k ∈N}. The following asymptotics will be proved
in Section 4.

THEOREM 3.1. – Letnt : [0,∞)→N be increasing and assume that eitherlogNt 

logt or thatNt = �tα� for someα > 1/2. Furthermore, assume that there is aδ > 0 and
a functionft such that1� ft � t andNft 
 (logNt)

1+δ and thatnt �C
√
t logNt , for

some constantC. Then
(i) In probability

lim
t→∞Y

Nt

(nt )
(t)/wn·(t) � 1. (3.1)

(ii) If we assume in addition that there is aβ > 0 such thatnt � tβ , then equality
holds in(3.1). The theorem holds also ifYNt

(nt )
(t) is replaced by YNt

(nt )
(t).

Remarks. – (1) The speedwn·(t) reflects an interplay on how the random walksYi

affect the value ofYNt
nt
(t). At time s, Ns random walks have been born which by timet

have evolved at least a timet − s. Suppose one wants to measure the effect of these
Ns random walks onYNt

nt
(t). For s small enough this effect should be negligible, since

Ns → 0 whens→ 0. On the other hand, ifs is to close tot , there can be many random
walks within the firstNs which evolved a timet − s, so that they do not contribute
significantly toYNt

nt
(t). The supremum inwn·(t) corresponds to choosing the optimal

time s.
(2) Most of the hypothesis of Theorem 3.1 are of a more technical nature. The

hypothesis logNt 
 log t or Nt = �tα� is a restricition from the set ofN ’s such
that Nt 
 t1/2, and basically discards injections that could oscillate between some
polynomial injection and something much larger than a polynomial injection. The
hypothesis concerning the functionft such that 1� ft � t andNft 
 logNt discards
injections with a sudden big jump (for exampleNs = O(es) for s � t − 1/t and
Nt =O(ees )). These assumptions could be weakened, but we decided in favour of shorter
proofs over the most general statements.

Proof of the lower bound of Theorem 1.1(3). –Here we prove that for almost every
realization of the trap configurationζ , in Pζ -probability

lim
t→∞ rt/w

√
t (t) � 1. (3.2)

Note thatrt �  Y(1)(t). By Theorem 3.1 part (ii) applied to the order statistics of the
rightmost position Y (t) in the time interval[0, t] of the random walksY (t), with nt = 1,
for everyζ , in Pζ -probability,

lim sup
t→∞

rt /w1(t) � 1. (3.3)
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By symmetry, the same statement holds for the (reflected) leftmost particle−lt . The
number of stopped random walksXi at time t is given by

∑rt
x=l(t ) ζx . Therefore ift

is sufficiently large, less than
∑2w1(t)

x=−2w1(t)
ζx ≤ 5w1(t) random walksXi(t) have been

stopped. The smallest possible value ofrt then corresponds to stopping the rightmost
5w1(t) random walks and hence for eachζ , in Pζ -probability

lim sup
t→∞

rt /Y(�5w1(t)�)(t) � 1. (3.4)

Now, by standard estimates on the functionI−1(x) (see Proposition 4.1, Section 4)
w1(t) � C

√
t logNt , for someC <∞. Therefore, (1.5) together with an application

of part (i) of Theorem 3.1, this time withnt = �5w1(t)�, shows that for everyζ , in
Pζ -probability

lim sup
t→∞

rt /w5w1(·)(t) � 1.

The lower bound (3.2) now follows from the equality limt→∞w5w1(·)(t)/w√t (t) = 1,
which is verified using the concavity property of the functionI−1(x) (see Proposi-
tion 4.1, Section 4) and considering separately the casesNt = �tα�, α > 1/2, and
logNt 
 log t .

Proof of the upper bound of Theorem 1.1(3). –First we claim that for eachk � 1,

rt �  Y(k)(t)+M(k) (3.5)

whereM(k) represents the number of sites between Y(k)(t) and the position of the
(k− 1)th trap strictly to the right of Y(k)(t).

Indeed for allj ,  X(j)(t) �  Y(j)(t). Let us fix at and renumber the particles according
to their record values in[0, t]. More precisely, letn(j) be defined by Xn(j)(t)=  X(j)(t).
SinceXn(j)(t) �  Xn(j)(t) we certainly haveXn(j)(t) �  Y(j)(t). Hence the only particles
whose positions at timet could possibly be larger than Y(k)(t) areXn(1), . . . ,Xn(k−1).
There arek − 1 such particles, so if one of them is stricly to the right of the(k − 1)th
trap to the right of Y(k)(t), then by the pigeonhole principle one of the traps must be
empty. Since there is a particle to the right of it, this contradicts the definition of the
internal DLA dynamics. Hence (1.7) holds.

By the strong law of large numbers, for almost every realization of the trap configura-
tion we havem= limn→∞ 1

n

∑n
x=1 ζx > 0. Therefore, for almost every realization of the

trap configuration we have thatM(k) � 2
m
k, eventually ink. Choosingk = �√t� we can

now conclude from (1.7) that for almost every realization of the trap configuration,

rt �  Y(�√t�)(t)+
2

m

√
t ,

eventually int . By Theorem 3.1, for almost every realization of the trap configuration in
Pζ -probability, we have the upper bound limt→∞ rt /w

√
t (t) � 1.
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4. Asymptotics for order statistic of free random walks

In this section we prove Theorem 3.1. Although the methods are standard, we were
unable to find relevant references in the literature. So complete proofs are included here.
Our first step in Section 4.1 will be to derive precise asymptotic estimates on the tail
distribution of a continuous time symmetric simple random walk. In Section 4.2 we will
derive tail estimates on the order statistics of independent random walks born at the
same time, and then on the right-most random walk from the set{Yi(t): 1 � i � Nt}.
In Section 4.3, we first derive the lower bound of part (i) of Theorem 3.1. This is based
in finding a times for Ns independent random walks born at times that maximizes
their order statitics positions. Next, in Section 4.3 we derive the upper bound of part (ii)
of Theorem 3.1. This will be an application of the estimates of Section 4.2 analyzing
separately the case logNt 
 log t andNt = �tα�, with α > 1/2.

4.1. Asymptotics for a continuous time symmetric simple random walk

The main result of this subsection is Lemma 4.2 which gives the asymptotics for the
tail distribution of a simple continuous time random walk. The result is standard in the
sense that different versions of these estimates can be found in the literature, however,
never in the particular form needed in this paper. Note in particular that in Lemma 4.2
the timeαt may even go to 0 ast→∞.

Before we start we collect some basic information about the rate function (1.2).

PROPOSITION 4.1. –
(i) I (x) is convex andI−1(x) is concave.
(ii) I ′(x)= sinh−1 x = log(x +√1+ x2 ).

(iii) I−1(x) �
√

2x(1− 4
√
x )1x�I (1/2)+ x

3 logx 1x�I (1/2) �
√
x/2.

(iv) I−1(x) �
√

2x(1+√x )1x�I (1/2) + 10x1x>I (1/2).

Proof. –(i) and (ii) are clear. To prove (iii), note that 1+ x2/2− x4/8 �
√

1+ x2 �
1+x2/2, and log(1+x) � x. Therefore,I (x) � x2/2+x3/2+x4/8� x2/2+x4, when
x � 1/2. Inverting this relationship we obtain the lower bound onI−1 for x � I (1/2).
For x � 1/2, note thatI (x) � x log(6x). But the inverse of the functionx log(6x) is
larger thanx/(6 log(x)) whenx � I (1/2). This finishes the proof of the lower bound. To
prove (iv), note that log(1+x) � x−x2/2. Therefore,I (x) � x log(1+x)−√1+ x2+
1� x(x − x2/2)− x2/2� x2/2− x3/2 if x � 1/2. Inverting we obtain the upper bound
on I−1(x) for x � I (1/2). The largex upper bound is similar.

LEMMA 4.2. – LetZ(t) be a continuous time symmetric simple random walk onZ,
starting at the origin at time0 and running at rate1. Letαt , βt : [0,∞)→ (0,∞) satisfy

βt 
 1 andβt � C
√
αt log(α2

t + 1) for someC > 0. Leta = (α2+ β2)1/4. Then,

P
(
Z(αt) � βt

)= e−αt I (βt /αt )√
2π at (1− e−I ′(βt/αt ))

[1+Rt ]

where|Rt |� 30
C
(4 logat )−1/6.
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Proof. –We fix t and drop the subindext on α and β temporarily. Letν > 0
and n ∈ N be such thatνn = α. For λ > 0, let V λ,ν

1 , V
λ,ν
2 , . . . , be independent and

identically distributed withP(V
λ,ν
1 = k) = P(Z(ν) = k)exp{λk − ν(coshλ − 1)} and

Sλ,ν
n =∑n

i=1V
λ,ν
i so that forj ∈ Z,

P
(
Z(α)= j

)= P
(
S0,ν
n = j

)= P
(
Sλ,ν
n = j

)
exp

{−λj + α(coshλ− 1)
}
.

The supremum in (1.2) is attained atλ= sinh−1x so by Proposition 4.1(ii),

P
(
Z(α)= β + j

)= P
(
SI ′,ν
n = β + j

)
exp

{−jh− αI (β/α)
}
. (4.1)

The characteristic functionE[exp{iuSλ,ν
n }] of Sλ,ν

n is given by

exp
{
nν(cosh(λ+ iu)− coshλ)

}

= exp
{
α

(
iusinhλ− 1

2
u2 coshλ− 1

6
iu3 sinhλ+Ru,λ

)}
,

whereRu,λ = 1
6

∫
γ (z− λ)3 coshz dz, the integral being taken over the contourγ = {z ∈

C: z = λ + iy, 0 � y � u}. Since forz ∈ γ , |coshz| � coshλ, we can writeRu,λ =
(coshλ)R1(u), where|R1(u)|� u4/24. By Fourier inversion, sinceα coshI ′ = a2,

P
(
SI ′,ν
n = β + j

)=
π∫

−π
e−iuj exp

{
−1

2
u2a2− 1

6
iu3β + a2R1(u)

}
du

2π
.

After an elementary change of scale this becomesa−1
∫ πa

−πa exp{−ivj/a − 1
2v

2 +
R2(v)} dv2π , whereR2(v) = 1

6iv
3βa−3 + O(v4), and |O(v4)| � 1

24v
4a−2. Substituting in

Eq. (1.7), and summing overj we get that

P
(
Z(α)� β

)= 1

2πa
e−αI (β/α)

πa∫
−πa

(
1− exp{−I ′ − iv/a})−1

e−
v2
2 +R2(v) dv. (4.2)

Let I1 denote the integration restricted to|v|� (loga)1/3 andI2 the remainder. We now
claim that if |v|� (loga)1/3, then

∣∣∣∣ 1− exp{−I ′}
1− exp{−I ′ − iv/a} − 1

∣∣∣∣ � 6

C(loga)1/6
. (4.3)

In order to check this note that the left hand side is always bounded byv
a

exp{−I ′}
|1−exp{−I ′−iv/a}| .

We can bound the absolute value in the denominator below by(1−exp{−1})min(1, I ′).
So using 1− exp{−1} � 1/3 and Proposition 4.1(ii) and dropping a few terms, using
(α + β)2 � α2 + β2, we see that the left hand side of (4.3) is bounded above by
3v
√
α a−2 max(1,1/I ′).

Now I ′(β/α) � log(1+ β

α
). Note that forx � 1/2, log(1+ x) � log(3/2) and for

0 � x � 1/2, log(1 + x) � x/2. Also 1/ log(3/2) � 3. Hence we obtain an upper
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bound by replacing max(1,1/I ′) by max(3,2α/β), or, sinceβ � C
√
α log(1+ α2), by

max(3,2C−1
√
α/ log(1+ α2)). Now

√
α/ log(1+ α2)� (1+ α2)1/4

(log(1+ α2))1/2
� (β2+ α2)1/4

(log(β2+ α2))1/2
.

Thus, for t large enough we have max(3,2C−1
√
α/ log(1+ α2) ) � 2 (β2+α2)1/4

C(log(β2+α2))1/2
.

This gives (4.3).
It is also not hard to check that if|v|� (loga)1/3,

∣∣exp
{−v2/2+R2(v)

}− exp
{−v2/2

}∣∣ � 4a−1 loga, (4.4)

and that

∣∣∣∣
√

2π −
(loga)1/3∫

−(loga)1/3

exp
{−v2/2

}
dv

∣∣∣∣ � 2exp
{
−1

2
(loga)2/3

}
. (4.5)

Integrating (4.3), (4.4) and (4.5), we conclude that,

I1=
√

2π

1− e−I ′
(
1+R3(t)

)
,

∣∣R3(t)
∣∣ � 20C−1(loga)−1/6. (4.6)

On the other hand, we claim that

∣∣(1− exp{−I ′})I2
∣∣ � 8exp

{
− 1

12
(loga)2/3

}
. (4.7)

In fact, first note that

(
1− exp{−I ′})I2=

∫

(loga)1/3<|v|�πa

∣∣∣∣ 1− e−I ′

1− e−I ′−iv

∣∣∣∣e−v2/2+R2(v) dv.

Now the term in absolute value is bounded by 1 and|expR2(v)|� exp{v4a−2/24} so

∣∣(1− exp{−I ′})I2
∣∣ �

∫

(loga)1/3<|v|�πa

e−v
2( 1

2−( va )2 1
24) dv.

But, v/a � π , so that the factor multiplyingv2 in the exponent of this bound is larger
than 1/2− π2/24� 1/12. Hence, we get the bound

∣∣(1− exp{−I ′})I2
∣∣ �

∫

(loga)1/3<|v|�∞
e−v

2/12dv,

from which (4.7) follows.
Combining (4.6) and (4.7) with (4.2) gives a proof of the lemma.
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4.2. Order statistics: independent identically distributed random walks

As discussed earlier, a main ingredient in the proof of Theorem 2 will be to obtain
asymptotic estimates on the order statistics of independent random walks born at
the same time. LetM ∈ N and consider a setZM

1 (t),ZM
2 (t), . . . of M independent

continuous time random walks such thatZM
n (0)= 0 for 1� n � M . Consider the order

statistics{ZM
(k)(t): k ∈N} on this set of random walks at timet .

PROPOSITION 4.3. – Let Nt, nt, αt : [0,∞)→ (0,∞) be increasing functions. As-
sume thatαt � t and that there is a1 � δ > 0 such thatNt 
 tδ+ 1

2 andnt � �Nt�1−δ .
Furthermore, for−1� γ � 1 define

Kγ
t = αtI

−1
(

1+ γ

αt

log
Nt

nt

)
(4.8)

and assume thatNt, nt and αt are such thatK0
t 
 1. Then, for every1/2 � ε > 0 for

sufficiently larget ,
(i) P(Z

Nt

(nt )
(αt ) � Kε

t ) � 8e2N
−δε/4
t .

(ii) P(Z
Nt

(nt )
(αt ) � K−ε

t ) � exp{−�Nt�δε/10}.
Before proceeding with the proof of the proposition, we will need the following

lemma, which states some properties of some expressions that will appear when applying
the tail asymptotics of Lemma 4.2.

LEMMA 4.4. – For −1/2 � γ � 1/2 let I−1, α, Kγ , Nt andnt be as in the previous
proposition and define

rγt =
√

2π
(
1− exp

{−I ′(I−1(Kγ
t )

)})(
α2
t + [Kγ

t ]2
)1/4

.

Thenrγ is increasing inγ and for t large enough,
(i) 1

6 � r
−1/2
t � r

1/2
t � 10t logNt,

(ii) (Nt

nt
)γ 1

r
γ
t


 t δ/8

8 logt .

Proof. –The monotonicity can be checked directly.
(i) To prove the leftmost inequality, by Proposition 4.1,

r−1/2=√2π
I−1+√

(I−1)2+ 1− 1

I−1+√
(I−1)2+ 1

(
α2+ [

K−1/2]2)1/4
,

where the argument ofI−1 is + 1
2α log(N/n), and this can be bounded below by

(α)1/2(I−1)3/2

(I−1+
√

(I−1)2+1)
. ForI−1 � 1 andt large enough this can be written as

(K0)1/2 I−1

(I−1+√
(I−1)2+ 1)

� 1 · 1

3
,
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where we have used the hypothesisK0
t 
 1. On the other hand, forI−1 < 1 we have the

inequality

α(I−1)2

√
αI−1

1

I−1+√
(I−1)2+ 1

� 1

10

(
log(N/n)

)1/2
,

where we used Proposition 4.1(iii) and (iv). This proves that1
3 � r

−1/2
t . To prove

the upper bound, note that sinceαt � t , we have thatr1/2
t � 6(t + αI−1). Now, by

Proposition 4.1(iv), we know thatI−1 � 10α−1 logN(t). Our upper bound now follows
for t large enough.

(ii) Sincerγt � 10t logNt for larget , if t satisfiesNt � t logt , the left hand side of (ii)

is bounded below byt
δγ log t

4 /10t (log t)2 which certainly dominates the right hand side
of (ii) for large t . So we only need to consider the caseNt < t logt . We divide it into two
cases. Ifαt � (log t)3 andt is large enough then from the definition ofrγ it follows that
r
γ
t � 2I−1(4(log t)2/αt)(α

2
t + [Kγ

t ]2)1/4. By Proposition 4.1(iv) this can be bounded by

4
√
(4(log t)2/αt)

(
α2
t + [Kγ

t ]2
)1/4 � 4 logt

(
1+ [

I−1(4/ logt)
]2)1/4

.

This is bounded by 8 logt whent is large enough. On the other hand, ifαt < (logt)3, we
haverγt � 2((log t)3+ (log t)4)1/4 � 8 logt . This concludes the proof of the lemma.

Proof of Proposition 4.3. –(i) From the definition of the order statistics, for anys � 0,
x � 0, andM,m ∈N with m � M ,

P
(
ZM
(m)(s) � x

)=
M∑

k=m

(
M

k

)
P

(
Z(s) � x

)k(
1−P

(
Z(s) � x

))M−k
. (4.9)

We takeM = Nt , m = nt , s = αt and x = Kε
t and apply Lemma 4.2 withβt = Kε

t .
We need to verify the hypothesis of that lemma. SinceI−1 is increasing,Kε

t � K0
t and

by hypothesisK0
t 
 1, soKε

t 
 1. By Lemma 4.2,Kε
t � K0

t � 1√
2

√
αt log(Nt/nt) and

by our assumptions we have that fort large enough log(N/n) � logN1−δ � log t1/4

soK0
t �

√
αt log t/4

√
2 � 1

30

√
αt log(α2

t + 1) for t large enough. So the hypothesis of
Lemma 4.2 are satisfied.

Now we can apply Lemma 4.2 to (4.9). Then we use Stirling’s formula andN/[x(N −
x)]� 4/N on the binomial coefficients to get

P
(
Z

Nt

(nt )
(αt ) � Kε

t

)
� 2e√

Nt

Nt∑
k=nt

uk, uk =
(
a

k

)k(
1− k

Nt

)k−Nt

bNt−k, (4.10)

wherea = �nt �1+ε
�Nt �ε

1+Rt

rεt
, b = 1− ( nt

Nt
)1+ε 1+Rt

rεt
and|Rt |� 302(log(α2

t + [K0
t ]2))−1/6, which

goes to 0 by the hypothesisK0
t 
 1. The functionu is increasing for 0< k � a,

decreasing fora � k < Nt , so it attains a global maximum atk = a. Now a �
n(n/N)ε(2/rε) � 6n(n/N)ε � n, where in the second to last inequality we have applied
Lemma 4.2. Sincea � nt , the largest term in the summation of the right hand side
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of (4.10) corresponds tok = nt . We now divide the sum in (4.10) in two parts: terms
from k = nt to k =max{nt,√Nt }which we bound by max{nt,√Nt }unt , and terms from
k =max{nt,√Nt } to k =Nt which we bound byNtu

√
Nt

. Using(1−x/N)x−N � ex , we

see thatun � (ea/n)n andu√N � (ea/
√
N)

√
N . Hence we can bound the sum in (4.10)

by

2e
max{nt,√Nt }√

Nt

((
nt

Nt

)ε e(1+Rt)

rεt

)nt

+ 2e
√
Nt

((
1√
Nt

)ε e(1+Rt)

rεt

)√Nt

.

Now use|Rt |� 1 and absorb the prefactor max{nt,√Nt }/√Nt into a factorcnt and the
prefactor

√
Nt into a factorc

√
Nt to obtain that the left hand side of (4.10) is bounded by

4e
((

nt

Nt

)ε 2e2

rεt

)nt

+ 4e
((

1√
Nt

)ε 2e2

rεt

)√Nt

.

For t large, the first term dominates the second. Using the boundrεt � 1/6 proved
in Lemma 4.2 we obtain (i).

(ii) We apply Lemma 4.2 to the analogue of (4.9) forP(ZM
(m)(s) � x) as in (i) but with

x =K−ε
t , βt =K−ε

t . To apply the lemma we need to verify that for someC > 0 such that

K−ε
t � C

√
αt log(α2

t + 1). By the concavity ofI−1 it follows thatK−ε
t � (1− ε)K0

t . So

it is enough to show thatK0
t � C

√
αt log(α2

t + 1) which is proved in the first paragraph
of the proof (i). Hence we can apply the lemma to obtain

P
(
Z

Nt

(nt )
(αt )

)
�

nt∑
k=0

(
Nt

k

)
ρk(1− ρ)Nt−k

whereρ = ( nt
Nt
)1−ε 1+Rt

r−εt

with |Rt |� 502(2 logK0
t )
−1/6. Now

(
N

k

)
� 2e

(
1− k

N

)k−N(
N

k

)k

� 2ek+1
(
N

k

)k

.

Since |Rt | � 2 and 1/r−εt � 6 for t sufficiently large,ρ � 6(nt/Nt )
1−ε � 2. Also

(1− 1/x)−1 � e2/x wheneverx � 2 and hence(1− ρ)−nt � e6nt (nt /Nt )
1−ε

.

Now (1− 1/x) � e−1/x if x > 0, and therefore we also have(1− ρ)N � e−n(
N
n )

ε 1
2r−ε .

For c > 0 the functionf (x) = ( c
x
)x achieves its maximum atx = c/e. And the first

term in the summation in (4.10) corresponds tof (x) with, c = entmt(1+ Rt) where
mt = (Nt

nt
)ε 1

r−εt

. By Lemma 4.2,c
 nt . This implies that the maximum of the first factor

in the summation in (4.10) is attained atk = nt . So for sufficiently larget ,

P
(
Z

Nt

(nt )
(t) � Kε

t

)
� 2ent exp

{
nt

(
1−mt/2+ log(2emt)

)}
.

(ii) Follows from this inequality usingnt � expnt and Lemma 4.2.
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4.3. Order statistics: rightmost random walk

We now state the second ingredient in the proof of Theorem 2, a lower bound estimate
on the position at timet of the rightmost random walk among theYi , 1 � i � Nt . For
γ ∈ [−1,1] define,

wγ
n·(t)= sup

0�y�t

(t − y)I−1
(

1+ γ

t − y
log

Ny

nt

)
, (4.11)

with the understanding thatI−1(x) = 0 if x < 0. Also, letgγ
n·(t) : [0,∞)→ [0,∞) be

the maximizer in (4.11) and defineNγ
n·(t)=Ng

γ
n· (t).

PROPOSITION 4.5. – Let Nt, nt : N → [0,∞) be increasing functions such that for
someδ > 0, �Nt�1−δ 
 nt andNt 
 t1/2+δ. Then, for every1 � ε > 0, for sufficiently
large t ,

P
(
Y

Nt

(1)(t) > wε
1(t)

)
� 4ε−1(t logNt/2)

−1/4.

Proof. –First note that for everyx � 0, P(Y
Nt

(1)(t) � x) = ∏Nt

i=1P(Z(t − Ti) � x).
We want to apply Lemma 4.2 to each multiplicand withαt = t − ti andβt = wε

1(t).
We need to verify that the hypothesis are satisfied. It is trivial to verify thatw1,ε 
 1.
To show that there is a constantC such thatwε

1(t) � C
√
(t − ti ) log((t − ti )2+ 1) it

is enough to verify thatwε
1(t) � C

√
t log(t2+ 1). This is a consequence of the fact

thatwε
1(t) � t

2I
−1(2

t
log tδ/4) (where we have used the assumptions�Nt�1−δ 
 nt and

Nt 
 t1/2+δ) and the lower bound
√
x/2 on the functionI−1(x) given in Proposition 4.1.

Therefore,

P
(
Y

Nt

(1)(t) � wε
1(t)

)=
Nt∏
i=1

(
1− exp

{
− t − ti

v(t, ti)
I

(
wε

1(t)

t − ti

)}
(1+Ri,t )

)
(4.12)

where

v(t, s)=√2π
(
(t − s)2+ [

wε
1(t)

]2)1/4(
1− exp

{−I ′(wε
1(t)/(t − s)

)})

and |Ri,t | � 30
C
(logwε

1(t))
−1/6. Using the definition ofwε

1(t), we see that ifu > 0,

(t − u)I (
wε

1(t)

t−u ) � log�Nu�1+ε. Using this in (4.12) and taking logarithms we get,

logP
(
Y

Nt

(1)(t) � wε
1(t)

)
�

Nt∑
i=1

log
(

1− 1∧ �Nti�−(1+ε)
v(t, ti)

(1+Ri,t )

)

�−
Nt∑
i=1

1+Ri,t

i1+εv(t, ti)
. (4.13)

In the last inequality we usedNti � i. We want now to obtain a lower bound on the
function v(t, ti), uniform on i, to show that the rightmost hand side of (4.13) goes

to 0. Using Proposition 4.1(ii), we see thatv(t, s) � w1,ε ((t−s)2+w2
1,ε )

1/4

w1,ε+((t−s)2+w2
1,ε )

1/4 . But for x
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and y positive, the expressionxy
x+y is increasing inx. Applying this to the previous

inequality withy = wε
1 andx decreasing from((t − s)2 + [wε

1]2)1/4 to
√
wε

1, we see
thatv(t, s) �√

w1/2. Also note that
∑Nt

i=1
1

i1+ε � 1+ ∫∞
1

1
x1+ε dx � 2

ε
, where in the last

inequality we have used the hypothesisε � 1. Using these bounds together with the fact
that |Ri,t | � 1 for t large enough uniformly ini, we can conclude that for sufficiently
larget ,

logP
(
Y

Nt

(1)(t) �w1,ε(t)
)
�−8ε−1(w1(t)

)−1/2
. (4.14)

Using the inequalityw1(t) � t
2I
−1(2

t
logNt/2) and the lower boundI−1(x) �

√
x/2,

we see thatw1(t) � 1
2

√
t logNt/2. The proposition follows from this, the inequality

1− e−x � x for x � 0 and (4.14).

LEMMA 4.6. – Let Nt, nt : [0,∞) be increasing functions such that�Nt�1−δ 
 nt ,
for someδ > 0.

(i) For every functionf (t)= o(t) andκ > 0, we haveNγ
n·(t)
 �Nf(t)�1−κ .

(ii) Assume thatNt = �tα� for someα > 1/2. Then,t/(log t)2� gγ
n·(t)� t (log t)−1/2.

Proof. –(i) First note that for any functionf (t) such that 0� f (t) � t one has

(t − g)I−1
(

1+ γ

t − g
log

Nγ
n·
n

)
� (t − f )I−1

(
1+ γ

t − f
log

Nf

n

)
,

whereg, n, Nγ
n· , andf stand forgγ

n·(t), nt , N
γ
n·(t) andf (t), respectively. Therefore,

1+ γ

t − g
log

Nγ
n

n
� I

((
1− f

t

)
I−1

(
1+ γ

t − f
log

Nf

n

))
� 1+ γ

t − f
log

Nf

n
−R3,t , (4.15)

whereR3,t = f

t
I−1(

1+γ
t−f log Nf

n
)I ′(I−1(

1+γ
t−f log Nf

n
)) and we have used the lower bound

I (y) � I (x)− (x − y)I ′(x) valid for 0� y � x. We now claim that

∣∣R3(t)
∣∣ � 2

f

t

1+ γ

t − f
log

Nf

n
.

For this it is enough to prove that fory > 0, yI ′(y) � 2I (y) which can be checked
directly. We can then conclude from (4.15) that,

log
Nγ

n·(t)

nt
�

(
1− gγ

n·(t)

t

)(
1− f (t)

t

)
log

Nf(t)

nt
.

Therefore ifgγ
n·(t) < f (t), sincef (t)= o(t), for everyκ > 0 we have that,Nγ

n·(t)/nt 

(Nf (t)/nt)

1−κ . On the other hand ifgγ
n·(t) � f (t) there is nothing to prove since

Nγ
n·(t)=Ng

γ
n· (t) � Nf(t). This completes the proof of (i).

(ii) By Proposition 4.1 we havewγ
n·(t) �

√
t
2 logNt/2/nt for sufficiently larget . Since

Nt = tα , with α > 1/2 andnt � �Nt�1−δ, this implies that for somec > 0, for t large
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enoughwn(·),γ (t) � c
√
t log t . We now claim that this implies

lim
t→∞

logNγ
n·(t)/nt

t − g
γ
n·(t)

= 0. (4.16)

In fact, note that by the definition ofNγ
n· andgγ

n· , the expression whose limit is taken
in (4.16), is positive. Thus, if (4.16) is false, there is a subsequencetm such that either
logNγ

n·(tm)/ntm ∼C(tm− gγ
n·(tm)) for someC > 0 or logNγ

n·(tm)/ntm 
 tm− gγ
n·(tm). In

this first case, this implies that form large enough

wγ
n·(tm) � 2I−1(C)

C
log

Nγ
n·(tm)

ntm
� 2I−1(C)

C
(log tm)

2,

a contradiction. Similarly in the second case, using the upper boundI−1(x) � 10x for
largex Proposition 4.1, we would conclude thatwγ

n·(tm)� (logtm)2, a contradiction.
This proves (4.16).

Now, from Proposition 4.3,

wγ
n·(t)=

√
2(1+ γ )

(
t − g

γ
n·(t)

)
log

(�gγ
n·(t)�α/n

)+Rt, (4.17)

where |Rt | � 10(log t)2 and we used the assumptionNt = �tα�. One can check that
for t large enough the supremum overy ∈ [0, t] of the function

√
(t − y) log(�tα�/n)

is achieved at somey = O(t/ logt) + o(t log t) and that the supremum itself is
O(
√
t log t)
 Rt . Together with (4.17), this proves (ii).

4.4. Proof of Theorem 2

Proof of (i). – Step1. Let ε > 0. First we check thatN−ε,n(t)
 �n(t)�1+δ/4, which
will enable us to apply Proposition 4.3. Assume first thatN(t)= t1/2+δ0 for someδ0 > 0.
Then, by (4.1),N−ε,n(t) � Nt/(logt )2 
 t1/2+δ0/2. On the other handnt �

√
t logNt .

Therefore,N−ε,n(t)
 n
1/2+δ0/4
t . Choosingδ0 � δ we have thatN−ε,n(t)
 �n(t)�1+δ/4.

Now assume that logNt 
 logt . Then, for t large enough, by (1.7) applied with
f (t) = t/ logt , we have that for anyδ1 > 0, �N−ε,n(t)�δ1 
 �Nt/ logt�δ1/2 
 t (1+δ1/4)/2.
Now remark that by hypothesis, there is a function 1� f0(t)� t and aδ > 0 such that
Nf0(t) 
 (logNt)

1+δ. By (1.7) withf (t) = f0(t), we haveN−ε,n(t)
 �Nf0(t)�1−δ/2 

(logNt)

1+δ/2. Thus, when logNt 
 log t , we have thatN−ε,n(t)
 (
√
t logNt)

(1+δ/4)

nt .

Step2. If Ht = inf{y � 0: Ny =N−ε
n· (t)} is the first time thatN−ε

n· (t)=Ngε(t) random
walks have been born then we want to show that

P
(
YN−εn· (t)(t) �w−ε

n· (t)
)
� P

(
ZN−εn· (t)(t −Ht) � w−ε

n· (t)
)
. (4.18)

Write M andn for N−ε
n· (t) andnt , and note thatP(YN

(n)(t) � w−ε
n· (t)) = fM−n(p1, . . . ,

pM) andP(Z
N−εn·
(n) (t −Ht) � w−ε

n· (t))= fM−n(q1, . . . , qM) with pi = P(Yi(t) � w−ε
n· (t))

andqi = P(Zi(t −Ht) �w−ε
n· (t)) for 1� i � N . But for 1� i �N the birth timesti of

the random walksYi have the property thatti � Ht . Thus,
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pi =P
(
Yi(t) � w−ε

n· (t)
)= P

(
Zi(t − ti ) �w−ε

n· (t)
)

� P
(
Zi(t −Ht) �w−ε

n· (t)
)= qi.

Note thatf is a function of the form

fM(p1, . . . , pN)=
N∑

n=M

∑
π∈N(n)

pπ1 · · ·pπn(1− pπn+1) · · · (1− pπN ) (4.19)

whereN(n) is the set of permutations of{1, . . . , n}. Any derivative is given by

∂fM

∂pi

= ∑
π∈N(i,M−1)

pπ1 · · ·pπM−1(1− pπM ) · · · (1− pπN−1) � 0,

whereN(i,M − 1) are the permutations of{1, . . . , i−1, i+1, . . . ,N}. HencefM−n(p1,

. . . , pM) � fM−n(q1, . . . , qM), which proves (4.18).
Step3. Sincen1+δ/2

t � N−ε
n· (t), we can apply Proposition 4.3 to the right hand side

of (4.18), withαt = t − gε
n·(t). This, together with the fact thatHt � gε

n·(t) leads to

the conclusion that for everyε > 0 for sufficiently larget , P(Y
Nt

(nt )
(t) � w−ε

n· (t)) �
exp{−tδε/20}. Finally note that the concavity of the functionI−1(x), implies that
w−ε

n· (t) � (1− ε)wn·(t). Thus, for everyε > 0 for sufficiently larget ,

P
(
Y

Nt

(nt )
(t) � (1− ε)wn·(t)

)
� exp

{−tεδ/20}. (4.20)

This completes the proof of (i).

Proof of (ii). –By (i) it is enough to prove that in probability, limt→∞ Y
Nt

(nt )
/wn·(t) � 1.

To prove this we show that for everyε > 0, for sufficiently larget ,

P
(
Y

Nt

(nt )
(t) � wε

n·(t)
)
� Ut, (4.21)

whereUt = 2
ε
(t logNt/2)

−1/4 when logNt 
 logt andUt = 80/�Nt�δε/8 whenNt = �tα�
with α > 1/2. Note that the concavity of the functionI−1(x) which gives us that
wε

n·(t) � (1+ ε)wn·(t), implies from (4.21) that for sufficiently larget ,

P
(
Y

Nt

(nt )
(t) � (1+ ε)wn·(t)

)
�Ut.

Consider first the case logNt 
 log t . Note thatYNt

(nt )
(t) � Y

Nt

(1)(t). Sincent � tβ ,

by (4.1), for sufficiently larget we havewε/2
1 (t) � wε

n·(t). In fact, by the definitions
of gε

1 andNε
1 we have that

wε
n· � (t − gε

1)I
−1

(
1+ ε

t − gε
1

log
Nε

1

n

)

= (t − gε
1)I

−1
(

1+ ε

t − gε
1

logNε
1

(
1− logn

logNε
1

))
. (4.22)
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But by Lemma 4.6(i) withf (t)= t/ logt , we have thatNε
1(t)
�Nt/ logt�1/2 
 t

u(t/ logt)
4 ,

where u(t) = logNt/ logt 
 1. Therefore, sincent � tβ , we have logn
logNε

1
= o(t).

Combining this with (4.22), for sufficiently larget we havewε/2
1 (t) � wε

n·(t). Using

this we can now conclude that if logNt 
 log t , for sufficiently larget , P(Y
Nt

(nt )
(t) �

wε
n·(t)) � 2

ε
(t logNt/2)

−1/4.
We now analyze the caseNt = �tα�, α > 1/2. First note that by (4.1) for sufficiently

larget , tI−1(1+ε
t

log Nt

nt
)� w2ε

n· (t). Therefore by Proposition 4.3,P(Z
Nt

(nt )
(t) �wε

n·(t)) �
80/�Nt�δε/8. If P(YN

(n)(t) �wε
n·(t))= 1− fN−n(p1, . . . , pN) andP(ZN

(n)(t) �wε
n·(t))=

1− fN−n(q1, . . . , qNt
) with pi = P(Yi(t) < wε

n·(t)) � qi = P(Zi(t) < wε
n(·(t)) for 1 �

i � N . Thusf has the form (4.19) and hencefN−n(p1, . . . , pN) � fN−n(q1, . . . , qN), or
P(YN

(n)(t) � wε
n·(t)) � P(ZN

(n)(t) �wε
n·(t)) which gives

P
(
Y

Nt

(nt )
(t) �wε

n·(t)
)
� 80�Nt�−δε/8.

This proves (4.21) and hence (ii).
To extend this to YNt

(nt )
(t), note that by the reflection principle the tail estimate for

P(Z(t) � x), changes by a factor of 2 if we replaceZ by  Z. Thus, all the results of
Section 3.2 remain valid, and the proof of (ii) is a repetition of the above argument.
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