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ABSTRACT. — We investigate the ground state energy of the random Schrédinger operator
—3A + B(log)~2/?V on the box(—t, 1) with Dirichlet boundary conditionsV denotes the
Poissonian potential which is obtained by translating a fixed non-negative compactly supporte
shape function to all the particles ofé&adimensional Poissonian point process. The scaling
(logt)~%/? is chosen to be of critical order, i.e. it is determined by the typical size of the largest
hole of the Poissonian cloud in the boxz, 1)¢. We prove that the ground state energy (properly
rescaled) converges to a deterministic lim{{8) with probability 1 ast — co. I(8) can be
expressed by a (deterministic) variational principle. This approach leads to a completely differen
method to prove the phase transition picture developed in [4]. Further we derive critical exponent
in dimensions! < 4 and we investigate the largebehavior, which asymptotically approaches
a similar picture as for the unscaled Poissonian potential considered by Sznitman2(®)2
Editions scientifiques et médicales Elsevier SAS

RESUME. — Nous examinons I'énergie a I'état de base de I'opérateur de Schrédinger aléatoire
—3A + B(logt)=2/?v sur le cube(—t,1)? avec des conditions marginales de Dirichlgt.
désigne le potentiel Poissonien obtenu par translation d’'une fonction modéle fixe, non-négative ¢
a support compact sur toutes les particules d’un processus de Poisson péstitnehsionnel.
L'échelle choisie,(logr)~%/4, est d’ordre critique, c’est-a-dire qu’elle est déterminée par la
taille typique du plus grand espace vide dans le nuage Poissonien sur lé-eubg. Nous
démontrons que I'énergie a I'état de base (convenablement rééchelonnée) converge vers u
limite déterministel (8) avec probabilité 1 larsque— oco. I(8) peut étre exprimée a l'aide
d’'un principe variationnel (déterministe). Cette approche conduit a une méthode complétemer
différente pour prouver I'image de transition de phase développée dans [4]. De plus nou:
obtenons des exposants critiques pour les dimengiahd et nous examinons le comportement
pour les grandes valeurs @e qui approche asymptotiquement une image semblable a celle du
potentiel Poissonien non-échelonné considéré par Sznitman 802 Editions scientifiques et
médicales Elsevier SAS
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0. Introduction and results

In this article, we consider the infinite volume limit of the ground state energy
(principal Dirichlet eigenvalue) for a non-relativistic quantum particle in a scaled
Poissonian potential. The motivation for this study is to develop a better understanding
of the corresponding (random) variational problem and its phase transition picture
proven in [4]. Related random variational problems naturally arise in several questions
of disordered media, e.g. in the study of the path behavior of Brownian motion in a
Poissonian potential: the Poissonian potential plays the role of an absorption rate, an
one tries to determine where the surviving Brownian particles settle down (see [9],
Section 6.1). In the main body of this article we first derive a (deterministic) variational
principle for the infinite volume limit of the (rescaled) ground state energy of the random
Schrédinger operator. In the second part we analyze this variational problem and deriv
the phase transition picture.

We start with the definition of the scaled (random) potential: it is obtained by
translating a fixed shape functid# to all the points of a Poissonian cloud (of constant
intensity v = 1). Let P stand for the canonical law of the Poissonian point process
w=7,0, € Q2 (Wwhere is the set of all simple pure locally finite point measures
on R?). The scaled Poissonian potential with scaling functiorR, — R, is then
defined as follows: fox e R?, 8 > 0,1 > 0, w € Q we set

def B def B
Vi (x, 0) = (p(t)ZV(x, w) = o2 zl: W(x —x;)

__B
@(1)?
where we assume that the shape functiére> 0 is measurable, bounded, compactly
supported, and W (x)dx = 1. When it causes no ambiguity, we shall omit to write

superscriptg.
For any non-negative potenti&ll and¢ < Hol’z(Rd) we introduce the quadratic form

/ W(x — y) w(dy), (0.1)

of 1
Eve) ESIVal3+ / V2 dr. (0.2)

R4

Then the ground state energy on a non-empty ope/setR? of the potentialVé’i, is
defined as follows (see also Sznitman [9], (3.1.2))

def

hyg, () Zinf{Eyy (@): ¢ € Ho*(U), gl =1}

o - . 1 .
= principal Dirichlet eigenvalue of- EA + Vg, inU, (0.3)

where H01’2(U) is the Sobolev space with generalized Dirichlet boundary conditions
onU.

Let & denote the set of all test functions € Hy*(R?) which are continuous,
compactly supported, and normalizédi||, = 1. For¢ € ® we define the logarithmic
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moment generating function of the Poisson process:
Ad,(g)d:eflogE[eXp{a/(pzde _ /(e”‘Pz “Ddv, oeR  (0.4)
R4 R4

and its one-dimensional Fenchel-Legendre transforma R,
A5 défsuﬁg(w — Ag(0)). (0.5)
ge

We introduce the following function: Fg¢ > 0,

o [1
1 Ef{SIVeIE+ b 0, we @D, A0 <df.  (06)

Our first main result is the following variational principle:
THEOREM 0.1. —Ford > 1, 8 > 0and¢(t) = (logt)Y/? the following holds

P-a.s. lIi_)rgo(Iogt)z/de;,((—t, nd) =I1(B). (0.7)

The new result here is that the above limit exiBta.s. and that it i®-a.s. equal to the
deterministic number coming from the variational principle (0.6).

A statement similar to Theorem 0.1 is valid for gené¥al 0 (measurable, compactly
supported, bounded, with positive! norm) and general Poisson intensity> 0. We
only treat the cas¢ W dx = 1 andv = 1, since this covers already the whole flavor of
the problem and the general case can be recovered by a simple scaling argument.

We compare Theorem 0.1 with the earlier results without scaling of the potential (see
Sznitman [8], and [9], Theorem 4.4.6): remarkably in the unscaled picture, the grounc
state energy asymptotically does not depend on the choice of the shape fuiitti@s
long as this function does not vanish identically:

P-a.s. tﬂg(logr)z/dxﬂv((—z, N =c(d, 1), (0.8)

wherec(d, 1) is the principal Dirichlet eigenvalue 0#%A on ad-dimensional ball of
volumed. The constant(d, 1) was introduced by Sznitman [9], formula (4.4.20). The
known result (0.8) may be contrasted with formula (0.7): in the scaled picture, there is
one relevant parameter of the shape funcaw, namely itsL'-norm g, while all other
details of the potential still remain irrelevant for the leading term asymptotics of the
ground state energy.

In the unscaled picture, one sees by the “method of enlargement of obstacles
(Sznitman [9]), that the principal Dirichlet eigenfunctions are very close to O over regions
with already a rather low concentration of Poissonian points (obstacles): one can subtra
such domains from the bog-z, )¢ and the ground state energy essentially remains
unchanged on the new smaller domain. Hence it suffices to consider the subdomains
(—t, 1)? which are (almost) not to be affected by the Poissonian point process.
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Quite differently, in the scaled picture, we search for optimally shaped test functions
supported in certain “optimal” large deviations of the Poissonian clouds; these “optimal”
regions typically contain a considerable number of Poissonian points. It turns out tha
a smoothing procedure on a length scale much larger than the size of the supfort of
does not considerably change the ground state energy; almost all details of the shaj
function W get essentially lost during this smoothing (convolution) procedure, except
the L-norm B = ||W||. = E[BV (0, )], which is invariant with respect to convolution
with non-negative normalizefi*-functions.

In the limit 8 — oo, we recover an analogous asymptotic behavior as in the unscaled
picture:

THEOREM 0.2 (Largeg-behavior). —Let d > 1. The function] is concave, non-
negative, strictly monotonically increasing ¢ oc) with
ﬁlim I(B)=c(d,1). (0.9)
More quantitative estimates for the speed of convergence in (0.8)-asocc are
provided in Lemmas 3.5 and 3.6 below.

THEOREM 0.3 (Critical exponents in low dimensions).ketd < 3. There exists a
constantC1(d) > 0 and for everyb, > 0O there exists a constarti,(d, b;) > 0 such that
for everyg € (0, by)

B— C1BY D L I1(B) < B— CofY . (0.10)

The new piece here is the lower bound, while the upper bound is contained in [4],
Lemma 3.4. One should compare the above statement with the following theorem:

THEOREM 0.4 (Phase transition in high dimensions)Let d > 4. There exists a
constantB.(d) > 0 such that

forall B < B.(d) 1(B) =48, (0.11)
forall > B.(d) 1(B) <S8, (0.12)
where the following bounds hold f@.(d):
T
Ford=4 p.(4)=—. 0.13
r Be(4) 7 (0.13)
1+d\ %4
Ford >5 dY¥¥4(d—2)2%43z1*Ydp (T) < Be(d) <c(d,1). (0.14)

l.e., in high dimensions we observe a phase transition of the ground state energy o
the scalep(t) = (logt)Y/¢. For smallg we can choose as test function a normalized
approximation of the constant and we obtain already the correct leading order of the
asymptotic behavior of the ground state energy. For I@dee situation is completely
different, namely it is more favorable to localize the test function in regions where
the number of Poissonian particles is below its average value. In low dimensions this
picture does not hold true, namely for any positive valugd aine should localize the
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test function, i.e. we do not see a phase transition on this scale. (Some parts of the:
pictures have already been developed in [4].)

THEOREM 0.5 (Critical exponent in 4 dimensions). et d = 4. There exist
constants, Cy4, Cs > 0 and b, > B.(4) such that for everg € (8.(4), b)

(B — Bo(4))?
*Tlog[Cs(B — B’

We remark that there is numerical evidence that the above picture does not hold tru
ford > 5, i.e. we expect in large dimensions that the derivakivg) should have a jump
singularity atg = 8.(d). This also corresponds to the picture emphasized in [4].

The next theorem holds for all dimensions, but is mainly interestingifer 3: It
implies that we are considering the correct scaling, and formally we may gy(i@@ = 0

—>00

for d < 3: (We writea(t) < b(t) for a(t)/b(t) — 0.)

THEOREM 0.6 (Absence of a phase transition on other scalingsjord > 1, 8 > 0
and (logt)¥? « ¢(t) « t the following holds

B—Cs(B—B)’<IPB)<B-C (0.15)

P-as. lim o®%ye ((—1.07) = p. (0.16)

Small scalings are treated by the following corollary of Theorem 0.2:
COROLLARY 0.7.—Ford >1, 8 > 0ande(r) <« (logr)*/? the following holds

P-as. lim (Iogt)z/dkvlfl (=t,0") =c(d, ). (0.17)

Let us explain how this article is organized: In Section 1 we do all the preparatory
work. We introduce some further definitions and we recall some already known results
including the upper bound in Theorem 0.1.

In Section 2 we provide the lower bounds of Theorems 0.1 and 0.6. In a first step we
show that if we allow a small error of ordexrr)~? we can restrict the infimum in (0.3)

(for U = (—t, 1)%) to finitely many smooth test functions which live on balls with radius
of order ¢(z). The main ingredients here are a cutoff (or localization) procedure for
eigenfunctions and the compactness property of convolution operators. In a second st
then, we derive for all of these finitely many compactly supported smooth test functions
a large deviation result estimating the potential term in (0.2). Putting these estimate:
together yields the lower bounds of Theorems 0.1 and 0.6.

In Section 3 we prove Theorems 0.2-0.5. The main body in the analysis of the
variational problem (0.6) is to calculate good upper and lower bounds on the logarithmic
moment generating function in order to control the Fenchel-Legendre transform. This
is done using scaling arguments, Taylor expansions and Sobolev inequalities. Usin
these estimates we prove the lower bounds in Theorems 0.3—-0.5. (The upper boun
of Theorems 0.3 and 0.4 have already been proven in [4].)

The idea behind the proof of the upper bound in Theorem 0.5 is the following: The
Sobolev inequality (3.15) we choose to prove the lower bound turns into an equality (for
d = 4) if we choose an appropriate test function. This test function is nﬂojiﬁ(R“),
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so we have to take a compactly supported approximation to evaluate (0.2) which thel
gives the desired leading order. We remark that many of these Sobolev inequalities, w
are using here, have already been very helpful in the analysis of a variational problen
studied by van den Berg, Bolthausen and den Hollander [2].

The upper bound in Theorem 0.2 follows already from the simplelfég}t < c(d, 1).
However, we give a finer upper and lower estimatelf@#) in the largeg-regime, using
the asymptotics of the ground state energy in a deterministic square well potential
This asymptotics is well known to physicists, but unfortunately we were not able to
provide a rigoros reference; this is why we describe the argument in Appendix B. The
upper estimate fof (8) in the largeg-regime improves a previously known bound (see
Theorem 0.1 and Lemma 3.5 in [4]).

Finally in Appendix A we prove the upper bound of Theorem 0.6 using as test function
(to evaluate (0.2)) a normalized approximation to a constant functiga-an)<. Further
we sketch the proof of Corollary 0.7.

1. Preliminaries

We start with the following definitions: Far> 0, we define

Zd:ef(_tvt)d’ (ll)

Weo def sup,.ge W(x), anda denotes the minimal radius such that stipg= B, (0),
where B, (0) is the open ball with center 0 and radimsFor 8 > 0 andm € (0, 1) we
define the following functions:

. of. (1 . d
L(B,m) d=flnf{§||V¢||§+ﬂmui ped, ne®D), Ajw < ;}, (1.2)

1(8) Elim g m). (1.3)
o (1
(5 Einf{ SIVOIE + pu: 0, we @D, A <df.  (L4)

The limit on the right-hand side of (1.3) is well-defined since its argument is
monotonically increasing im: I.(8) > il(ﬁ, m) — I1(B) asm 1 1.

The upper bound in (0.7) is a consequence of the following considerations: If we
choosep(t) = (logt)Y/? then we have seen in Lemma 3.2 of [4] that forgk & and
€ (0,1) with A%(n) < d we haveP-a.s. limsup.,  (logn)?“iy, () < 3(Vli3 +
Bu. Hence we obtaifP-a.s.

. 1
limsup (logn** 1y, (T) < L(B) < 5IVol3 + Bp. (1.5)

—0o0

Repeating the argument of Lemma 3.3 in [4], we see that we can choose two sequenci
wn € (0, 1) ande, € @ such thaiw, 11 (asn — oo) andAj (u,) <d foralln > 1 (see
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formulas (3.28)—(3.29) of [4]) with

1
Jim SV l2+ Biun = B (1.6)
Henceforth we obtain
P-a.s. limsup(logn)? iy, (T,) < I(B) < B. (1.7)
=00

Furthermore we have for gl > 0 andm < (0, 1)

L(B,m) < Ii(B) < T(B) < I(B) < B. (1.8)

LEMMA 1.1.— There existgg > 0 such that for allg > 0, n > 0andm € (1/2, 1)
with

1—m<cenp™ (1.9)
the following holds

L(B) < (B, m) +1n. (1.10)

Proof. —The functionm > m=#4 + [(1 — m*~#4) v 0], with 1 <m < 1, has value 1
for m =1 and is Lipschitz continuous. Lefdg be astrict upper bound for its Lipschitz
constant. Then for alp > 0, n > 0 and %2 < m < 1 which fulfill assumption (1.9) we
have

(m™* - 1) + [(1—m™ ") v O] <np~™. (1.12)

From now on we fix such a triplg, n, m, hence we can chooge> 0 so small that the
following holds:

(m—4/d _ 1)[3 + m_4/d8 + [(1 _ m1—4/d) V. O]IB g n. (112)

By the definition ofl1(8, m) there arep € ® andu € (0, 1) with Ap(n) < % and

%IIV¢IIS+ﬂmu< Li(B,m) +e. (1.13)
Forr > 0 we scalep by
& (x) B 420 (x /). (1.14)
¢, scales as follows
lg5=1 and Ve, l5=r2IVel53, (1.15)
Ay (0)=r'Ay(r9o) and A () =r?Aj(w). (1.16)

Forr(m) & m?4 we haveA’ (1) =r?Aj(u) < rd _ md < d, and

m
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1 2 1 2
LB) < SIVolz + B =55 1IVelz + B

=m—4/d(%w¢||§ + ﬂmu> +(1-mY)pu

<m=M(I(B,m) + &) + (L—m* )
<LB,m)+ (m™¥ — 1) +m e 4 [(L—m¥) v 0|p
< L(B,m)+1. (1.17)

We used (1.13), (1.8), and (1.12) in the last three steps. This proves (1.10) and therefo
Lemmal.l. O

The upper bound in (0.7) is a consequence of (1.7) and the following corollary:
COROLLARY 1.2. - I1(B) =1(B) = I(B).

Proof. —This is a trivial consequence of the bounds (1.8) and the previous
Lemmal.l. O

2. Proof of the lower boundsin (0.7) and (0.16)

We assume thap is a fixed positive scaling function with(z) — co ast — oco. We
suppress superscripgswhen no ambiguity arises.

2.1. Localization, compactness argument, and large deviations

Our first step consists of a localization argument: To evaluate (0.3y ea7; it
suffices to consider test functions supported in balls with radiyg), if we allow a
small errorg(t)~2n (see Lemma 2.1). In a second step (Lemma 2.2) we allow another
small errore(t)~2n to smoothen the test functions. In a third step (Lemma 2.3) we
prove that we can restrict ourselves to finitely many smooth test functions if we allow
an additional small error ap(¢)~?#. Finally in Lemma 2.5 we give for every of these
finitely many smooth test functions a large deviation result estimating the potential terrr
in (0.2).

Fors >0, R >0 andy € d"Y?Rep(t)2¢ we defineBy, , def Bry(y), and we set

Yy dEf{y € d"Y2Rp(1)Z": Bg,, N T, # B}. Then(Bg, ,)yer,, IS @an open covering
ofT

LEMMA 2.1.— There existg-(d) > 0 such that for8 > 0, n > 0, R % (c;/m¥2 v 1
andr >0
Mg, (T = mininf &y, (@) — (). (2.1)
YEYR: peHy?(Bro,y)
lpll2=1
Proof. —Let cg(d) < oo denote an upper bound for the number of ballg, ,,
y € Yg,, that intersecByg , o (this number does neither depend ®n> 0 nor onz > 0).
We use a partition of unity: Choosee C2°(B1(0)) a fixed non-negative function with
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> jea-12za X (X — j)2 =1 for all x € R, and definec7(d) d:ef%3|||VX|2||OO. Fornp > 0,
R = (c7/n)*? v 1 andr > 0 we define a partition of unity ovef,

1= > xi,, onT, (2.2)

yEYR

where XR’,’y(x) X(R(p([)) are compactly supported iB,,. Next we denote by

v e Hol’z(Tl) a principal Dirichlet eigenfunction of the Schrddinger operatérA + Vg,
in 7;. With the help of the partition of unity we split this eigenfunction into pieces:

= > Xray¥)> (2.3)

YEYR,

The definition ofR implies the following upper bound on the derivativesaf; ,:

=Y < SVxreol] <o) (2.4)
YEYR, o0
We claim for allx € R: If
Evy, (AR W) 2 )»||XRty¢’||2, forally e Yr,, (2.5)
then
Evp (W) = (b= 2) ¥ 113 (2.6)

Lemma 2.1 is a consequence of this claim: To see this, we observe that the left-hand sic
in (2.6) equals.y,, (7)) v ||5. Chooset > Ay, (T;) + ne(1)~%; then (2.6) cannot be true.
Therefore, we conclude that (2.5) has to fail for at least preYy , for this choice of

L. We Set¢v (e, YW/ xRy ¥ 2 for such ay € Y, (note that||xz ., |l cannot
vanish for this choice of). We obtainfy,, (¢,) < A. Henceforth, mlgey;h Evy, (By) <X

for all A > )\‘Vﬂ,/(Z) + n‘p(t)_21 where Yl/et « {y € Yri! lixrey¥ll2 > O}. But this
implies claim (2.1) of Lemma 2.1.
There remains to prove that (2.5) implies (2.6). We sum (2.5) overal'k , and use

(2.3) to obtain

S Vs H [ Vawidv= Y &y G ZAVIE @)

YEYR, YEYR,

2

To estimate the gradient term in (2.7), we take the derivative of formula (2.2):
ZZ_VEyR, Xr.t.yVXr:y = 0. Hence using (2.4) we have

Z IV (xrsy )] H

yeYR,

= §||vw||§+< > xriay VAR ww>

yEYR

@9

YEYR,
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1
< IVEIz+neO~2 113
Collecting (2.7) and (2.8) yields (2.6). This finishes the proof of Lemma 21.
The next step consists of a smoothening and scaling argument: We take th
convolution of test functions with an approximatiénof Dirac’s5: Leté; € C2°(B1(0))
be fixed non-negative with|§;1]; = 1. Setd.(x) dzefs‘dé(x/s). Let x denote the
convolution operator. We set fét > 0 andN > O:

def
q)R N —

{6 € Hy*(Br(0)): pllz=1.Voll2 < V'N}. (2.9)

Forz > 0, y € R?, we define the scaling operatsf, by

(5¢,6) ) E'o0) 24 (1) 2(x — ). (2.10)
This operator map#, *(Bx(0)) onto Hy'*(Bg.,.,); it fulfills

I1S:ypllz=lipllz and [|V(S,yd)[l, =@ V]2 (2.11)

We choose a truncation levaf > 0 (to be specified later) and defing” Ly A M.

Further we introduce
Vit E o) v, (2.12)

For every test functiop we get the simple but useful inequality
Evy, (9) = SvﬂMJ (@). (2.13)

LEMMA 2.2.— There existcg(d) > 0, c10(d) > 0 such that for allg > 0, n > 0,
M >0 R=(ci/m¥2v1 N E28M +cio, ¢ € (0, n(28McoNY?) 1], and for allt > 0
we have

-2
Ay (T1) = yrl‘y'Q, ¢E'Q£N5VM (S1.y(d % 8:)) — 20(t)"“n. (2.14)

Proof. —Let f € H¥?(B1(0)), || f |l = 1, be any fixed test function. Sefo &' |V £ 2

(cq is defined below). We choogk , andM . By Lemma 2.1, by the lower bound (2.13),
and by scaling we know that f&® = (¢7/1)%/? v 1 andr > 0 we have

Mg, (T) = mininf Eu (S, ,¢) — (1) . (2.15)
' YEVRE geHy?(Br(O) M
lll2=1

For every normalized test functiahe Hy?(Bg(0)) \ ®x v We have

1 1
Evpr (S1,®) > 50PN > S V(S NIl + Bo)?M > Eyu (S, f). (2.16)
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Hence we can restrict the infimum in (2.15) to the smaller clags;:

hyp (T)) > min |nf SVM(S,y¢) ()" %n. (2.17)

YEYR, $EP

To deal with convolutions, we use the Fourier transfarit) = def Jga € %4 (x) dx: There
is a constantg(d) > 0 such that for alk > O andk € R the estimatél — 8¢ (k)| < coek

holds; to see this one observes Mk) = Sl(sk) 51(0) 1, and by Lipschitz continuity
|31(O) Sl(k)| < colk| for some constaniy (51 is even real analytic, sindg is compactly

supported, and, (k) = OoO).We estimate:

I — ¢ % 8 ll2 = (27) 2| (L= 8|, < (27) ™ 2cot||kd (k) ||, = coe V2. (2.18)
We remark||¢ * 8.2 < ||¢]l2; this is a consequence dB.|; = 1 and the integral
version of the triangle inequality. Therefore we have for @lle &y and ¢ €

(0, n(2BMcoN*?)~1:

M ((Sty$)2 = (813 (¢ % 8) ] x| < [[VA| L[| (Sry®)? = (Sty (@ 82))°|

= [Vaillll@ + & %8¢ — ¢ %80,
<V 21611216 — ¢ * 5.2

<2V oot Vo2
<2BMo(t) Pcee N2 < p(t) 2y, (2.19)

Using the integral version of the triangle inequality once more, we see

1V (Se.y (@ 580) [, = [[(V(S1.58) # 8epn [l < IV (S, - (2:20)

Combining the estimates (2.19) and (2.20) we get
Eyn (Sy(@%8.)) = Eyn (S1,¢) < @)1, (2.21)

Finally we combine this with (2.17) to get the claim (2.14). Lemma 2.2 is proved.

LEMMA 2.3.— Giveng >0, n >0 and M > 0, there isR > 1 and a finite set
W (n, B, M) € CX(Bg41(0)) of normalized functiongi.e. ||y ||, = 1 for y € ¥) such
that for all 7 > O:

Ay, (T0) = min Eyu (S, ¥) — 3p(1) 1. (2.22)
YEYR Bt
Yev

Proof. -ChooseR > 1 and N by Lemma 2.2. We choose > 0 so small that the
following three conditions hold true:

=

e <1, coe N2 < 2, 2coe NY2(2N + BM) < (2.23)

N
I\)Id
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especially Lemma 2.2 is applicable for this choiceoSetR’ LR+1 > R +¢,sothe
convolution mapy — ¥ % 8. mapsHy (B (0)) to C1(Bx(0)). We endowC(Bg (0))
with the normyy = ||[¥[leo + V¥ [loo- AS @ consequence of the Arzela—Ascoli theorem
this convolution mapllol’z(BR(O)) ey C}(BR/(O)) is a compact linear operator. Since
®r y is bounded inHol’z(BR(O)), itsimage®y y x5, = {¢p x5, ¢ € Py y} IS relatively
compact inC(Bg (0)).
We claim that for every bounded s&iC C}(BR/(O)) the family of maps
(F[’y:S—>R) t>0 , Ft,y(w) d:ef

YEYR:

OO Ey (Si31), (2:24)

is equicontinuous, i.e. for every> 0O there is arx > 0 such that for alk > 0, y € Y,
andyry, ¥, € S:

11 = Valloo + [V — ¥2) ||, < implies|F, (Y1) — F,y(Y2)| < g (2.25)

To prove this claim, we observe first that the inclusion riapBx (0)) — Hy*(Bx (0))
is continuous:

[l + IV ll2 < cuall lloo + 22l Voo (2.26)

for ¢ € CL(Br(0)), c11 £'|Br(0)|Y2. Lets, E'supl ||yl + VY ll2: ¥ € S} < 00. We
chooseax so small thak,(1+ 28M)c11a < /2. Using the Cauchy—Schwarz inequality:

1
|Fiy (Y1) — Fry(Y2)| < §|||w1||§ — IVY2l3] + BM|(S, ,¥1)? = (Siy¥2)?|;
1 2 2
< 2||V<w1 + V2|, VW = v, + BM|vi — ¥3]);

1
< 2s2(§||vwfl )|, + BMIy — wz||2)

<so(1+ 28M)crra < % (2.27)

Combining the relative compactness &k v * §. with the equicontinuity (2.25) we
obtain the following: there is a finite s&t € & y * 8. such that for allr > 0 and
y € Yg, we have the lower bound

1

. | = mi W) —
e'Qi.N Fi (@ *8;) > 52'{3 Fy(¥) >

, (2.28)

We normalize these test function&: &' (| |l;5y: v e ¥}; this is well defined, since

for y = ¢ % 5., ¢ € gy We have

1
W ll2 — 1) < 1Y — @ll2 < coe N2 < > (2.29)

by (2.18) in the second step and (2.23) in the last step. A quantitative bound or
F,,y(||x//||2‘1¢r) for these functiong) € @4 v * 8. is (using the integral version of the
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triangle inequality):

1y LIVYIE
Fiy(lvliz y) < 3 U + BM < 2N + BM. (2.30)
2
We estimate, using the bounds (2.28), (2.29), (2.30), and (2.23):
: : 2 1,y _ 1 _ Y22 o _n
¢EIQ;N Fiy(¢*8e) > Irpnelg I laFy (Il ) > > (1—coeN"?) {pelqr) Fiy(¥) >

: _ 1/2 _n
> mlg F;y(Yr) — 2c9e N7“(2N + BM) >
>minF, () = . (2.31)

Lemma 2.3 follows now from the bounds (2.14), (2.31) and definition (2.24) of O

We discretize the spad on a very fine scale € (0, d~?a) (to be specified later; it
is smaller than the diameter of the shape functions):k5¢€t) ®f 410, ¢0)4, j e ¢z,

We define the i.i.d. Bernoulli variables (¢) d:efl{w(,(_i)%} and a discretized versian®
of the Poissonian cloud configuratianby

of €N &8 (2.32)
jeczd

in this equatiors; is the Dirac measure located atWe observe
P&, =0] =P[w’(K;) =0 =1—P[o’(K,)=1] =" (2.33)

Finally we set

M) E'Wo| B (0)]2 . (2.34)

We remark that = M (¢) is finite since the shape functid# is bounded; finiteness of
M played a role in the proof of Lemma 2.3, above.
We define an unscaled and a scaled lattice version of the potential:

V¢ () & / W(x —y)ofdy) and V¢ (o) L o) 2Ve (). (2.35)
]Rd

The next lemma compares the two potentidl§ andV; ,:

LEMMA 2.4.—Givenpg >0, n > 0and¢ € (0,dY?a), defineM by (2.34) and let
R > 1and V¥ be chosen according to Lemr@&8. Then
liminf min <p(t)2(5V%(s,,y¢) —5% (S,,¥)) = 0. (2.36)

—00  yeYp,
vew

Proof. —Let s dzefmaxpeq,(uwlloo + IV |leo) < 00, then the function$Slyy1p)2 with
t>0,y€Ygr,, ¥ €W, are Lipschitz continuous:
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Sty W) (x1)% = (S, ¥) (2% < 20181y ¥ lloo ||V (Sry W) o131 — X2
<252,0(1) " Hxs — xa). (2.37)

We use the notatiorV~ (x) def W(—x). Using |[W]1 =1 we see that the functions
(S;.y¥)?* W~ are also Lipschitz continuous with the same upper bousigy2:) -1
for the Lipschitz constant. Lef‘ denote any point configuration with® < » and
»*(K;) = »*(K;); this means thab’ is obtained fromw by removing extra points of
the Poissonian cloud in boxeskK ; with » (K ;) > 1. The choice (2.34) alf guarantees

VM () > / W(x — y) & (dy). (2.38)
Rd

Usingo®(K ;) = »* (K ;) < 1 we conclude

/(S,,yng)2 * W~ do® — /(S,,y://)z s« W™ ddt < 252 (1)~ Wdt. (2.39)

K K

(S,,yglr)2 x W~ is supported in a ball of radiugR + 1)¢(#) + a < 3R¢(¢) (for larget),

and the union of alk; that have a non-empty intersection with this ball is contained
in a ball of radius Ry () (for large t). Therefore the number of theke’s is at most

| Bary(0)]/¢?. We estimate for large, using (2.38), (2.39) and Fubini’s theorem,

0(*(Eqe (Sy¥) = Eypr (S:,¥)

<B [ (S0P Wt = B [ (5,907 W da
Rd Rd

<B- 22, Vd R B4Oo(t) =30, (2.40)
sincep(t) — oo ast — oo. Lemma 2.4 is proved. O
We define a discretized version of the Lebesgue measure

v Lt S5 (2.41)
jeczd

compare this with definition (2.32). The map— ¢ 4(1 — et maps the interval
(0, o0) diffeomorphically and monotonically decreasing onto the inte(@al); espe-

cially we haver 4 (1 — et 1. we define; (m, d) for 0 < m < 1 implicitly by the
eqguation

m=¢"4(1—e). (2.42)

We defines, £ p(1)%0, & E'o1) 72, i o)1y, and W, (x) E o (0! W (p(1)x). W,
is supported irB,,,,-1(0) and fulfills | W, ||, = |W||; = 1. LetT,v denote the translation
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of a measure by z e R, i.e. (T,v)(A) = v(A — 7). Further forys € ® we define

0v0s Esup [(exp{oy?s W} =D d(T?) ~ Ay (243)

d
zeR f

LEMMA 25.— Let 8 >0, n > 0, and assume that: < 1 is so close tol that
¢ € (0,d"Y?a). ChooseR and ¥ as in Lemma2.4. Then for allyy e ¥, © > 0,0 <0
andr >0

[mln /V§ (S ¥)?dx <mp
Y€EYR, ,
R(

<exp{log|Yg,| —me®) (o — Ay (0) —0y.os) - (2.44)
Proof. —We need some preparations for the large deviation estimates in the derivatior

of (2.44). Let f be any compactly supported bounded measurable function. Using
independence, (2.33), and ldgt x) < x we have

E{exp{a/fdwzH = [ @+ @-e) @' 1))

jeczd

< exp{ / dvf} (2.45)

R4

Choosey € W, u > 0,0 <0 andr > 0. Using the exponential Chebyshev inequality
and a change of varlablas»—> o(®)~1(x — y) in the following large deviation estimate
(o, is non-positive) we obtain

[mln/v (Sy¥)dx < } [mln /(S,yi//) * W™ dwt <mpu

YEYR,

<> P{/(S,,yw)z*w— do® gmu}

YEYR: R

< D> eHE [exp{a, / (Siy¥)2 % W™ dot H

yeYR, R
Z exp{ o,mu—i—m/ (exp{o: (S, vw)z* W=} —1) dv{}
yeYR
-y eXp{ —me(t)? (w [(exwlouw; ) -1 d(T),tvb))}
yeYR, R
<exp{log|Yr,| —me®) (o — Ay(0) —0y.0.)}- (2.46)

This finishes the proof of Lemma 2.50
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2.2. Proof of thelower bound in Theorem 0.1

In this subsection we always assume that = (logs)Y/¢ for r > 1.

LEMMA 2.6.—Letd > 1, ¢(t) = (logt)¥?, B > 0, n > 0, and assume that < 1is
so close td that¢ e (0, d~*?a). Chooser and W as in Lemm&.4. Then for ally € W
andu € [0, 1) with

d
Aj () > - (2.47)

there exist? > 0 andry > 1 such that for allr > #;:

[mln /Vf (Sy¥)2de <mp| <177 (2.48)

YEYR,

Proof. —Chooseyr € ¥ and i such that (2.47) is fulfilled. By definition (0.5) at?,,
there iso € R with

ou—Ay(o) > i (2.49)
m

We may even choose < 0 (to see this, one proceeds as follows:dae 0, 1 € [0, 1),

d
(1o = Ay(@)) = /wzew de<p—l¥li=n—-1<0,  (250)

especially we get fos > ¢ = 0 thatoou — Ay (00) = o — Ay (0)). We set

z?d_ef%[m(ou—Aw(a)) —d] >0, (2.51)

where o < 0 fulfills (2.49). By the Lipschitz continuity ofy and the dominated
convergence theorem we know that

—0o0

0y.0r —> 0, (2.52)
so Lemma 2.6 is a consequence of Lemma 2.5, of the asymptotics

Iog |YR,z | t—>0
—_—
logt

d, (2.53)

and of the choice (2.51) af. O
LEMMA 2.7.—Ford > 1, ¢(t) = (logt)¥“, and 8 > 0 the following holdsP-a.s:
liminf (logn)?* v, (7)) > L(B). (2.54)

Proof. —Let 8 > 0, n > 0. Takem < 1 so close to 1 that the following three
assumptions are fulfilled: (i) Lemma 2.6 is applicable, (i) (redal= I, < 8, see
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Corollary 1.2 and (1.8))
I, —n < Bm, (2.55)
and (iii) (recall (1.3) and (1.8))
- 1 )
h<h(B,m)+n< §I|V¢I|2+ﬂmu+n (2.56)
holds for allp € ® andu € (0, 1) with
. d
Ajw) < —. (2.57)

Chooser, M andR, ¥ € ® as in Lemmas 2.6, 2.3, 2.4, respectively. Then we get for
larget, using (2.22), (2.36), definition (0.2), and the scaling property (2.11):

(logn)* h,, (T) > =3 + (logn™* min &y (5,9
IﬁE\I)t

> —4n + (logt)?? min Epe (Siy¥)

— H 1 2 : 7e 2
=—4n+ ﬂ'@(é”vw +ﬂyreny'2, / Ve (S,¥) dx). (2.58)
Rd
For all y € ¥ we define
def 1 2 _1
wy S (L= SIVEIZ =0 ) (Bm) " < 1, (2.59)
see (2.55). We define the finite ﬁszef{w e V: uy > 0}. We compare

1
I=ZIVYIP+ Bmpy +n (2.60)

with (2.56): There are two cases to distinguish:
Case 1If uy, ¢ E, then we get trivially for alk > 1.

min /xﬂ Sy ¥)2dr >0 muy. (2.61)
Rd

YEYR:

Case 2Else ifu, € B, i.e. 0< uy < 1; then the condition (2.57) must fail (compare
(2.56) and (2.60)), i.eA}, (y) > 4 In this case we apply Lemma 2.6: it provides a
vy > 0 such that for all large

YEYR:

]P’[ min /\74“ (S )P =mpy | =1—170, (2.62)
R4
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Collecting both cases we get for all largeusing (2.58) and (2.60):
P[(log1)?* Ay, (T;) > I — 5n]

2 )
>P{mug(§||vw|| +pmin [V (5,0 dx) >11—n} (2.63)
]Rd

2]?{ min (/W (S, y¥)?dx — me) } 21—Zt‘§¢.

yeYR, =
Yew ! Yel

We choose @ € (0, min, .z ,) and define the increasing sequemge- n%/? "5 oo;
thend ", cn D yeatn "' < 0. The Borel-Cantelli lemma and (2.64) imply that

P-a.s. I’moionf(logtn)z/d)wﬂvm (7,) > 1, — 5. (2.64)

Fort > 1, letn(z) denote the smallest index with,, > . Sinceiy, (7,) > Moo (7))
and(logr)/(10gt,)) = 1, we see that

P-as. liminf (logt)* Ay, (T)) > I, — 5n. (2.65)

But now the claim of Lemma 2.7 follows becauge- O was chosen arbitrarily. O

Proof of Theorem 0.1. Fheorem 0.1 is now proven, too: It follows from formula
(1.7), Corollary 1.2 and Lemma 2.7.0
2.3. Proof of the lower bound in Theorem 0.6

The following lemma is analogous to Lemma 2.6 but with a different scaling:

LEMMA 2.8.— Letd > 1, ¢(t) > (logt)¥¢, B > 0, n > 0, and assume that < 1
is so close tdl that ¢ € (0,d~*?a). ChooseR and ¥ as in Lemma&2.4. Then for all
¥ €W, ue(0,1)andy > Othere is ary > 0 such that for all > 1 :

[mm /v (S )P <mp| <177 (2.66)

yEYR+

Proof. -Choosey € W. The function A}, is convex with the global minimum
A}, (1) =0 (see Lemma 3.1 of [4]). Hence for apy< 1 there existsr < 0 such that

c d:efau — Ay (o) > 0 (see also (2.50)). Using Lemma 2.5 we obtain for all0:

IP[ myin /VZ (S )P dx <mp| < exp{log| Y| —me®) (s —o0y00)}. (2.67)
YEIR:
Rd

The bound qu;YRl| dlogt is valid for larget; consequently log¥z ;| < ¢(t)9.

Furthermoreoy, ,, =2 0 holds (see also (2.52)). These facts and (2.67) imply the
clam. O
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Proof of the lower bound in Theorem 0.6We choose3 > 0, n € (0, 1), and assume
thatm € (1 —n, 1) is so close to 1 that € (0, d~*?a). ChooseR and¥ as in Lemma
2.4. Using Lemmas 2.3 and 2.4 we know that there existsO such that for alt > 1,

@(1)hy,, (T) = min (t)*Eze (Siy%) — 41
YEYR, Bit

vew

> min ,B/V‘ (S, )2 — 4n. (2.68)
yeYR
eV Rd

Choosey > 0 andu € (1—n, 1) (hence(1—n)? < mu). Using Lemma 2.8 we have for
allt >t vmax,ey 1§

Plo®)?hy,,(T) = B — n(2B + 4]

>IP>[ min /Vf(St,yx//)zdx >1- ;7)2} >1-— E 7. (2.69)
yeYR,
Ve Rd Yew
Hence
P-a.s. |[iTOLnf<P(f)2Kv§,(7r) > B, (2.70)

this follows by the Borel-Cantelli lemma and singe (0, 1) was chosen arbitrarily (see
also (2.64)—(2.65)). O

3. Analysisof thevariational principle
3.1. Thephasetransition picture

We start with citing some well-known facts on the logarithmic moment generating
function and the Fenchel-Legendre transform (see Lemma 3.1 and formula (3.6) of [4])
Assume that|¢|, =1, thenA;; is convex, non-negative, monotonically decreasing on
(0, 1) with the global minimumA;;(l) =0, and foru € (0, 1) the maximizingo is non-
positive (see (2.50)) and given by

n=A~Njy(0)= /¢2 e’ dv and AY(w) = At =o. (3.1)
Rd
We set

A ) Einf{ A5 (0): ¢ € @, [Vl =1} (3.2)

Recall that||¢]» = 1 holds for allp € .
LEMMA 3.1. — Seteyo(d) £ d- 2/4 /2 Then

1(B) = int (c128" ™" + Bpe). (3.3)

Consequently, the functiahis concave.
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Proof. —~We apply a similar scaling argument as in Lemma 1.1; recall definition
(1.14) of the scaled versiop,. of ¢, which fulfills ¢, € @ if and only if ¢ € . As a
consequence of the scaling properties (1.15), a funq&i@nHol’z(Rd) fulfills ¢ € @ if
and only if there are > 0 andg € ® with ||V¢|3 = 1 such thaty = ¢,; namely one
takesr = 1/||Vy |2 and¢ = 1. This allows us to rewritd (8), using the definition
(0.6) of 1, the facts omA’;, and the scaling properties (1.15)—(1.16) again:

. 1
1@)=mﬂ}uvwﬁ+ﬂu:weé,ue<an,A;wo<d}
—int] 2IVo 13+ B >0, 9 e @, Vgl =1, ueml)A*uo<d}

= {5*+ﬂwr>a¢e¢wwm@=Lue@@»ﬂAym<d}
1
= {2 +ﬂwr>Q¢e¢JWM@=LuewixﬂAym=d}

1/ A* 2/d
:mf{é( "’;“)) +Buiped, |Voli=1, ue(O, 1)}

= 0<|gf<1(6121\*(u)2/d + Bu). (3.4)
The function! is therefore a infimum over linear functions; hence it is concave.
Here is a simple monotonicity argument to get lower boundd {@:

LEMMA 3.2.— Assume thai\,(0) < f(o) forall o <0, ¢ € , |[Vg|5= 1. Then
forall u € (0, 1):

AN () = f*(w), (3.5)
where f*(u) d:efsupago(;m — f(0)). As a consequence we get

1B) = int (craf (W) + Bu). (3.6)

Proof. —Using (2.50) we see that we can restrict the supremum in definition (0.5) of
Aj to non-positive values af wheneveru < 1:

Aj(p) = Sg(rj)(au — Ay (0)). (3.7)

This together with the assumptions ghimplies (3.5). The lower bound (3.6) then
follows from (3.3). O

First we provide the lower bound fat < 4 in (0.10) (compare this with Lemma 3.4
of [4]).

Proof of the lower bound in Theorem 0.3Choose¢ € ® with |V¢]|, =1 and
l¢ll. = 1. We use the following Sobolev inequality: Fér< 4 there exists a constant
c13(d) > 0 such that

g3 < cas(d). (3.8)



F. MERKL, M.V. WUTHRICH / Ann. I. H. Poincaré — PR 38 (2002) 253-284 273

(To see (3.8) fod = 1, one uses Theorem 8.5(i) in [3], which stat@s||5 + [|¢]5 >

21411%, andll¢]13 < [I91I2,ll¢13.
Ford = 2, formula (3.8) is a special case of Theorem 8.5(ii) (3) in [3], which states
IVOI3+ 19113 > S2.4ll¢112 for 2< g < 00, ¢ € Hy*(R?), and some constash,, > 0.
Ford = 3, one uses Theorem 8.3(i) in [3], which states ¢fet 3) |V ||5 > Sall¢ |12

for some constarg; > 0, and Hélder's inequality, which impliggp[l4 < 113 Il 15'*.)
We estimate the Taylor expansion &f; (o) at oo = 0 up to second order far < 0,
using (3.1) to expresaj:

Ap(0) =0, AL0) =93, (3.9)
Ny = [ oter® dr < g} (3.10)
Rd

The Taylor expansion and the Sobolev inequality (3.8) yield fos afl O:

2 llld €13 5
Ay(0) < liplizo + > © <0+70 : (3.11)
Using Lemma 3.2wegetfor@ u <1
* €13 -
A () > SUD((M —Do——0o ) - a2 (3.12)
<0 2 2c13

and therefore withr14(d) £ c10(2c19)~%4, and C1(d) L' 1/ (4/a) 44 (4/d —
1) >0:

1(B) > |nf (614(1 WY+ Bu) > Inf (c14(1 WY+ ) = B — CLpY ),

(3.13)
here the optimal point ig = 1 — (dB/(4c14))¥“% < 1. This proves the lower bound
of Theorem 0.3 (the upper bound has been proven in Lemma 3.4 of [&]).

We provide now an alternative proof for the existence of a phase transition in
dimensionsd > 4, including a quantitative lower bound for the critical point. This
proof does not make use of the Cwickel-Lieb—Rosenbljum theorem (see Theorem 9.3 ¢
Simon [7], Theorem 2.1 of [4], resp.).

First we introduce the relevant constants:

ger d(d — 2)|Sd|2/d d(d =2) 1+1/dr(1+d>—z/d.
4 b

S, L 5 (3.14)

hereS? denotes the unit sphere iR+, S, is the optimal constant in the Sobolev
inequality (see Theorem 8.3 in [3])

IVol5 > Saldl3,, (3.15)
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with y £'d/(d — 2), d > 3, ¢ € DXR") 2 HF?R") (for simplicity we skip here the
formal definition of D1(R")). We set

def 2\ 2/d—1 ;—4/d
ﬂO(d):Cl2Sd<g> =¥d-1g=4dg, (3.16)

Proof of Theorem 0.4. ket d > 4. Here we prove that for alB < Sy we have
I(B) > B. Using the concavity off (see Lemma 3.1) this implies that there exists
B.(d) = Bo(d) > 0 such that (0.11)—(0.12) is fulfilled. This also proves the lower
bounds in (0.13)—(0.14), whereas the upper bounds in (0.13)—(0.14) are a consequen
of Lemmas 3.4 and 3.5 below.

We choosey =d/(d — 2), which fulfills 1 < y < 2. We claim for all¢ <O0:

€ —1<E+2— |§| (3.17)

Y

To prove (3.17), we observe first that for akl O:
— s igen; (3.18)

this is obvious fors < —1 (in this case we have 1 |s|" 1 <0< ¢€'). For—1<s <0
we get (3.18) from L [s|" 1 <1 —|s| =1+ s < €, since O< y — 1< 1. The bound
(3.17) follows by integrating (3.18) over the interyal 0].

Leto <0,¢ € @, |Vl = 1. We substituter ¢ < 0 for £ in (3.17), this implies

||¢||2y P
Ll 3.19
o) <o+ 57 (3.19)

d

Ao(@) = [ (€ =1 de < g0 +

R4

where in the last step we have used the Sobolev inequality (3|¥#)], = 1, and
l¢ll. = 1. Monotonicity of the Legendre transform (Lemma 3.2) yieldsifar (0, 1):

2
200> sup{ 61— Do — 205 ) = s -y (3.20)
o<0 Sd d

the optimal point isy = —87/? P — 1)Y¥-D and we have used/2=y/(y — 1).
We insert this result in (3.6) and get

, _ /B for0< B < Po
1> inf (- wpo+pr) = {0 BTAF (3:21)

recall definition (3.16) oBy. The proof of Theorem 0.4 is finished O

3.2. Critical exponent in 4 dimensions (proof of Theorem 0.5)

In this subsection we prove that far= 4, Bo(4) is the critical 8 (i.e. B.(4) = Bo(4))
and thatl (B) is differentiable a.(4).
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LEMMA 3.3.— Letd = 4. There is a constanf'z > 0 such that for allg > Bo(4):

1(B) > B — Cs(B — Po(®)". (3.22)
Especially,] is differentiable at the poing = Bo(4).
Proof. ~We use a similar technique as in the proof of Theorem 0.4. By convexity of
the exponential function we know for all s € R:
e€>e+es—y). (3.23)
Let& < 0. We integrate (3.23) over the intengl 0] and obtain
€ —1<e((1—yE+272). (3.24)

Leto <0, ¢ € ® with |[V¢|» = 1. We substituté = o¢? in (3.24), integrate, and use
Sobolev inequality (3.15) fad =4, y = 2 to get for ally € R:

Ap(0) <€ (L= yollpls+202]¢l13)
<& ((1-yo +2715,%72). (3.25)
We apply Lemma 3.2 to get for € (O, 1):
0_2
Ag(p) > SLHO(W - ((1 y)o + ))

0<0 253
_ { 74(e—y/2u+ey/2(y —1)® forp<ed—y), (3.26)
0 foru>e(1-y),

here the optimal point i& = ((ue™> + y — 1) A 0)S2. An exact optimization ovey
would lead to a transcendental equation fphowever, it is sufficient for our purposes
to use an approximation to the optimal point: In (3.26) we choose

y=2%(u-1Del[-20. (3.27)

We observe for this choice ofthatu < (14 y)(1—y) < € (1 — y); i.e. the first case
in (3.26) occurs. Consequently (3.26) tells us

S4
* 0 \1/2 1an—1/3 (1-w)/3
AT ﬁ(ge“ (5—2u) — M)

Q="
= 1-— D"A-2n)+3n-1
[<( M)-i—nzz( )" ( )+ ] Il )
S4 ( (1—p)? )
> 21—+ . 3.28
7 1-w 5 (3.28)
one should note that all Taylor coefficients are positive. Next we introduce the constan
C3 = get The inequality (3.28), the bound (3.3), and the definition (3.16p04)

4po(4) (4)
imply
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1> it (@ (@ + ) )

_ [ B—C3(B—po#)? for B = Bo(4),

-{4 for 0.< < fio(4; (3.29)
for 8 > Bo(4) the optimal value is given byt =1 — 2C3(8 — Bo(4)), for 0 < B < Bo(4)
we chooseu 1 1. The differentiability of/(8) at 8 = Bo(4) is a consequence of the
bound (3.29) and of the upper boun@s) < 8. This proves Lemma 3.3.0

LEMMA 3.4.— Letd = 4. There are constant§, > 0, Cs > 0, andb, > By(4) such
that for all 8 € (Bo(4), b») the following estimate holds

(B — Bo(4))?
|10g[Cs(B — Bo(]I

Proof. —Let ¢ € ® with || V|3 = 1. We derive an upper bound for, (o): Foro <O0:

(3.30)

I(B) < B —Ca

, 02 0'2
Ny = [ $% ¥ de <913+ 010l + S IsIE =1+ ool + S 918  (33D)
R4

The functionA/ (=00, 0] — (0, 1] is monotonically increasing, andl + /1 —x >
—x/2—x2%/2 holds for allx < 1. Using these two facts and (3.31), we get for

Idéf{ 0,1): 1—pu "¢||4} 3.32
Heds = re@Dlons o s

the following lower bound, using (3.1) in the first step:
Ay () = Ay () =sup{o <0: Aj(o) <}

o2
> sup{a <0: 1+ollplls + —||¢||2 < M}

oI} \/ 21918
= -1 1-— —
||¢||2< TV e @ )>

2l¢118

> — ) — 1— p)? 3.33
II¢II4( ) o113 2 (L= ( )
We integrate this estimate over an interyal 1) C Z,,; we obtain foru € Zy:
1
. 2¢18
A=A — [ AY(di < —w)?+ 61—pd
HIDEIEY M/(,J(u) i< =+ =)
1 V2|91l )1
< 1—w+ — . 3.34
[fznqsni( BRI (3:34)

Further we assume now that our test functforatisfies the bound

21418 > llgllz: (3.35)
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one should compare this with (3.32). We apply (3.34) and (3.3 fer0, 242|¢|;2):

32
< i *
1(B) < ulgd, (cr2y/Aj () + B)
2 6
< inf ( c12 ( Clzfllﬁ)ﬂa
1eZo \N/2||¢ 113 3¢l

p for B < %¢l12%,
= _ 3lgiz° 261722 for 2 (él2 < 5121 (|2
B = i (B — BIg15%)" for Llglle? < p < EIg1,>
In view of this bound we need to maximie ||2 with the constraintg € @, |V¢|5 =1,

and (3.35). Theorem 8.3 in [3] tells us: In the Sobolev inequality (3.15)(5 >
Salv 113, ¥ € DY(R*) we have equality if we choose the functignto be

1—p)+ (l—u)2+ﬂu)

(3.36)

¥ (x) = (3.37)

1+ |xP?

(and also for scaled and translated versions of it). However, this fungtios not
compactly supported; we even haye¢ L?(R*). Therefore we introduce a truncated
approximationy of v: Let x : R* — [0, 1] denote any fixed smooth radially symmetric
function which is compactly supported By(0) and equals 1 oB;(0). For R > 0 we
set

def X (X/R)
Yr(x) = 1+ X2

We note that for some positive constanis < cis, c16, €17 < ¢17, @andcig the following
bounds hold for largeR:

(3.38)

¢15l0g R < || Yrll5 < c1510g R, (3.39)
C

Iy ls— ﬁ <Ivrlls < v, (3.40)

17 < ||¢le|2 <y, (3.41)

the last important inequality is

VYRl = IVY 2| < [VWr = W), = ||V @ = xC/R))|,
<Lk suppr— VI [l + 1V x oo R Lk suprvo ¥ |
<cisR™Y (3.42)

where we have used polar coordinates to evaluate the integrals for the norms and we ha
inserted the following scaling behaviors:|3|Vyr (x)|? < O(|x|~3) and |x|3|y (x)|? <
O(lx|™Y) as|x| — oo; RsuppVy) is contained in an annulus centered at 0 with r&dii

and 2R, and R sup1 — x) does not intersedB (0). (3.40), (3.42), and equality in the
Sobolev estimate (3.15) yield for some constagt> 0 and larger:

2 ~1y2
IVYllz _ (VY 2+ c1sR™) <Sp+ e (3.43)

S4< AN X
lrllE — UI¥13— creR™4HY2 R
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In generalyr ¢ ®; we still need to scalg: We set

dr(x) E cyp(x/r), (3.44)

where the scaling constant$R), r(R) are chosen such thiipz |3 = 1 = || Vér|3; to
be specific, we have= || Viyrz|l2/1¥k |2 ande = ¥ |l2/ | V& 3. Using further that

Iprlla=crllvrlla and |grllS = crtvllS, (3.45)

we obtain for largeR (c2o, c21 denote positive constants):

o IVl €19
I xlla? = <Sat (346)
Rla = yez ST R
10 10
Ioxla’_ Wella <20 (3.47)
l¢rlE — IVYI3IvelBIvelE” logR
8 8
ol lvrlly 21 Reo, (3.48)

&I~ IvrIBIVRIE ~ logR

especially assumption (3.35) is fulfilled for the test functipp for large R. Let
B > Bo(4). We set

_ c1pc1927 2
3B Bo@)

The bound (3.36) together with the estimates (3.46)—(3.48) and definition (3.2§Yof
yields for R large enough, sag € (Bo(4), bo):

(3.49)

- 436_22212009 R po) -
) (B — Bo(4)?

[10g[C5(B — Bo(D)]
for an appropriate choice of the positive constatysCs. This proves Lemma 3.4.0

2
€12C19 _1>

7 R (3.50)

1(B)<p

=p-C (3.51)

3.3. Asymptoticsin thelarge-B-region (proof of Theorem 0.2)

The main tools to examine the largebehavior ofl(8) (especially for proving the
limit (0.9)) are asymptotic upper and lower bounds for the ground state energy in a
deterministicsquare-well potential. These bounds, well known to physicists at least in
dimensions/ < 3, are collected in Appendix B.

Let r, denote the radius of @-dimensional ball of volume. Here is an asymptotic
upper bound fol (8); we expect the exponenrtl/2 of 8 to be optimal:

LEMMA 3.5. — There are positive constanbg(d) andczo(d) such that for allg > b3:

1(B)<cld,1) - (3.52)

22
75
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Proof. —Let b3 > 2¢(d, 1) andc,, be defined according to Lemma B.1 in Appendix B.
Let 8 > b3. By the upper bound in (B.1), there is a test funciiipa ® such that

1 Cc22 2
§||v¢||§+ﬂu c(d, 1) — 75 wheren = || 1z 5, 0@ |- (3.53)
This number cannot be 0, i.ep cannot be supported B, (0), since this would imply
IVl13/2+ B = IVl13/2 > ro(B,,(0)) = c(d, 1), which contradicts (3.53). cannot
equal 1, since thefiVe||3/2+ Bu = B > bs > c¢(d, 1) which is a contradiction, too. It
remains to examing < (0, 1): We calculate, using the inequality41¢ — & < 0:

A5 (1) = suppo — / (€9 — 1) dr
o<0

R4
— sup / (1+0¢? — &) dv + / (1— &) dx
oS R7\B,,(0) By, (0)
<|B, (0] =d. (3.54)

Consequently the paif, 1 is an allowed test configuration in the definition (0.6)Iof
(0.6) and (3.53) together imply the bound (3.52). This proves Lemma 35.

Next we prove a lower bound fdr(8) in the largeg-region:

LEMMA 3.6.— There are constantg,s(d) > 0 and bs(d) > 1 such that for all
B = ba(d) the following lower bound holds

1(B) = c(d, 1) — cosp™3l0g B. (3.55)

Proof. -We abbreviate “radially symmetric non-increasing” by “RSNI”. Leét
denote the RSNI rearrangement @fe ® (see [3], Section 3.3). The#° € @, too,
Ay = Aye, and thereforeAy = Aj.. Lemma 7.17 in [3] show§Ve°|l2 < [[V|2. We
insert this in the definition (0.6) af(8) and scalep (see (1.14)—(1.16)); this shows for
everym > 0:

2/d
I(ﬂ):inf{mT||V¢||§+ﬂu: ¢ € ®RSNI e (0,1), Al <md}. (3.56)

The map0, ) 25— 1—(1+s)e™* €[0, 1) is bijective and monotonically increasing.
Let B > 1. We sets = s(8) £'log(873) > 0 andm = m(B) &1 - 1+ e =3 1.
Further letp € ® RSNI, . € (0, 1) with A} (1) < md, ando d_efA*/(u) < 0. We get (see

(3.1)
md > Ay (n) =0 —Ag(0) = /[1— (1- 0¢2)e"¢2] dx
R4
>m|{x eR" —op(x)*> (3.57)

and consequently-c¢(x)? < s for |x| > ry, S|nce|B,1(O)| =d, and since/|o|¢ is
RSNI: the level setfx: —o¢(x)? > s} is either empty or a ball centered at 0. We
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multiply the inequality k5,0 < ee?’ by ¢? and integrate; this yields the following
inequality:

def||1Rd\B,d(0)¢H2\ef/¢2e“¢ dr =€ A)(0) = €. (3.58)

The inequalitym?9¢ > 1 — cp4(1 — m) > 0 holds for some constambs(d) > 0 and
m(B) < 1 sufficiently close to 1, i.e. for largé. We combine the bound (3.58) and

Corollary B.2 from Appendix B; we optimize over; then we insert the lower bound

for m??, usem®¢ < 1, and abbreviate,s &' 2 - 3-3/2¢3/2, hence for large8 and some

constant,3 > 0 we get
m2/d
—IVOIZ+ B =m*(e(d, 1) — caoc”’) + B
>m?(c(d, 1) — cao€”°u'®) + B
>m?c(d, 1) — cpse’’m¥4 g2 (3.59)
> [1—coa(1+ 3109 8) B~ c(d, 1) — cosBf™°
>c(d, 1) — caap " log .
In view of (3.56) this proves Lemma 3.6.0

Appendix A. Upper bound of Theorem 0.6 and Corollary 0.7

To prove the upper bound in Theorem 0.6 we simply evaluate (0.2) for a “good” test
function.

Proof of the upper bound in Theorem 0.@n+his proof we always assume thatr)
is a strictly positive function withp(r) « . Chooser so large thaip(¢r) < t/2. As test
function we choose a function which is constant®n,, and with support contained
in 7;: Let x :R — [0, 1] be any monotonically increasing®-function with support
contained in(0, co), x(x) =1 forx > 1, andy’(x) < 2 for all x € R. We define

def t+x t—x
()& : , Al
X (x) X(go(r)) X(go(r)) (A1)

The functiony; is smooth, compactly supported(rnz, t), constant 1 oli—z + ¢ (¢), t —
o)), and |/ (x)| < 2/¢(t). Set £,(x) E' 1%, x. (x;) for x = (x1, ..., xs) € R?, hence
f:R? — [0, 1] is smooth, compactly supportedp, constant 1 orY,_,, and|V f;| <
2/dp(t)~1. We have

1l 21Tyl and IV £ll5 < IVAIZITN Tiop] < 2026 o), (A2)

def

wherecog(d) = 277142, Our test function is defined by normaliziry;

det fi

t = , A.3
Y= (A-3)




F. MERKL, M.V. WUTHRICH / Ann. I. H. Poincaré — PR 38 (2002) 253-284 281

which satisfieg|¢; ||, =1

I¢:lloo <N fill2 Y ST ™2 <1 T2l Y2, (A.4)
MV¢A§<2amf%¥%31f=2@a—%xo—¥ (A.5)
Consequently
hyy (T) < HV@Hf+/VkAw¢AX) ?) 5ynwwm¢m o(T)

26 . B o) o ( wmydﬂw@)
< = +(1-— . A.6
to(t)  oM? | Ti—giy|  te(1) t ()? |7 (A-6)
By the ergodic theoren®-a.s. limsup., |7, 2w (T;) < 1, and hence
P-a.s. limsupp(t)®ry,, (7)) < B. (A.7)

—00
The upper bound in Theorem 0.6 is proveda

Proof of Corollary 0.7. -By monotonicity we have for alp, g, > 0 and £(¢) def

(log)*:
18" 2 I|m|nf£(t)2AVe (T) <lim icgfﬁ(t)z)\v/;’ (7))
< lim Supﬂ(t)zkvw (T) < I|m supl(t)®1o(7Z; \ suppV). (A.8)

t—0o0

Now the claim follows from Theorem 0.2 and formula (4.4.38)—(4.4.40) in [9].

Appendix B. Asymptotics of the ground state energy in a d-dimensional square
well potential

Recall,r; denotes the radius of&dimensional ball of volumd.

LEMMA B.l. - There are positive constants(d) > 2c(d, 1) and coo(d) < ¢22(d)
such that for allg > b3 the following holds

é R? dl——. B.1
JB (RY) <c(d, 1) N/ (B.1)

Proof. —By Theorem X.28 in [5] the Schrodinger operatdy = —%A + ﬁle\Brd )
is essentially self-adjoint o> (R?). Theorem XIII.15 in [6] implies that the closure
of Hy has the essential spectruss{ Hg) = oesd —A/2 4+ B) = [B, 00). Therefore
the infimum of the spectrum aofi; > O either equalg, or it is a discrete eigenvalue
E € (0, B). (E =0is certainly impossible.) We show that the second case occurs at leas
for large values ofs: the potentialﬂle\Brd(o) is radially symmetric; hence it suffices

C(d 1) <)\.ﬂl

RI\Br, (0)
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to look for the ground state eigenfunction among radially symmetric functions. We
therefore search for weak solutions of the radial Schrédinger equation

1 d—1
-3 (w”m + Twm) + BLyor V() = EV (1), (8.2)
that fulfill
/ ()it dr < oo, (8.3)
0

We solve piecewise the free radial Schrédinger equation explicitly in terms of (modified)
Bessel functions: We get with the abbreviatioa- d/2 — 1.

d,(,,):{( 2Er) " (a1y (V2Er) + a3Y, (V2Er)) forr <ry,
(V2B —E)r) " (2K, (v2(B — E)r) +oal,(2(B — E)r))  forr>ry
(B.4)

with constantswy, ap, a3, as. Regularity of the solution at the origin and condition
(B.3) requireas = 0 = a4. Furthermoreyr andvy’ need to be continuous at=r,. We
abbreviatef () &'z J,(2), () €' 27K, (2), 71 &' V2Er,, andz, £ 2B = Eyry.
For a givenE < (0, 8), we get a eigenfunctiomy if and only if the following condition
holds:

f(z1) g(z2)

—o0. (B.5)
21f'(z1) 228/ (z2)

Using the asymptotics

2 —>00 2 —00
eﬂ/;sz(z)z—> 1, eﬂ/;ZKL(z)Z—> —1 (B.6)

(see [10], Section 7.23, and [1], formulas 9.7.2 and 9.7.4) we get

_8) ooy
8'(2)

(B.7)

Let & denote the smallest positive number with(¢) = 0. (Since the principal
Dirichlet eigenfunction of—A /2 on the ball B,,(0) is given by x — f(&|x|/rq)
up to a normalizing constant is related to Sznitman’s constant hyd,1) =
(€/r4)?/2.) The derivativef’(z) = —z~"J,,1(z) has no zero point in (0, £] (see [10],
Section 15.22). We calculate fare (0, £], using an identity for Bessel functions from
[10], Section 15.23:

d/ @ 2| JO dO
(- =(zf'(2)
dz( zf(z)> df(z) E(zf/(z))

dz dz
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Ju(2) 2J.(2)
TP @72 g (B.8)

—J,(2) g J(2)
dz v dz(Z /@)

—2;7 273 f/(7)72 / J2(t)rdr <O.
0

Consequently- f(z)/(zf'(z)) is monotone decreasing d@f, £] with the value zero at
& and a negative derivative &t This shows that for some positive constartgd) <
c28(d), andceyg(d) < & the estimate- f(z)/(zf'(2)) = c27(§ — z) holds for allz € (0, £],
and — f(2)/(zf"(z)) < c28(6 — z) holds for allz € [§ — c29, £]. We choose a constant
oy to be so large that,7ry(2c(d, 1))~Y2¢,; > 2r;* holds, and we choose another
constantc,; > 0 so small that @gc(d, 1)~¥2r2cy, < 1/2 holds. Further we choose
bs > 0 so large that the three condition§22(d, 1)~Y2r,co0b3 /% < c29, bs > 2¢(d, 1),
and for allz > b3 rd —2'(2)/g(2) € [1/2,2] hold true; see (B.7). LeB > b3 and

E € (0, c(d, 1)). We first show that foE < ¢(d, 1) — é»»8~Y2 Eq. (B.5) has no solution:
Using <2(8 — E),

zlffﬂ > co7(€ — 21) = ca7r4 (V/2¢(d, 1) — /2E)
> corq(2c(d, l))_l/z(c(d, 1) —E)>comy(2e¢d, 1) 2z Y

- 2"(1_113_1/2 > 3 > g(z2) .
22 728'(22)
This proves the lower bound in (B.1). To derive the upper bound in (B.1), we set
E =c(d, 1) — cppp~Y? and estimate:
§ —z1=rq(v2c(d,1) —V2E)
<2(2c(d, 1)) 2ry(c(d. 1) — E) = 2Y%c(d, 1)"Y2rycp0p Y2
< €29, (B.10)

(B.9)

and therefore

R ACY)
z1f"(z1)

< cag(E — 71) < 282Y%c(d, 1) Y Pr e

1 <_ 8(z2)
275 228'(z2)
Comparing (B.9) with (B.11) we conclude that Eq. (B.5) has a soluBon(c(d, 1) —

CooBY?, c(d, 1) — c20B~Y?). This finishes the proof of the upper bound in (B.1) and of
LemmaB.1. O

<26286(d,l)_ rdczzzz < — (B.11)

COROLLARY B.2.— There is a constantzg(d) > 0 such that for all functiong € :

1 2/3
51015 > c(d. D) = caol Lz, 08 ;- (B.12)
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Proof. ~We setczy 2 (3 - 27233513 v (2Y3¢(d, 1)b3'*¢,"°), and we abbreviate

o & ”le\Brd 0®lI3. 1f « =0, i.e.if¢ is supported imB,, (0), then (B.12) is obvious, since

c(d, 1) is the principal Dirichlet eigenvalue 6fA /2 over B,,(0). So we may assume
k > 0. Setp = (2¢/¢22)~%/3. There are two cases: if < b3, then (B.12) holds trivially,
since in this case the right-hand side in (B.12) is negatiyg:*/® > c(d, 1)(b3/B)Y? >
c(d, 1). Else if 8 > b3, then Lemma B.1 is applicable. The lower bound in (B.1) yields
the claim (B.12):

- ~2/3

1 c 3c
§||V¢||% =c(d,]) — % — Bk =cd, 1) — 22—2/2/<1/3 >c(d, 1) —cse¥®. (B.13)

Corollary B.2 is proved. O
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