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ABSTRACT. — Let p €10, 1/2] and assign to the integers random varialjtes}, taking only
the two values 1 ang, which serve as an environment. This environment defines a random walk
{X,} which, when atx, moves one step to the right with probability:, and one step to the
left with probability 1— w,. In particular, at the nodes, i.e., at the locatiansith w, = 1, no
backtrack is possible. We will assume that the spgeadf the random walk is positive. We then
investigate, fow < v,, the decay of the probabilitié’,[ X, /n < v] (for fixed environment) and
P[X,/n < v] (averaged over the environment). These probabilities decay subexponentially anc
there is a wide range of possible normalizations, depending on the distribution of the lengths o
the intervals without nodes. We show that in fact only the behaviour of the length of the largest
interval without nodes (contained [0, n]) matters.0 2002 Editions scientifiques et médicales
Elsevier SAS

AMS classification60J15; 60F10; 82C44; 60J80

Keywords:Random walk in random environment; Large deviations; Extreme values

RESUME. — Soitp € 10, 1/2] et soit(wy )y <z Une suite de variables prenant les deux valeurs 1 et
p, utilisée comme environnement. Dans cet environnement, on définit une marche aléatoire, q
va dex ax + 1 avec probabilité,, et dex ax — 1 avec probabilité + w,. Quandx est un noeud
(un point olw, = 1), la marche aprés avoir dépassie peut plus jamais revenir en- 1. Nous
faisons I'hypothése que cette marche a une vitesse strictement positive, que nousndlons
étudions, poup < v,, la décroissance des probabilités[ X,,/n < v] (pour un environnement
fixé) et P[X,,/n < v] (moyennée sur les environnements). Ces probabilités décroissent sous:
exponentiellement et la normalisation dépend de la loi des longueurs des intervalles sans noeut
Plus précisément, nous montrons que c’est seulement I'intervalle sans noeuds le plus long q
compte.J 2002 Editions scientifiques et médicales Elsevier SAS

Mots Clés:Marche aléatoire dans un environnement aléatoire; Grandes déviations; Valeurs
extrémes
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1. Introduction and statement of results

We will consider the following particular case of a one-dimensional random walk in
random environment (RWRE). We first choose the environment, placing one-way node:
at certain random locations. The random walk in this environment is a nearest-neighbou
random walk which is forced to go right at the nodes and has fixed (deterministic)
probabilities to jump right or left on the intervals without nodes. lpet 10, %] and
Q:={1, p}*. We denote the elements Qfby w = (w,)cz. The sequencéw,) .z ill
serve as an environment. We assume that the distribution(w, )<z is stationary and
ergodic with respect to the shift transformation. ebe the conditional distribution of
o, given thatwy =1, i.e.,@ :=a(- | wg=1). Let £1(w), £2(w), ... be the lengths of the
successive intervals without nodes, i.e.,

t(w) =inf{i > 1: w; =1}, 1)

Zl(a)) = |nf{l > 1 W14ty _1+i = l}, k > 2. (2)

Then the random variablesg, ¢-, ... form a stationary, ergodic sequence unadefFor
every fixedw let X = (X,),>o0 be the Markov chain ofZ starting atXo = 0, with
transition probabilities

Wy if y=x+41,
Po(Xpp1=y|X,=x) = 1-—w, |fy:x—l, (3)
0 otherwise.

We will denote the distribution ofX,,), givenw (or, equivalently, giverf4, £,, .. .), with

P., and the joint distribution ofw, (X,)) undera x P, with P. The proces$X,) was
introduced in [13], in the case wheseis a product measure, and studied further in [2],
in the case wheré,, ¢,, ... are i.i.d. random variables. Limit laws for the distribution of
X,, suitably normalized, were investigated in [13] and in [2]. Let

T, = inf{j: X; =4} (4)
and
T =inf{j >t + 41 X; =i+ + b} — (g, +- -+ 1), k=2 (5)

Under appropriate assumptions, the random walk is moving to the right with a positive
speed, see [1] and [2].

LEMMA 1. - With
_ El]

Vg = , 6
E[Tzl] ( )
wherev, = 0if E[7,,] = oo, we have
X,
— — v, P-as, (7
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ie.,,X,/n— v, P,-a.s., fora-a.a.w.

Let
1-—
0= i & > 1 8
p
Later, see (45) and (56), we will give an explicit formula Eijrr,, ], leading to
1 p+1 1 ' 2p . 1
— = E[p"] -1 f = 9
P - TA L RS TR ©
and
E[¢1] . 1
Ye = 2] tp=35 (10)

In particular, if p < %, v, > 0 if and only if E[p*] < oo and, if p = 3, v, > 0 if and

only if E[€2] < co. We will always assume that, > 0. Due to (7), for each < v,,

the probabilitiesP,[X,/n < v] andP[X,/n < v] go to 0. The goal of this paper is

to investigate the rate of this decay. Roe= 0, one can show tha®,[X,/n < 0] <
P.lt¢, > n] decays exponentially in, for v < 0, we trivially haveP,[X,/n < v] =0.
Throughout the paper, we will only consider strictly positive values.dh the general
RWRE model,(w,) is an ergodic sequence of random variables with valud$,if].

Large deviations for this model were investigated in [8,5,3], see also the survey paper [7]
If w, > % for all x, it is known thatv, > 0 and that forv < v,, P,[X,/n < v] and
P[X,/n < v] decay exponentially in. The exponential rate of decay was identified in
[8] and [3]. In contrast, we treat here an environment with “mixed drifts and positive
speed”. It was shown in [3] that for such environments, under mild assumptioans on
P,[X,/n <v]andP[X,/n < v] decay subexponentially im for 0 < v < v,. For the

i.i.d. environment case, i.e.,df is a product measure, subexponential asymptotics were
derived in [5] and [12] for the decay & X, /n < v], and in [6] and [11], for the decay of
P,[X,/n < v]. Strictly speaking, not all the above mentioned results apply in our
situation, since some of them assume that the support of the distributiang of

is contained in a compact subset 1f 1[. In this paper, we prove subexponential
asymptotics for the random walk with randomly placed one-way nodes. We show
that under appropriate conditions (see Theorem 1)Pl@&,/n < v] has “random
fluctuations” and there is no deterministic normalization. The same behaviour is
conjectured for the general RWRE model, see [7]), and was proved for a random wall
with one-way nodes in an i.i.d. environment (see Theorem 9 in [7]). Let

Ne(n):=maxXj: €1+---+¢{; <n}, lmax(n) == max {;(w),  (11)

1<j<Ne(n)
and
N@=minj: G40 =n), buax ()= | max ). (12)
Let

T, :=inf{j: X; =n}. (13)
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Throughout the papew,, b,, c, andd, are positive, increasing functions af with
a, — 00, b, > o0, ¢, > o0, d, - oo and b, /a, — 0, ¢,/a, — 0 andd, /a, — 0.
We will further assume thait, is slowly varying, i.e. that for each> 1, a,,x /a, — 1 for
n — oo. Our main results are the following.

THEOREM 1. — Assume thap < % andE[p’t] < co. Assume further that,, b, and
¢, as above exist such that

P[¢max(n) = a, + b, for infinitely manyn| =1 (14)
and

P[¢max(n) < a, — ¢, for infinitely manyn] = 1. (15)
Then we have, for eaadh> 1/v,,

an
liminf 2

n—oo n

logP,[T, > nu]=—0c0 P-a.s, (16)

dap
lim supp

n—oo n

Assume in addition that for all € N,

logP,[T, >nu]l=0 P-a.s. @an

limsup(ag, — a,) < oo. (18)
Then, for0 < v < v,
liminf 2 logP,[X, <nv]=—oco P-as, (19)
n—oo n
lim sup’o i logP,[X, <nv]=0 P-as. (20)

n—oo n

Remarks— 1. In particular, (19) and (20) show that there is no deterministic function
f such that,

1
—00 < liminf logP,[X, <nv]<lim supm logP,[X, <nv]<0 P-as.
n—o00 n n— 00 n
(21)

2. We conjecture that (18) is always satisfied under the previous assumptions o
Theorem 1 (note that they imply (36) below!), but we were not able to show this.

THEOREM 2. — Assume thap = % andE[¢]] < oo for somey > 2. Assume that for
a, andd,,,

lim Lmax(n)

n—oo  q,

=1 P-as. (22)

and
P[¢max(n) = a, + d, for infinitely manyn| = 0. (23)
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Then we have, for each> 1/v,,
2 2 1
lim I logP,[T, > nu] = T (u - —) P-a.s. (24)
n—-oo p 8 Vy
and, forO < v < vy,
. af n? v
lim tlogP,[X, <nv]=——+(1— — P-a.s. (25)
n—o00 p 8 Vg

The following theorem gives statements for the deca[@f, > nu] andP[X, < nv].
It is a general fact that the decay of these averaged probabilities is either slower or th
same than for fixed environment.

THEOREM 3. — Assume thaky, £5, ... are i.i.d., p < 1/2 and E[p31] < co. Assume
@(n) is an increasing, slowly varying function such thatn) — oo and for some
continuous functiom () > 0,

lim iIogP[ZmaX(n) >tlogn| = —« (1) Vi. (26)

n—00 (p(n)

Then we have, for eaadh> 1/v,,

1 1
lim —logP[T, > nu] = —« (—), 27
o o(n) O logp 27)
and, forO < v < v,
1 1
lim —logP[X, <nv]=—« (—) 28
n—00 @(n) 9 |ng ( )

Remark— Our proof of Theorem 3 requires that ¢,, . .. are i.i.d. We don’t know if
this assumption is necessary for (27) and (28) to hold.

The main ingredients of our proofs are exit time asymptotics for the intervals without
nodes, combined with the ergodic theorem applied to the environment sequence.

2. Proofs

Sketch of the proof of Lemma 1lt-+s well-known that

X, A
im — = (Ilm —) P-a.s. (29)

n—>o00 n n—>oo n
where both sides equal 07f,/n — oo, see [13]. We will show that

T, El, ]
——
n n—oo E[@l]

P-a.s. (30)
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First note that due to the ergodic theorem,

N 1 N 1
e(n) — and () — P-a.s. (31)
n n—>oo E[Kl] n n—oo E[El]
Further, the ergodic theorem implies that
- Zr@ —> E[z,] P-as. (32)
] 1
But
N¢(n) N(n)
Z TKJ‘ <Tn < Ztij’
j=1 j=1
hence
Ny(n) 1 7w T, N(n) 1 W
< — , 33
n Ng(n)jz_:l% PR N()Z” (33)
and (30) follows. O
We note for further reference thgf¢,] < co implies
£
max (1) — 0 P-as. (34)
n n—o00

To show (34), note thatwax (n) < maxicj<,¢;, and £y, £>, ... are positive random
variables with the same distribution akfl¢1] < co. Letc > 0. Then,

ZP[@}cj]:ZP[&}cj]:E{%} < o0 (35)
j=1 j=1

and the Borel-Cantelli lemma implies thR{¢; > c¢;j for infinitely manyj] = 0. We
conclude that als®’[max« <, £; = cn for infinitely manyn] = 0. We also note that
under the hypothesis of Theorem 1, we have

lim sup < 00. (36)

n—00 Ogl’l

To prove (36), taking into account (14), it is enough to show that, for some@,
P[¢max(n) = clogn for infinitely manyn] = 0. (37)
But
P[€max(n) = clogn] < nP[¢1 > clogn] < nE[p‘]pclo9n = pl=clodrg [yl (38)

and we see that, far> 2/log p, (37) follows with the Borel-Cantelli lemma.
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Proof of Theorem 1. Fhe proof of (17) is the same as the proof of Theorem 9 in
[7]. We will first give an estimate for the exit time of an interval without node. Pet
be the distribution of the random wall ;), started atc € {0, 1, ..., £}, with wg =1,
w1 =wy=---=wy_1=p, letT,:=inf{j: X; =¢} andTo :=inf{j: X; = 0}. Then,
with p defined in (8),
pt—p S ptt—1
ot —1 pt-1

1 n
P1(To <T() = and Py(T,>n)>=> Pi(To<T))" > (1 — _> )

pl—l
(39)

We give a lower bound oR,[7, > nu] by simply picking the largest interval without
nodes.

1 [nu] 1 nu
PolT, = nu] > Py I:?@max(n) P [nu]} P (1— W) P (1— W) (40)

where[nu] denotes the integer part of. We choose a (random) subseque(gg such
thatn, — oo for k — oo and

Emax(nk) 2 ank + bnk

for all k. Then, due to (40), for each> 0,

1 nipu
|Og Pw[Tnk 2 I’lku] 2 |Og (1 — W)
> —nup @t (14 6)  P-as. (41)
for k large enough. Hence
any,
lim 2
k—00 ng

logP,[T,, > nwu]=0 P-a.s.

and (17) follows. To show (16), we first prove the following formula for the exit time of
a random walk with reflection at 0.

LEMMA 2.— Letwp=1, w01 =wy=---=wi1=p <3, Xo=0,7,:=inf{j: X; =
¢yandg(0) := g(n, ) = Eolexp(xT,)]. Let

n=mk)= % (6“A +/e? —4pq ) (42)
N2 =n2(1) = % (e‘A —\/e 2 — 4pq) (43)

withg :=1— p, and

Acrit 1= Acrit(€) = SUP{?» >0 e > 4pq, ng(énl - 1) > ni(éUZ - 1)}
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Then, for0 < A < Agit, We have

e (n — n2)
)= ) 44
§ n5€n—1) —ni(en—1) (44)
As a consequence, we have
_ d p+1 ¢ 2p
E = — o= —4{4— -1 . 4
olTel dk8(5)|x_o Z,o —1 +(p ) (o —1)2 (45)

Proof. —See [7], proof of Lemma 6.

Remark— We note for further reference that, usifg[(z,)”] = (fk—mmg(E)h:o, m =
1,2, ..., one can check th&[(z,)?] < oc if and only if E[p%1] < co and

E[(t,)%] <oco ifandonlyif E[p%!] < o0. (46)

As usual, we start the proof of the upper bound with Chebyshev’s inequality. BiX0
and leth,, = Cp~%. We will specify a subsequencg,) such that

N (g )
PoulTi, = igu] < E, [&uln]en™ < ] g(¢j(w))e ™™ P-as.  (47)
j=1

We can assume w.l.o.g. that (15) still holds true if we repléggg(n) with £yax (n).
Define the (random) subsequen@g) such that:;;, — oo and

Cuax () < aj, —ci, P-as. (48)

We have to show that, fot large enoughj;, < Agit is satisfied for our choice of,
and for all intervals along our subsequence. It suffices to show thai fer, (A, ) and

n2=n2(Az,),

mn Imax (i) )
(—) (¢n,—1) — 0 P-as. (49)
N2 k—o00

We follow the proof of (62) in [7], and then, taking logarithms in (47), we proceed
exactly as in the proof of (78) in [7], except that that there the explicit valudq &f]
andE[p‘1] were plugged in, and instead of (78) in [7], we end up with the statement
that,P-a.s.,

wlTh = nul

n—oo n
a~

<lim sup logP,[T;, > njul
k—o00 nk
C 1 1

g—p Elal@-p?  Ell(g—p)>

p+1 1 2p 1 p 20 )
—c(-2To E[ph]—L )¢
( o1 Edp-n2 Ea o) T
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1 1
:C<——u>:—C(u——>. (50)
Vg Vg
(16) now follows sinceC > 0 was arbitrary. O

The statements farX,,) follow from the statements fai7,,) by renewal duality. More
precisely, we have

LEMMA 3. — Under the assumptions of Theorefn2 or 3, the following holds true.
For P-a.a.w, there is, for eaclk > 0, ng(w) such that fom > ng(w),

Pa) [Tn 2 [I’ll/t]] < Pa)[X[nu] < I’l] < [T[n(l-i-s)] [nu]} (51)

Proof. —The first inequality in (51) is obvious. To show the second inequality, note
that

Pa)[X[nu] <n]-— Pa) [T[n(l+8)] Z [nu]]
[nu]

Z PolTinate = Js Xpuy < 1l
j=ln(+e)]

[nu]P,[3j, m such that\; = [n(1+¢)]|, X m <n|

//\

NN

(] L ieyax (tn(1e)) > nel)
=0. (52)
for n large enough, sincéyax (n)/n — 0 P-a.s. due to (34). O
To prove (20), let > 0andu =¢ + 1/v > 1/v,. We have

An

0> Iimsupp

n—oo n

logP,[X, < nv]

A[nu]
> limsup=—— l0gP,, [ X[ < [nu]v]
n—oo [nu]
. palnuj
> lim supﬁ logP,[ X < 1]
u

n—oo n

. Alnu] n dan
> lim sup'o p
n—00 [nu] ,Oa’7 n

. . Alnu) n — dan
> —liminf 2 p
n—oo [nu] P n

Alnu) — nfn
>Iimsup(p " >(—Iiminf p logP, [T, > nul)

logP, [T, > nu]

logP,,[T;, > nu]

n—oo \ [nU] p% n—oo p
. Alnu) n
>I|msup(p )Ilmsu P Wl T, = nul
n—oo [nu] ,Oa" n—oo
>0, (53)

where the last inequality follows since limsup, ”n logP,[T, > nu] = 0 due to
Lemma 3 and limsup, ., (“ "l 1y < 0o due to (18). The proof of (19) is similar.c

[nu] pn

Proof of Theorem 2. We have the following analogue of Lemma 2.
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LEMMA 4. — Letl e N, wg=1, o =wr = -+ = wp_1 = %, Xo=0, 7, :=
inf{j: X, =€} andg(£) := (€, ) = Eo[exp(AT,)]. Let
~ ~ T
Acrit := Acrit(€) = —log (cosﬂ) (54)
Then, for0 < A < Agrit, We have
i=— (55)
s = cog/¢ arccose*)’

Proof. —Letw; = 1, —¢ + 1<i < ¢ —1and7, :=inf{j: |X;| =¢}. Then7, has the
same distribution a%,. Let g, (¢) := E. [exp(AT,)]. We haveg,(¢) = g_,(¢) =1 and
&) = %é(gx_l(e) + g.41(0)), —€£ + 1 < x < ¢ — 1. Solving this differential equation
with boundary condition yieldsg, (£) = coqc;x)/ coc;£), with ¢; = arccogexp(—A1)),
and, settinge =0, (55) follows. O

Remark— Similarly, we getE, [7,] = ¢% — x2. In particular, Eo[7,,] = E,[t;,] = ¢3
and this implies

Elz,]=E[¢3]. (56)
We will also use the following exit time asymptotics for simple random walk.

LEMMA 5. — In the setting of Lemma, for ¢ = £(n) increasing with¢(n)?/n — 0
andc > 0, we have

2 2
tn) IOg Py [?g(n) = Cl’l] = —er—. (57)

l
m 8

n—oo

The proof of Lemma 5 is standard, using the explicit formula in [14], p. 243.

Proof of (24). —To show the lower bound, one proceeds as in the proof of (17), picking
the largest interval without nodes. More precisely,dgt:= inf{j: £; = {max(n)} and
5 > 0. We have

Pw[Tn>nu]>Pw[Imn>n(u—i+8>}Pw[ Z 'L'g’.>l’l(i—8>:|. (58)
: v

v . .
o 1<jSNe(n), j#mn «

The second term on the r.h.s. of (58) goes to 1, since due to (31) and (32),

1w E 1

=3, — o] _ 1 b (59)
J

n o Unoe Ell v,

For the first term on the r.h.s. of (58), (57) yields

Emax(”)z

2
logP, {‘L’mn >n<u _1 +8>} — —%(u _1 +8> P-a.s. (60)

v()[ n—oo v()[
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and since lim_, o ¢max(n) /a, = 1, P-a.s., the lower bound in (24) follows by letting
8 — 0. To show the upper bound in (24), BE 10, 1[ and

A, i=—lo <COSM>
O, rdy )

Due to (55), we have

N(n) 1
—Annu — H
e cog¢; arccos e*n)

PulT, = n E,[e"] . g p.as.  (61)

and, forP-a.a.w, due to (54) and (23), the r.h.s. is well-defined fofarge enough.
Taking logarithms and multiplying with?/» yields

a2 a2 ¥

" logP, [T, > § log————— —a’ru  P-as. (62)
wlln (1-3) n’'n

n Jj=1 COS(EJ 27(Za +dn))

We check that, w.l.o.g., (23) still holds true if we replagx(n) with £yax (n)), and
conclude that

1-6)¢
d($) = cosn( ) Enaax (n) >0 P-a.s.
2(an + dy)
for n large enough, and the first term on the r.h.s of (62) is well-defined. Note that since
z2log(cosz) — —1/2 for z — 0, we have for the second term on the r.h.s of (62),

plugging in the value of,,,

1-6
a’h,u = —a’ulog (cos%) — gu(l 8)2. (63)

Let y > 2 be as in Theorem 2. For eadh> 0, there isc = ¢(d) such that—logx <
1—x+c(l—x)"/?ford <x <1.Since cos >1—x?/2, we also have

X2 x v/2
— < — —
Og(COSx) > +C< 2)

for d < x < 1. Therefore, foe = ¢(§) large enough,

a2 N(n 2 N(n) 2 2 a2 N(n
1 1 8 Y-8
j=1 COS( J 2antdy) Gn “n j=1 Gn
For the first term on the r.h.s of (64), note that
2 N(n) 2 2 72 2 2 N(n
1-6 1-6)° . N 1
lim =" ¢2 aat ) ( ) im D () Z
oo i ' 8(a, +d, )2 8 n—00 (a, +d,)2 n N(n) p=
21-6)> 1 21-6)%1
L k). E[¢3] = A2 b (65)

8 E[¢1] 8 Vg
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where we used (31), the ergodic theorem and the convergeneg/af to O in

the middle inequality and (10) in the last inequality. The same argument, using the
assumptiorE[¢]] < oo, shows that the second term on the r.h.s of (64) goes to 0. We
proved

a® 72/ 1

limsup—=1logP,[T, > nu] < (1—5)2§<— —u) P-a.s. (66)
n—oo N Vo

and since’ € 10, 1] was arbitrary, the upper bound in (24) follows by lettihg> 0. O

Proof of Theorem 3. — Lower bounbdet /2, be an increasing function. We have

PIT, > nu] > P[€max(n) = h,] P1[Th, > nul. (67)

For the second term on the r.h.s. of (67), we have, using (39),

1 nu
P]_[Th 2711/!] (1— 7 —l) . (68)
p n

Hence, choosing, =logn/logp,

1 Iogn 1
and, using (26), (69) implies that
liminf —— logP[T, > nu] > ( 1 ) (70)
n=zhU]l 2 —K .
n=>00 @(n) J logp

Upper boundLete > 0 andh,, = h,,(¢) = (1 — &) logn/log p. We have

PIT, > nu] < P[lmax (n) = hy| + P[T, > nu, Luax (n) < hy). (71)
We will show that

i |OgP[Tn >nu, byax (n) <h ] —00. (72)
@(n) n—o

We check that (26) still holds true if we replaggax(n) with £yax (n). Then, using (26),
we see from (71) and (72) and the continuitykgf) that

lim sup% logP[T,, > nu] < I|m lim (p(—l) logP[€max (1) = hy,(e)]

n—00 e—0 n—00

—K (@) (73)
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To show (72), le$ > 0 andM; := (1+ §)/E[£1] and note that

[nM5]
P[T, > nu, tuax (n) < h,] <P[N(n) > [nM;]] + P[ > Ty, znul, (74)
j=1
wheret; ,, j €N, are i.i.d. with
Pl1=k
PLe,, =k =—P =K 12

P[l1 < [h4]]

andty; ,, j € N, are i.i.d. The distribution of, , given¢; ,, is defined as in Lemma 2.
For the first term on the r.h.s of (74), we have

[nM51-1 1 [Msl-1 n
P[N(n) > [nM;]] = [ Z & <n] = [[nMg] ]Z_% £j<[nMa] '

Since/; are i.i.d., nonnegative random variables with expectations strictly larger than
1/Mj, the last term is decaying exponentiallyznin particular, since»(n)/n — 0, we
have

1
o P[N () > [nM;]] —> —oo. (75)

Let C > 0. We can estimate the second term on the r.h.s. of (74) as follows:

[nMs] Cgﬂ(l’l) [nM;]
[Z Ty, > nu| < {exp( p fgl.n>:| exp(—Co(n)u). (76)
We will show that
' o =57
|msup— logE [exp Tey, || < CE[te,] (77)
n—00 (/)( ) n

Together with (74)—(76), this implies that

lim SUpcp(—];z) logP|T, > nu, €uax (n) < h,| < C(E[tyI1Ms —u). (78)

But, recalling (6), forx > 1/v, we can choosé small enough such that the last term is
negative, and sinc€ > 0 was arbitrary, this proves (72). It remains to prove (77). Using
the inequalities log < x — 1 and & — 1 < x + x%¢*, we have

— IogE{exp( (p(n)ﬂln”
p(n) n ‘

< CElT, 1+ Y (7, ) Pop L7, ) (79)
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13
< cEm)+ U ()% fon F2 T, )| )

n

Due to (46) and our assumptidijp>‘1] < oo, we have

limsupE[(ze,,)°] <E[(r))?] < oc. (81)

n—oo

Sincely , < [h,], we see from (80) that it suffices to show that for eéck O,

n—oo

limsupE {exp(cfl(n)?[hn]ﬂ < 00. (82)

But now we can use formula (44), plugging in= ¢, = [h,] andX = A, = Cp(n)/n.
Analysing the terms in (44), we see that— 0, n,(1,,) — 1 andni1(1,,) — p. We show,
with the same reasoning as in the proof of (72) in [7], that

" —1 and n (€2 — 1) ’:;O (83)

and this proves (82). For the proof of (28) from (27), note tRaK,/n < v] is
comparable tdP[T},,; > n] by renewal duality, as in Lemma 3, and use the fact that
@ is slowly varying; we refer to [3] for a more precise argument

3. Examples

Examplel. — Assume thatr is a product measure, with; := a(wg = 1) and
a(wg = p) =1— 1. Thenéy, £,, ... are i.i.d. and¢; has a geometric distribution with
Pléy =kl =o01(1 —a)* % k=12, .... In this case, (14), (15) and (23) are satisfied
with

B logn B log, n
" —log(l—a)’ " —log(l—ay)’
logsn 2log,n
= = —— 84
=z log(1 — o) —log(1— o) (84)
and we haveo® = n'/* with s := —log(1 — «1)/log p. Here,a, is given by the Erds—

Renyi law for longest runs, and (14), (15) and (23) follow from Theorem 2 in [4]. Hence,
if p <32 we have forw < v,

1
liminf — 1 logP,[X, <nv]=-oc0 P-a.s, (85)
n—oo pi— /s
. 1
limsup——-logP,[X, <nv]=0 P-as. (86)
n—oo N~ /s

For the general RWRE in an i.i.d. environment with “mixed drifts and positive speed”,

with s defined by
J(52)we
wo
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(86) was proved and (85) was conjectured in [6].plf< 1/2 in our example, the
hypotheses of Theorem 3 are satisfied with) = logn andk () = —1 — ¢ log(1 — «1),
and we have

li logP[X, < =—(-1 7
lim_ iogn ogP[ nvl=—(s—1) (87)
wheres = —log(1— «q)/log p as above. (87) agrees with Theorem 1.1 in [5]. pet %

anday; := (1 — 1), Theorem 2 yields that far < vy,

2 2
lim (logm) logP,[X, <nv]= —%(Iogozl/z)2 (1 - i) P-a.s. (88)
n v,

n—oo
o

If €1, ¢, ...arei.i.d. andE[¢3] < oo, recall the integral criteria for the growth of maxima
of i.i.d. random variables in [9] and [10] to find functioas, b,, ¢, andd, such that (14),
(15) and (23) and our assumptionsgnare satisfied.

Example 2. — Assume that,, ¢,, ... are i.i.d. andP[{; = k] = cexp(—bk?), k =
12,...,wherey >1,b>0and

-1

o= ( f;exm_bky))

k=1

Then (14), (15) and (23) are satisfied with

1 1/y 1 1/y
a, = (E Iogn) , b, = (Z Iogzn> ,
1 1/y 2 1)y
Cp = (E Ioggn) , d, = (5 Iogzn) . (89)

Note thaty < 1 would violate our assumptidB[p‘*] < co. Hence, forp < 1, (19), (20)
and (25) are satisfied with, as above. Ify > 1 andp < %, Theorem 3 applies with
¢((n) = (logn)” andk (r) = bt”, and we have for each > i

b
l logP[T, > nu] = —
o (logn)r 0gPLTy = nul (log p)” (%0)
and, forv < v,
. b
< = — .
AT Gognyy 9P SI= " og )7 .
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