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ABSTRACT. — We introduce a new class of cocycles which provides examples of measure
preserving dynamical systeniX, 3, 1, T), such that given positive integers> 2 andm > 1,
possibly infinite, with(r, m) # (o0, 00), the rank isr and the order of the quotient group in the
measure-theoretic centralizewgf%, ism. Moreover, wc|T"; n € Z} is uncountable. For
the casdr, m) = (0o, 00), we produce a mixing'. This completes the weak closure theorem of
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RESUME. — Nous introduisons une nouvelle classe de cocycles qui permet d’obtenir des
exemples de flotéX, B, u, T), tels qu'étant donnés deux entiers 2 etm > 1, éventuellement
infinis, avec(r, m) # (00, 00), le rang soit- et I'ordre du groupe quotient dans le centralisateur,
#m, soitm. En outre ces exemples sont tels que{@él » € Z} est non dénombrable.
Pour (r, m) = (o0, 00), nous construisons un exemple aveanélangeant. Ceci en particulier
compléte le Théoréme de Cléture Faible de Jonathan King002 Editions scientifiques et
médicales Elsevier SAS

1. Introduction

Let (X,B,u,T) be an ergodic dynamical system and &{7) be the measure-
theoretic centralizer of . The Weak Closure Theorem [10] asserts thiél’) coincides
with the weak closure of the set of powers Bf denoted wdlT”, n € Z}, whenever
r(T) =1, wherer(T) is the rank ofT.

Hence the question of the existence of a relationship betw@énand the cardinality

q(T) of the quotient groum in the general case naturally arises.
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For mixing T it follows from [11] thatq(T) < r(T). It is not difficult to show that
the same inequality holds far's defined in [2] — generalized Morse flows, for which
q(T) =2 andr(T) can be arbitrarily large.

Each automorphisnf in [2] has a partially discrete spectrum whence the two kinds
of automorphisms previously described are rather far from each other.

However for both cases Wdl™", n € Z} = {T", n € Z}. Therefore an interesting
additional feature is to construct arbitrary paig(T), (7)) with an uncountable
wcl{T", n e Z}.

In this paper we shall introduce some new classes of cocycles, which define flows the
are ergodic group extensions of rank 1 systems, and are tractable enough to allow &
exact computation of both(7") andg (7).

We shall pick within these classes, for each possible (gair), examples of ergodic
automorphismg” such that(¢(T), »(T)) = (¢, r). Moreover, for(g, r) # (00, 00), our
examples produce an uncountable {§¢l, n € Z}.

The difficulty lies both in the proposition of a good candidate, and in the computation
of the rank and the order of the quotient group. Bom) # (co, 00), our examples lie
in the class of group extensions determinedrbloeplitz sequences. For thieo, oo)
case, the example is mixing: it is a weakly mixing extension of a rank 1 mixing
transformation [1].

From these examples, it now follows that in its generality, the weak closure theorem
is the only one for limitations concerning the coexistence of the measure-theoretic
invariantsq (T) andr(T).

The investigations of ergodicity and that of the measure-theoretic centralizer both rely
on Newton’s functional equation [21] and are carried out partially on a measure-theoretic
group extension representation of the system.

Investigating the rank (and partly the centralizer too) we use a shift representation o
those extensions.

2. Preliminaries
2.1. Notations and definitions

Let (X, B, u) be a Lebesgue space afida measure-preserving invertible ergodic
transformation of(X, B, ). By the centralizer (measure-theoretic) Bfwe mean the
set of all measure-preserving automorphismsgXof3, ) which commute withl” and
we denote it byC (7). ThenC(T) is a topological group with the standard operation of
composition of transformations and with a topology (called the weak topology) defined
as follows:{S,},en € C(T') converges td € C(T) if for every A € B

1(S,AASA) —> 0.

We shall indicate this convergence ISy — S. With this topology, C(T) is metric,
complete. By wdT", n € Z} we mean the weak closure of the powergah C(T).

We say that a sequence of sdtg ..., A, € B is aT-stack if these sets are pairwise
disjointandT A, = A;1,i=1,...,k— 1.
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If we are given a collection of measurable subsefs of X, andr positive integers
h;, suchthat := {T'F;: 1<i <r, 0<!I < h;} is a collection of disjoint sets (a union of
r disjoint 7-stacks), setting’ = X \ (Uc<c C), this union ofr disjoint 7-stacks defines
a partitionC := C U {Y}, and as-algebrao (C).

The rank ofT is the smallest integer such that givers > 0, there exists a union of
r disjoint T-stacksC, such that for any measurablee B, there existsB € o (C) with
uw(AAB) < ¢. If such a positive integer does not exist then we saytifij = co.

We shall give a symbolic version for the definition of the rank in 2.2. and 4., which are
shown to be equivalent to the one above in [3] and [20]. We reffer the interested reade
to [5-7] for more on rank and patrtitions.

Suppose now thaG is a compact metric abelian group agd X — G is a
measurable function which we will call a cocycle. Theextension of(X, B, u, T)
given by the cocyclep is the dynamical systent, = (X x G,B x Bg, u x v, Ty,),
wherel3; is the Borelo-algebra inG, v is the normalized Haar measure 6rand

Ty(x,8) = (Tx, g+ ¢(x))

for x € X, g € G. It is well known [22] that for ergodid X, B, u, T) the following
theorem is true.
THEOREMA. — T, is ergodic iff the functional equation
f(Tx) _
f )

has no measurable solutions: X — K for any nontrivial charactery of G (K is the
unit complex circlg.

¥ (p(x)) 1)

Itis known (see [21] for the definition) that (X, B, «, T) is a canonical factor of,,
(for example ifT is with discrete spectrum) then, assuming thats ergodic,C(T,)
is given by the triplegS, f, t), whereS € C(T), f:X — G is measurable and is a
group automorphism of; such that

F(Tx) = f(x) =p(Sx) — 7 (p(x)). (2)
This means that every elemekte C(7,) is of a form
R(x,g) = (Sx,7(g) + f(x)). 3)

In such a case we writR ~ (S, f, t). The following property is proved in [17] and [18],
using Theorem A.

THEOREMB. —If R,, R € C(T,) and R, ~ (S, f,.id), R ~ (S, f,id) thenR, — R
iff S, — S and f, — f in measureu.

Leto,: X x G — X x G be given by the formula

o.(x,8)=(x,g+a), acg. (4)
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Theno, € C(T,), o, ~ (id, a, id). For every integen, (T,)" is given by the formula

(T,)"(x,8) = (T"x, g + 9" (x)), (5)
where
wyon O+ + (T 1x), if n >0,
v = { —o(TYx) — - —(T"x), if n <O. (6)

Then it follows from Theorem B that

COROLLARY 1.—(T,)" — o, in C(T,) iff T —id in C(T) and ¢ —> q in
measure.

2.2. Sequences and blocks

A finite sequenceB = (B[0],..., B[k —1]), Blile G, 0<i<k—1 k=>1,is
called a block ovelG. The numbeik is called the length oB and is denoted byB|.
If C =(CJ[0],...,C[n — 1)) is another block then the concatenationfoind C is the
block

BC = (B[Ol,..., B[k —1],C[0],...,C[n —1]).

Inductively we define the concatenation of an arbitrary number of block®,By € G,
we will denote the block

B, = (B[O]+g,..., Blk—1]+¢g)
and byBl[i, s](0 < i <s <k —1) the block
Bli, s] = (B[i], e, B[s]).

Assume that
B=B0)...B(r—1

is a concatenation ofblocks B(0), ..., B(r — 1) having the same lengths and
C=C[0]...C[rm — 1]

for somem > 1. We define the produ@ X C of B andC as follows:

BxC= BC[O](O) cen Bc[r_]_](}" - 1)BC[r](O) AN (7)
Bepor—11(r = D) Bepyrin—-1)1(0) . .. Bepm—1(r — 1).
Then
r B||C
|B x C|= IBliC] _ |B(i)|rm, foreveryi=0,...,r — 1.
r

Let Q by the space of all bi-infinite sequences ower If w € Q or w is a one-
sided infinite sequence oveér thenw(i, s], i < s, denotes the blockwl[i], ..., w[s]).
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A block B is said to occur at placein w (resp. in a blockC, |C| =n, if |B| < n) if
wli,i +|B| — 1] = B (resp.C[i,i + |B| — 1] = B). The frequencies oB in C or w are
the numbers

fr(B, C) = |C|7*#{0< i < |C| — |B|; B occurs at placéin C},

fr(B, w) = Iergofr(B,w[O,s - 1)),

if this limit exists.

For an infinite subsequence @f E = {w[n], ne€ I C Z} (resp.E = {w[n], nel C
N}), we call the density of the density of the sdtin Z (resp. inN), whenever it exists.
Let$ > 0. We say thaB §-occurs at place in C (resp. inw) if

d(B.Cli,i+|B|—1]) <8 (resp.d(B,wli,i+|B|—1]) <),

where

Aty ey X))y (V1o -5 ) =0 X # i)

(d is called the normalized Hamming distancedsbar distance between sequences).
We will say also thaBB§-occurs on the fragmeni[i, i + |B| — 1] of w.
We will use the following elementary properties of the distatice

d(B x C,B x D)=d(C,D) (see (7), 8)
d(B,,Cg) =d(B, C), 9)
|Aql |Az]
d(A1Az, B1Bo) = — 2 (A1, B1) + — 2 _d(Ay, By), 10
(A1A2, B1B») |A1|+|A2|(1 1) |A1|+|A2|(2 2) (10)

where|A1| = [Bil, |Az| = |B|.
If D, C D(D; is a subblock ofD) andC, c C, |D;| = |C,|, both appearing in the
corresponding same positions, then

D
dD.C)> (D, Co), (11)
1 S
d(A1A;... Ay, B1By...B) == d(A;, B) (12)
$ia
if [A1] =|Ag| =---=|A;| = |B1|l=--- = |Bsl.

By T, we denote the left shift homeomorphism @f If w € Q then O(w) denotes
the T, -orbit of w and 2, the T,-orbit closure ofw in Q. The T,-orbit closure<,, is
well-defined ifw is a one-sided sequence. Namely, we firsiet G be an additional
symbol. Then we lei* denote the bi-infinite sequence which agrees witht positive
coordinates and has only squares appearing at the negative ones. Then we say tha
bi-infinite y belongs to<2,, if there existsn; — +oo such thatT'w — y in Q (the
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convergence is for all coordinates pfand the limiting element does not contain any
more squares). The topological fla®,, 7,) is called minimal if there is no non trivial
closed andr, -invariant subset of2,,. We say that2,, T,,) is uniquely ergodic if there
is a unique borelian normalizef] -invariant measure,, on 2,,. Then(2,,, T,) is said
to be strictly ergodic if it is minimal and uniquely ergodic. Supp¢Qg, 7, ) is strictly
ergodic. The uniqué&, -invariant measurg,, is determined by the condition

ho(B) =1r(B, »)

for each blockB. In the case of a discrete group, the definition of the rank has the
following symbolic transcription.

The system(2,,, Ty, 14,,) iS Of rank at most if for any § > 0 and every:, there exist
blocksBs, ..., B,, |B;| > n, such that for allv large enough, for any € N, the fragment
owls,s + N — 1] has aform

ols,s + N — 1] =1 WieoWs - - - g Wiy,

where |e1] + --- + |ex| + lex+1l < SN and the distancel betweenW; and some
B,,j=1,....k,1<m <r, is less thars. The system(Q2,, T, u,,) is of rankr if
it is of rank at most and not of rank at mogt— 1.

2.3. Adding machines and r-Toeplitz cocycles
Now, letT: (X, B, ) — (X, B, u) be a{p,}-adic adding machine i.e.

Di41=Ait1pr, Ao=po, I =2fort >0,

o0
X = {x ZZ%Pt—L 0<q:<A—1 pa= 1}
t=0

is the group of p, }-adic integers and'x = x + 1, where
1=1+0p,+0py+---.
The spaceX has a standard sequenég}, o of T'-stacks. Namely
&= (Dg..... D), 1),
where
Dy={x€X;q="-=¢q; =0}, D! =T*(Dg)
fors=1,..., p, — 1. We have
pi—1
Xx=|J D
i=0

Then &4, refines&, and the sequence of partitiori§,},>o converges to the point
partition.
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We will define a special class of cocycles X — G that are determined by Toeplitz
sequences Oves.

Let » > 2 be an integer, and assume ti#8t 4!, ... are finite blocks ovelG with
|b'| = A1, Ay > 2, such that

b'[0,r —1]1=(0,...,0).
——

r times

We shall introduce a particular sequerige), and some new blocksB?).
We can write

b'=b'(0)...b'(r —1), |b'(@)|=4,i=0,...,r—1 (13)
Define another sequence of blod¥'} letting
B =10, Bl=pB'xb*t >0 (14)
Then we have
|B'|=rm;,=p,, m;=xro A, (15)
and we can represe®t as
B'=B'(0)---B'(r—1), |B'()|=m i=0,....,r—1 (16)
Moreover
B0, p, — 11 = B'. (17)
Now we can define a cocycle by
@(x)=B'[i +1] - B'[i] (18)

if x € D! exceptofi=m,—1,2m,—1, ..., p, — 1. Letus observe that is well defined.
Such a cocycle is calledtToeplitz cocycle. For every > 0, ¢ is constant on the levels
of & except ofr levels.

The sequencéB’}, > determines a one-sided sequencas follows:

wl0, p,—1] =B, t=0,1,.... (19)
p

The condition (17) guarantees thais well defined.
It is not hard to show that the condition

fr(g.b') > p >0 (if G is finite) (20)

for everyg € G andr =0, 1...., implies that the systen2,,, 7,;) is strictly ergodic.
Then using (19), (20), and arguments as in [16], we deduce that the dynamical systen
(R0, T, o) and(X x G, T,, u x v) are measure-theoretically isomorphic wHgnis
ergodic.
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The group extensions defined byToeplitz cocycles shall be calleg-Toeplitz
extensions.
In the sequel we will write

o= x bt x b2 x ---.
Except ofw we need the sequences, ¢ > 0, defined by

w =b x bt (21)

3. Examplesof r-Toeplitz extensions

In this part, givenr > 2 andm > 1, we definer-Toeplitz group extensions having
cardinality of the quotient group'(7,,)/wcl{T}'; n € Z} equal tom.

31 Thecaser>2,m>?2

LetG=7Z/mZ={0,...,m — 1}. Define

r(2i42-1) r
. ———— .
F®=00...00...0_1 0...0, i=0,...,r—1
i+1

HY=FF" .. F),.
We have|H®| = mr2/+2. Next define
p'O)y=HOH?  HO
xp times
b =HYHY HD

x1 times

b'r—1)=HC"YECD gD

xr_1 times

where

x, =27 0<i<r—1,
and

b'=b'(0)...b'(r—1), t>=0.
Then we have

A= b)) =mr2 T fori=0,...,r—1 (see (13))

and

|bt | — mr22t+r+1'
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Now define the block®’, ¢ > 0, by (14) and the cocycle by (18). Then from (15)
p.=|B'|= m“rlr2’2r+1(2”rl -1), t>0.
3.2 Thecaser >22,m=1

LetG=Z/nZ ={0,...,n—1},n > 4. Then define
3r r
. —————
F®=00...00... 1 0...0,
~~
i+1
HO = FPFP . FO,,

and
b'iy=HPHY ... HY x=2.
N— ——
x times
Next set

b'=b"(0)...b'(r — 1),
B =0 xbtx - xb, t>0,
and definey by (18). In this case we have

Ao =rn2T2=|p' ()|, |b'|=r?n27"2 fori=0,1,...,r —Lland:r > 0.

3.3. Ergodicity and the measure-theoretic centralizer

THEOREM 1. —T,, is ergodic.

Proof. —We will prove ergodicity ofT,, in both cases 3.1 and 3.2. Assume that there
exists a measurable functigh: X — K satisfying (1). Then (see (5), (6))

Tn
H =) 22

for u-a.e.x € X and everyr € Z.
In particular (22) holds for = p,, t =0, 1,.... The measurability off and the fact
thaté, — ¢ (the partition into points) ik imply

v (™) =1 (23)

except of a subset of measureande, —> 0.
Letx e D}*l, 0<j < pre1— 1 We can represent as

Jj=up; +vm; + p, (24)

where OS u <A1 — 1, 0<v<r—1, 0< p<m, — 1 (see (15)).
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It follows from (18) (witht :=1¢ + 1) that
P (x) = B j + p]— B[] (25)

exceptj forwhichu =uy;=2—1,...,u=u, =2 —1=%—1, % = Aq. At the same
time we have

B j1=blur +v]+ B'(v)[p), b=0b""" (see (14), (16))
Then (25) can be rewritten as
PP (x) =b[(u+ Vr +v] —blur +vl, u#ui, ..., u,. (26)
The last equality and (23) imply that

y(clgl) =1 (g=ur+v) (27)

forgeV,c{0,1,....r\1—1}), P >1—¢ — Til wherec = ¢! is given by

P orketa
clgl:==blg+r]l—>blgl, ¢g=0,....,rA—r—1

Further the blocks = ¢’ have the following forms:

(mxp—1) times (mx1—1) times (mx,_1—1) times
—_—
c=EQ EOLOFED OO gD gD (28)
where
2r r r

) 0
E®=0...010...001...2, |L%=r,
6r r r

@ NN — —— 1
E®=0...0010...0101...1, [LY=r

(2”'1—2)}" r r
(r=21) (r—2)
E = 0...00...011...10, |L |=r,
in the case 3.1. In the case 3.2 we have

(nx—1) times (nx—1) times (nx—1) times
—
c=EQ EQOLOFD QLD pr=b gEC-D (29)
where
2r r r

0 0
E®=0...010...001...1. |L=r
2r r r

A —~ N — 1
E®=0...0010...0101...1, |LY=r,
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2r r r

(r=1) (r=2)
E*"Y=0...00...011...10, |L""?|=r.

In both cases 1 appearsdmwith frequency> rz% for eachr > 0. Then (27) implies
v (1) =1 soy is trivial. We have proved thal, is ergodic. O

3.4. Thecentralizer of T,

The p;-adic adding machinéX, B, u, T) is a canonical factor of the group extension
(X x G,B x Bg,uxv,T,). ThenC(T,) is described in 2.1. We can distinguish the
following subgroups o (7,,):

Cr=wcl{T}); neZ},
C2={0,08; SeCyanda € G},
Cz3={R~ (S, f.1); T=id}.

Of courseCy, C», C3 are closed subgroups 6f(7,) and

C]_ C Cz C C3C C(Tw).

We prove in Lemmas 1 and 2 thak(7,) reduces toC, when g is the r-Toeplitz
cocycle defined in 3.1 orin 3.2.

In the sequek means the same as the one defined in 3.2 if this case is considered,
andn :=m if the case 3.1 is considered.

LEMMA 1.-C(T,) = Cs.
Proof. —Take R as in (3). Then the triple(S, f, t) satisfies (2). Puttinge :=
Tx,..., TP 1x in (2) and summing we obtain

F(T7x) — f(x) =P (Sx) — T(" (x)) (30)

for u-a.e.x € X and each > 0. Using the same arguments as in the proof of Theorem 1
we get from (30)

9P (Sx) — T (9" (x)) =0 (31)

forx e X; andu(X,) — 1.
Further we know [21] that there exisjs € X such that

Sx)=x+go, xeX.
Let

o0
go=> up-1, O<u, <A —1Lt>1and0<up<ror — L
t=0
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Fix r and consider (31) on the stagk ;. Let

t
Jt = ZMij—l-
j=0

Then (see (24))
J: = vom; + po, Ji+1 = Uop; + vom; + po, Uo=1Us41.

If x € D™, 0< j < piya— 1. thenSx € DITS |, wherej + j, 1 is taken modp, ;1.
We can write

Jtjwa=up+vm+p, 0<u<i—-10<v<r—1,0<p<m—1
Let us denote (use (24) fqg)

__Juor +vo if p=0,...,m;— pg—1,
q0= ugr +vo+1 ifp=m,—po,....,m —1,

andg =ur +v,q =ir +v. Theng = g + go(modrai;,1). Thus (26) and (31) give
clg+qol=1(clql) fqgeV,C{0,1,....rk1—1} (32)

and 5 1 Vi — 1 Analysing the sequences (28) and (29) it is easy to observe that
they do not satisfy (32) with any, wheneverr #id (i.e., (1) # 1). The lemma is
proved. O

LEMMA 2.-C(T,) = Ca.
Proof. —Let R ~ (S, f,id) € C3. Then (32) means
clg +ql=clgl, g€V,
The last condition implies
2r+lr

qo(t) =qo = mw, w=uw, (33)

in the case 3.1 and
qo(t) =qo=4%rnw, w=uw,, (34)
in the case 3.2, whereQw < r2'*1 — 1 (see again (28) and (29)). Moreover

min(Qo(f), 1 610(0) o0

141 A1

The above condition implies

mm(ﬁ 1- ﬁ) — 0.
Dt Dt
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Assume thatj, / p, —> 0 along some subsequencer oft follows from the definition
of the p,-adic adding machine that

Thh —~§. (35)
Now we will prove that there exists € G such that
¢ — f+a (36)

in measureu.
The function f satisfies the condition (see (2) with- id)

F(Tx) — f(x) =¢(Sx) — px).
The measurability of andé, — ¢ imply that there exists, € G such that the functions
f; defined by
[ =a+9PSx) —¢Vx), yeDj, y=T'x, x €Dy, (37)
iZO,...,p,—l,
satisfy the condition
fi — f in measureu.
We can assume that = . We can rewrite (37) as
fi) =b+¢0(Sx) = (T7x) + O (T7x) — ¢ (0).
Further we have (see (6))
0D (Tix) — @ (x) = U (Tx) — ') (x). (38)
Because ofj, < m, thenp" (x) = b, for all x € Dj}. Assuming agairb, = b; we can
write (38) as
(p(i)(szx) _ go(i)(x) — (p(j’)(y) —b
and (37) as
[ =ba+ 9P () + 9V (Sx) — (T x). (39)
Assume that
xe D;;l, O<u<iy—1
Then
Thx e D’Z;rl'i‘jr and Sx e Délj_juo)ﬁr'f‘jt’

whereug = qo/r.
Fori < p,—j,—1,i=vm,+ p andu # uy, ..., u, we have

oD (T x) = B ™Mup, + j, +i1 — B up, + j,1 = b ur + v] — b ur]
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and
9 (Sx) =B [(u+uo)p, + ji +i] — B (u +uo) p; + Ji]
=p'*t [+ uo)r +v] — bt [(u + uo)r].
Thus

" (Sx) — o (T¥x) = (blg + qol — blq]) — (blur + qol — blurl), q=ur +v.

Then (33) and (34) imply
e (Sx) — " (T'x) =0 (40)

except of a set of measure(r/1,) + (j;/ p:)-
Now (39) and (40) imply (36) witta = —b,. Notice that (35) and (36) and Theorem
B imply

ng{I — Roo,.
This proves the lemma. O
To prove that

ca)  _
WCI{TJ]; n e 7}

in case 3.1 it is sufficient to show that ¢ C; whenevew € Z,,, a # 0. In the case 3.2
we will prove thats,, € C; for everya € Z,, what implies

. CT)
“wel(Tr neZy

To do this we need estimations of thedistance between blocks occurring dnand
w;,t = 0.

3.5. d-bar distance between blocks

The sequence = b° x b x -- - is a concatenation of the blocks of the form

Ext)=B' x&, E )=Bxé, keZ, s=0,....r—1

where
=Gk, ...k, e = ...k k+1,k ... k).
’ ) ) k ) s Ny s Ny )
sth place

The sequence, = b’ % b'*1 % ... is a concatenation of the blocks of the form

r r
a)=b xé&, e’ @1)=b xe.
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The blocks E, = Ei (1), E{” = E\(t) are calleds-symbols and the blocks, =
ex(1), el = e (1) are called “small’-symbols. Each fragmeat[kp,, (k + 1) p, — 1] of
w, k € Z, is ar-symbol, andv,[kA,r, (k+1)1,r — 1] is a “small”t-symbol. The positions
[kp:, (k + 1) p, — 1] and[kA,r, (k + D), r — 1] will be called the natural positions in
andw, respectively.

We will examined-bar distance between the blocks mentioned above or between their
special fragments. In particular, we will examine the pairs

(Db (i + 1), bi(D)bry1(i + 1), brya(D)bi(i + 1),
fori =0,...,r —2andk € Z, and
by (r — Db (0), by (r — 1)by11(0).

PROPOSITION 1. —Let

I=by[0. A —j—11, j<3A, 41)
Il =bLGN[), A — 1, keZ,, i,i'=0,....,r—1, t>0.
If
i) < —— (42)
theni’ =i and
j=m—kr2*? +anr2*?, 4 >0, if 3.1holds, (43)
j=m—Kkrd+anrd, a>0, if3.2holds. (44)

Proof. —It is easy to observe thatif #i or i’ =i and (43) (or (44) in the case 3.2)
does not hold then every subblo@k” of I differs from the corresponding fragment
in Il at least in one position. Since< 2—1{ this would imply the converse inequality
in(42). O

In Propositions 2—6 the blocks, (i) = b (i), k € Z,, 0<i < r, are those defined
in3.1.

PROPOSITION 2. —Let
I =0bp(0)...bo(r — D[O, rir; — J =1

1
H=b,(0)...00(r —D[j,rr, —1], j< Er)»l, keZ,.

1
d(I, ) < 13 (45)

thenj < 31, k=0, and

j =0(modnr2th). (46)
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I I i
| |
| |
| bU(O) bo(l) | | b()(’r‘ - 1)
: — 5 = | |
| 1 [
— : N
| == u
(@ | be(D) be(r—1) |
| |
| |
| |
f 17 !
Fig. 1.

Proof. —If j > %/\t then we can find subblockg of I andll; of Il such thatl, is

under/; (see Fig. 1) having the form (41) with differejits and withi" #i.
It follows from Proposition 1 thad (13, 111) > rz% and using (11) we obtain

d(l ||)>&d(1 ) > ——
I Vi = Sk

in spite of (45). Thereforg < 14,.
It follows from (11) and (45) that

1 .
d(Il’”l)<r2r—+2 fOI’lZO,...,I’—l,
where

I =bo(DH[0, A, —j — 11, W =be(D)[], A — 1]

Then (47) implies (43) to hold for each=0, ..., r — 1. In particular taking =

we get
—krd + 2krd = anr4.
Thusk =0in Z,. The proposition is proved. O
PROPOSITION 3. —Let

1
I=bi(besa(i +DI0.20 = j =10, j<Shi h=h,

Il = b, (Db, + D[j,2x —1], i=0,....r—2, k ki, ko €Z,

andk, =ki+1ork, =k — 1.
If

dW) <

(47)

01

(48)
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then
(kikp) = (k,k+1) or (kiko)=(k+4,k+3) ifn=>3 (49)
and
(kiko) = (k,k+1) ifn=2 (50)
Proof. —It follows from (48) and (11) that

1
d(11,117) < W
and
1
d(I, 1l,) < ,»2r—+2’
where

I =b()0,A—j—1], Hi=by,()[j, 1 —1],

I =bi (0 + D02 —j—1], Wa=by,( +D[j, 2 —1].

Now, we apply Proposition 1. It follows from (43) that
k—ki =2k +1—k) (modn).

The above condition implies (49) and (50)0

PROPOSITION 4. —Let

Ly =b(r = Db (0)[0, 20 — j — 1] or [ =b(r — Db41(0)[0, 24 — j — 1],

1
Il = by, (r = Db, (0)[j,2h =11, k,ki,kp€Zy, j< E)»,,

and
ko=ki or ky=ki+1 (51)

If

d, ) < i [=1orl,
For+4

then

ki=ky=k fI=1I and ki=kk=k+1 ifI=1I (52)
whenever

(2 t-1n)>1, (53)
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and there is a uniquée Z, such that

(kiky) = (kk) or (kiko) = (1,1 + 1) and! satisfies
(2t - =@ *-Dk+1inZ, ifI=1I,
and (54)
(kikp) = (k,k+1) or (kikp) = (I1) and! satisfies
(2t-1y=2'-Dk-1inz, fIi=1I,
whenever
(2’_1 —-1n)=1 (55)

Proof. —Using the same arguments as in the proof of Proposition 3 we obtain
from (43)

(k1 — k)2 =k —ky (modn) if I=1I,
and
(ky — k)2t =k —kp+1(modn) if I=1I,.
The above, (51), (53) and (55) imply (52) and (54) respectivety.

The next proposition is an easy consequence of (9) and the definition of the block:
b0),...,b(r —1).

PROPOSITION 5. —Let
Li=b [0, —j—1, W=b(Dlj, 4 —1l,
jg%k,, kleZ, 0<i<r—1L1
If j =0 (modnr2+1) andk # 1 then
d(;, ) =1
PROPOSITION 6. —Let
I=b xC, Wl=bxD[j,j+xrD -1, 0<j<rr—1,

where|C| > 3r, |[D|=|C|+7r, C,D C w41 (see(21))and C = w, 1[pr, pr +|C| —
11, D = w;qalgr,qr +|D| = 1]. If

1
then either
j<8r2*tty, and d(C,Dy) <$ (57)
or

rhe —8r2tn, < j<ri, and d(C,Dy) <38, (58)
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where

1
Dy=DI0.|D|~r 1] if j < Srh,

) 1
Dy=DIr,|D|=1] if j>Zrk.
Proof. —We can represer and D as
C=CC,...Cq, D=DiD5...D;Dy 1,

where
|C1l =-+-=|Cs| =|D1| =---=|Ds| = |Dsq1l =1, 5 2 3,

and everyCy, ..., Cy, D, ..., Dy, is equal to one of the blockg, &\, k € Z,, v =
0,...,r — 1 (see 3.5). Assume thgt< 3r2,. Using (12) we get

s

d(I,II)=:;LZ(b>r<Cp,Ap), (59)

p=1
where
Ap=(bx D,)(bx Dp1)lj.j+ri —1I.
Then (56) implies that

r 1
d(b X CP’AP) < W
for at least onep. Using the same arguments as in the proof of Proposition 2 we obtain
J < G
Let

0={1<p<s, C,andD, are equaky, ¢, for somek, ! € Z,}.
It follows from the definitions ofv, w, andb’’s that

1

This inequality, (56), and (59), imply
1

= N"d(bxCp A, <
0l =

1
722r+3°

Now we conclude that there is at least gne Q such that
r 1
d(b X CP’AP) < m

It follows from Proposition 2 thaj = 0 (mod nr2'+1).
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I Lo :Em : L1 :Zzn :
| | | | |
S I b0 (0) 1 ! b (D) | ! oy oy (P = 1)
~ [ I | I | - - - -
| | | | |
| | | | |
| | | | |
L © 1 B @ 1 bty (r = 1)
IT ~ f T f 1 - - — - -
| | | | | |
Fjt+—X—J5 — | | |
| | | | |
b— Mo —+Mio+—— M1 —+M114

Fig. 2.

Now, using (10) and (12) again we get (see Fig. 2)

r—1
d(I, ) = %Z(j((l— —) Zd(Lm,Mu,) + = Zd u,)) (60)
where
Lui = be,iy(DI0, A — j =11, My = b, 131, A — 11,
Ly = b,y — j. A — 1, My =bj, ;G +DIO, j —1].
It is not hard to remark that if #0

d(Lui» My;) > r2:’L+1 (61)
foreveryu andi, 1<u <s, 0<i<r—1 Let
a=#{0<k<|C|—1,C[k] # D[k]}.
Then using Proposition 5, (60) and (61) we get
§>d(I, ) > (1 Sy s ! ) (62)
|C| Aeo Agr2rtl

The above gives

j al
8> (1——)>
|C| IC|2

and theng; < 25. This inequality, (56) and (62) imply

a j 1 a a j 1 > a
§ > 26 —=d(C,D
e <r2r+l |C|> il n (r2r+1 = o) =4C Py
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We have obtained the second inequality of (57). To get the first inequality of (57) we
use (62) to obtain
j 1
6> ———.
~ A r2rtl
This implies (57). We have proved the proposition i %rkt. The case}rkt < j<ri
leads to (58) in a similar way. The proposition is provedi

PROPOSITION 7. —Let
[=B'xC, =B xD[j,j+m|D—1, 0<j<p —1

whereC and D satisfy the same conditions as in Proposittrif

dl, 1) <és, §< &27]2;“,
then either
j<6r2tp, and d(C,Dq) <36
or
)2 —8r2r+1pt <j<p, and d(C,Dy) <3,
where
Dy=DIODI~r—11 it j<5p
and

. 1
Di1=DJ[r,|D|-1] ifr> Ep,.

Proof. —We use an induction argument and can repeat the proof of Lemma 3 from [8,
p. 198], using (8), (9), and also using Proposition 6 instead of using a Lemma 2 as in [8
p.196]. O

3.6. d-bar distance between blocks—the case 3.2

Using the same methods as in 3.5 we can estimate the distance betweerbplocks
andB; (i), i =0,...,r =1, ke Z,, t >0, defined in the case 3.2.
As an easy consequence of Proposition 1 we get

PROPOSITION 8. —Let
I=b,(0)...b, ,(r =[O0, rA, —j—1],
y=bi,(0)...bx_,(r — D[j,ra, — 1],
j < 3ra,, where(lo, ..., 1,_1) (resp.(ko, ..., k1)) is of the formé; or &’ (resp. or
&), k,1€7Z, andv,v' =0, ...,r — 1 If

1
d(l;, 1) < m
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then j < %A, and there is a unique € Z,,s = s(¢), such that/; = k; + s for every
i=0,...,r — 1. Moreover; has a form

j=m—syrd+anrd, a>=0.

As an analogue of Proposition 5 we obtain
PROPOSITION 9. —Let I, Il be as in Propositiorb,

1
Jj< E)” and j=(n—s) (mod 4n)

for somes € Z,,. Then
d(I,ll)=1 whenevek —1[ #s.

Then using Propositions 8 and 9 we have

PrRopPoOSITION 10. —Let 7 and Il be as in Propositio and
|ICl=r, |D|=|C|+r, C,DC w1,
C=wpulpr,pr+|Cl =1, D=wulgr,qr +|D|—1].

d(1,||)<8, 8<W,

then there is an uniquee Z,,, s = s(¢), such that
j<é&r2tly, and d(C,Dy) <38

or
ra —8r2 I\, < j<rir, and d(C,D;) <3,
whereD; = D[0, |D| —r — 1]=C +sif j < 3Ar, and Dy = D[r, |D| — 1] =C + s if
Jj> %r)»,.
Using arguments as in Lemma 3 in [8] and Proposition 10 we get

PrRoPOSITION 11. —Let] and Il be as in the PropositiodandC, D satisfy the same
conditions as in Propositiod0.
If

d(1,||)<8, 8<W,
there exists an uniquee Z,,, s = s(t), such that either
j<8r2*ttp, and d(C,Dy) <$

or
pdr2p, <j<p, and d(C,Dy) <38,
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where
R §
D,=D[0,|D|—r—1]+s |fj<§p,

and

1
D1=DI[r,|D|—1]+s ifj> Ep,.

3.7. Thecentralizer of T, (continuation)

In 3.4 we have proved that(7,) consists of the elemen#o o,, whereR is a limit
of powers ofT,, ando, is defined by (4)a € Z,. Now we are in a position to show that

C(T,) _ {n in the case 3.1,
"wel{T; nez} |1 inthecase 3.2,
LEMMA 3. —If the case3.1 holds ando, € C, thena =0.

Proof. —Let us suppose thd} — o,,, a € Z,. Then Corollary 1 says that™) — a
in measure. Let

g =p{xeX; o"(x)#al. (63)

We haves;, — 0. Now for everys find ¢, such that
D B (64)
Py r

To shorten notation we let.=r, + 1,7 :=¢,. Takex € D';. Then using (18) we get

() = B'Lj +n,] — B'Lj] (65)

except of j's satisfyingm, — 1 —n; < j<m, — 1 2m —1—n, < j < 2m —
1 ..., pp—1-—n,<j< p;,—1 Then (63) and (64) imply

1
—#0<j<p,—L B'[j+n—B'[jl#a} <& +e& =2s.
Pt

This means that
d(B'[0, p, —n, — 1], B ,[ny, p: — 1]) < 2.
We can write
B'=B xb', B =B xb,.
If &, < =255 then we apply Proposition 7 to the blocks= B’ x b andll = B x b' .
As a consequence we obtain
d(b',b",) < 2.
This equality implies (Proposition 2)= 0. The lemma is proved. O
From Lemmas 2 and 3 we obtain
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THEOREM 2. —
c(r,)
Wcl{ ,nez}

if the case3.1 holds.

Now, we examine the case 3.2. It follows from the definition of the bldgks) =
by(i),i=0,...,r —1,a €Z, that

b)H)[(n—a)dr, . — 1 =b,()[0, . — (n —a)dr — 1], (66)

foreveryi =0,...,r — 1.
Setn; = (n —a)4rp, 1. Then (66) implies

B'(\)[j +n]—B'@jl=a

for j=0,...,p,—n,—1,andi =0,...,r — 1. (65) and the above imply"’ (x) =a
except of a set of measurer - < 4;?”.
Hencep™) — a in measure which implies thd}'” — o,,, a € Z,. We have shown

thato, € C, for everya € Z,, and as a consequence of Lemma 2 we get

THEOREM 3. —

g CT)
“wel{(Tr neZ)

if the case3.2 holds.
THEOREM 3. —wcKT”, n € Z} is uncountable.

Proof. —Let

o0
80 = Z U Pr—1, Uy =W, (rm2r+1)
0

in the case (3.1) ang, = w,(4rn) in the case (3.2) & u, < rX, — 1 and assume that

me( l—§> < 00.

Repeating the same arguments as in Lemma 4 of [9] we can construct a measurab
function f : X — G such that

f(Tx)— f(x)=p(Sx) —p(x), fora.exelX.

Thus the tripleR = (S, f,id) € C(T,). Of course, there is a continuum gf's in X
satisfying the above conditions. HenC&T,) is uncountable. Then Theorem 2 and 3
imply wel{T,, n € Z} is uncountable. O
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4. Rank of T, isr
In this section we use the shift representatie,, 7,,) of (X x Z,, T¢) (see 2.3) and
the definition of rank given at the end of 2.2.
We will also require the notion of-cover: letA be a (finite) family of blocks and
a block such thatB| € {|A]: A € A}, we let
d(B, A)=min{d(B, A): A€ A, |A|=|B|}.

If A={A,,..., A}, Cis ablock, and > 0, we define

Cil+---+|C
ta(A,C):ta(Al,...,Ak,c):max{| 4+ pl}’

IC]

where the maximum is taken over all concatenations of the form
C= €1C1€2 cen EPCPEP-FJ-

for which d(C;, A) < §, 1< i < p. Then we define, for a strictly ergodic one-sided
sequence,

15(A, @) = liminf 1; (A, [0, N1) (= lim 15(A, w[0, N1)).

In particular,z; (A, w) is defined for a single blocK, or if w = C is finite.

It is known ([3,20]) that in the case under considerationrdrk of ($2,,, S, 1,,) IS at
mostr if for any § > 0 and anyN € N, there exists4 of cardinalityr such thatA| > N,
Ae A, and

ts(A,w)>1-36.

This definition agrees with that of sub-section 2.2.
Given a one-sided;, someé > 0, and a family.4 of blocks, we will say thathe
subsequencg of n (finite or infinitg is §-covered byA if ¢5(7, A) > 1 — 8.

4.1. Thefrequenciesof ¢-symbols and an estimation of the rank
Let Fr(E, w) be the average frequency ofraymbol E (see 3.5) appearing in at

natural positions. Similarly, let k¢, w,) denote the average frequency of a “smal”
symbole appearing ino, at natural positions. It is easy to get the following equalities;

1=t 1 1 121
FI(Ey, @) =Fr(e,, o) = — Z(l— 2i+2) =- [1— - > 2{4
and i=0 i=0 (67)

1
Fr(E,ES), w) = Fr(e,ﬁ”, w;

):W, S:O,...,r—l,kGZn,
rn2¢
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if the case 3.1 holds. In the case 3.2 we have

3
Fr(Ekv Cl)) = Fr(Ek, wl) = >

4n (68)

1
FI(EY, 0) = Fr(ek,a),)_m, k€Z,s=0,...r—1

PROPOSITION 12. —r(T,) <r
Proof. —Consider the blocks

LY=LY@t =B x bt s), s=0,....r—1,t>0 keZ,.
We have
E, = L,((O) o L]((r_l), E(s) L(O) ) Lks—l)L]((:)_lLl((s—i-l) o L]((r—l)

foreveryk €7, ands =0,...,r — 1.
Because the bIocksEk,E“) cover completely the sequence then the blocks

LY .. L™V ke, also covem.
We know that

b'(s)[0, Arq — knr2 ) = bHO) [knr2 T A1 — 1],
ke, s=0,...,r—1, if3.1holds
and
b'"H($)[0, A1 — knrd] = b (O) [knrd, A1 — 1],
keZ, s=0,....,r—1, if3.2holds.

The last equalities imply that the blodk;’ cover each block.("”, k € Z,, except
of a part with the length< n?2"*+1p, in the case 3.1 and n?4p, in the case 3.2, for
s=0,...,r — 1. Thus the blocks.y’, ..., LY " cover the sequenae except of a part
with the den5|ty< n?2' /x4 if 3. 1 holds and< n?4/1,.1 if 3.2 holds. Simultaneously

ILY (1)] =3 o0. According to the definition of the rank (see 2.2) we ha{g,) <r. O
4.2. Special subblocks of o,

Fix r > 0. We distinguish special subblocksof w, of the forma’ % C, whereC is a
strict subblock of one of the following blocks (cf. 3.5)

erex, eke,is), e,(f)ekﬂ, keZ, s=0,...,r —1,
wheree, = e, (t + 1), el = e (t + 1), (69)
if the case 3.2 is considered,
or
(s) () () (s)
CrCLCLC, ELCLELEL ", € €LEL " Eki1, €€ €f41€k41, € Ch41€k+1€k+1,
keZ, s=0,...,r—1, (70)
if the case 3.1 is considered.
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Notice that blocks (69) are all pairs of “smallf + 1)-symbols appearing i, 1, as
well as the blocks (70) are all possible quadruples of “sm@Hf 1)-symbols appearing
in w,,1. Let us list the different cases we shall deal with afterwards:

(A) C C b,ﬁjl(io) for somekg € Z,, andig=0,...,r — 1 (cases 3.1 or 3.2);

(B) (the case 3.2f = by, Qo) - . by, (r — D by.. NN GY) whereb(i) = b't1(i),
i0>0,i1<}"—1.

E :=(kiy...k-_1lo...1;) is contained in one of the following blocks;

el ee)), e, keZy,s=0,...,r—1, (71)

and 2< |E| < 2r; .

(B") (the case 3.1y = bkio (i0)..b, ,(r — 1) | byy(0)..by, ,(r — 1) | byy(0)..by, ,(r —
1) | blo(o)--blil(il) and E = (kio ook | ug...u,_1 | vo...v_1 | lo. . .lil), 2< |E| <
4r,ip > 0,i1 <r — 1, is contained in one of the blocks

Grexerlr, Grenerey , enerly Tri1, ey Crp18iat. & Crp1liiifirt.  (72)
In general we can write
C =C1C,C5 (73)
whereC;, is as in (A) or as in (B) (the case 3.2) or'jBthe case 3.1), and

{ C1=bj io— Dllir, A — 1],  Ca=bi i1+ DIO, lr — 1], (74)
O<ll<)\._1, 0<l2<)\._1, )\.:)\.t_l’_l,
andk'Ek" is contained in one of the blocks (71) or (72) respectivellyi¢ defined
Then we can distinguish the next special kinds of blocks (73) for giverd:
(G1)|C4l/IC| > and|C3|/IC| > 4,
(G2)|C4l/IC] > 6 and|C3|/|C| < 3,
(G3)|C41l/ICI < 8 and|C3|/|C]| > 3,
(G4)|C1l/ICI < 8 and|C5/IC| < 6.

43. r(T,) =r: thecase 3.2

Take 0< 82 < 1/(r22%+3),

PROPOSITION 13. —Assume tha€ is as in(B) and letd(C, D) < 8%, D C w,. Then
D has a form

D= (b x D)[j,j+|D|—1], whereD C w1 (75)

and

io r—1 0 i1 i1+l (76)

D=0bjY o) ...b r — 1) | b0 ... b )b 1+ D),
and j < 8%r2 1, [ 4 € 7y
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or
D is as in(76) and

77

{ J>rhip1— 52”2r+l)\z+1- "

Moreover, there is a uniqug € Z, such that
(kg .K._y 11§ .1}y =(ko. .. ke—1|lo...1i}) + 50
if (76) holds and
Ky k1. 1 )= (ko...k—1]lo...1i}) + 50

if (77) holds.

Proof. —The proposition is an easy consequence of the Proposition 10 wisdeken
instead of +1 (8% < 1/(r?2%+3) < 1/(3r22+%)). O

Given a blockA C w or w;, A = w[l,l + |A] — 1] we defineA(8) as A(S) =
o[l —8|A|, 1+ |A| + 8|A] — 1], 8§ > 0. The next proposition says thatdf is as in (G1),

(G2), (G3), or (G4), there is a bloak’ = b x € such thatC is as in (B) and eithe€
containsC or C is contained inC(8;), wheres; < §2r27+1,

PROPOSITION 14. —Let C = b' x C and letC be as in(G1), (G2), (G3) or (G4).
Assume that

2

d(C, o[l 1 +]C|—1]) < % (78)

Then
d(C oll',I' +|C') - 1]) < §°
whereC’ = b’ % C C,CC w41 and
(91) C = b io — DCobli (is + 1), I' =1 — Iyr (cf. (73), (74)), if (G1) holds,
(92) C = b\ (ig— 1)Co, I' =1 — Iyr, if (G2) holds,
(93) g c_zb,fjl(il +1),1' =1, if (G3) holds,
(g4) C = Cy,I' =1, if (G4) holds.

Proof. —Consider the case (G2). Then (11) and (78) imdly = »’ X C»)
d(b' x Ca.yllz. Iz +|Cal — 11) < 87
wherel, = [ + |b' x C).

It follows from Proposition 13 thaw, [l>, [, + |C,| — 1] is of the form (75). Assume
that the case (76) holds. Set

C1=C4[0, |Cq| — j — 11,

—~ 1 1 ~ ,
D1 = w41 A_(l_j)’x_(l_j)-HCl'_l (see Fig. 3)
t

t
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| & |
| |
LG, — c Ly~
Lo 2 IR
b Lo
I—Cl—l | | |
! by (i0 — 1) ; b’”i(] (i0) I ! bk,‘71 (r—1) ! bl[) (r—1) I ! b’”’il (i1) ; by (i1 + 1) I
| : | : | | | : :
| | | | |
I :_5 _|.J [ [ [ : :
! — oo - o S |
| | bk,(] (i0) byr B (r—1) by (0) by, (i1) b,,1 (i1 + 1)
[ | |
P |
| weril =), 0~ ) +1€1 1] :
Fig. 3.
If follows from Proposition 8 that
j=(n—so)rd (mod &r). (79)

The fragment ofv,; from the left side oﬂ)’“(zo) having the length.,,; is of a form
b{jl(zo —1) and eithe = k' +sqg oru =k’ + so + 1. Assume that: = k' +sg+ 1. Then
Proposition 9 implies

d(C1, Dy =1. (80)

Let D; denote the bIochlH[A—ll(l -7, i[(l — j)+|C1| — 1] (see Fig. 3). Obviously we
have

C (11),(8)
%d(cl, D) < d(C.ayll,l+|C|—1]) <82
Further
Cil —
52> ﬂd(CLDl)wd(cl,Dl) ﬂsd(CLDo@" =7
IC] 1ol 1ol

i\ (G2 i\ (76 82r27 1)
=5(1—4) > 5(1—4) > 5(1—#) > §(1—8r2 ),
|Cal 8IC| 8IC|

becauseC| > A, 1.
Thus

1-6r2tt <5

which is in contradiction with the inequalif < 1/(r?2%+3). We have showm — k' =
So = k(/) - ko.

Now, using (79) and the definition @, (ip — 1) and b, (ip — 1) we obtainC[v] =
wy[l" + v] for eachv = . |C1l —1,1" =1 —I1r (see (74)). This last equality implies
(92). The proofs of the remalnlng cases are similamn.
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PROPOSITION 15. —Assume thatF = {Cy,...,Cy},d < r — 1, is a family of
subblocks ofy, such that

C;=b' xC;, and eachC;isasin(B). (81)

Letw, (F) be the maximal subsequencexgfthat can bes?-covered by the family” in
a disjoint way,8? < 1/(r22¥+3), and let®, (F) be the complementary part @f. Then

it is an union of at leas{r — d) blocksb’ X b‘+1(i,-), j=1...,r—d.
Proof. —Denote byZ; the set of all blocks™ € F such thaiCs?-covers a subblock of
w41 containing one of the form

P b i+ 1), i=0,...,r—2,

and byF,_; thoseC for which C §2-covers a block containing *(r — 1)b'*(0). We
show thatF; N Fi= @ whenever # j. TakeC € F;, D € F; and letC, D be the blocks
defined by (81)C as in (B) and

N _ i+l t+1 _ t+1 t+1,./
D_bk;é (lo)---bk;_l(’ 1 |blé (0)...19,;/l (i7).
If (lo...(r —1)|0...i1) # (i5...(r =1 | 0...ip) thenC # D. If (ip...(r — 1) |
0...ip) =(iy...(r —1)]0...i}) then using Proposition 13 we obtain
(kig - k1 [ lo. .. 1iy) = (kjg ... K,y |15 1) + s0
for somesg € Z,,. The last condition is impossible sinée# j. The proposition follows
because f#F;; O<i<r}=r. O
THEOREM 4. —r(T,) =r.
Proof. —According to Proposition 12 it remains to show thél,) > r — 1. Let

82 1
9 = 20248

and letAy, ..., A, be blocks occurring im, |A;| > p,, andz, satisfiesr/A, < §%r2"+1,
if t >1,x <r—1 Foreachu=1,...,x there exists an unique= ¢ (z) such that4,
contains at least onresymbol and does not contain atw+ 1)-symbol. Then4, has a
form

Ay =Ey(B1 % C,) Ea, (82)

whereC, C w;isasin4.2)C,| =qr,q = qu) > 1, E; is aright-side part of asymbol
andE; is a left-side part of a-symbol. We divide the s€t (1), ..., ¢(x)} by arithmetic
order. More precisely, we put

rn=max{r(1),...,1(x)}, Tv={u;t(u) =11}, d = #T.
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Next we define
o =max{t(u); u ¢ Th}, o= {u; t(u) =1}, do = #T>.
Similarly we define set%3, ..., T,, numbersrs, ..., 1, andds, ..., d,. We have
Ty > > Ty, di+---+d,=x.

Let
A,={A;; ueT,}, p=1...,v.
The familiesAq, ..., A, are pairwise disjoint an@;:l A, ={A1,..., A}
Consider the family4,. Assume that

A1={Aq,..., Adl}-

Then
C,=b'xC,
and
éu Cwiy1, uel,t=r.
If d(A,, o[l,]+|A,| — 1)) < §2/9 then by (11), (8),

r 82
d(B"™' x Cyyll, 1 +m_1]C,| — 1]) < 3 (83)

wherel =1+ |E4|.
According to Proposition 11

2

)
d(Cyy o ll',I' +1C,| = 1]) < 3 (84)

for somel’ € Z and
1
[l — pl'| < 582r2r+1p,. (85)
We can write
éu _ éu(l) C:u(Z) C:u 3
according to (73).
We distinguish among the blocls,, . .., A, three typesF;, >, F3, as follows;

A,eFy if C,isasin (A)or (G4)

A, eF, ifC,isasin (Gl), (G2), or (G3)

A,eFs if C,isasin (B)
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Letdy, = #F1, dio =#F>, dlg = #f3. We have
di1+dip+ diz=ds.

Letw(A1, ..., Ay) be a subsequence ofthat is%—covered by the blockd;, ..., Ay

in a disjoint way. Byw (F;),i = 1, 2, 3, we denote the subsequenceag-covered ina
disjoint way by the familiesF;. Of coursew (A1, ..., Ag) C @(F1) Uw(F2) Uw(F3).
Denoting byw(Aq, ..., Ag), o(F;) the complementary parts @f(A1, ..., Ag). o (F;),

i =1,2, 3, respectively, we have

(A1, ..., Ag) D o(F1) Nw(F2) No(Fz).

According to (83)—(85) and Proposition 15 we have théF3) is an union of at least

(l‘ — dlg) b|0CkSE(51), (86)
where
E=B'xb*li;), j=1.....r—dy and (87)
81 < 28%r27 1,
because of
E,| 8 1 E, 1
| E1] < p _ 1 -5 and |2|<—81.
[ Ayl M1 A1 2 A, 2

Consider the familyF,. Let A, € F>. If A,%—covers a fragment, of w then (83) and
(84) imply thatC_L,%-covers a fragment, = I,,(¢) of w,,, and (85) implies

I, C (B X 1,(t)) (81).

It follows from Proposition 14 that there &; of a form as inF3 such thaf,;%—covers
another fragment; (¢) of w,,, such that

1, (1) C Li(1)(9).

Applying Proposition 15 to the familyA;} we obtain thato(F3) N @(F2) is an union of
at least(r — d13 — d12) blocks E(8,), E is as (87) and, = max(é, §1).

Each blockE (85) € w(F3) N @w(F») is an union of at leastr — d13 — dq») blocks of
the form B! x e k € Z,,,s € S, #S = r — d13 — dy2.

Using the same arguments as before we get that

of atleast(r — di3 — d1» — d1) blocks of the forma'—1 x e, (88)

{ o(F3) Nw(F2) Nw(Fy) is a union
NS S]_, #S]_ =r — d13 — d12 — dll-

Denoting P (w1, w) the density of a subsequengg in w and using (69), (86), (88) we
have
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P(@(A1, ..., Ag), ) = P(d(Fs) Nd(Fo) Na(F1), o)

1 \2
> (12 (1) (5 ) @
r r 4dnr

(-3 (o) am00=(-1) (o)
- r Anr 2z r dnr) 2
If 71 #{1,...,x} then we repeat the above reasoning to the subsequei®g N
o(F2) Nw(F1) andr = 1,, and so on. As a consequence we get

P((Ar..... Ay) >>(1 1)2’1(1)2’
w 1y .0, Ax), W) =2 - o Anr .

This impliesr(T,) > r — 1. Thus we have shown(7,,) =r. O
44. r(T,) =r: thecase3.1l

To prove that (7,) = r in the case 3.1 we can repeat the same arguments an in 4.3,
Similarly as in the Theorem 4 we consider blocks u =1,...,x,x <r —1, andA,

are as in (82)C, = b' x C, butC, are as in (A), (B and (G1), (G2), (G3), (G4).
As an analogue of Propositions 13—-15 and Theorem 4 we obtain

PROPOSITION13. —Assume tha€ is as in(B") and letd(C, D) < 62, D C w,. Then
D has a form(75), and

D =by (i0)-by (" 1) | by(©).by_ (7 1) |5,(0).byy (r—1) | b (0).y (i),
0 r r r 1

be(i) = b (i), and j satisfies eithe(76) or (77).

PROPOSITION14. —Let C be as in Propositiorl4, C is as in(73)and C; is as in
(B'). Then we gefgl), (92), (g3)or (g4).

The proofs of Propositions 1&nd 14 are similar to the proofs of Propositions 13
and 14.

PROPOSITION1S . —LetF =({Cy,...,Cy}, d<r—1, C; =10 X C, andC; are as
in (B’). Then we have the same thesis as in Propositfan

Proof. —-Let F;x,i =0,...,r — 2,k € Z,, be the set of all block€ € F such that
C(C =b' x C)82-covers a subblock af, ,; containing one of the form ™ (i)bA (i +
1). By ]—"f?lyk,fﬁ)lyk we denote thoseC € F such thatC does so for the pairs
b (r — DbLTH0) or b (r — 1)bL 11 (0) respectively.
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Using Propositions 3 and 7 we get that

if C e F;x thenCs2-covers (up tadr22"+3x,,1) only those

fragments ofw, 41 containing blocks of the form

89) bt x &tV orp*t x &), if n >3, (89)
and

(89") b+l % -(l+1) if n =2,

wheneveli =0,...,r — 2,k € Z,. Using Propositions 4 and 7 we get that

if C e 7, , thenCs?-covers only those fragments
of w, 1 containing blocks of the form

90
(90) b (r — DbLTH0) or b (r — DbiF1(0), 40)
[ satisfies (54),
and
if C e 72, , thenCs?-covers only those fragments
of w, 1 containing blocks of the form (91)

(91) b (r — DbEI(0) or b (r — 1)bi T (0),
[ satisfies (54).

Now notice that each two blocké™! x ¢\ andb'+! x e’ k' € Z,. k # k', appearing

in w41 are separated by at least three blocks of the form
b+ % e;41. This, (89) and the conditioE| < 4r (see (B)) imply that %, , N F;x = 7,

if k#k,i=0,...,r —2 Similaly £, , nFP, , = and F? , N F2, . =0, if
k#Kk.

Further (89) implies that itC € iy N Fyp theni’ =i+ Lk =k+4ifn>3
(89) andi’ =i,k =k if n=2(89")),i=0,...,r — 2. (90) implies that ifC €
FPnF2,, thenk’ =1,1 satisfying (54). Comblnlng the above arguments we get
that there is at leas§ — d fragments ofw, 1 of the form(89) and (90) or (91) that are
not covered by the family=. The Proposition follows becausk >r. O

THEOREM4'. —r(T,) =r.

Proof. -We repeat the same reasoning as in the proof of Theorem 4 using blocks
Aq, ..., A, of the form (82) withg > 3. We use Proposition 7 instead of Proposition 11
and the Propositions 14nd 15 instead of Propositions 14 and 15. Then using (67)
instead of (68) we get

UL @ r) 2 \rn2tt) ’

what impliesr(7,) > r — 1 and by Proposition 12 we haveT,) =r. O
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5. Pairs (r, o0) or (00, m)

In this part we construct group extensio® x G, T,) such that(7,) =r, ¢(T,) =
00,2<r <ooorr(Ty,) =o00,q(Ty,) =m,1<m < oo.

5.1. Thecase (r, o)

Take a sequence, )72y, Si+1 = Me+15:, So = Mo, 4y = 2 for t > 0 and letG be the
group of{s,}-adic integers. Le¢ = 1+ 0s; + Op, + - - -. The set of all{s,}-adic rational
integers ofG coincides with the sdfe,,, n € Z}, wheree, = ne. Similarly as in the case
3.1 we define an adding machin, 5, 1, T) and a cocycle : X — G. To do this we
define blocksF©@, FV .. F¢=D (r > 2 is given) overG.

Put
r(21+1—1) r
; : — —N—
FOt)=F"?=10...00...00...0, i=0,...,r—1,

i i i (@)
HO=FOF® _F; ..

Then|H?Y| = 5,r2't1. Next define’ (0), ..., b'(r —1) asin 3.1 and’ = ' (0)...b' (r —
1),:>0.

We have

Le=|b" ()| =52t i=0,...,r—1
and
|bt| — Sl}’22r+l+l.

Then we define the block®', ¢ > 0, by (14). We have, = |B'| =sq...5,r%2+1(2+1 —
D). Let (X, B, u, T) be the{p,}-adic adding machine and define a cocygleX — G
by (18).

THEOREM 5. —r(T¢) =r andq(T,) = o0

Proof. —Let I, : G — Z /s, Z be the natural group homomophism. We can define
cocyclesy,: X — Z/s,Z by ¢; = ¢ o I1,. It is evident thaty, is ar-Toeplitz cocycle
as in 3.1 defined by the blockd,(B;),u > 0. According to Theorems 2 and 4 we
haver(T,) =r andq(T,) = s;. It follows from the definitions ofp and ¢, that the
dynamical systemX x G, T,) is the inverse limit of the systemsX x Z/s;Z, T,,).
Then from the definition of the rank we obtai7,,) = r. It is proved in Theorem 2 that
oje¢wWclT), ne Z}if j=0,...,5,—1, t > 0. This means that;, ¢ WcI{T;, neZz}
foreveryj € Z, j # 0 which impliesq(T,) =co. O

5.2. Thecase (o0, m)

First consider the case > 2. Letr, = 2'+1, ¢ > 0, and define block&® = F®(r)
overG=Z/mZ,i=0,...,r.1—1, as follows:

2+, Ti41

. —
vF(’):0...OO...0\%/0...O,
i+1
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HO=F'F" . F), i=0...ra-1

We have|H"| = mr,2+3. Next defineb’ (0), ..., b’ (r,.1 — 1), b, B by putting
—_—
b (i)y=HYHD .. .HD, x=2tm-"t
b =b'0)b'(1)...b'(r,e1— 1), and
B =b® X bt % X b,
Then )"l‘ - |b[(l)| - m221+p+2, p - rt_;,_l and Pt - mtrt+l, m; = )\.0 . ')\'t- We deflne a
cocyclep : X — G by
@(x) =B'[j + 1] = b'[/]
if x € D% exceptifj =m, —1,..., p, — 1. The cocycley is constant on the leveld;
except ofr, . ; consecutive levels.
In a similar way we construct a cocycieif m = 1. Takern as in the case 3.2 and
define
2ry 2ry
: ; N ————— N —
FO9()=F"=0...00...0_1 0...0,
—~
i+1

HO=FFP . FY, i=01... ru—1

The next steps of the definitiogn are the same as in the case> 2.
THEOREM 6. —r(T},) = 00, q(T,) =m andwcl{T", n € z} is uncountable.

Proof. —For the dynamical systeniX x G,T,) we can use the same arguments
as in the parts 3 and 4 taking instead ofr. Theorems 2, 3 and’ &are valid. To
estimate the rank df,, we use the shift representatio(@w, 7,,) of (X x G, T,)) where

w=0%X b1 X --- . Repeating the proof of Theorem 4 aridwe getr(T,) > r, — 1 for
everyt > 0. Thusr(T,) =co. O

6. Thepair (o0, 00)

This case is easy to handle: first 1éY, S,v) be the rank 1 mixing staircase
transformation [1]. Then le; denote the group of dyadic integers, andriet denote
its normalized Haar measure.

Then consider Morse cocyclg23] ¢:Y — G, that is a measurable map which is
constant on the levels of the stacks defining the rarsk éxcept the top level, at each
step.

To select a such that the systeriY’ x G, S,, v ® m) is mixing, where

Se(v,8)=(Sy.g+o(»),

we proceed as follows.
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The system is the inverse limit of the sequence of syst@ms Z/2'Z, Sy, v @ m,)
wherem, is Haar measure 0d/2' Z and¢; = 7, o ¢.

Therefore [13] enough is to make sure thatis such that eacts,, is mixing.
Using [24], sufficient is that eac), is a weakly-mixing cocycle. This in turn is easy
to ensure using [14, Theorems 3, 4].

So we take @ such thatS, is mixing. Now becaus§,, is a factor ofS,, we have the
inequalityr(Sy,) <7(Sy).

But sincesS,, is mixing, using [12], it follows that (S,,) = 2'. Whencer (S;) = oo.

Now S, is mixing therefore{S;: n € Z} = wcl{S;: n € Z}. Else for eachg € G,
o, € C(S4), andG is uncountable.

We deduce thag (Ss) = oc.
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