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ABSTRACT. —In this article, Internal DLA is studied with a random, homogeneous, distribution
of traps. Particles are injected at the origin off-@limensional Euclidean lattice and perform
independent random walks until they hit an unsaturated trap, at which time the particle dies
and the trap becomes saturated. It is proved that the large scale effect of the randomness
the traps on the speed of growth of the set of saturated traps depends of the strength of tt
injection, and separates into several regimes. In the subcritical regime, the set of saturated tra
is asymptotically an Euclidean ball whose radius is determined in a trivial way from the trap
density. In the critical regime, there is a nontrivial interplay between the density of traps and the
rate of growth of the ball. The supercritical regime is studied using order statistics for free randorn
walks. This restricts us td = 1. In the supercritical, subexponential regime, there is an overall
effect of the traps, but their density does not affect the growth rate. Finally, in the supercritical,
superexponential regime, the traps have no effect at all, and the asymptotics is governed by th
of free random walks on the lattice.
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RESUME. — Dans cet article on étudie le modéle d’Agrégation Limitée par Diffusion Interne
sous I'hypothése d’une distribution aléatoire homogéne de piéges. Ce modéle correspond
l'injection de particules a l'origine d’un réseau euclidigrdimensionnel; chaque particule
évoluant ensuite, de fagcon indépendante, selon une marche aléatoire jusqu’a l'instant ou el
tombe dans un piége non saturé. A ce moment la particule meurt et le piege devient saturé. Nol
prouvons que I'effet a grand échelle de I'aspect aléatoire de piéges sur la vitesse de croissan
de I'ensemble de pieges saturés dépend du taux d’injection, ce qui definit plusiers régime
d’injection. Dans le régime sous-critique, 'ensemble de piéges saturés est asymptotiqueme
égal a une boule euclidienne dont le rayon dépend trivialement de la densité de piéges. Dans
régime critique, il y a un rapport non trivial entre la densité de piéges et le taux de croissance d
la boule. Le régime sur-critique est étudié a I'aide des techniques de statistiques d’ordre pour de
marches aléatoires libres. Pour ce faire on se restreint ali-eds Dans le régime sur-critique et
sous-exponentiel, on trouve un effet global des pieges, mais leur densité n’affecte pas le taux c
croissance. Finalement, dans le régime sur-critique et sous-exponentiel, les pieéges n’ont auci
effet, et le comportement asymptotique est régi par celui des marches aléatoires libres dans
réseau.

0 2003 Editions scientifiques et médicales Elsevier SAS

0. Introduction

Internal DLA is a stochastic particle system in which traps are distributed on a
d-dimensional integer lattice, and particles are produced at the origin and move a
independent random walks until they hit a trap, at which time the particle stops, anc
the trap becomes saturated.

The model arises in several applied problems, for example, nuclear waste manag
ment: Radioactive waste is placed in a container and buried, but, since even the be
containers have some leakage, particles leave the container and as a rough approxin
tion, perform independent random walks. In order to contain them, chemical traps are
distributed around the area. When a radioactive particle hits a trap it is destroyed an
the trap becomes saturated. Internal DLA also serves as a model for the behaviour «
the chemical reactiod + B — Inert, in the special case where there is a sourcg of
particles, and theé particles are fixed. It has also been used to model erosion processes
as well as melting processes, among others.

A basic problem in such a model is to understand the asymptotic shape and growtl
rate for the set of saturated traps. Fixing the rate of the walks, and the field of traps
we have as free parameter the rate of injection of particles at the origin. The way
in which the growth rate is affected by the presence of the trap field depends or
the rate of injection of particles at the origin. We identify four different regimes:
Subcritical, critical, supercritical with subexponential injection, and supercritical with
superexponential injection. The critical case is whe€érr), the number of particles
injected up to time, is asymptotic ta?/2, and the exponential case is whafir) ~
exp{ct}.
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In the subcritical case, the asymptotic shape is a ball in any dimension. Asymptotically
there is a zero density of live particles, and therefore the size of the ball can be
determined easily: It has to contain as many traps as particles which have been injecte
up to a negligible error. By the law of large numbers the volume of the ball is clearly
N(t)/m wherem is the mean number of traps per site, and the radius can be read off
directly. Because the density of live particles is negligible, the model can be coupled to ¢
discrete time version, as was done in [6] (see also [3], where a discrete time asymmetri
version of the model is studied, and [5] where refinements of [6] are obtained). The shap
theorem follows from the analogous shape theorem for the discrete time case, followin
the methods of [6]. This was proved in [1] (see also [2]).

In the critical case, the shape is still a ball in any dimension, but now there is a
nontrivial density of live particles inside the ball. The boundary, and density of particles
evolve together asymptotically according to a one-phase Stefan problem. This ca
be solved explicitly, yielding the shape and the rate of growth, which is a nontrivial
function of the density of traps. This is proved here by an appropriate adaptation of the
hydrodynamic limit method introduced in [4] (see also [8]).

We also study here the supercritical case using order statistics. This restricts us to or
dimension. Two regimes are identified. In the subexponential regime, there is still a ne
effect of the traps, but the density of traps plays no role. In the superexponential regime
the traps play no role at all and the speed of propagation is controlled by the range ©
free random walks. In dimensions greater than one, in the supercritical case, one expec
similar results. However, here the shape will not be a sphere, but a certain level set of th
rate function for large deviations of random walks on the lattice. This reflects the fact
that as the strength of the injection is increased, the range of random walks becomes tt
dominant factor in the asymptotic shape and size of the saturated set. We do not prov
this fact here, as we decided to stress the application of order statistics: We study th
n(t)th rightmost particle at time in a system of random walks on the integer lattice,
starting at the origin, at given times. Under quite general conditions it is shown that the
asymptotics of this particle is governed by an appropriate transform of the large deviatior
rate function for a random walk on the lattice. This is then used to prove the asymptotics
for the internal DLA model in the one dimensional supercritical case.

Section 1 contains a more precise description of the model, and the main results
We have stated these in the simplest cases in order to highlight the main point of the
article which is the identification of the different regimes. In Section 2 we explain how
the methods of [4] need to be adapted in order to handle the random trap field in the
critical case. In Section 3 we state the main results about order statistics of randon
walks and from this obtain the asymptotics for internal DLA in the supercritical case in
one dimension. Section 4 contains the technical proofs of the order statistics results.

1. Model and main results

We start with a field: of traps onz?. For eachx € Z¢, ¢, € {0, 1} denotes the absence
or presence of a trap initially at
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Particles are injected at the origin at timgsr,, ... and then perform independent
continuous time random walks at rate 1. The rule is that the first particle which hits a
trap stops moving.

The position at time of the particle produced at timg will be denotedX, (¢).
Sometimes it is convenient to use the convention Hat) =0 for 0< ¢ < ¢,. Another
way to describe the model is through the occupation numbed = >°, 1x, )=, the
number of particles at site at timez. This includes the particles which have stopped
moving, and clearly, (t) = (n.(¢) — ¢,)+ is the number of ‘live’ particles at at timez,
and

A={xezZ% ¢, =1n()>1}

is the set of saturated traps. We will make a convention that the occupation number at
will not include particles which are not yet born, so at 0 we modify the definition to be
no(t) = En 1X,,(t)=0, 1>,

Let N, denote the number of particles created up to tim#&fe will call such anv, an
injection For simplicity, in this article we will always tak¥, to be deterministic, though
it is certainly not necessary. For each figlaf traps, and each injectioN we have a
processY (1) = {X1(1), X»(¢), ...} which also has a reduced descriptipn(t), x € Z¢.

We will denote the distribution of this process By.

In all cases we will assume that there is a positive density of traps — for simplicity we
assume that,, x € Z¢ are independent, witR (¢, =1) =m andP (¢, =0) =1 —m for
some fixedn € (0, 1].

Our main question is how the distribution of the traps affects the growth rate of the
random set of saturated traps. We distinguish three cases, based on the strength of t
injection: If t=%/?N, has a nontrivial limit as — oo we say the model isritical and
use the notatiorV, ~ 14/2, if t~4/?N, — 0 ast — oo we say the model isubcritical
and use the notatiotV, « t?/? while if t=%/°’N, — oo ast — oo we say the model is
supercriticaland use the notatioN, > t%/2. Three regimes are displayed in Table 1.

In any dimensiond, we denote byB(X, r) the Euclidean ball of radius centered
at x. Note that B(0, v¥/?a,;) has volumev, wherea;, = dT'(d/2)/2)%/?/. /7. Here
IN'a) = (;’ox"“le‘xdx is the Gamma function. We use the notation< b, when
a;/b, — 0 ast — oo and | x] to denote the greatest integer less than or equaldd.

We also will define the constat as the unique solution of the equation,

I'(d/2) exp{—K?/4} =mm??K?. (1.1)
Table 1
Injection regimes
Subcritical N, « 1412
Critical N, ~14/2

Supercritical N, > 14/2
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The large deviation rate function of a continuous time simple symmetric total jump rate
one random walk will appear in some asymptotics. So let

1(x) =sup{ix — (coshh — 1)} =xsinhtx — 14+x2+ 1 1.2)

A€R

Note that/:[0, 00) — [0, 00) IS one to one and therefore has an inverse function
I71:[0, 00) — [0, 00). If n, is an increasing function define

w, (1) = sup (t — y)1‘1<ilog &> (1.3)
t—y n

o<y<r
with the convention thal ~1(x) = 0 for x < 0. Finally, given two seUU, V, we denote

by U AV their symmetric difference, and&] the cardinality ofU.
We can now state our main results.

THEOREM 1.1. — (1) Subcritical casén any dimensiod > 1 we have that,
Ai~ B(0, (N:/m)"?ay)

in the sense that for anfy> 0O, for almost every, with P, probability one, for sufficiently
larget,

B(0, (1= 8)(N,/m)Yay) N (g, =1) C A, C B(O, (14 8)(N,/m)"?ag) N {¢. = 1.
(2) Critical caseln any dimensiom > 1, suppose thaW, = [¢/2]. Then,
A, ~ B(0, K1),
in the sense that for almost every realizatipof the trap field,
124 A, AB(O, KN/tag) N (¢ =1}] — 0, (1.4)

in P,-probability.

(3) Supercritical casdn dimensiond = 1, suppose that eithdog N, >> logt or that
N; = [t¥] for somex > 1/2. Furthermore, assume that there isa- 0 and a function
f; such thatl « f, <t and N(f,) > (logN,)**?. Then

in the sense that if, and ¢, are the rightmost and leftmost particles, then for almost
every realizatior; of the trap field,

tll[gorf/wﬁ(t) =1 and Ili_)rrgoﬁ,/wﬁ(t) =-1 (12.5)

in P,-probability.
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Remarks— (1) Note that part (3) of Theorem 1.1 does not cover the whole
supercritical case. In fact, by technical reasons which somehow simplify the proofs, we
have included the additional hypothesis that eitherNpg> logt or that N, = [ ] for
someq > 1/2.

(2) The main conclusion is that the effect of the traps depends on the strength of th
injection.

In case (1), where the injection is subcritical, the occupied set is approximately a ball
of volumem~1N,, which by the law of large numbers contains approximatélyraps.
Essentially all the particles at timéhave been trapped. The influence of the random trap
field on the speed of growth is a fairly trivial averaging.

In case (2), where the injection is critical, the randomness in the trap field enters only
through the mean on a large scale but has a nontrivial effect (1.1) on the speed of growtl

In case (3), where the injection is supercritical, the density (0, 1] of traps does not
enter at all. However from the asymptoticsuof; (r) one finds a transition at exponential
injections. If logN, « ¢ then for almost every trap configuratignin P,-probability,

Iy

lim =1 (1.6)
T SURe < /2 — ) 10G(N, /1/2)
If + < log N, then for almost every trap configuratignn P;-probability,
lim " —1 (1.7)

logNy
7% SURe, <, 109 Ny/log(—t_yv )

One can check that the latter corresponds to the rightmost particle for free random walk
with the same injection, but the former does not (the final denominatbmwould be
absent). Hence for subexponential injections, the traps slow down the growth rate in :
way which does not depend on the density. For superexponential injections, there is n
slowdown effect at all.

(3) The transition at exponential injections is also seen in the effect of the lattice.
We can replace the random walks in our model by Brownian motions. The traps live
at the integers, as before, and the first Brownian motion at a trap stops there foreve
One can check that in that case the asymptotic in case (3) is always as in (1.6). Henc
for injections much weaker than exponential large scale lattice effects are not seen, bl
for stronger than exponential injection rates large scale lattice effects correspond to a
increase in the speed of growth with respect to the Brownian motion version of Internal
DLA just described. In other words, for give¥, stronger than exponential, the rate of
growth of Internal DLA is larger than the rate of growth of the corresponding model
of Brownian motions with traps at the integers. The simple point is that as the rate of
injection becomes larger, one has to look farther into the tails of the distribution of the
particles for the main contribution to the asymptotics.

(4) The difference in the formulation of the shape results in the three different regimes
reflects the different techniques used. The subcritical case (1) is proved in [1] using the
methods of [6]. In this article we prove the critical and supercritical cases. The critical
case is proved in Section 3 using the method of [4] where the theorem was prove
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before in the special casg = 1 for all x € Z¢. The supercritical case is proved in
Section 4 using order statistics. This complements the proof in [4] in the special case o
one dimension with injectioV, = ¢t and¢, =1 for all x.

(5) The conclusion of case (3) (in particular concerning)) is valid for any
distribution of traps satisfying liminf,. >>7_,¢ =m > 0 and does not depend on
the randomness of the trap distribution.

(6) Using the methods of [4] one can study a variant of the model where live particles
have a zero-range interaction, in the critical and subcritical case (see [4,8]). Analogou
results hold.

(7) If more than one trap is allowed at each site the same results hold, with analogou
proofs, withm = E[¢,]. It would be interesting to know what happens in the case
m = OQ.

2. Critical case

Recall the reduced description(r) = >, 1x, )= Of our process. Since the field of
trapsg, is fixed throughout, the variable

§x(1) = nx(t) e

together with the initial conditiorg, (0) = —¢, gives a full description of our Markov
process. For any local functiof,

i i<t}

FE0) = [ LrE@)ds = Y (£ @) - f(6@). 2.1)

is a martingale, where the Markov generator is

LEE) =D EDr(fETT) = £(©),

wheree are unit vectors in the lattice, are sites irz?, £¥*+¢ denotes the configuration
obtained from¢ by moving one particle from site to sitex + ¢, and£%* denotes the
configuration obtained frora by adding one particle at O,

ET=E =St b, EMT =840

For any real number we use(x), or x, to denote mak, 0). The last term of (2.1)
corresponds to the deterministic injection of particles, ardtP< 1, < - - - are the times
when particles are added; the jumps of?].

Lete be a small parameter and introduce macroscopic space and time vaxiabtas
andt = ¢ in RY and[0, co). The main result of this section is

THEOREM 2.1. — For almost every realizatiog of the trap field, ag — 0O,

[£Le1 (6720)], = p (X D) 2.2)
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and

1§LS,1XJ>O,SLE,1XJ (e=2t)>0 - mls(X)gt (23)

weakly in P, probability, wherep(x,t) > 0 and s(x) are the unique solutions of the
one-phase Stefan problem

% = Ap+1972/25, s(x) <t,
p=0 s(X) > t, (2.4)
Vop - Vs =—m s(X) =t.

Remarks— (1) The Stefan problem says that the expansion of the boundary is in
the normal direction with velocity proportional to the density gradieg taken from
inside the region. The only large scale effect of the randomness of the traps is that thi
expansion is slowed down by a factar= E[¢,].

(2) The solution of (2.4) is given explicitly by(x, t) = 242 [ +s1~de=*/4d5 and

s(X) = K~2|x|2> wherel'(d/2)e K*/4 = mx4/2K 4. Case (2) of Theorem 1.1 follows.
Theorem 2.1 is proved by suitably modifying the method of [4]. We indicate only the
main steps and differences from the earlier proof and refer the reader to [4] when the

proofs only require straightforward modifications.

2.1. Invariant measures

We consider the system without creation, i.e., with Markov genetator

LEMMA 2.2.— Letu be any invariant measure fdr. Then
n(@x,yez? & >0 <0)=0.

Proof. It suffices to show that for arbitrary sitesandy, (¢, > 0,&, <0) =0. We
will prove it by induction orw, the lattice distance betwearandy.

To start the induction let us takeandy to be nearest neighbour sites. Consider the
function f = 1 _o. Since f is a bounded local function and is an invariant measure
we haveEM[Lf] =0.NowLf =—3",(§y+.)+1, <0. Since each term in the sum is non-
negative we haveE, [ (&)1 1¢, <ol = O which we rewrite as € 5%, ko (&, =k, &, <
0) = 0. This proves that(¢, > 0,£, <0) =0.

Now suppose the statement holds for sites at distarared letx be at distance + 1
from y. Then there exists a siteof distancen from x and 1 fromy. By the inductive
hypothesisf = 1 . ¢ <0 = 0 almost surely with respect 0. Therefore for any lattice
siteu and unite, L, 4. f = (&) (f(E""T¢) — f(&)) = 0 almost surely with respect to
wu as well. However sincg is a bounded local function andis invariant we have also
E,[Lof]1=0 and it follows that eaclt, ,..f = 0 almost surely with respect {@. In
particular,E,[L, . f]1=0, or

0=E,[(5)+1e—0z,<0) = > _kyu(E, =k, & =0, <0).
k=1
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By the induction hypothesig,(§, =k, &, =0,&, <0) = u(§, =k, & < 0). Butthen we
must haveu (¢, =k, &, < 0) =0 for all K which completes the induction.

COROLLARY 2.3.— The set of extremal invariant measures foconsists of
(i) the Dirac mass on any configuratignwith £, < 0 for all x € Z¢,
(i) density any > 0.

Proof. —All the measures in group i are clearly invariant. Suppase some other
extremal invariant measure. Then> 0 for somex, and by the previous lemmg, > 0
for all x, u almost surely. Hencd, is the generator of independent random walks on the
support ofu, and it therefore follows that must be an extremal invariant measure for
independent random walks, which are known to be product Poisson measures [7].

2.2. Hydrodynamic limit

The H_; . norm is defined on functiong : eZ¢ — R of means? Y", ., 4 fx =0 by

1
I1£117 . =supe? {2fx¢x =567 fure— ¢>x|2}
¢ xeezZd le|=¢

=2 3 gy (2.5)

X,yeeZd

wheregé = e2>" %, plind >3 andg: = limy_ . e23N  p! — piind =1 or 2. Here
p" are then step transition probabilities of a symmetric nearest neighbour discrete time
random walk oreZ¢. Note that in [4] the factors? are missing in the definition qf°.

We can observe our system on the laté@¢ by defining

ES (1) = &1 (e721).

LEMMA 2.4. — For almost every realizatiog of the traps, for eaclh > 0, ase — 0,
£°(t) — p®(t) — O weakly, in probability, where: (t), x € eZ4, t > 0, is the solution of
the lattice Stefan problem

&

ap
at

=A(p)y +dP?, pft=0)=-m. (2.6)

Here A, ¢y = €72 ¢ dxre — ¢ iS the lattice Laplacian and?P¢ (t) is the number of
particles created in the microscopic system up to time

In Sections 2 and 4 of [4] it is explained in detail how part (2) of Theorem 1.1 follows
from this lemma. The weak convergence (2.2) of the density field follows rather easily
because the solution of (2.6) converges to the solution of (2.4) away from the creatior
points. However there is a fair amount of work to do to obtain the weak convergence (2.3
of the saturated set, as well as (1.4). This is done in [4].

Proof of lemma. — Step. Fix a large timeT . There is a finiteB such that if the initial
condition in (2.6) are replaced i (t =0) = —¢, if [X| > BT andpg(t =0) = —m if
Ix| < BT then the solution remains the same up to timfinite propagation speed). In
the following we work with the modified initial conditions far.
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Let ¢ be the solution of (2.6) with the initial condition changedg¢tt = 0) =
—¢ everywhere. Note that! ", _.,a[g5 — pg] is constant in time and given by
Z¢ =43\ <o1p1(m — &). Note thatZ® = O(¢?/%) and vanishes for almost every
realization ¢ of the traps, by the law of large numbers. Now the ;. norm of
q° — p® — Z* makes sense and it is straightforward to check that

)
lo =0 =272, [ =2 [ 3 (@ = 0) a5~ pid s
0 xeezd

T
+22° [ Y g+~ (o) dr.
0 xeeZd

The last integral is bounded uniformly énfor fixed T. SinceZ¢ — 0, the last term goes
to zero and we see that — p° tends weakly to 0. As in [4] it can be shown from this
thatg? converges strongly to the solutignof (2.4).

Step2. By direct computation one shows that

.
& = a2 s =2 [ & 32 V(. giv)dt+ mem)

0 xeezd

whereM*(T) is a martingale and

VE.q)=—E - —q4) T &5

Step3. We cut off a small region around the creation site, as well as large values
of V, and perform some time averaging using the strong convergencetof, and the
apriori smoothness qf away from 0. The result is that

T
2 t=T
Elle = 200 <2 [ [ Exgy [Vitso px )] dtax + 2. €,0,5),
0 |x|=6

N

-0

whereji, 'y denotes the average ovBf (t) ={,sec [0, T]: [s—t| < o} of ryus Whereps
is the distribution o&(s) and

lim suplim suplim suplim supQ2 (e, ¢, o, §) = 0.
840 o0 {400 £l0

Here

Vi€, p) = —¢e((€ — p)(E4 — p1)) + Pe(Er)

whereg, (x) = x if x < ¢ and¢ otherwise. Finally one shows that the famjl§?, ¢ > 0
is tight.

Step4. Let 15, be any weak limit ofiyy ase — 0. Let f be any local function and
[x| > 8. Recall thatl is the generator of the dynamics without creation, and much
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smaller thars. We have
E/_‘g_t [Lf]= !iLnOAmS—tlSUE [Lf(fxés)] .

The latter term can be written as the limitas> 0 of

it—o.t+o]n[0,TI" E[Lf(1,&)].

[t—o,t4+0]1N[0,T]
By the definition of the generator this becomes,

s=(t+o)VvT
s=(t—o)A0"

[t — o, t+ 01N [0, TI|  E[Avyy_ycoe 1 f(1,69)]

Note thatz, f never depends ok, and therefore the creation part of thedynamics
does not appear in the last expression. Taking 0 we obtainE,—L;’[ [Lf]=0 for any
bounded localf and thereforeus , is invariant forL.

Step5. We arrive at

/]/Eﬂﬂ [Vi(&o, p(X, )] Wy 1(dB) dt dx

X|=8 0 B

where eachl, ; is a probability measure on the parameter spaqerametrizing the
extremal invariant measurelk. We let £ — oo and use the monotone convergence
theorem to remove the cutoffon V. Since

Euﬂ [V(g()’ 10)] < 0

for any suchus, and anyp, we have shown thaE[[|£°(t) — ¢°(1)[|2,,]I{={ vanishes in
the limit of smalle. Hence&® — ¢° tends to zero weakly in probability. From step 1,
we know that for almost every realizatignof the trapsg® — p® tend to zero weakly as
well, and this completes the proof.

3. Asymptotics for order statistic of free random walks and supercritical IDLA in
onedimension

In this section we state asymptotic estimates on the position of free random walks ani
use this to compute the size of supercritical IDLA in dimensica 1.

We begin by defining an order statistics on a sequence of real numbess. . .. Let
MeN andaf‘f) be the largest among the firkt members of such sequence,

M
acy= sup {a,}
1<nM

and recursively define theth largesta Y, among the firsi4 members of this sequence

M - M .
agy = Sup {a,: a, #aljforl<j<k-—1}.
1<nM
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Let Y1(1), Y2(2), ... be independent continuous time simple symmetric random walks
onZ created at times, 1, ... and jumping after that at rate 1. L&t = max{i: ¢, <1}.
We can add a convention thf(z) =0 for 0< ¢ <t,. Then, we have an order statistics
on the firstM born random walks at time given by{Y(’,‘f)(t): k € N}. Similarly we have
an order statistics on the rightmost positions attained by each random walk betwee
time 0 and¢, and denoted byﬁ%(t): k € N}. The following asymptotics will be proved
in Section 4.

THEOREM 3.1. — Letn, : [0, co) — N be increasing and assume that eittheg N, >
logr or that N, = [¥] for somex > 1/2. Furthermore, assume that there i$ & 0 and
afunction f, such thatl < f, <t and Ny, > (log N,)**® and thatr, < C/f log N,, for
some constant. Then

(i) In probability

lim Yo (0 /w, (1) > 1. (3.2)

(ii) If we assume in addition that there isfa> 0 such thatn, < t#, then equality
holds in(3.1). The theorem holds also¥f),, (1) is replaced byr), ().

Remarks— (1) The speedu, (¢) reflects an interplay on how the random walks
affect the value an"t" (t). Attime s, N, random walks have been born which by time
have evolved at least a time— s. Suppose one wants to measure the effect of these
N, random walks orYn’tVf (#). Fors small enough this effect should be negligible, since
N; — 0 whens — 0. On the other hand, if is to close ta, there can be many random
walks within the firstN, which evolved a time — s, so that they do not contribute
significantly to Y,{tVf (t). The supremum imw,_ (t) corresponds to choosing the optimal
times.

(2) Most of the hypothesis of Theorem 3.1 are of a more technical nature. The
hypothesis logv, > logr or N, = [t*] is a restricition from the set ofV's such
that N, > %2, and basically discards injections that could oscillate between some
polynomial injection and something much larger than a polynomial injection. The
hypothesis concerning the functigh such that k« f; < ¢t and Ny, > log N, discards
injections with a sudden big jump (for exampl = O(¢e’) for s <t — 1/t and
N, = O(e®)). These assumptions could be weakened, but we decided in favour of shorte
proofs over the most general statements.

Proof of the lower bound of Theorem 1.1(3)}lere we prove that for almost every
realization of the trap configuration in P;-probability

tli_)rrgor,/wﬁ(t) > 1 (3.2)

Note thatr, < El)g). By Theorem 3.1 part (ii) applied to the order statistics of the
rightmost positiornt (¢) in the time interval0, ¢] of the random walkg (¢), with n, = 1,
for every¢, in P.-probability,

limsupr, /wy(t) < L (3.3)

t—0o0
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By symmetry, the same statement holds for the (reflected) leftmost patticlerhe
number of stopped random walké at timer is given by >~ ¢.. Therefore ifz

is sufficiently large, less thaln2"*%, ) ¢ < 5wa(r) random walksX; (1) have been
stopped. The smallest possible valuerothen corresponds to stopping the rightmost

5wy (r) random walks and hence for eachin P;-probability

|||;n Supr,/Y(L5w1(,)J)(t) > 1. (34)

Now, by standard estimates on the functibn*(x) (see Proposition 4.1, Section 4)
w1(t) < C/tlogN;, for someC < oo. Therefore, (1.5) together with an application
of part (i) of Theorem 3.1, this time with, = |5w(¢)], shows that for every, in
P;-probability

limsupr, /wsy, () > 1.
1—00
The lower bound (3.2) now follows from the equality Jimy wsy, () (t)/w ;(t) =1,
which is verified using the concavity property of the functibn'(x) (see Proposi-
tion 4.1, Section 4) and considering separately the cages |t*], « > 1/2, and
log N, > logt.

Proof of the upper bound of Theorem 1.1(3Fitst we claim that for each > 1,
re < Yo (1) + M (k) (3.5)

where M (k) represents the number of sites betwé_e;)(t) and the position of the
(k — Dyth trap strictly to the right oﬁk)(t).

Indeed for allj, X;,(t) < Y (t). Let us fix ar and renumber the particles according
to their record values ifD, ¢]. More precisely, let(j) be defined b;b_(n(j)(t) = Y(j)(t).
Since X, (1) < Y,l(j)(t) we certainly haveX,, () < Y(D(t). Hence the only patrticles
whose positions at time could possibly be larger thaF, () are X,,1), ..., Xnk-1-
There arek — 1 such particles, so if one of them is stricly to the right of the- 1)th
trap to the right ofY, (¢), then by the pigeonhole principle one of the traps must be
empty. Since there is a particle to the right of it, this contradicts the definition of the
internal DLA dynamics. Hence (1.7) holds.

By the strong law of large numbers, for almost every realization of the trap configura-
tion we haven =lim,,_, », % > t_1¢ > 0. Therefore, for almost every realization of the
trap configuration we have thM (k) < %k, eventually ink. Choosingk = [+/7] we can
now conclude from (1.7) that for almost every realization of the trap configuration,

— 2
e < Y(Lﬁj)(t) + ;\/;,

eventually inz. By Theorem 3.1, for almost every realization of the trap configuration in
P,-probability, we have the upper bound }jim, r; /w /;(t) < 1.
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4. Asymptoticsfor order statistic of free random walks

In this section we prove Theorem 3.1. Although the methods are standard, we wer:
unable to find relevant references in the literature. So complete proofs are included her:
Our first step in Section 4.1 will be to derive precise asymptotic estimates on the tail
distribution of a continuous time symmetric simple random walk. In Section 4.2 we will
derive tail estimates on the order statistics of independent random walks born at th
same time, and then on the right-most random walk from thgsét): 1 <i < N,}.

In Section 4.3, we first derive the lower bound of part (i) of Theorem 3.1. This is based
in finding a times for N, independent random walks born at timehat maximizes
their order statitics positions. Next, in Section 4.3 we derive the upper bound of part (ii)
of Theorem 3.1. This will be an application of the estimates of Section 4.2 analyzing
separately the case 18§ > logr and N, = |t* ], with @ > 1/2.

4.1. Asymptoticsfor a continuoustime symmetric ssmplerandom walk

The main result of this subsection is Lemma 4.2 which gives the asymptotics for the
tail distribution of a simple continuous time random walk. The result is standard in the
sense that different versions of these estimates can be found in the literature, howeve
never in the particular form needed in this paper. Note in particular that in Lemma 4.2
the timew; may even go to 0 as— <.

Before we start we collect some basic information about the rate function (1.2).

ProOPOSITION 4.1. —
(i) I(x)isconvex and~1(x) is concave.
(i) I'(x) =sinhtx =log(x + V1 + x2).
@iy 7720 = V2x(1—4yx)Liciq + Slogr Lx>1(1/2) = N/ X/2.
(iv) 171(x) < V2x(14+ VX)) Lliciayp + 10x1- 172

Proof. —(i) and (i) are clear. To prove (iii), note thatd x?/2 — x*/8 < v/1+ x2 <
1+ x2/2,and logl+x) < x. Therefore [ (x) < x?/2+x3/2+x*/8 < x?/2+x*, when
x < 1/2. Inverting this relationship we obtain the lower boundion for x < 1(1/2).
For x > 1/2, note that/ (x) < xlog(6x). But the inverse of the functiom log(6x) is
larger thanx /(6log(x)) whenx > I(1/2). This finishes the proof of the lower bound. To
prove (iv), note that logL+ x) > x — x?/2. Therefore] (x) > xlog(1+x) — V1 4+ x2+
1> x(x —x2/2) —x?/2>x?/2—x3/2 if x < 1/2. Inverting we obtain the upper bound
onI~1(x) for x < 1(1/2). The largex upper bound is similar.

LEMMA 4.2. — Let Z(r) be a continuous time symmetric simple random wal&Zpn
starting at the origin at tim® and running at ratel. Leta,, §; : [0, 0o) — (0, oo) satisfy

B> landB, > C/a,log(a? + 1) for someC > 0. Leta = (a? + p2)Y/4. Then,

e—azl(ﬂz/az)
P(Z() > ) = V21 a, (1 — e ' Bi/an)) 1+ R

where|R,| < 2(4loga,) =%/,
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Proof. -We fix r and drop the subindex on « and 8 temporarily. Letv > 0
andn € N be such thavn = «. For A > 0, let V¥, V;", ..., be independent and
identically distributed withP(Vf’” =k) = P(Z(v) = k)exp{rk — v(coshh — 1)} and
Sk =3, VY so that forj € Z,

P(Z(@)=j)=P(S*"=j)=P(S}" = j)exp{—Aj +a(cosh — 1)}.
The supremum in (1.2) is attainedja& sinh ™ x so by Proposition 4.1(ii),
P(Z(@)=B+j)=P(S'"" =B+ j)exp{—jh —al(B/a)}. (4.1)
The characteristic functioft [exp{iuS?"}] of S is given by
exp{nv(coshn + iu) — coshi) }
= exp{a (iu sinha — %uz coshi — %iu3 sinha + RM) }

wherer, ; = %fy (z — M2 coshz dz, the integral being taken over the contgue {z €
C:z=A+iy, 0<y<u}. Since forz € y, |coshz| < coshk, we can writeR,, ; =
(coshh) R1(u), where| R, (u)| < u*/24. By Fourier inversion, sinagcoshl’ = a?,

: T 1 1 du
P v j :/ U] _-,22_ —.3 2R }_
(Sn ,3 +.]) € exp{ 214 a 6”/! ,3 + a“Ry(u) o

—TT

After an elementary change of scale this becomes ™ exp{—ivj/a — %vz +
Ry(0)} 22, where Ry(v) = 2iv3Ba—2 + O(v*), and|O(v*)| < Lv*a~2. Substituting in
Eqg. (1.7), and summing ovgrwe get that

1 Ta B 172
P(Z(a)>ﬁ)=%e—“’<ﬁ/“> /(l—exp{—l’—iv/a}) e T tRO gy (4.2)

—ma

Let I; denote the integration restricted|ig < (loga)Y/® and I, the remainder. We now
claim that if[v| < (loga)/3, then

(4.3)

’ 1—exp{(—1I'} ’ 6
-1 ——.
1—exp{—1'—iv/a} C(loga)l/6

In order to check this note that the left hand side is always bound%@%.
We can bound the absolute value in the denominator belog@ byexp{—1}) min(1, I').
So using 1—- exp{—1} > 1/3 and Proposition 4.1(ii) and dropping a few terms, using
(@ + B)? > o? + B2, we see that the left hand side of (4.3) is bounded above by
v/aa?maxl, 1/1').

Now I'(B/a) > log(1+ £). Note that forx > 1/2, log(1 + x) > log(3/2) and for
0<x<1/2, log(1+ x) > x/2. Also 1/1og(3/2) < 3. Hence we obtain an upper
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bound by replacing mag, 1/1") by max3, 2«/B), or, sinceg > C+/« log(1+ «?), by
max(3, 2C~*\/a/log(1+ a?)). Now

(1+a?)M* (B2 + o)t
2

Thus, fort large enough we have mé2C~1\/a/log(l+ a?)) < 2%.
This gives (4.3).
It is also not hard to check that|if| < (loga)Y/3,

lexp{—v%/2+ Ry(v)} — exp{—v?/2}| < 4a'loga, (4.4)
and that
(loga)1/3 1
’\/271 — / exp{—v?/2} dv <2exp{—§(loga)2/3}. (4.5)
—(loga)1/3
Integrating (4.3), (4.4) and (4.5), we conclude that,
N2
L= o7 (1+ R3(1)), |R3(t)| < 20C*(loga)~ Y. (4.6)

On the other hand, we claim that
1
|(1—exp{—1'}) L <8exp{—l—2(loga)2/3}. 4.7)
In fact, first note that

’ 1—6_1/ —22+R()
(1—exp—1"}) I, = / ST |ertR) gy

1 _ e—I/—iU

(loga)13<|v|<ma
Now the term in absolute value is bounded by 1 &&xbR.(v)| < exp{v*a—?/24} so
(A-ep-rYEl< [ eTEP R
(loga)Y3<|v|<ma

But, v/a < 7, so that the factor multiplying? in the exponent of this bound is larger
than /2 — 72/24> 1/12. Hence, we get the bound

|(L—exp—I'}) 2| < / ey,
(loga)3<jv|<o0

from which (4.7) follows.
Combining (4.6) and (4.7) with (4.2) gives a proof of the lemma.
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4.2. Order statistics: independent identically distributed random walks

As discussed earlier, a main ingredient in the proof of Theorem 2 will be to obtain
asymptotic estimates on the order statistics of independent random walks born &
the same time. LeM < N and consider a seZ{”(t),Zé”(t),... of M independent
continuous time random walks such tt#g¥ (0) = 0 for 1< n < M. Consider the order
StatIStICS{Z(k)(Z)Z k € N} on this set of random walks at time

ProOPOSITION 4.3. — Let Ny, n;, «; : [0, 00) — (0, o0) be mcreasmg functions. As-
sume thaty, < ¢ and that there is d > § > 0 such thatV, > %*7 andn, < |N, ],
Furthermore, for—1 < y < 1 define

1 N
Y :a,1_1< Ty Iog—') (4.8)

o ny

and assume thaV,, n, and «, are such thatCD? > 1. Then, for everyi/2 > ¢ > 0 for
sufficiently larger,

0] P(Zf:/m(ozt) > o) < 8N, /4,

(i) P(Z{! (o) < D7) < exp{—| N, |%/19}.

Before proceeding with the proof of the proposition, we will need the following

lemma, which states some properties of some expressions that will appear when applyir
the tail asymptotics of Lemma 4.2.

LEMMA 4.4, —For —1/2<y <1/2letI %, «, &7, N, andn, be as in the previous
proposition and define

17 =2 (1—exp{—I'(I"N@!) }) (o2 + [@7 7).

Thenry is increasing iny and forz large enough,
() <2 <r?<10log N,

8
(i) (4 F > g

Proof. —The monotonicity can be checked directly.
(i) To prove the leftmost inequality, by Proposition 4.1,

12 /—27T1_1+\/(1_l)2+1—
r - -1 —1)2
I+ /(U He+1

where the argument of ! is +§ log(N/n), and this can be bounded below by
@20 D% Eorj-1> 1 andr large enough this can be written as

I/ H2+1

1 (0(2 n [CD_]'/Z] 2) 1/4’

-1

(I~ lJr\/(l HZ + )

(CI)O)]'/Z

(A)II—‘
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where we have used the hypothe$is>> 1. On the other hand, far-* < 1 we have the
inequality

a(I™1)? 1
Jal T 4 021
where we used Proposition 4.1(iii)) and (iv). This proves t%a{ r,_l/z. To prove

the upper bound, note that sinee < ¢, we have that/% < 6(t + «1~1). Now, by
Proposition 4.1(iv), we know that—* < 10u~log N (¢). Our upper bound now follows
for ¢ large enough

(i) Sincer! <10t Iog N, for largez, if ¢ satisfiesV, > 199, the left hand side of (ii)
is bounded below by /1Oz(logt)2 which certainly dominates the right hand side
of (ii) for large t. So we only need to consider the cage< 1'°9’. We divide it into two
cases. Iy, > (logr)® andt is large enough then from the definitionsof it follows that
rl <2I71(4(logt)?/a,)(a? + [®) 1?)Y/4. By Proposition 4.1(iv) this can be bounded by

4,/(4dlogr)2/a,) (o + [®717)™* < 4logr (1 + [171(4/ logn)]?) ™.

This is bounded by 8logwhent is large enough. On the other handyif< (log)3, we
haver! < 2((logt)® + (logr)*)¥* < 8logt. This concludes the proof of the lemma.

(Iog(N/ )2,

Proof of Proposition 4.3. i) From the definition of the order statistics, for ang 0,
x>0,andM,m e Nwithm < M,

M

P(Ziy($) 2 x) =) (f) P(Z(&)=x) (1-P(Zs) =x)"™. (49

k=m

We takeM = N,, m =n,, s = o, andx = ®; and apply Lemma 4.2 witl, = ®

We need to verify the hypothesis of that lemma. Sincéis increasing®¢ > @° and
by hypothesisb? > 1, so®¢ » 1. By Lemma 4.20¢ > @9 > % «;10g(N, /n;) and
by our assumptions we have that fotarge enough logV/n) > logN*=% > logr'/4

so % >/, Togr 1/42 > 30, /o, log(e? + 1) for ¢ large enough. So the hypothesis of
Lemma 4.2 are satisfied.

Now we can apply Lemma 4.2 to (4.9). Then we use Stirling’s formulafid (N —
x)] < 4/N on the binomial coefficients to get

N 2e M a\*k o\ KN
P(Z\ > @) < , (=) (1-— pNk, 4.10
s e ZeSu = (2) (i-4) v w0

wherea = L’L’;\}JS LR p=1- (”’)1+81+R’ and|R,| < 30?(log(a? 4 [®°]%)) %8, which

goes to 0 by the hypothes@O > 1. The functionu is increasing for O< k <
decreasing fora < k < N,, so it attains a global maximum &t = a. Now a g
n(n/N) (2/rf) < 6n(n/N)* < n,where in the second to last inequality we have applied
Lemma 4.2. Sincer < n,, the largest term in the summation of the right hand side
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of (4.10) corresponds th = n,. We now divide the sum in (4.10) in two parts: terms
fromk =n, tok = maxn,, v/ N, } which we bound by m&x;,, v/ N; }u,,, and terms from

k =max(n;, /N, } tok = N, which we bound byV,u .. Using(1— x/N)*=N L ev,we
see thau, < (ea/n)" andu 5 < (ea/\/_)f Hence we can bound the sum in (4.10)
by

max{n,, N, } e(l+ R, ‘e(L+ RO\ Y™
M () *5) () )

t
Now use|R,| < 1 and absorb the prefactor mMax /N, }/+/N; into a factorc™ and the
prefactor,/N; into a factorev™ to obtain that the left hand side of (4.10) is bounded by

o (5) )+l () %)

N,) rf JVN;/) re

For ¢ large, the first term dominates the second. Using the bating 1/6 proved
in Lemma 4.2 we obtain (i).

(i) We apply Lemma 4.2 to the analogue of (4.9) ﬂO(Z(m)(s) < x) asin (i) but with
x= <I>, , B = ®;¢. To apply the lemma we need to verify that for so@e- 0 such that

> Cy/a,log(e? + 1). By the concavity off 1 it follows that ®¢ > (1 — ¢)®?. So

it is enough to show thab® > C, /e, log(a? + 1) which is proved in the first paragraph
of the proof (i). Hence we can apply the lemma to obtain

P(Zy () <> (]Z’) pH (L= p)N*

k=0
wherep = (4)1* 22 with | R,| < 50%(2log d?) /6. Now

(1)) () =)

Since|R,| < 2 and Yr ¢ < 6 for ¢ sufficiently large,p < 6(n,/N,)¥~¢ < 2. Also
(1—1/x)~1 < €/* wheneverr > 2 and hence&l — p) =" < € u/N)™™

Now (1 — 1/x) < eV~ if x > 0, and therefore we also have— p)¥ < e "7 5+
For ¢ > 0O the functlonf(x) = (£)* achieves its maximum at = c/e. And the flrst
term in the summation in (4.10) correspondsyttx) with, ¢ = en,m,(1 + R,) where
m, = (2’—;)8%. By Lemma 4.2¢ > n,. This implies that the maximum of the first factor

in the summation in (4.10) is attainediat n,. So for sufficiently large,

P(Z{ (1) < @) < 2en, exp{n, (1—m, /2 +log(2emn,)) }.

(i) Follows from this inequality using, < expn, and Lemma 4.2.
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4.3. Order statistics: rightmost random walk

We now state the second ingredient in the proof of Theorem 2, a lower bound estimat
on the position at time of the rightmost random walk among the, 1 <i < N,. For
y € [—1, 1] define,

w) (t) = sup (¢t — y)I‘lci_—; log &> (4.112)

0y <t n;

with the understanding thdt1(x) = 0 if x < 0. Also, letg? (¢):[0, o) — [0, c0) be
the maximizer in (4.11) and definé) (t) = N, ;).

PROPOSITION 4.5. — Let N,, n,: N — [0, co) be increasing functions such that for
somes > 0, | N, ¥ >> n, and N, > /2% Then, for everyl > ¢ > 0, for sufficiently
larget,

P(Y3i(t) > wi()) <4e(tlogN, )~

Proof. —First note that for every >0, P(Y(t) < x) = [[y P(Z(t — T;) < x).
We want to apply Lemma 4.2 to each multiplicand with=r — 7, and g, = wj ().
We need to verify that the hypothesis are satisfied. It is trivial to verify dhat > 1.
To show that there is a consta@t such thatw$(r) > C+/(t — ;) log((t — ;)2 + 1) it
is enough to verify thaw$(r) > C+/rlog(r>+1). This is a consequence of the fact
thatws (1) > 51-1(2log*/%) (where we have used the assumpting >~ > n, and
N, > t1/?+%) and the lower boung/x/2 on the function’ ~(x) given in Proposition 4.1.
Therefore,

N Al r— wi (¢)
PN <wio) =[] (1 _ exp{— I (—) }(1 + R,-,,)) (4.12)

i1 v(t, t;) r—1t
where
v(t,s) =21 ((t — )2+ [wi )] ) (1= exp{—I'(wi (1) /(t — 5))})

and |R;,| < 2(logwi(r))~Y/6. Using the definition ofw;(t), we see that ifu > 0,
(t— u)](wim) > log| N, |¥*¢. Using this in (4.12) and taking logarithms we get,

r—u

N, _
t 1AIN. (14-¢)
log P(Ya’; (1) <wi() = Z Iog(l - #(1 + Ri,t))
i=1 v(t7 tl)
N,
! 1+ Ri,[
_Z 7i1+8v(t, 0 (4.13)

i=1
In the last inequality we usefy, > i. We want now to obtain a lower bound on the
function v(¢, #;), uniform oni, to show that the rightmost hand side of (4.13) goes
w e ((1—=s)>+ws )4

o (= Trut )T But for x

to 0. Using Proposition 4.1(ii), we see thatr,s) >
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and y positive, the expressiog’% is increasing inx. Applying this to the previous
inequality withy = w§ andx decreasing fror’r((t — 5%+ [wl]z)l/4 to /wi, we see
thatv(z, s) > ,/w1/2. Also note thanN’l - < 1+f1°° —L_dx < 2, where in the last
inequality we have used the hypothesis 1. Using these bounds together with the fact

that |R; .| < 1 for ¢ large enough uniformly i, we can conclude that for sufficiently
larget,

Using the |neQUa||tyw1(t) 1( logN,2) and the lower bound ~1(x) > /x/2,

we see thatw,(t) > ,/t log N,/z The proposition follows from this, the inequality
l—-e*<xforx>0 and (4.14).

(4.14)

LEMMA 4.6.— Let N,, n,:[0, o0) be increasing functions such thaw, |14 > n,,
for somes > 0.

() For every functionf (r) = o(t) andx > 0, we haveN (t) > LNf(t)Jl—".

(ii) Assume thaw, = |t*] for somex > 1/2. Thent/(logr)? <« g7 (1) < t(logt)~Y/2.

Proof. —(i) First note that for any functiorf () such that G< f(¢) < ¢ one has

(t— )l (1”! NV) (t— NI~ (Hylog )
t—g n f

whereg, n, N/, and f stand forg! (¢), n,, N} (t) and f (¢), respectively. Therefore,

Y
1Y 1og Na 1<<1—£>I‘1<—1+ylog&>) 1J”’l g&—Rg,, (4.15)
t—g n t t—f n t—f

whereRs, = L1~ 1(1+V log X2y /(1- 1(1+V log 1)) and we have used the lower bound
Iy =2IT(x)—(x— y)I (x) valid for 0< y < x. We now claim that

f+)/
- f

For this it is enough to prove that for > 0, yI'(y) < 2I(y) which can be checked
directly. We can then conclude from (4.15) that,

g MO (1 _ gZ.t(t)> <1 _ @) log 2 ®.

ny ny

|R3(1)| < 2= Iog

Therefore ifg? (t) < f(t), sincef () = o(z), for everyx > 0 we have thatN (¢)/n, >
(Nf(t)/n,)l‘K. On the other hand ifg? (r) > f(¢) there is nothing to prove since
NY(t) =N, ) = Ny). This completes the proof of (i).

(i) By Proposition 4.1 we have (1) > ,/5log N, 2/ n, for sufficiently larger. Since
N, = 1%, with @ > 1/2 andn, <« | N,]*%, this implies that for some > 0, for ¢ large
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enoughw,, , (t) > c/t1ogz. We now claim that this implies

| 14
fim 29N (/. _

= =270 (4.16)

In fact, note that by the definition a¥? andg), the expression whose limit is taken
in (4.16), is positive. Thus, if (4.16) is false, there is a subsequgnsech that either
log N} (t,,)/ny, ~ C(tw — g (t,,)) for someC > 0 or logN/ (t,,)/n,, > tm — &) (tn)- In
this first case, this implies that far large enough

211 N”(t,) 2171
(C)Iog v ( )< ©)
C n; C

m

w? (ty) < (logt,,)?,

a contradiction. Similarly in the second case, using the upper béuhd) < 10x for
large x Proposition 4.1, we would conclude thaf (z,,) < (logt,,)?, a contradiction.

This proves (4.16).
Now, from Proposition 4.3,

wl (1) = /2(L+ 9)(t — gk () log(Lgk () ]*/n) + Ry, (4.17)

where |R,| < 10(log#)? and we used the assumptid¥) = [#*]. One can check that
for ¢ large enough the supremum ovek [0, ¢] of the function./(t — y)log([t*]/n)

is achieved at somg = O(t/logr) + o(¢tlogr) and that the supremum itself is
O(4/tlogr) > R,. Together with (4.17), this proves (ii).

4.4, Proof of Theorem 2

Proof of (i). — Stepl. Lete > 0. First we check thav_, ,(t) > |n(t) |4, which
will enable us to apply Proposition 4.3. Assume first tNat) = %/%+% for somesy > 0.
Then, by (4.1),N_,(t) = N, jogry2 > 1+/#T%/2, On the other hand, < /7logN,.
Therefore,N_,,(t) > n;/*™* Choosings, > § we have thatV_, (1) > |n (1) |*H/4.
Now assume that loY; > log:. Then, for¢ large enough, by (1.7) applied with
f@) =t/logt, we have that for ang; > 0, [N_. ,(t)]% > | N;ji0q,]%1/% > t1T01/9/2,
Now remark that by hypothesis, there is a functiof1fy(r) < ¢t and ad > 0 such that
Ny > (log N3, By (1.7) with f(1) = fo(t), we haveN_. (1) > [N n) %>
(log N,)**%/2, Thus, when logV, > log?, we have thaiv_, , (1) > (/1 log N,)3+3/4
ny;.
Step2. If H, =inf{y > 0: N, = N, *(¢)} is the first time thatV, *(¢) = N () random
walks have been born then we want to show that

Py 0@ <w,t(0) < P(ZM O~ H) <w,* (). (4.18)

Write M andn for N, *(t) andn,, and note thaP(Y(’,;’)(t) <w, () = fu-n(p1,...,

Pum) andP(Z(Nn';_‘ (= H) Sw; () = fu-n(qu, .., qu) With p; = P(Y;(t) < w;,* (1))
andg; = P(Z;(t — H;) <w, °(¢)) for 1 <i < N.Butfor 1<i < N the birth times; of
the random walkg; have the property that < H,. Thus,
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pi=PYi()<w, (1) = P(Zi(t — 1)) <w,*(1))
< P(Zi(t — H) <w, (1)) =q;.
Note thatf is a function of the form
N
PP =Y > pm Pr,(L=pr.) - (1= pry) (4.19)
n=M mell(n)

wherell(n) is the set of permutations ¢1, ..., n}. Any derivative is given by

of
aM = Z pﬂl”'pﬂM,]_(l_pﬂM)"'(l_pﬂNfl)>07
Pi penam-1

wherell(i, M — 1) are the permutations ¢1, ...,i —1,i+1,..., N}. Hencefy _,.(p1,
ey Pm) < fu-n(qa, - .., qu), Which proves (4.18).

Step3. Sincen; ™% « N, *(t), we can apply Proposition 4.3 to the right hand side
of (4.18), witha, =1 — g¢ (r). This, together with the fact thatl, < g () leads to
the conclusion that for every > 0 for sufficiently larget, P(Y{,Zj)(t) < w; f(1)) <
exp(—1%/2%). Finally note that the concavity of the functioh*(x), implies that
w,°(t) = (L —¢e)w, (t). Thus, for every > 0O for sufficiently larger,

P (Y (1) < (1= e)w, (1) < exp{—1°/2}. (4.20)
This completes the proof of (i).

Proof of (ii). —By (i) it is enough to prove that in probability, lim Y(],\z’j)/wn, (1 <1
To prove this we show that for every> 0, for sufficiently large,

P(Yoh(t) > wf (1) <UL, (4.21)

whereU, = 2(tlog N, 2)~*/* when logN, > logr andU, = 80/ N, ]**/8 whenN, = [¢“]
with o > 1/2. Note that the concavity of the functiolr'(x) which gives us that
w (1) < (14 e)w, (¢), implies from (4.21) that for sufficiently large

P(Y 0= A+ e)w, 1) < U,

Consider first the case lag > logs. Note thaty.y' (1) < Y3} (). Sincen, < t#,

by (4.1), for sufficiently large we havewi/z(t) < wf (¢). In fact, by the definitions

of g7 and N7 we have that

1 N¢
w; >(t—gi)1‘1< +8€ |Og—l)
’ r—g1 n
./ 14+¢ logn
=(—gHI? logN?(1— . 4.22
(t—g1) (t—gi g 1< |ong>) ( )
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But by Lemma 4.6(i) withf (t) = ¢/ logz, we have thatV; (1) > [ N;/i0g: ]2 > t u/logn)

where u(t) = logN,/logt > 1. Therefore, sincer, < t#, we have k')‘;glc’g = o(t).
1

Combining this with (4.22), for sufficiently large we havewi/z(t) wé (t). Using
this we can now conclude that if 1dg > log¢, for sufficiently larger, P(Y(n @) =
w;y (1)) < %(l log N, o) ~1/4.

We now analyze the casé = [¥], o > 1/2. First note that by (4 1) for sufficiently
larget, t1-1(X log N’) < w?(t). Therefore by Proposition 4. 3’(2(,1[)(:) > wé (1)) <
80/ LNV, |%¢/8. If P(Y(n)(t) w, (1) =1— fn-n(p1,..., PN) andP(Z(n)(t) Zw, (1)) =
1— fyv-n(qa,--.,qn,) With p; = P(Y;(t) < w, (1)) =2 qi = P(Z;(t) < w, (1)) for 1 <
i < N.Thusf has the form (4.19) and heng®_,(p1, ..., py) = fv—n(q1, ..., qn), OF
P(Y( (1) = wf (1) < P(Z(y,(1) > w (1)) which gives

P(Y(]Zf)(t) > we (1)) < 80N, ] /8.

This proves (4.21) and hence (ii).
To extend this toY(ﬁ'j)(z), note that by the reflection principle the tail estimate for

P(Z(t) > x), changes by a factor of 2 if we replageby Z. Thus, all the results of
Section 3.2 remain valid, and the proof of (ii) is a repetition of the above argument.
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