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ABSTRACT. — We consider random walk in a random environment/edimensional integer
lattice Z? with a uniform local drift. The environment is described as a stationary field of random
vectors(pk(e)), k, e € Z, |e] = 1 taking values in the standard-@limensional simplex with the
support of the law oizlelzl epk (e) lying on one side of a certain hyperplane (the so-called
non-nestling condition We admit that the vectors at different sites may dependent on each
other, however their dependence range is finite. The main result of the paper is the law of larg
numbers for the trajectories of the walk under the probability obtained by averaging the laws
of the random walks with respect to the environment (the so-calketaled probability, This
result is related to the work of Sznitman—Zerner [18] where the law of large numbers has beel
shown for environments consisting of i.i.d. random vectors and satisfying the so-called Kalikov
drift condition.
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RESUME. — On considére une marche aléatoire en milieu aléatoire sur un réseaérdier
dimensiond avec une dérive locale uniforme. Le milieu est décrit comme un champ stationaire de
vecteurs aléatoirdgk (e)), K, e € Z, |e| = 1 a valeurs dans un simplexe standard de dimensin 2
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le support de la IOE|e|=l epk (e) étaut situé dans un demi espace. On admet que les vecteurs er
des sites différents peuvent été dépendants, mais leur domaine de dépendance est suppose fil
Le résultat principal de cet article est la loi des grands nombres pour les trajectoires de I
marche aléatoire sous la probabilité obtenue en moyennant les lois des marches aléatoires |
rapport au millieu. Ce résultat est lié au le travail de Sznitman—Zerner ou la loi des grands
nombres a été démontrée pour des vecteurs aléatoires indépendants, identiquement distrib
et vérifiant la condition de dérive de Kalikov.
0 2003 Editions scientifiques et médicales Elsevier SAS

1. Introduction

A random walk in a random environment (R.W.R.E.) represents, besides diffusions
with random coefficients, a basic model of motion in a highly disorganized medium.
Speaking in general terms the model can be described as follows: at eadh site
of the d-dimensional integer lattic&¢ we assign a @-dimensional random vector
Pk = (pr(e), e € By), with B, := {e € Z4, |e| = 1}, given over a certain probability
space(2, F, IP) whose components satisfx (e) > 0, > ,cq, Pk(e) = 1, for alle € Uy,

k € Z?. A nearest neighbor random wak,, n > 0, is performed on the lattice with the
transition probabilities

PO[Xup1=Xa+e| X, =Kl=pile), keZ! eeVy,n>0,
PY[Xo=0]=1.

This model has been extensively studied in the literature. In cage=af and{py, k
74} being ergodic, translation invariant random vectors, a number of results concerning
the asymptotic behavior of random walk trajectories have been shown under additione
assumptions on the environment. These include the law of large numbers and centr
limit theorem, large deviation principles, see e.g. [17,19] and the references given there
In the higher dimension, i.el > 2, the situation is more complicated and the scope
of available results is considerably more limited. Some special cases were considered
[4,6,8]. More recently, the law of large numbers, central limit theorem and large devia-
tion principles have been established for walks with an imposed drift, see [20,18,15,16]
Sometimes however, it is quite natural to consider lattices with correlated sites. Such:
situation may occur when some conservation laws involving several vertices hold. Also
when one treats R.W.R.E. as a discretization gfdimensional diffusion with random
coefficients, the assumption about independenga. pk € Z¢, seems unnatural. In this
case a quite fruitful approach is to consider an abstract environment process, whic
roughly speaking describes the environment from the point of view of a random walker.
This process is Markovian and allows the application of the ergodic theory provided tha
we can find an ergodic invariant measure that is absolutely continuous with respect t
the probabilistic measure given on the environment. This approach has been taken fi
example in [11] for diffusions and [6,3,8] for R.W.R.E. case, see also [17,10]. Except
for the situation when the invariant measure is explicitly provided, as for example is
the case for symmetric or doubly stochastic transition probabilities, see p. 78 of [6], the
problem of finding such a measure is usually quite prohibiting and can be solved only ir
one dimension, see [9,1].
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In the present paper we consider an environmantk e Z¢, that is statistically
stationary, i.e. its statistics does not depend on translations by a fixed vector, witt
dependent sites, of which we assume that they decorrelate at finite distances, st
condition (H3) below for detailed definition. We show, see Theorem 1, that when the
environment is biased, see condition (H2) below, the law of large numbers holds in the
product (the so-called annealed) meadeye] := P(dw) ® P§[-].

Let us briefly describe the strategy of the proof. We assume that the drift imposed or
the environment in a certain directidre R (condition (H2)) is sufficiently strong, so
we are able to prove the existence of random times > 1, at which the trajectory
of the particle will almost surely perform no backtracking in the directiord, dee
Corollary 1 and the remark afterwards. The proof of this fact is essentially done using
the technique of the proof of Proposition 1.2 of [18]. However, the dependence of sites
forces us to make a stronger assumption on the drift than Kalikow condition used in
ibid. In contrast with [18] the dependence of lattice sites prevents us from recovering the
renewal structure of the walk at, £ > 1, that has been shown in the i.i.d. case, which
makes impossible a direct application of the argument of Sznitman and Zerner. In fact
the sequence

(XT/1+1 - XTn’ Tn+1 - Tn)n}l (11)

needs not even be stationary under the annealed médggure

The main novelty of the paper lies in the fact that we show, see Theorem 2 below.
that there exists a measufg, < Py such that the random sequence given by (1.1) is
stationary and ergodic with respectlgp, . The law large numbers is then a consequence
of the individual ergodic theorem and can be proven in a manner similar to Theorem 2.:
of [18].

To show the existence df,, we construct, what we call, a transport operafbon
the space of measures absolutely continuous with respect to a certain modification of
see Section 4. This operator is in some sense adjoint to the shift

9((Xrn+1 - Xr,“ Th+l — Tn)n}l) = (X‘[,H,Z - Xr,L+1v Tht2 — Tn+l)n>ly

see the proof of stationarity part of Theorem 2 and Lemma 6 in particular (4.11)—(4.13).
We use the lower bound technique for probability transport operator associated with
Markov chain, cf. [7], to show that the non-nestling condition (H2) implies the existence
of an invariant density foQ, which allows us to defin&,,, .

It should be noted that the law of large numbers for environments with a finite
dependence range has also been proven, via a different technique and under a somew
different set of assumptions, in [19], p. 74. Our argument however does not use an
form of ellipticity assumption about the environment, which seems to be needed ibid.,
and what is probably even more important seems to open the possibility of using the
concept of canonical environment process in the investigation of multi-dimensional
environments when the invariant measure is a’priori unknown. In fact, we construct
here a probability measure on the environment space, under which the increments of tt
walk at no bactracking times, see Theorem 2 below, are stationary. Applying a suitable
modification of the definition of the transport operator one should be able to use our
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technique to characterize the asymptotic behavior of the particle in strongly mixing, but
not necessarily of finite dependence range, environments. This problem is a topic of a
ongoing research and shall be presented in a separate paper.

2. Preliminaries and the formulation of the main result

Suppose that$2, d) is a certain Polish space with a certain probability mea&ure
on (2, B(£2)). Here and in the sequé (M) denotes ther-algebra of Borel sets for
a given metric spacé. Let B(Q) be the completion o3(2) underP and \ be its
o-ideal of P-null sets. In what follows, unless stated otherwise, we assume that any
subo -algebra ofB(Q) contains\/. Also, by E we denote the mathematical expectation
corresponding t@®. We assume that oft we are given a groufly : Q — 2, x € Z4 of
measure preserving transformations, Tely = Tyy, Tx(A) € B(Q) for any A € B(Q),
PT, =P for all X,y € Z?. Denote byA,, the set of all 2-tuples(p,).cy, satisfying

pe€l01], ecP, and > p.=1. (2.1)

ecUy

(H1) Stationarity of the environmentet p: Q2 — A,; be a certain random vector.
We definep®(x, e) := p.(Tx(w)), X € Z¢, e € V.
The nearest neighbor random walk starting franin the random environmenb
is a Markov chain(X,),>, with the state spac&?, over the canonical path space
Te = (ZHN, F, PY), that satisfies

Pg-

PO[Xy1=X,+e| Xo.....X,] =" p®(X,.e), n=0, ey,

(2.2)
PO[Xo=xX]=1.

Here F is the natural product-algebra of(Z¢)N. Functionso :N — Z4, o (n) := X,
will denote elements of the path space.

We shall denote byvi¢ the mathematical expectation corresponding to probability
measureP? and by, the subo -algebra ofF generated byy, ..., X,. On the path
space we can also introduce the shift operadprg > 1, defined by, (o) (1) = o (- + k).

We definePy, the “annealed” law of the walk starting from as the semi-direct
product on7y := (Q x (ZHN, B(Q) ® F,Py). In particular, forA € B(Q), B € F we
have

Py(A x B) :=/P)§“(B)P(da)). (2.3)
A

We assume that the walk satisfies the following

(H2) non-nestling conditioni.e. (cf. [20]), there exists a nonzero vectbr=
(I1, ..., 1) e RY, such that the convex hull of the support of the law of the local
driftatO

d(@):= ) p.(w)e

ecUy
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is contained in the half spa¢e € R?: | - x > 0]. We also define
8:=1Asups: Pld(w)-1>48]=1]. (2.9)

Let G,, t € R, be a filtration of subo-algebras of 3(Q). We call the filtration
admissiblaf
(G1) p?(x), with x -1 < ¢, areG,-measurable for al € R and
(G2) T4 (G)) € G,y forall t e R, x e RY.
We shall also use the following notatiofi:=\/\=>° _ G,, i.e.§ is the smallest--algebra
containing allg;, + € R, and’H* to denote ther-algebra generated by gh”(x), with
X-1>u,uek.
We say that the filtratio,, ¢+ > 0, admits a factorizatiowith respect t@7,, see [14]
p. 66, if for anyr > 0 there exists a-algebraR’, r > 0, such thatj, = Go ® R', i.e.Go
andR' areP-independent ang, is the smallest-algebra containing botf, andR'.
Criteria on factorization of filtrations af -algebras can be found in the aforementioned
paper by Skorochod, see e.g. Theorem 7 p. 68 and its corollary and also Example
below.
We shall suppose that is such that the dependence range of sitesZ6érin the
direction ofl is finite. More specifically, we assume the following condition.
(H3) Finite range dependence in the directibonWe suppose tha@, factors G,,
t > 0 with G, = Go ® R' and there exists > 0 such thatH” € R, where
R:=V SR

Remark— Let us notice thaR’, r > 0, form a filtration ofs-algebras. Indeed, any
random variabled (-) that isR'-measurable i§,-measurable for any > r and one can
find (from the factorization) a random varialdg (-, -) that isGo ® R*-measurable and
H (w) = G(w, ). From the fact tha# is independent ofj; we immediately conclude
thatH (w) = [ G(o/, w)P(dw'), P-a.s., thusH is R“-measurable.

The previous argument also shows that any random vegtor with ¢ :=x -1 > r,
with r as in (H3), isR’-measurable.

Examplel. — (The lattices with i.i.d. sitgs In this case the environment is given
by i.i.d. 24-dimensional random vectol®,(X)).cv,, X € Z¢, satisfying (2.1). For an
arbitraryr € R we take agj; the o-algebra generated by and p(x), wherex - | < r.
Condition (H3) is then obviously fulfilled.

Example 2. — (The lattices with i.i.d. bondgsee e.g[13])). Let us denote bB? the
set of nearest neighbor bonds Bf. The random environment is given by i.i.d. random
variablesB(b), b € B?, over (2, B(R2), P). In this case we take

PeX) = f((BX,X+€)eew,. ), XL, ecVy,
where f = (f(-,e), e € V) is a Ay-valued function defined oR?. In this caseg,

is defined as the -algebra generated by and all B(b) with b = (x, X + ¢) satisfying
x -1 <t.Once again it is easy to see that (H3) is then satisfied.
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Example 3. — (Gaussian environmentsin this case we assume th&(x) € R”,
x € Z¢, is an-dimensional homogeneous Gaussian vector field (ReB(Q), P). We
suppose further that the field is centered,[E&(0) = 0 and

(V) there existsk > 0, for which S(x), S(y) are uncorrelated whejx — y| > R, or

equivalentlyE[S(X) ® S(0)] = 0, when|x| > R.
Let A be a finite subset df¢. We set

Pe(X) = £ ((SY))y_xea), Xe€Z', eeVy, (2.5)

where £(-) := (f.(-))eew, IS Ag-valued function defined on(R")*, with k the
cardinality of A. In this case for any € R we takeg, the o -algebra generated by and
p(X), x-1 <t. The filtration defined in that way is admissible thanks to (2.5). In addition
Go factorsG, because we can writ§(x) = So(x) + S°(x), where Sy is the orthogonal
projection ontoL?($2, Go, P) and S° its complement. Thanks to the standard theory of
Gaussian fields, see e.g. Theorem 10.1, p. 181 of [12], we can d&fiagther -algebra
generated b\ andS°(x), x - 1 < t, x € Z¢. Assumption (H3) is then satisfied thanks to
condition (U) with anyr > k + R.

Example 4. — (Lattices with finite dependence rang8uppose thap(x), x € Z¢, is a
random field defined as in (H1). We 16t be theo -algebra generated hy(x), x - | <1,
H*, u € R, be as in (H3) and assume that there existsO such thaf{" is independent
of Gp. In addition we suppose that the following hypothesis holds.

(A) For any finite setl € Z? all the probability vectorp(x, e), x € I, e € U, have
absolutely continuous distributions with respect®qg m A,,-the product of/|
copies of the Lebesgue surface measures on the simglex 7| stands for the
cardinality of /.

We define the conditional probabilil§] - | Go] in the following way. Sincej,, Go are
countably generated in the sense of the definition given on p. 63 of [14], there exis!
random variables,, &, Theorem 1 of ibid., such th& =0 (&) VN, Go=0 (&) VN.
Let &g [- | £&] be the conditional law of; on &, we set

P[[& € AJUN | Go|(w) := @, [A | &o(w)], foranyA e B(R), N e N

The following proposition holds.

PrRoOPOSITION 1. — Under assumptiorfA) made about the lattice, the conditional
probabilitiesP[- | Go] are atomless o,, P-a.s. for arbitraryt > 0.

We recall thatd € X, where(X, T, n) is a certain measure space, is called an atom,
if forany B € &, B C A andu[B] < u[A] the equalityw[B] = 0 holds.

Because of rather technical nature of the proof of this proposition and the fact tha
we wish to stay focused on proving the L.L.N. for the random walk we postpone the
argument till Appendix A.

The result established in the proposition implies, according to Theorem 5 of [14], that
Go factorsg, fort > 0.

The main result of this paper is the following.
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THEOREM 1. — Assume tha{H1)}«(H3) hold. Then, there exists a non-zero vector
v € R such that

lim —2=v, Pya.s.
nt4o00 n

3. Non-retraction times

For anyo e (Z4)N we let

D(o):=infln>0:1-X,(0) <|- Xo(0)],
U,0):=inf[n>0:1-X,(c) >ul, (3.1
U,(0):=inf[n>0:1-X,(0) <ul

and
M, (o) :=supl - (X,,(o) — Xo(0)): 0<m < D(o)]. (3.2)

The last random variable is defined for thesegfor which D (o) < +o0.

In analogy with [18] we introduce the sequenceZgfstopping timesSy, k£ > 0, Ry,
k > 1, and the sequence of maximg,, k > O:

So=0, Mo=I-Xo,

S1=Umptr+1 < +00, Ri=Dofg + S <400, (3.3)
My =sufdl - X,,, 0<m < Ry1] < +o0,
wherer > 0 is as in (H3).
By induction we set for any > 1
Si+1=Umpsr+1, Riy1=D o0, . + Sky1, (3.4)
Mk+l = SUH' . va 0 <m < Rk+l]-
LEMMA 1.-— There exists a deterministic constant- 0 such that
PY[D=+oc0] >y, forallxeZz’, P-as. (3.5)

Proof. —It suffices to show (3.5) fox = 0, with some constant > 0 whose choice,

as it becomes apparent in the course of the proof, is independent of the choice of th
starting point of the walk. For any/ > 0 we denote

Spi=[xeZ" 0<I-x< M] (3.6)

and7+ the exit time from the strip. Since

PYID =+ool= lm PYITs; <+o0, |- Xy > M. (3.7)
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Inequality (3.5) will be proven once we show that there exists a constard, which
bounds the right hand side of (3.7) from below. Let

n—1
M, =X, =Y d(Xp), (3.8)

k=0

with d (X, ) := d(Tx(w)). It is an F,-martingale undetPy’. Take any connected and
finite setV C Sj;. From the optional sampling theorem we conclude that

nATy -1
Mg[XnATV-I]—Mg[ 3 d(Xk)-I] ) (3.9)
k=0

From the non-nestling condition (H2) we have

dX)-1>6>0 (3.10)
for all x € Z? and some deterministic:z § > 0. Since 0< Xounry -1 <M + 1, with |l
the Euclidean norm of a vector, (3.9) implies th§7y < (M + |l])/$, thus also
Mg’TSA; < (M + |1])/8 and in consequence

PYITs; < +00] =1. (3.11)

To finish the proof of (3.7) we finéy, K > 0 such thatk 6y < § and|e™ — 140u| <
K02, for |u| < |l|, 16| < 6. Then from the Markov property af¢[-] we get

Mg [exp(—01- X, 1} | F] =exp(—01- X, }[1—01-d(X,)+ R], (3.12)
where|R| < K6?. Recalling (3.10) we conclude that, for anyg® < 6y
Mcou[exp{_el : Xn+1} | ﬁz] < exp{_9| ) Xn}v

which shows that eXp-01- X,,},n > 0, is a(F,,)-supermartingale. From the non-nestling
condition (H2) we immediately conclude that

> e IPY[X1=e]>8/2. (3.13)
el>8/2
Hence,
max| Py [X1=¢el:e-1>§8/2] > §/(2dc,), (3.14)
with
¢ =1+ max|l;|. (3.15)
1<i<d

From the optional sampling theorem for supermartingales we obtain immediately that
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exp{—608/2} > Py[Xi=el> > Mg[exp{—61 e}, X1=c¢]

el>68/2 el>8/2
> ) Mg[exp(—o1- XT+A,,} Xy =e¢]
el>5/2
> ) Pyl XT+M<0 X1=c¢]
el>8/2

for n € N. Thus, in consequence of the above estimate and (3.11) we conclude that

Pl X7, >M1> Y PRIl Xrg. > M. Xi=e]
M

el>8/2
> Z PY[X1=e](1—exp{—360/2})
el>8/2
> 50, (1—exp(—86/2)). O (3.16)

LEMMA 2. — There exist deterministic constants y» > 0 such that
P;“[lNIX_|_M < Ugirm] < y2exp(—yiM}, forall M >0,xeZ?, P-as. (3.17)

Proof. —As in the proof of the previous lemma we assume, with no loss of generality,
thatx = 0. We can write then that the left hand side of (3.17) is less than or equal to

PY[Ts, > tl + PYITs, <tu. |- Xzg, < —M]. (3.18)

Herety := [2M§7 Y], Sy =[x € Z¢: —M <|-x < M] andTs,, denotes the exit time
from the strip. Paramete is given by (2.4). Using the notation of (3.8) we can write
that on the eveniTs,, > ty]

tmy—1

Moyl =|Xpy — Zd(xk>

Indeed,X,, € Sy, thusX,, -1 < M. On the other han& 1 d(X;) -1 =8 - 1y > 2M.
Therefore)X,,, -1 — 3% ld(X,o I| > M and the above estimate follows.
From Azuma'’s inequality for martingales, see [2] p. 85, we obtain

On the other hand

M
PO [Ts, < ty, |- XTS <—M]<P6”{ sup |./\/ln|>—] (3.19)
Cix

0<n<ty

Using again Azuma’s inequality, we estimate the right hand side of (3.19)/by; 2+
1) exp{—8M /(4c?)} and (3.17) follows. O
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LEMMA 3. — There exists a deterministic constant> 0 such that
M2[M,, D < +oo] < ys, forallxeZ, P-as. (3.20)

Proof. —Again with no loss of generality we shall assume that 0. Then, for any
integerm > 1

PY[2" < M, < 2", D < 4]

| 2m+l

g Pw X n - 2”1— > .

0 { vz 21~ s }

| 2m+1 _
+ P(;U|: XUzm ZmW T, UOOQUZm < U2m+l OQUZ'":|‘ (321)
Let
_ a. [ XX
C:=|xeZ" |X Il < .
2 §

C is a cone containing the support of the lawd# the local drift at zero. Therefore
Z,’{;&d(xk) € C, for all n. On the other hand there exists> 0 such that for alln > 1

| 2m+l
W = 8 )
thendist(x, C) > ¢12". The first term on the right hand side of (3.21) can be therefore
estimated by

x -1 <2 ),

’ __om

om +1 om +1

—,Um< P Um
5 2 8}-{- {2>

i
XUzm _2 W 2

om +1
Pé"{ |

8

i

i—} (3.22)

*

[|MU2m | clzm UZ”’ 2m+18_1] + Pow |:|M[2m+18—1]| >

Using Azuma’s inequality we bound the right hand side of (3.22) from above by
co exp{—c32™} for some deterministic constants, cz > 0 independent of:.
The second term on the right hand side of (3.21) can be estimated by

ca2" VP [Uo © Oy < Upnit 00y, | = C42m(d_l)M(6)P;‘UUZU, [Uo < Uzna]
< 52" exp{ —y 27}

by virtue of Lemma 2. We have therefore shown that
PY[2" < M, < 2™, D < +o0] < coexp{—cs2"} (3.23)

for some deterministic constanig c7 > 0 independent of: and (3.20) follows. O

LEMMA 4. —

1
<5 forall x e Z¢, P-a.s. (3.24)

m?t4-00

Imme‘”{U } <
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Proof. —We setx = 0. SinceM,,, n > 1, is an(F,)-martingale with respect t8g’ for
any N > 1 we obtain

0=Mll - My, 1 <m+c, —SME(N AU,,) (3.25)

thus (3.24) follows. O
LEMMA 5. —

PP[Ry < +o0l < (1—yp)f, forallk>1, xeZ’, P-as. (3.26)

Proof. —It suffices to show (3.26) fax = 0. We have

Pé“[Rk < 40o0] = Pé“[Sk + Dofbs, <+4o0]
strong M;rkov propz PS’[Sk <400, X5, = x]P;’[D < 400]
xezd
Lemma 1 o o
< A —-py)Py[Sk < +00] < (L= y) Py'[Rk—1 < +00]

and the conclusion of the lemma follows by inductiora

Let K := inf[k > 1, Ry = +0o¢], or K = +o0 if the set of which we take the
infimum is empty. From the previous lemma and Lemma 3 we immediately conclude
the following.

COROLLARY 1.— (1) PP[K < +oo] =1, forall x e Z¢, P-a.s. and
(2) P2[Sk < +oo] =1.

Proof. —Part (1) is an immediate application of Lemma 5 and the Borel-Cantelli
lemma. To show part (2) note that

PP[Sk < +00]
~+00
= PY[Ri—1 < +00, Upy_y4r+100k,_, < +00, K 00, =1]
k=1

+00
=) /M‘;[Rk_lzz, My_1 € [m,m +dm),
kil=1p
P [Upirs1 < +00, K =1]]. (3.27)

However, using (3.25), we can easily conclude tAgfU,, < +oo] =1 for ally e 74,
m € R, P a.s., hence the utmost right hand side of (3.27) equals

+00
Z /M;)[Rk—lzl, My €[m,m +dm), Py[K = 1]]
ki=1%

=P’[K <+o0]=1 O

Remark 1. — After [18] we define the firgton-retraction time

71 := Sk < 400, Pg-a.s.
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We note that the random variabigis not an(F,)-stopping time. The subsequent times
of non-retractionr,,, n > 2, are defined by induction using the relation

Ty1=T,+ 1100, forn>1 (3.28)

In contrast to [18] these times are not renewal times, due to the possible dependence
sites on the lattice.

4. A transport operator

From condition (H3) we conclude that there exists a linear mapging*(22, G, P) —
LY Q2 x Q,Go® R,P®P) that satisfies

(Z21) [[ ZF (0, 0P(dw)P(de') = [ F(w)P(dw) forall F € LY(Q, G, P),

(Z2) ZF > 0,whenF >0andZ1=1,

(Z3) Z(FG) = Z(F)Z(G) foranyF,G € L*(Q, G, P),

(Z4) Z(F)(w, ) = F(»), Z2(G)(w, ) = G(') for any F € LY(Q, Gy, P), G €
LY(Q,R,P)andZ(F) is Go® R'-measurable provided thatis G,-measurable,
foranyr > 0,

(Z5) ZF (Ty(w), Ty(w')) = ZU*F(w, ') for all F e LY(2,G,P), x € R?. Here
U*F () ;== F(Tx(w)).

Let Ay € F denote the event that nik - I,..., X, - 1] = Xo - |. For an arbitrary

boundedF that isGg-measurable we define

QF () := Z /Zk(x, o, T_x())F(w)P(dw), (4.1)
k=1
xeZ4
where
Zi(X, 0, 0) = ZPy[ Br(X) ] (w, @), (4.2)
with
Bk(X) = [Xsk =X, Sy < +o00, Afl. (43)

Notice that by virtue of (Z4), (3.4) and (GQF is Go-measurable. Let
Pp(dw) := P§[D = +o0]P(dw) /Po[ D = +00].

The following proposition holds.

PROPOSITION 2. —
/ OF ("Pp(de') = / F(oPp(dw') (4.4)

for any F bounded andj,-measurable.

Proof. —Notice that the left hand side of (4.4) equals
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1

Po[D = +00] > / Zi (X, @, T_x(@)) F (@) P§'[D = +00]P(dw)P(de)

k>1
xezd

1 /
= BolD = ol 2 / / Z4(X, @, ) F () g [D = +00]P(dw)P(dw)
o k>1

xezd

1 " oo
" Po[D = +00] g:l /PO [Bx(X)] F (0) P[D = +00]P(dw). (4.5)
xeZ4

The last equality in (4.5) follows from (Z1), (Z3) and (Z4) and the translation invariance
of P. The utmost right hand side of (4.5) equals

1 " ~
m / Py[t1 < 400, D = 400 F(w)P(dw).

The equality (4.4) now follows from the fact that < oo is a sure event in light of
Corollary 1. O

As a consequence of the above proposition we can extetwla density preserving
linear operator Q:LY(2, Go, Pp) — LY, Go,Pp). We shall call ita transport
operator.

H, is an invariant densityfor Q if H, >0, [ H,dPp =1 and QH, = H,. The
following proposition will be of crucial importance for us in the sequel.

PrRoOPOSITION 3. — There exists aifl, > 0, Pp-a.s., that is a unique invariant density
for Q.

Proof. —For anyq, p > 0 we denote by’ (p, ¢) the set of all paths : N — Z¢ such
thato (0) =0,
lon+1) —o@m)]-1>p, foralln=0,...,U,41.

There exists a deterministic numbsedepending only om andé such thatl/,,1(o) <
forall o € C(8/2, r). We introduce also

E:=[yeZ" 30 €C(8/2,r), suchthay = o (U,1)].

Note that the set is of finite cardinality.
For anyxp € E we have
Py[Xs, =Xo, S1 < 400, Aq]
> PYlo €C(8/2,1), 0(Uys1) =X
UXO‘l_l

= > I rle@.oi+1)—0@). (4.6)

0eC(8/2.%p) i=0

Applying properties (Z2), (Z3) and (Z5) we get
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> Z1(Xo0, 0, Ty (@)

XpeE
Ux0.|—l

=Y Y I 2p(e@).oi+D —0() (0. To(@)).  (4.7)

Xo€E 0€C(§/2,xpl) i=0

From the non-nestling condition (H2)

)

> po(Y.e)>——, forallyez’.
el>3/2 2,
ecUy
Thus, according to (Z2), we also have
4 , ) d
Y Zpy.o)w )=, forallyeZ’, PoP-as
el>8/2 2,
ecU,

This and the fact thaly,; < s for some deterministie imply that the expression on the
right hand side of (4.7) is bounded from below by a deterministic conS%pf.

Hence, from (4.1) we conclude that for a nonnegative valtledL(Q2, Go, Pp)

! 8 *
OF (o) > <§> /FdIP’.

The conclusion of the proposition holds upon an application of Theorem 5.6.2 of [7].
Moreover, by virtue of the aforementioned theorem

Ppdw)=0. O (4.8)

nt400

lim /’Q”F(a))—H*(a))/FdIP’D

We seth, (o, 0) := Hy(0)1{p=io)(0), (@, 0) € Q x (ZH)N. On the mea§ur~able space
(Q x (ZHN, B(Q) ® F) we define the following two probability measur@sP;,, by

P(dw, do) := 1 p— 00 (0) PP (d0)P(dw) /P[ D = 400]

and
Py, (dw, do) := hy(0, 0) P (do)P(dw) /P[D = +00].
The following theorem is the main result of this section.

THEOREM 2. — The sequencér,,1 — 7,, X,,, — X,), n > 1, is stationary and

ergodic underﬁ’h*, i.e. for anyn > 1, bounded functiongy, ..., F,:Z¢ x Z — R and
k > 0we have

ST Eo Xy = Xy s = ) Br.(do, do)
p=1
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- // H Fp(Xeyy — Xops Tpyr — Tp)ﬂih* (dw,do) (4.9)
p=1
and any bounded functioi((Z? x Z)N)-measurable functioi that satisfies
/ |F((an+l - an’ Tn+l - Tn)n22)
- F((an - X‘Enflv Tn — fn—l)n}Z) |Iﬂ§>h* (da), dO’) =0 (410)

must be equal to a constaﬁt,*-a.s., cf[5, pp. 291-293]

Proof. — StationarityWe only prove the stationarity fdr= 1, the proof for a general
k poses no additional difficulty. The left hand side of (4.9) equals

1 n ”
FID =53] / / };[lF,,(x,p+2 — Xe 1 Tpr2 — TprD) (@, 0) Py (do)P(dw)

1
— s > [ Mg
P[D = +o0] &
xe7Z4

LI Fo (X085, — Xepon5,) © 05, (Tpr1 — Tp) 065,
p=1

Bi(X), D ofs, = +oo] H.(0)Pdw), (4.11)

with B, (x) asin (4.3). An application of the strong Markov property, yields the following
expression for the right hand side of (4.11)

1
S PC[Bi(x
P[D = +o0] ,;/ 6B
xeZ4
x MY | [] Fo(Xe,0 — X0 Tp1 — 7). D =+00| Hi(@)P(dw). (4.12)
p=1

Using operatoZ we can rewrite (4.12) as being equal to

1
m™mr -~ - 1 Z X7 9 ’
P[D = +o0] k;// (X @, &)
xeZ4
x MY/ H Fpy(Xe, g = Xe) Tpr1 —7p), D= +OO] H, (0)P(dw)P(dw")
p=1
1 S
N M/MO ,Hl Fp(Xey = Xopo Tpra = 7p), D =+00
x QH,(0)P(dw), (4.13)

where Z, (X, w, @) is given by (4.2). From Proposition 3 we hagH, = H, and in
conclusion the right hand side of (4.13) equals
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S a1 M8 T 7o = Xy Tpia =), D= o0 (6 Bid)

= // H Fp(Xe,y — Xopo Tpi1 — r,,)ﬁ’h*(dw, do).
p=1

Ergodicity. We start with the following lemma.

LEMMA 6.— Suppose thau > 1, Fi,..., F,:Z% x Z — R are bounded,G is
bounded andB((Z? x Z)Y)-measurable andR € L1(R2, Go, Pp). Then, there exists
Y € LY, Go, Py) such that

/ YPp(dw) = / / R@) [ Fp(Xey — Xzp Tpis — T,)P(dw, do)
p=1

and for anyk > 1

] r@ H Fy(Xe o = Xe) Tpa1 — T,)

X G (Xr,,,+2+k - Xr,,,+1+kv Tm+2+k — Tm+l+k)m>n)P(dw dO’)
= [[ @ G((Xep = Xepss iz = TmsDmzo) Pdon do). (4.14)

Proof. —Calculation done in (4.11)—(4.13) shows that the left hand side of (4.14)
equals

[ er@ T Futxs, = Xep ity =500
p=1

X G((XI,,,+1+k - Xfm+k7 Tn+1+k — Tm—}-k)m}n)@(dah dO—) (415)
with the conventiorry := 0. The expression (4.15) can be further rewritten as

1 w
=T X J CREMS

>1
xez4

(Tp_l - Tp_2) o QSI)G (((Xfm+k°051 - anH»kflO@S[) © QSI 4

Fi(X, $) H Fp((Xz,_1005, = Xr,_p085) O,

Tin+k O 95, — Ti4k—1 O 951>m2n>’ B;(X), D o 95, = +o0o | P(dw). (416)

Repeating the strong Markov property argument from the proof of stationarity we
conclude that the right hand side of (4.15) equals

J[ R@T] Rt = Xyt =10
p=2

X G((er+k - Xr,,,Jrk,lv Tm+k — Tm+k—l)m>n)i§)(dwv dO’), (417)
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with

Ri(@):= > / QR (@) Z{My[F1(X, $)), B(X)] } (@, T_xo)P(dw)
1>1
xezZ4

Go-measurable and
/ RidPp = / R(@)F1(X1, — X1, T2 — 1) P(dw, do).

Proceedingn — 1)-times analogously as in (4.15)—(4.17) we eventually obiitthat
is Go-measurable and satisfies

/ R,Pp(dw) = / / R@)[] Fp(Xe,,y — Xe) Tpis — T,)P(dw, do).
p=1
The right hand side of (4.14) equals

/ Rn (a))G((Xr,,,+1+k - Xr,,,+ka Tm+1+k — Tm—l—k)m}l)ﬁ)(da)y dO’) (418)

Thus, repeating once more the calculation done in (4.11)—(4.13), we deduce (4.14) wit
Y=R, O

We proceed now with the proof of ergodicity. Suppose thds such a function for
which (4.10) holds. Let

F, 78x7Zx--xZ'x7Z—>R

n-times

be bounded and such that

ani_rpoo//’Fn(sz_Xfl’TZ_le"’

Xop1 — Xops Tut1 — T) — Z|Py, (do, do) = 0. (4.19)

HereZ := F((X;, — X4, ,, T» — To—1)n>2). By virtue of Lemma 6 and formula (4.10)
we conclude that there exists a bounded random varigbtkat isGy-measurable such
that

/ Fo(Xey = Xy, T2 = T1s ooy Xy — Xy Tutd — T) ZPy, (do, dov)
= // Ho () lp—yoo)(0)F (X, — X, T2 — 710 oo, Xy — Xy Tnel — Tn)

X F((Xr,,,+k+2 - Xr,,,+k+1, Tm+k+2 — Tm+k+1)m>n)P(d0)) Po(do)

_ / / 0*1Y, ZP(dw, do). (4.20)
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According to (4.8) the utmost right hand side of (4.20) tends, upon the subsequen
application of limits wherk 1 400 andn 1 +00, to

[// Zﬁ’h*(dw,do)} 2.

In conclusion we obtain that

// 228, (dw, do) = U/ zﬁvh*(dw,da)r,

which shows thaZ = const,P, -a.s. O

5. Theproof of Theorem 1

The proof is a modification of the argument used to prove Theorem 2.3 of [18]. We
start with the following.

PrRopPOSITION 4. — We have

// ‘L’ldﬁ)h* < +00 (5.1)
and

// X, |dP, < +o0. (5.2)
Proof. —Since| X, | < 7 it suffices to show (5.1). First we show the following.

LEMMA 7. —

w, = //I X, dB). < +oo. (5.3)

Proof. —Repeating word by word the argument of the proof of Proposition 1.6 cf.
formula (1.33) of [18], we conclude that

I'X11<C*+ Z (C*+Mk/_I'XSk/)
1<k <K

with K as defined in Corollary 1 and given by (3.15). Hence

//I~X,ldf§>h*

<oyt Z //(C* + My — | . XSk/)l[Sk<+OO»D095k=+OO] dﬁ)h*
1<k <k

<ot Z //(C* + My — - X5, ) LR, 1 <+00, Do, =+0] dﬁ)h*- (5.4)

1<k <k
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SinceR;_1 = D o 05, , + Sx—1 We obtain, upon a multiple application of strong Markov
property for random walks and (3.5) that the right hand side of (5.4) is less than or equa
to

Ce + Z (1— ) ¥ //(C* + My — - X5,) 1R, <40 dP;,

1<k <k
ot -t Y @
PolD = +ool | 55,
xeZ4

« /H*(a))M‘(‘)’[XSk/ —X, Sy < +00, M[c, + M, D < +o0]|P(dw). (5.5)

By virtue of Lemma 3 we conclude that the right hand side of (5.5) is less than or equal
to

Cx Vs k=1 / @
Coy + —————— 1-y) H,(w) PY[Sy < +o0]P(dw)
PolD = +oo] lgk;k Y o Lok
Lemma 5

< 6+ 0> k1-py)f <o,

1<k
for some constant’ > 0, and (5.3) follows. O

Let (k,)»>1 be a random sequence of integers defined by
Tk, < Um < Tk +1- (56)
Recall the convention that := 0. Thenﬁ’h*—a.s. we have

. X, <I|-Xy, <|-X

Tk Ty +1

and |l - Xy, — m| < ¢y, With ¢, given by (3.15). By virtue of the individual ergodic
theorem we conclude that

X, ~
lim * =w,, Py-as.
kt+oo  k
But
I . kam < I . XUW < I : erm+1
klﬂ km km
therefore
lim 2 =—, P,-as.
mt+4o00 m %
On the other hand
U, 1 kn
UL (5.7)
m kn, m
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thus, in light of Lemma 4 and the ergodic theorem applied to the sequence

(Zr[zv—l (Twt1— Tn))
N N>1

we obtain that the right hand side of (5.7) te@dga.s. to

oo (5.8)

Wi

0<t:://r1df15’h*<+oo

On the other hand however from (3.24)

with

MG {Ilm inf U—} <
mt+oo m

1
8 9
which, in turn, proves that< +oo and (5.1) follows. O
To finish the proof of Theorem 1 we consider a non-decreasing sequgngs , that
tends to+oo Py, -a.s., defined by

T, SN <T41.

We have

.n ~
lim —=¢, P,-as.
nt+oo [,

Writing

Xn Xr[ ln Xn - Xr,
J— n + n
n L, n n
we conclude, by virtue of the ergodic theorem, that
X, [ X.,dPy,

lim 22 =207 % .y P, -as.
nt+oo n t

Due to (5.8), we have also- | > 0.
We shall show now that the convergence holds inFget.s. Let

szlm Zmlm

Z p 74>taSnT+oo
m=1'm

A= [(xn,t,,)n>1 e(z'x17)": A v, or ===

We know that
/1A ((Xr,,+1 - Xr,,v Tn+1 — Tn)n}l) dﬁih* =0. (59)
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However, repeating the calculation made in (4.14) and (4.15) we obtain
/1A((Xr,l+2 — Xoi10 Tnt2 — Tt Dn>1) dPo

= /H(CU/)MS/ (14 ((X7,,0 — X1y Tats — Tnz1), D = +00]P(dw’)  (5.10)
with
H(o") ::/ Z ZPy[S <400, X5, =X](0, T_x()) dP(w).

1>1
xezZ4

Taking into account (5.9) we conclude that the right hand side of (5.10) vanishes anc
therefore

. X T
im =~ =v and Ilm 2=r Pgas. O
nt+oo T, nt+0o n
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Appendix A. The proof of Proposition 1

Let us assume that[- | Go] possesses atoms & on a set of a positive measure.
For a certainN > 1 there exists then a sét € Gy of positive measure such that the
conditional distribuant, (x | &o(w)) := @g [£ < x | Eo(w)], x € R, has a jump of size at
least ¥ N in the interval[— N, N] for P-a.s.w € L. Let f(w) be the minimum of such
jump sites in[— N, N] for a fixedw. ThenA :=[w € L: & (w) = f(w)] is an atom with
P[A | Gol(w) > 1/N for P-a.s.w € L.

Let G* be the suby—algebra ofG, generated by the sites| < k. Notice that, thanks
to assumption (A)P[- | G”1 defined ong™ are atomless for any, m > 1, P-a.s. Let
A, be a countable algebra of sets such et = A, VAN and A := Vi AcV{A, A,
with A€ :=Q\ A.

According to the martingale almost sure convergence theorem we have

lim P[C|G§"] =PIC | Gol forall C € AP-as.
k100
Therefore for somg&y-measurable sqi C L of positive measure and sufficiently large
ko, PIA | G§"1(w) > 5 for P-a.s.w € L andk > ko.
For arbitrarys > 0 we can findd € G such thafP[AAA] < ¢ and we have
P[AAA] = /P[AAZ 1G] aP > /Iikrp inf P[AAA | G dP.
+o0

With a suitable choice of (e.g.e = 1/(100QV))

~ 1
(kp) <
P[AAA ]G] (@) < g
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for » from someGy-measurable set ¢ L and some sequence of positive integers
(kD)i>1-

SinceP[- | G 1(w) are atomless 06", m > 1, one can fin®3®, B? ¢ g™ such
thatBY N B@ =¢, BV, B® C A and

1 i k 1 .
Tov <PBY10" @) < o=, =12,

for somek; > kg. Then a.s. im2

. . . 1
P[B® | Gol @) =E[P[B® | G5"] | Go] (@) > E[P[BY | G 17 | Go] (@) > 1717 ().

One can easily check that := B N A, i =1, 2, satisfyP[A; | Gol(w) > 1/(32N) and
A1 N A, =@, which contradicts the fact that is an atom.
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