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ABSTRACT. — Estimates of the rate of approximation in a de-Poissonization lemma of Beirlant
and Mason [1] is obtained for the case where the distribution satisfy a quantitative condition of
existence of exponential moments introduced in [6].
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RESUME. — Des estimées de la vitesse d’approximation dans un lemme de dépoissonisatio
dd a Beirlant et Mason sont obtenues lorsque la distribution vérifie une condition quantitative
d’existence de moments exponentiels introduite dans [6].
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1. Introduction

Beirlant and Mason [1] introduced a general method for deriving the asymptotic
normality of theL ,-norm of empirical functionals. They proved and essentially used
the following “de-Poissonization” Lemma A.

LEMMA A (Beirlant and Mason [1]). et (for eachn € N) 5y, and n,, be
independent Poisson random variables with), being Poissonn(1 — «,)) and n,,,
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being Poisson(na,) where «, € (0,1) and o, — « € (0,1) as n — oo. Denote
M = N1n + N2 and setU, = n_l/z(nl,n - I’l(l - O(n)) and V, = n_l/z(nZn - I’lOln).
Let {S,}°2, be a sequence of random variables such that the random vegtot/,)
is independent oV, and for somes? < oo, and y such that(1 — «)8% — y2 > 0,
(S,,U,) —>a (BZ1,~/1—aZy) asn — oo, where Z; and Z, are standard normal
random variables witltov(8Z1, /1 — « Z,) = y. Then, for allx, P{S, < x | n, =n} —

P{VB? —y2Z1<x}.

This lemma was used to prove the Central Limit Theorem (CLT)Ifgrnorms of
some kernel estimates of densities by Beirlant and Mason [1] and.{farorm by
Giné, Mason and Zaitsev [5]. Using independence properties of random samples ¢
Poissonized size, one can establish the CLT for some ve¢syrd/,) by means of
known CLT for sums of 1-dependent random vectors. Lemma A provides a possibility to
transfer the CLT to the case when we have samples of fixed: size are going to prove
estimates of the rate of approximation in Lemma A, assuming that the distributions of
(S., U,) belong to some classes of distributions with finite exponential moments which
are close to Gaussian ones. Our results could be useful to derive the estimates of the re
of convergence in the CLT’s of Beirlant and Mason [1] and Giné, Mason and Zaitsev [5].

To simplify the notation, we shall omit the subscriptonsideringS, U, V, n, n1, n2,
instead ofS,,, U,,, .... Denote

x =cov(sS, U), N=U+V=nY2(n—-n), E=(S,MHeR%  (11)
Assume that
ES=0 and |x| (Var(S))_l/2 <cp, forsomec; < 1. 1.2)

We shall treatc; as an absolute constant so that any constant depending anly is
considered as well as absolute one. Such constants will be denatgd-hy. .. orc. The
same symbot may be used for different constants even in the same formulas when we
do not need to fix their values. Condition (1.2) means that the distributi®&) of the
vector E is non-degenerated. L& be a standard normal random variable independent
of {S,U, V} andb > 0. Set

S* =S+ bZo, W= (§* ) e R2 (1.3)

The conditional density a$* givenn = n will be denotedp(x), x € R. We assume that

QELE®) =L((S,U)+(0,V)) € Ax(D), (4

whereA,(t), T > 0,d € N, denote classes @tdimensional distributions, introduced in
Zaitsev [6], see as well Zaitsev [7-9]. The claggt) (with a fixedr > 0) consists ofi-
dimensional distributiong for which the functionp(z) = ¢(F, z) = log [z €% F{dx}
(¢(0) = 0) is defined and analytic fofz||t < 1,z € C?, and|d,d?¢(z)| < ||lu||t(Dv, v)
forall u, v € R? and||z||T < 1, whereD = covF, the covariance operator corresponding
to F, andd, ¢ is the derivative of the functiop in directionu.
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It is easy to see that < 1, implies A;(11) C Ay(12). Moreover, if F1, Fr, € Ay(1),

then F1 F» def F1 x F>, € A;(t). The class4,(0) coincides with the class of all Gaussian

distributions inR?. See Zaitsev [6-9] for further properties of class&sr). Thus,

obviously, ® dzefﬁ((bzo, 0)) € A,(0) c Ay(t), for anyb € R and t > 0. Using the

closeness afl,(7) with respect to convolution, (1.1), (1.3) and (1.4), we conclude that

FELW) =L((S,U) + (0, V) + (bZo, 0)) € As(2), (1.5)

for anyb € R. The summandb Z,, 0) will play a smoothing role ensuring the existence
of the conditional density (x) in (2.13) below. The value df > 0 will be optimized
later.

Throughout the following, 61, 6, ... symbolize quantitieslependingon variables
involved in corresponding formulas and not exceeding one in absolute value. The sam
symbolé may be used for different quantities even in the same formulas.

THEOREM 1.1. —There exist absolute positive constass. . ., ¢; such that if
czn_l/2 <t<cezh, b1l x| <cy/t, Var(S) =1, (1.6)
5ot exp(—5e/432r%) < 1, (1.7)
then
p(x) = (2r) V2B exp(—x?/2B?)
x exp(cs (07 (|x |2 + 1) + 0 exp(—b?/721?))), (1.8)
27ty 2B exp(—x?/B?) < p(x) < 2(2n) V2Bt exp(—x?/4B?), (1.9)
whereB? =1+ b — x?, B > 0, |#| < 1and, moreover, for any € R,

p(x) gceB_leXp(— min{x2/4Bz,C7|x|/r}), (1.10)

provided thatc,, cg are sufficiently large andes, ¢4, c7 sufficiently small absolute
constants.

The rather cumbersome condition (1.7) is obviously satisfied for sufficiently large
n > ng when we consider a scheme of series with- 7, — 0 asn — oo and fixed
a>0.

THEOREM 1.2. —Let the conditions of Theorerh.1 be satisfied. Then there exist
absolute positive constantg and cg such that

P(BZ<z—y@)<Pl*<zIn=n)<P(BZ<z+y(2), (1.11)

for |z| < cgt™t, wherey (z) = co(t(z2 + 1) + exp(—b?/721?)) and Z is a standard
normal random variable.

Theorem 1.1 will be proved in Section 2. The proof of Theorem 1.2 is sufficiently long
and complicated but it is standard. It repeats almost literally the derivation of Lemma 2.1
from Lemma 1.6 in Zaitsev [8]. Theorem 1.2 may be deduced from Theorem 1.1 in a
similar way. Therefore we omit the proof of Theorem 1.2.
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COROLLARY 1.1. —Let the conditions of Theoref?2 be satisfied. Then there exist
absolute constantgqg, c11, c12 such that, for any fixed satisfying (1.6), one can
construct on a probability space random variabkesnd Z so that the distribution of
& is Fy, the conditional distribution of* givenn = n, Z is a standard normal random
variable and

|BZ —&|<y (), forl&]<cror ™ (1.12)
Moreover,
IBZ| > cnt™t if |E] > crgt ™t and T < c10b. (1.13)

Proof. —DenoteFi(x) = F1{(—o0, x]} = P(S* < x|n =n), Fo(x) =P(BZ < x). We
assume that arandom variallavith P(¢ < x) = Fy(x) is already constructed and define
Z as the unique solution of the equatidh(é) = F>(BZ). Now inequality (1.12) is an
easy consequence of (1.11)if < c¢g. In order to prove (1.13) it suffices to use (1.12)
for |£| = c1or~* with sufficiently smallcyg < cg and take into account (1.6) and the fact
that Z is an increasing function &f. O

THEOREM 1.3. —Let the conditions of Theorerh.1 be satisfied. Then there exist
absolute constants; s, c14, ¢15 such that, forr satisfying

con Y2 <t ey, (1.14)

and for any fixed. > 0, one can construct on a probability space random varialgles
and Z so that the distribution of is the conditional distribution of givenn =n, Z is
a standard normal random variable and

P(’\/l— x2Z — {‘ > )») < C14€XP(—C150/T). (1.15)

The Prokhorov distance is defined by F, G) = inf{A: n(F, G, 1) < A}, where
7(F,G,\) = supy maxF{X} — G{X*}, G{X} — F{X*}}, » > 0, and X* is the A-
neighborhood of the Borel sét. Inequality (1.15) implies the following statement.

COROLLARY 1.2. —Let the conditions of Theorefin3 be satisfied. Then the bounds
7 (F3, Fa, A) < cra€Xp(—c1sh/t) and n(F3, F4) < ct(|logt| + 1) hold, whereFs is
the conditional distribution o5 givenn = n, and F; is the centered normal law with
variancel — x2.

Zaitsev [6] has shown that the same bounds are valid for the normal approximation o
two-dimensional distributions), F € Ax(t). These bounds do not imply however the
inequalities for conditional distributions considered in Corollary 1.2.

One can show that if we consider a scheme of series witht, — 0 asn — oo
andy = x, <ci1<1foralln e N, then(1— F3(x))/(1— Fa(x)) and F3(—x)/F4(—x)
tend to 1 as — oo, if 0 < x = x, = o(z, 1/3). It suffices to apply the inequality which
follows from Corollary 1.2 to the sets-oo, x] andx = £ /3. If, in addition, x = x, — 0
asn — oo, then the same limit relation witl#,(-) replaced by the standard normal
distribution function is valid for O< x = x, = o(min{z, /3, x1}).
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THEOREM 1.4. —Let the conditions of Theoreh3 be satisfied. Then there exists
absolute constantsig, c17 such that, for any fixed satisfying (1.6) and t < c12b,
one can construct on a probability space random varialdleend Z with distributions
described in Theorerh.3so that

P(],/l —x2Z - ;‘ > coexp(—b2/72%) + x)
< c16XP(—Cc17A/T) +2P(|a)| >)»/6), (1.16)
for any A > 0, wherew have the centered normal distribution with variarice

Theorems 1.3 and 1.4 are proved in Section 3. Comparing Theorems 1.3 and 1.4, w
observe that in Theorem 1.3 the probability space depends essentiallyvdmile in
Theorem 1.4 we proved (1.16) on the same probability space (dependimgf@nany
A > 0. However, (1.16) is weaker than (1.15) for some values.ofhe same rate of
approximation (as in (1.15)) is contained in (1.16p3> 72r2log(1/7) andi > b?/t
only.

2. Proof of Theorem 1.1

Lett >0, F = L&) € Ay(7), ||hllt <1, h € RY. Then the Cramér transform
F = F(h) is defined byF(h){dx} (EeEh~1ehx) Frdx}. Also we shall use below
the notationF, = F(h) so thach(t) = [&-")F(h){dx}. Denote by (h) a random
vector with £(£(h)) = F(h). Itis clear thatF(0) = F and the convolution of Cramér
transforms is the Cramér transform for convolution with the samBelow we shall
need the following facts.

LEMMA 2.1 (Zaitsev [6, Lemmas 2.1, 3.1]).Suppose that > 0, F € Ay(7),
h e RY, ||hllt < 1/2, F = L(&), D = cové, D(h) = cové(h) and EE = 0. Then
F(h) € Aq(27),

(D(hyu,u) = (Du,u)(L+61]h|7), forallueR?, (2.1)
logEe"™s) = 27X(Dh, h) (L + 62|k |T/3), (2.2)
logE€™&) = —27X(Dh, h) (1 + 63]|h]|T/3), (2.3)
(detD(h))"? = (detD) Y2 exp(cbad || h| 7)., (2.4)

wherec is an absolute positive constant aagdsatisfy|6;| <1

LEMMA 2.2 (Zaitsev [6, Lemma 3.2]). ket Q = {x € R¢: 48w‘1||]D) V2% < 1).
Then, in the conditions of Lemn2al, for anyx € €2, there exists an = i(X) € R? such
that EE (h) = &,

ollh| < ||DY?h| < 2.4/|D~ (2.5)
Eexp((h, &) — (b, ©)) = exp(—2"Y||D~Y2%||” + 10.08075 1| D%% %), (2.6)
whereo? is the minimal eigenvalue of the operafdrand 6] < 1

Now we shall operate similarly to the proof of Lemma 4.1 of Zaitsev [6].7L&t0,
b>r~tandPy(u) =exp(—u?b?/2),u e R.Form =0, 1,2, ..., introduce the functions
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Y (1) anda,, (u) by putting,, (u) = Po(u + mr), for u > 0, andy,, (u) = Po(u — mr),
foru <0, and
oy (u) = Wm(u) - 1wym—&-l(u + I") - wm+1(u - I") + 1wym—&-Z(u)- (27)

Notice thatyg(u) = ﬁo(u). Clearly, 0< «,,, (1) < ¥, (w), foru € R, anda,,, (u) = 0, for
|u| > r. Further,

= MaX0t, (1) < MaXy, (u) = Po(m) = exp(—r?m??/2), m=0,1,2,.... (2.8)
ue ue

It is especially easy to check these properties of functifné:) ande,, (u) looking on
their graphs.

LEMMA 2.3. —For any characteristic functiorﬁ/\(u) of a one-dimensional distribu-
tion W, any§ e Randanym =0,1,2,...,

’/W\(u)l//m(u —8)du| < /W\(M)I//m(u)du. (2.9)
R R

Proof. —For b > r~1, it may be shown thaP{(u) < 0 and P{(u) > 0, for u > r.
Therefore, by Polya’s criterion (see Feller [4]), the functiBp(u) = Y () /a, is the
characteristic function of a probability distributiar),, foreachn = 1,2, .... Letd, (y)
be the density corresponding to the distributi®yp, m = 0,1,2,.... By Parseval's
equality, we get (2.9):

‘/W\(u)ﬁm(u —8)du
R

_ ]271 [ W(dy)\ < [WaPuwan. o
R R

Proof of Theorem 1.1. Restriction (1.2) turns now into
IxI<ea<1 (2.10)
since we assumed V) = 1. Note that (1.6) and (2.10) imply that
B?=¢". (2.11)

Consider the characteristic functigiizy, 1) = Eexp(it; S* + iz, IT). Clearly,

H_k—n>P(H_ k—n)

NG A

From this we see by Fourier’s inversion that the conditional characteristic function of
S$*, givenn = n or, equivalentlyIT =0, is

s ilg(k —n) .
G(t1, 1) = exp<7>E(exp(|z S
1,12 kz_:_o \/ﬁ 1

/ exp(—t2b?/2) E explity S +itU)E explifzV) dtp. (2.12)

m/n

1

Y= =0 vn
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We shall use the following inversion formula expressipgx) via characteristic
functions:

T/n

P = o )2P(H O / G ”(_ /f F(t)dt2> dn, (2.13)

whereF(t) = CIJ(t)G(t)H(t) 1=(f1,1p) € R?, denote below the characteristic function
of F, (1) = exp(—12b2/2), G (1) = Eexpinn S + irU), H(t) = Eexplir,V).

Leth = (hy, hy) € R? satisfy || k||t < 1/2. For the conditional density & (), given
(W(h), e;) = 0, we shall use the notatiop, (x), x € R. Arguing similarly as deriving
(2.13), we may express;, (x) via characteristic functions:

1 7
ph(x):Z/e_"l)“(ph(tl)dtl, x eR, (2.14)
where
1 e
o) = 5 s 7 / Fo(t) dt (2.15)

n

is the characteristic function corresponding to the densjty) and

Fy(t) = 040G Hy(t), 1 €R?,
is the characteristic function of (k). For h = 0, (2.14) turns into (2.13) since
(W, e5) =TI (see (1.3)). It is easy to see thbyg (1) = exp(itibhy — ¢ 2b%/2) andgy, (t) =
By (t1) explityhhy — t2b?/2), where

w/n
Bu(ty) = 2 P((T(h), e2) = O)/i) / 0n(t) dt.

—TT\/n

Note that in a similar way one can establish thatr) is the characteristic function of
the conditional distribution of (&), given (¥ (h), ;) = 0. Thus, by (2.14),

1 o0
o) = / Bu(1y) explinsbhy — inx — 2b%/2)dn,  x €R. (2.16)

By (2.13), (2.14) and (2.15), we have

Pr)P((W(h), e2) = 0) = p(x)P(IT = 0)(Ee"¥) 'e™*, xeR. (2.17)
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Collecting (2.13), (2.14) and (2.17), we get

00 wy/n

e‘i’l"< / ﬁ,,(z)dz2> dfi, xeR. (2.18)

—TT\/n

Eglh W) —hix
(20)2P(TT=0)/n .

px) =

By the definition ofyo(u) and (2.14)—(2.16),

2 pa(x) = / W () o) du

00 wy/n

1 —irx =
:2ﬂp(<@(h),ez>:0)ﬁ/e ( /Fh(t>dtz>, (2.19)

—o0 —m/n

whereW(u) = B, (u) expliubh1 —iux) is the characteristic function of a one-dimensional
probability distribution. Now, using (2.7) witl =0, r = (67)7%, b > 67, we expand
the first integral in (2.19) into a sum of integrals and, applying (2.9), estimate

2N+ 121 EY 1. (2.20)

/ W () olu) du — Io

where we denoté,, = [ W (w)a,, () du, Jpy = [ W) ) du, form=0,1,.... The
sum>_, | J,,| will be estimated with the help of a sequential procedure based on identity
(2.7) and inequality (2.9). In each of the integrdjswe again replac@,, («) using (2.7)

and apply (2.9). As a result we obtain the inequaty |, | <> 1 |Lnl +>_2|Jm|. Each

of the terms in the surly_, | /,,| generates one (corresponding) term in the Sum/,, |

and three terms in the sum, |J,,|. The indexm of each term generated n, is by at
least one greater then the corresponding index of the generating t&nn @ontinuing

to operate in the same fashion, at e step we obtain the inequality

s—1
Dol 0 Ml + Y 1l (2.21)
k=1

in which indicesm occurring in}_,, k=1, ..., s, are at least and the number of terms
is 3. It is easy to show tha}" |J,| < 3ci(b, T) exp(—ca(b, T)s?) — 0 ass — oo,
wherec;(b, 1), j = 1,2, are positive quantities depending brandr only. By (2.20)
and (2.21),

[ Wopodu— 1o <57, 11l (2.22)
A k=1
By (2.8), the right-hand side of (2.22) may be estimated by
> 3 exp(—r’k?b?/2) Ko < cexp(—r?b?/2) Ko, (2.23)

k=1
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where

Koz/y’W(u)uu :/yﬁh(u)ydu

1
- 7 K1+ K>), 2.24
2P T (), ey = O L 12 (2.24)
andk; = [, |0x(0)ldt, j=1,2, where
Ti={t= (1.1 €eR% || <r, |o| <7}, (2.25)
Ty={t=(t1,1) €R?% || <r, r < |ta] </} (2.26)

By (2.7), (2.8) and (2.24),/”, W () ¥o(u) du — Io| < 3exp(—r?h?/2) K. Together with
(2.22) and (2.23), this mequallty implies that

< cexp(—r?bh?/2) Ko. (2.27)

/ W () o(u) du — / W () o(u) du

Taking into account (1.5), we may apply Lemma 2.1 which implies @l (h)) €
A(27). The characteristic function &f (h) —EW (k) is Fh(z)exp( i(t, EW(h))). Using
relation (2.3) of Lemma 2.1 with doubled parametewe obtain

log(F (r) exp(—i(r, EW (h))))
L(D(h)t, 1) (14 20|t]7/3), for ||t]T < 1/4, (2.28)

whereD(h) = covW¥ (k) (we denote as welD = cov¥). According to (1.1) and (1.5),
we have de = 1+ b? — x2 = B?. Moreover, foru = (u1, u») € R?,

(Du, u) = H]D)l/2u||2 =E(W, u)? = (14 b?)u? + u3 + 2uquyy. (2.29)
Furthermore, one may calculate that
(D u,u) = ||ID>_1/2u||2 = (14 b?)ud +u? — 2usuyy) (detD) ™, (2.30)
Applying relation (2.1) of Lemma 2.1, (2.10) and (2.29), we see that
(D(hyu, u) > cllull?. (2.31)

Using the inequalitye’t — e°2| < |z1 — zo] maX{|€*|, |€1}, z1, z2 € C, and relation (2.28)
and (2.31), we find, for € T; and for sufficiently smalt,, that

| F (1) — exp(—27YD(h)t, 1) +i{t, EW (h)))| < cT exp(—c]t]|?). (2.32)
It is easy to see that

: /
27P((W(h), e2) = 0)\/n

ToUT>

/ W () Wo(u) du = e F, (1) dt. (2.33)
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Now we expand the integral in (2.33) into a sum of integrals and estimate

’ / e_itlxﬁh(l) dt — Lo| < L1+ Lo+ Ls, (2.34)
T UT»
where

Loz/exp<—%<]D>(h)t, t>) exp(—itix +i(t, EW(h))) dt, (2.35)

R2

I 1 R

L= /e - <Fh(t) — exp<—§<ID>(h)t, t>> exp(i(z, E\IJ(h)>)) dt|, (2.36)

i
Ly= /e_itlxﬁh(t)dt‘, (2.37)

)

1 : . —
L3= / exp<—§<ID>(h)t,t>> exp(—inx +i(t, E\I/(h)>)dt‘. (2.38)
RATy
By (2.4),

|Lo| < 27 (detD(h)) ™ ? = 27 (detD) Y2 exp(cO | 7). (2.39)

Coupled with (2.36), inequality (2.32) implies thiat < ct. EstimatingL,, we first note
that | F, ()| < |0a(1)] < |Hy()| = |Eexpl(ha + i1)V)/E exp(h,V)|. By Example 1.2

in Zaitsev [6], we haveZ (V) € Ai(c//n). Clearly,EV =0, VarV) = «. The function
s(t2) = Eexp((ha+it) V) /Eexplh,V) may be considered as the characteristic function
of the one-dimensional distributiof(V)(hy). Applying a one-dimensional version of
(2.1) and (2.3) of Lemma 2.1, we get

logs (12) = =27 15 (14 cBltal//n ) (1+ cOlhal//n), for |12 <crov/n,  (2.40)
with a sufficiently small absolute constang. Thus, for sufficiently large,, (2.40) gives
|s(t2)] < exp(—5at2/12), for |t] <ciov/n and (67) ! < ciov/n <m/n, (2.41)

if c10is small enough. The functior ()| may be easily calculated:
|s(t2)| = g(t2)/g(0), Whereg(t) = exp(a ("2 cog(ty/v/n) — 1)). (2.42)

The functiong is even and decreasing forQr, < 7 /n. Therefore, using (1.7), (2.26),
(2.37), (2.41) and (2.42), we obtain ¢ is sufficiently large ands sufficiently small)

1 5 5
maX{Lz, Kz} < §< /1 eXp(—l—zau2> du + hﬁexp(—l—zacion>>
u|27=/6

< (3r)H(14.4ra~t exp(—5a/43202) + 27 /n exp(—5aciyi/12))
< 5o texp(—5/432%) < 1. (2.43)
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Let us estimaté.3. Using (2.25), (2.38) and (2.31), we obtdig < 4ff°f’1/6 e’ dy <
ct. Collecting (2.34) and bounds fdr;, we get (if ¢, is sufficiently large ands, cs
sufficiently small)

‘ / e Y F (1) dt — Lo| < ct. (2.44)
ThUT,

Arguing similarly to the proof of (2.28) and (2.31), we may show that
Iog(Qh(t) exp(—i(t,EE(h)))) = —2‘1<IB%(h)t, 1) (1+20||t||t/3), for ||t]lt < 1/4,

whereB(h) = covE(h) and (B(h)t, t) > ¢||t]|%. Hence K1 < c.
Let us fix anx € R satisfying |x| < c4/t. Let us apply Lemma 2.2 witl§j = W,
% = (x,0) e R Relation (2.10) coupled with independence (6f IT) and (bZ, 0)
implies that in this case
o? = min Var((¥, 1)) = mi_nl(tf(l +b%) + 12+ 2utrx) > c. (2.45)

=1

Moreover, 48to YD Y2x|| < 5t0?|x| < ctlx| < 1, whereD = cov¥ if ¢4 is
sufficiently small. Applying now Lemma 2.2, we get an= h(x) = (h1, h) € R?,
satisfyingEW () = %, (2.5) and (2.6) witht = W, ¥ = (x, 0). We shall first estimate
p(x) using (2.18) withh = . Note that (2.5) yields1|fz||r < 1/2. So we can apply

for h = h all the relations derived above. In particular, using (2.11) and (2.30), we get
ID~Y2% 2 = x?/ B? < cx?. Substituting this bound into (2.6) and using (2.45), we obtain

Eexp((h, ¥) — hyx) = exp(—x?/2B% + cot|x[?). (2.46)

RelationsEW (h) = &, |||t < 1/2 and deD = B? together with (2.11), (2.35) and
(2.39) imply Lo = 2n B~Yexp(ch||h|T) = €?. By (2.5), ||h|| < c|x|, if c4 is sufficiently
small. Hence,Lo = 27 B texp(cf|x|7). Inequalities (1.6) and (2.44) give now the
relation

/ e " F (1) dt = Lo+ ¢t = 2 B texp(cOt (|x| + 1)), (2.47)

ThUT,

if ¢, is sufficiently large and, is sufficiently small. Recall that = (67)~. Using now
(2.11), (2.19), (2.24), (2.27), (2.33), (2.43), (2.47) &< ¢, we get

00 wy/n

/e“’l)‘( / ﬁ,;(t)dt2>dt1:2nB‘1 exp(cOt (x| + 1)
+ cf exp(—b?/727?%)). (2.48)
Applying Stirling’s formula, n! = (n/e)"v/2rn /" for some 0< 6, < 1/12, we
obtain

27P(n=n) =2we"n"/n! = (21 /n)Y?/". (2.49)
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Collecting bounds (2.18) withh = &, (2.46), (2.47) and (2.49) and using (1.6), we
complete the proof of (1.8). Inequalities (1.9) follows from (1.8) and (2.1dy i small
enough.

To prove inequality (1.10), we define* = (h}, h3) € R? by h5 = 0 and h} =
cst~1/2. Below we choose, so small as it is necessary. Taking < 1, we ensure
the validity of |#*||t < 1/2. So we can apply foh = h* all the relations derived
above. By (2.11) and (2.39)L¢| < ¢. Coupled with inequality (2.44), this implies that
|fT1UT2 e Fy (1) dt| < |Lo| + ct < c. Using (2.19), (2.24), (2.27), (2.33), (2.43) and
(2.47) together withK; < ¢, we get

00 /n
/e‘i’lx< / ﬁh*(t)dt2> dt| <c

—00 —m/n

(2.50)

Using relation (2.2) of Lemma 2.1, we obtain, far> c,v%, logEe™") =¥

c2/41% — c4x /2t < —cqx/4r. Now (1.10) forx > c4r2 follows from (2.18), (2.49)
and (2.50). Forx < —cat™?, it may be verified in a similar way. Fdr| < cat73, it

follows from (1.9). O

3. Proof of Theorems 1.3 and 1.4

LEMMA 3.1.—Let the conditions of Theorein3 be satisfied. Let positive § and y
satisfy
1/2 T<C13b bgclg, 8:2825, 5<C20/‘L’, y=cC21 3/1’, T<C223.

3.1)
Absolute positive constantss, c19, ¢20, 21, ¢22 andcp3 may be chosen so small that, for
any closed seX C [—y, y],

con

Fi{X) < F{X°} + 2exp(—c238/7) + 3A, whereA = csexp(—b%/72c%)  (3.2)

and distributionsF; and F; are defined byF; (x) = P(S* < x | n=n), Fo(x) = P(BZ <
X).

Proof. —Choosingcig < S c3 and ci19 < 1, we are under the hypotheses of Theorem
1.1. Denote byw(x) = 5= exp(— x?/2B?) the density ofF,. Then, by virtue of (1.8),
(2.11) and (3.1),

px+96) < w(x)eA, wx +98) < p()c)eA (3.3)
forx >0,and B < x + 8 < 2c214/8/1 = 2y, while
p(x —8) <w(x)e?, w(x —8) < p(x)er, (3.4)

for x <0, and—2y < x — § < —2B, if c19, c20 @nd cp1 are small enough. In similar
fashion, choosing1g and cig to be sufficiently small, we can show with the help of
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(1.8), (2.11), (3.1) and (3.2) that, for| < 2B,
p(x) <w(x)exp(cs(ct + A)) <6w(x)/5 and p(x) > 18w(x)/19. (3.5)
By choosingezo < /c21/4€" to be sufficiently small, we can assure the inequality

e =268 < cp/S/T=y. (3.6)

Let X be an arbitrary closed subset [efy, y]. Consider the collectiofIT, }, . of
open intervaldl, C R\ X of lengths at least2 Write Y =R\, . I1,,. Then

XCYCl—y,yl Xe=Y°®. 3.7)

The setY may be represented as a union of disjoint closed inter¥isC [—y, y],
Jj=1,...,1, separated by intervals whose lengths are at leasktZrefore,

I 1
Fi{Y}=> Fi{M;}, R{Ye} =) F{M:}. (3.8)
j=1

j=1
Observe that, by (3.6),
MjCMjiC[—Zy,Zy], j=1,...,L (3.9)

Let us fix j and compareFi{M;} with Fp{M;}. Let M; = [a;, B;]. Then M =
(aj — ¢, Bj + ¢). Consider separately the four possible cases:

(a) (O(j, ﬂj) N[—2B,2B] =@ and 0¢ (Olj — &, ﬂj +&);

(b) Oe (O(j, ﬂj) and[—2B,2B] C (Olj — &, ﬂj +¢);

(c) at least one of the interval§; — e, ;) or (B;,B; + ¢) lies in the interval
[—2B, 2B];

(d) one of the intervalgw; — &, ) or (B;, B; +¢) contains at least one of the intervals
[0, 2B] or [-2B, Q].

In case (a) we assume for definiteness thatd); — ¢ anda; > 2B. Then we have,
in view of (3.3) and (3.9)F1{M;} < eAFz{Mj.}. If B; +& <0andB; < —2B, then the
same inequality follows from (3.4) and (3.9).

Consider case (b). By Bernstein’s inequality and (2.11),

F{(y,00)} = F{(—00, —y)} < exp(—y?/4B?) < exp(—c§/7). (3.10)
Sothatifg; +¢& >y, thenF>{(B; + ¢, 00)} < exp(—cd/7). Butif B; + ¢ < y, then since
B; >0,B; +¢ > 2B ande > §, we have, in view of (3.3) and (3.10),

y—4

Fz{(,Bj + &, oo)} < exp(—cd/t) + / w(x +8)dx
Bj+e—s

<exp(—cd/t) + X F1{(B;,00)}.
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Thus, irrespective of the mutual disposition of the numigrs- ¢ andy, we have the
inequality

F{(Bj +¢&,00)} <exp(—cd/t) + €* F1{(B;, 00) }. (3.11)
By means of (3.4), it can be shown in similar fashion that

F{(—00,a; — &)} < exp(—cd/t) + € F1{(—00,a))}. (3.12)

Adding the left-hand and right-hand sides of (3.11) and (3.12), we obtaifA M} <
2exp(—cd/7) + e~ (1 — F1{M,}) which yields the inequality

Fi{M;} < 2exp(—c8/7) + A+ F{ M5} (3.13)

To consider case (c), we introduce the sEfs= Mj: N[—2B,2B], P; = M;?\(Nj U
R;) and R; = (M5\N;) N ([—-2B — 8, —2B] U [2B, 2B + §]). From (3.1) and (3.5), it
follows that F1{N;} < €* F»{N,} + 8/~/21 B, if c1g, c19 andc,, are sufficiently small,
Further, by condition (c), the definition at;, (1.9) and (3.9)F1{R;} < 8/~/27 B. If
the setP; is non-empty, then it is concentrated entirely either on the positive or on the
negative real axis. For definiteness, BtC {x: x > 2B 4 6}. ThenP; —§ C P; UR;
and so, by (3.3) and (3.9¥1{P;} < e*F»{P; U R;}. Similarly, we can establish this
bound also in the case whers C {x: x < —2B — §}. It is also clear that in case (c)
Fo{M$\M;} > e 2/+/27 B = 2 /+/27 B. Now from (3.9) and the above inequalities it
follows that F1{M;} = Fi{N;} + Fi(R;} + F1{P;} < e F,{M¢}.

In case (d),Fg{M*?\M } > 0.475, F,{M; N[-2B,2B]} < 1/2 andFi{[-2B, 2B]} >
0.9 (see (3.5)). Similarly, we obtaif {M;} < 0.1+ 1.2F>{M; N[-2B, 2B]} < F2{M}}.

Thus, we have proved thadt{M;} < eAFg{Mj:} for the cases (a), (c) and (d). Only
inequality (3.13) has been established for case (b). But there cannot be more than or
of the closed intervalg/; containing zero. Therefore, choosiags to be sufficiently
small and using (3.1), (3.7) and (3.8), we obtai{X} < F1{Y} < e*F{Y*} +
2exp(—cd/t) + A < Fo{ X} 4+ 2exp(—cd/t) + 3A, proving (3.2). O

Proof of Theorem 1.3. ©bserve now that, by (1.10) and (2.11),
Fi{u: lu] > x} < cmax{exp(—x?/8B%), exp(—cx/7)}, foranyx>0. (3.14)

Inequalities (3.2) and (3.14) imply that under conditions (3.1), for any closedysetR,

Fi{Xo} < Fi{XoN[—y, y1} + Fo{u: |u| >y}

< Fg{XS} + 3exp(—c248/7) + 3A. (3.15)
The same inequality is valid also for arbitrary Borel &gtsince X = (Xo)¢, whereXg
is the closure o,. Moreover, sinc&R\ X3)® C R\ Xo, (3.15) implies that, for arbltrary
Borel setXj, FZ{XO} < Fu{X§) + 3exp( c248/T) + 3A. Set nowb? = min{st, cZg}.
Assumer < § min{cZg, c22}, § < Min{c2y, c20}/T andeiz < c2gc2y. Thenb? = §t. By the
Strassen—Dudley theorem (see Dudley [3]), one can construct on the same probabilit
space the random variablgsandv having distributionsF; and F, respectively so that

P(lu — v| > &) < 3exp(—c248/7) + 3A < 6exp(—cé /7). (3.16)
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By Lemma A of Berkes and Philipp [2], we can assume that ¢ + o, v =
V1— x2Z + ¢, where random variables and Z have the needed distributions and
random variables and¢ are independent af and Z respectively and have centered
normal distributions with varianck?. Then, using (3.1), we get

P(l¢ —1/1— x?Z| > 3¢) <P(lu — v > &) + P(lw| > &) + P(|¢] > ¢)
< 6exp—cd/t) + 2exp(—ce?/b?)
< 8exp(—cd /7). (3.17)
Let now § > min{c2,, ca0}/7 and X, be an arbitrary Borel set. Thei? = &”. If
XoN[-4,8] =0, then, by (3.14), we have
Fi{Xo} < Fi{u: lu| =8} < cexp(—cd/7). (3.18)
If XoN[-4,38]#@,then, by Bernstein’s inequality and (2.11),
Fi{Xo} — F2{X%} < Fo{u: |u| > 8} < 2exp(—8?/4B%) < 2exp—cd/7).  (3.19)

Applying again Lemma A of Berkes and Philipp [2], we construct, ¢, Z, w and¢ so
thatP(Ju — v| > 28) < cexp(—cd/t) and

P(l¢ — /11— x?Z| > 48) <P(lu — v| > 28) + P(lw| > 8) + P(|¢| > §)
< cexp(—cd/t) + 2 exp(—cs?/b?)
<cexp(—cs/T). (3.20)
fr>6 min{cfg, c22} > 0, then, evidently, for any and Z with needed distributions

P(l¢ —\/1— x2Z| > 48) <1< exp(1— min{cig, c22}8/7)
< 3exp—cd/1). (3.21)
Collecting bounds (3.17), (3.20) and (3.21), we obtain (1.15) with3s = 6€?5. O

Proof of Theorem 1.4. By Corollary 1.1, one can construct on the same probability
space the random variablgsandv having distributionsF; and F» respectively so that
lw — v <y, if |u] < cior™t, wherey(z) is defined in Theorem 1.2. Moreover,
[v| > et 7L, if || > cior . By Lemma A of Berkes and Philipp [2], we can assume
thatu = ¢ + w, v = /1— x2Z + ¢, where¢ and Z have the needed distributions and
w and¢ are independent af andZ respectively and have centered normal distributions
with varianceb?. Then

P(l¢ — /1= x2Z| > coexp(—b?/T2c?) + 1)
<P(ln—vIL(|pl < crot™h) > cgexp(—b%/72t%) + 1/3)
+P(lnll(lnl = caot ™) > 4/6) + P(Iv[L(Iv| = cuat ™) > 1/6)
+ 2P(|w| > 1/6). (3.22)
Without loss of generality we assume tlegt < 1/6. Therefore, by (2.11) and (3.14),
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P(lu —v|L(lpl < clor_l) > cg exp(—b2/72r2) +21/3)

< P(eop®L(|n] < crot ™) > A/67) < cexp(—cA /1), (3.23)
P(lul1(pe] = c1ot™) > 1/6) < cexp(—cA /1) (3.24)

and
P(v|1(lv] = cpar ™) > 1/6) < cexp(—cA/T). (3.25)

Inequality (1.16) follows now from (3.22)—(3.25).0
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