Ann. I. H. Poincaré — PR7, 6 (2001) 725-736
O 2001 Editions scientifiques et médicales Elsevier SAS. All rights reserved
S0246-0203(01)01078-0/FLA

PERTURBED AND NON-PERTURBED BROWNIAN
TABOO PROCESSES

R.A.DONEY 2 Y.B. NAKHI P

a8Mathematics Department, University of Manchester, Oxford Road, Manchester M13 9PL, UK
bMathematics Department, Kuwait University, P.O. Box 5969 Safat, 13060 Kuwait

Received 12 October 2000, revised 15 January 2001

ABSTRACT. — In this paper we study the Brownian taboo process, which is a version of
Brownian motion conditioned to stay within a finite interval, anddhgerturbed Brownian taboo
process, which is an analogous version otraperturbed Brownian motion.We are particularly
interested in the asymptotic behaviour of the supremum of the taboo process, and our main resu
give integral tests for upper and lower functions of the supremum-asso. In the Brownian
case these include extensions of recent results in Lambert [4], but are proved in a quite differer
way. 0 2001 Editions scientifiques et médicales Elsevier SAS

AMS classification60K05; 60J15

RESUME. — Dans cet article, nous étudions le processus Brownien tabou qui est une versiond
mouvement Brownien, conditionné a rester dans un intervalle fini, et le processus Brownien tabo
a-perturbé qui est une version semblable du mouvement Brownieerturbé. Nous sommes
particulierement intéressés par le comportement asymptotique du supremum du processus tak
et nos principaux résultats fournissent des intégrales tests pour des fonctions majorantes
minorantes du supremum lorsque> oo. Dans le cas Brownien, ces résultats incluent des
extensions de résultats récents de Lambert [4], mais ceux-ci sont prouvés de maniére différent
0 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

The Brownian taboo process, a version of Brownian motion conditioned to stay within
a finite interval, was first introduced by Knight in [3]. In a recent paper Lambert [4] has
introduced an analogous version of a spectrally negative Lévy process, and proved son
results which are new even for the Brownian case. In particular he studied the asymptoti
behaviour of the maximum of the taboo process, and in the Brownian case his results al
as follows. LefP, denote the measure under which the coordinate prdégss > 0} is
a Brownian taboo process on [0,a) starting aand writeS, = sup ¢, {X;}.
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THEOREM 1.1 (Lambert). —
(i) For any fixedx € [0, @) and any decreasing non-negative functipn

P {a—S; < f(t)i.0.ast > o0} =0 or 1

according asl := [ f(¢) dz is finite or infinite.
(ii) For any fixedx € [0, a)

3
P@mswléiﬁ=3}=1 (1.1)
i—oco lOglogr 72

These results, and their extensions to the spectrally negative Lévy process cas
were established in [4] by exploiting the fact that the excursions of the taboo proces:s
away from a fixed point form a Poisson point process. An alternative approach is tc
rephrase these results as statements about the behaviour of the first passage time proc
{Ty,x <y <a}, whereT, =inf{r: X, > y}. This process has independent increments
and an explicit formula fol, {e~*T} is available. From this, it is easy to see that under
Py we can write

T, LV, +U,, (1.2)

where, for fixedy, V, andU, are independent, non-negative random variables Wjth
having an exponential distribution ad, having a distribution whose tail decays at an
exponential rate which is faster than thatlgf Moreover the parameté(y) of V, has
the asymptotic behaviour

em?
@(a—s)m—3 ase | 0,
a

which explains the appearance of the quantityr? in (1.1). We show that it is possible
to exploit (1.2) to get sufficiently good bounds on the tail of the distributiofi,of as
¢ | 0 to establish the following improvement of (1.1).

THEOREM 1.2. — For any fixedx € [0, a) and any increasing non-negative function
g such thatf (r) = t—*g(r) decreases,

P {a—S; > f(r)i.0.ast > o0} =0 or 1

according as/ := [;”t~ e #s® dt is finite or infinite, where8 = 72/a3.

Itis also the case that a similar technique can be used to give an alternative proof of th
first statement in Theorem 1.1. Moreover it is clear that if we consider-parturbed
Brownian taboo process, by which we mean the process we get by taking a suitabl
harmonic transforn of an-perturbed Brownian motion, (see Chapters 8 and 9 of [7]
for background on this), then we can no longer use Lambert’s technique to study the
asymptotic behaviour of the maximum. This is because the excursions away from a fixe
point of this perturbed taboo process do not form a Poisson point process. Howeve
even though this process is no longer Markovian, its first passage process is a time
inhomogeneous Markov process, and indeed has independent increments. There is a
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an analogue of (1.2), with the exponentially distributed random variable being replacec
by one having a Gamma distribution. Although the technical problems are somewha
more onerous, in section 3 we state and sketch the proofs of results which extend bot
theorems 1.1 and 1.2 to this perturbed situation.

2. The Brownian case

As previously remarked, the distribution of the first passage process Wdisr
determined by the fact that it has independent increments and satisfieg, wittya,
sinyy sinx4/y2—2x

. 2
——>—= fO0<x<y<a, A<%,
sinxy siny+/y2—2x

N/ y2-2xrsinyy
ysinya/y2—2x

The first statement here is a special case of Proposition 3.2 of [4], but can easily b
derived from the fact that the Taboo process is a space-time h-transform of Browniar
motion Killed on exiting (Qa), with k(x, ) = sinyx exp%tyz. SincePy is lim, o Py,
the second statement also foIIows.2

Introduce the notatior® (y) = %{(%)2 — 1}, and for any O< b < ¢ < o0 write
D(b, ¢) for the distribution of a non-negative random variable which is zero with
probability b/c, and conditioned on being positive, has an Bypfistribution. Then
D(b, o0) coincides with the Exg@() distribution, and a random variabl® has the
D (b, ¢) distribution withc < oo if and only if we can write

E {e*"} = (2.1)

fO0=x<y<a, A<5.

Yi=Y>+ D,
whereY, and D are independent/; has an Expf) distribution, andY, has an Exp)
distribution. We then have
LEMMA 2.1. - Forany0< x <y < a we have undeP,

T, LV, +U,, (2.2)

where the non-negative random variabl®s and U, are independentV, has the
D(®(y), ®(x)) distribution, and

P {U, >t} < cre7™19* forall t >0, (2.3)

wherec; is a constant, which depends only @n

Proof. —Writing ¢, (y, 1) = E{e*"»} and¢ (y, 1) for ¢o(y, ) we see from (2.1) that
&y, M) =d(y,A)/p(x, 1) for x > 0. Also, if we write ©,(y) = 5722{(’;—?‘)2 — 1} for
k> 1, so that®,(y) = ©(y), we see from the infinite product representation of the sine
function that

T QA+ O} [

¢*(y’“=r1[@k<x){x+®k<y)} —rl[my,x,k) say. (2.4)
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Sinceg, (v, A, k) is the Laplace transform of thB (®(y), ©,(x)) distribution, the first
statement follows. Noting thad,(y) > O (y) = 372/ (2a?) for k > 2 this formula also
shows that for 6< 6 < 72/a® we have

E (&) < Eo{V} < Eo{eZ%} = ey, (2.5)

and the second result follows from Chebychev’s inequality.
The main estimate we need in the proof of Theorem 1.2 is as follows.

LEMMA 2.2. — Putg = ?/a3; then for any fixed < x < a,
P AT, . >t} €eP® aste - ooandre? — 0.

Proof. —Note first that ifé = ®(a — &) thenté = tBe + O(t¢?) ase | 0. Using the
decomposition (2.2) and the bound (2.3) gives

t
P ATy > 1} :/Px{va—s >t —siP{U, € dS} +P{Us— >t}
0

:e“g{l—

and the result follows since the first inequality in (2.5) gillg$e’V—<} — 1. O

22

t
} /eg“]P’x{Ua_E eds}+0(e @),
0

3
0(x)

Proof of Theorem 1.2- It is well-known (see Cséki [1] for a rigorous argument in a
similar situation) that we can restrict attention to the “critical” case, so henceforth we
assume that for > 1g

1 3
— < < — ) .
25 loglogr < g(r) < 25 loglogs (2.6)

LetA, ={a—3S;, > f(t,)} ={Turq,) > tn}, Wherer, = €', n > 1. A simple calculation
shows that/ < oo is equivalent to the convergence pi° e #', whereh, = g(t,).
Plainly (2.6) implies that/7, f (z,) — 0 ands, f (z,) — oo so we can apply Lemma 2.2
to get

P {A,} exp(_ﬂtn f(tn)) = exm_ﬂhn)~

Then the Borel-Cantelli lemma establishes the result wheto.

Now assume that = oo, so thaty " P, {A,} = co. We want to use the Kochen-Stone
modification of the Borel-Cantelli lemma to deduce from this thdt4,, i.0.} = 1. Note
that forj > i withr, =a — f(z,) we have

P, (A, mAj}=/Px{A,-,X,i € dy)P(T,, > 1; — 1)
0

<PIT, > 1~ 1) [ PolAn X, €dy) =PIT, > 1) — 1)L A,
0
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Since ¢; — ;) f(t;) — oo asi — oo we can apply Lemma 2.2 to get
P{T;, > t; — t;} ~ exp—B(t; — ;) f (t;) = exp—ph;(1—€7), (2.7)
provided that(z; — t,-){f(tj)}2 — 0, and this is immediate from (2.6). Now given an

arbitrarys > 0 we putm; =min(n > 1: h; ., <8 forallk >n),i=1,2,....Itis easy
to see from (2.6) that for all large enough

3
m; <1+loghy <1+ %IogZi.

Thus there exist®/; such that, for all large enough

n o i+m; n o itm;
DY PHANAI<A+8) ) D P{A}exp—phi(1—-€7)
i=Ns j=i+1 i=Ns j=i+1

<146 zn: m;P{A;} exp—phi(1—e™?)

i=Njs
<@+8) Y mP A} I <0, P (A,
i=Njs i=1

But also, sincé:;(1—€/) > h; — s whenj > i +m;,

SN PHANA}<A+9 Y S PAjee

i=Ns j>i+m; i=Nj j>i+m;
S1+20)e”Y " " P {ANP{A;},
i=1 j=i+1
and since’ is arbitrary, it follows that

Yica i P{Ai A} <

~ ’

M SR S (A2

and the result follows. O

3. Theperturbed case

If B is a standard Brownian motion starting from zeto< 1 is a constant, and
SP = sup, <, Bs, then the procesg defined by

Y, =B +-——S8 >0,
l-«
is called anx-perturbed Brownian motion. Itis immediate thi#t = supyc, <, Y is given
by



730 R.A. DONEY, Y.B. NAKHI / Ann. I. H. Poincaré — PR 37 (2001) 725-736

and it follows thatY is the pathwise unique solution of the functional equation
[=Bl+OlSty, t}o.

(For more information about this process see Chapters 8 and 9 of [7] and the reference
given there.)

Itis not difficult to construct an h-transform of the bivariate Markov process consisting
of ana-perturbed Brownian motion killed when it exit8, «) and its supremum process,
which corresponds to conditioning tleperturbed Brownian motion to remain within
this interval. We will refer to [6] for the details of this calculation, and merely record
that the required function is

sinyx

he 5.0 = Geiny s

1 5
EXPEW )

where againy = /a, and as previously noted, the perturbation parameter satisfies
a < 1. We call this anx-perturbed taboo process, and in this sectifi will denote

the measure under which the coordinate process is a version of this process starting fro
x. The result corresponding to Theorem 1.2 is as follows.

THEOREM 3.1. — For any fixedx € [0, a) and any increasing non-negative function
g such thatf (r) = t~1g(¢) is decreasing,
P{a—S, > f(t)io.ast— oo} =0 or 1

according ask := [t 1g(r)~*e#¢® dt is finite or infinite, where8 = 72/a3.

Remark 1— A consequence of this result is that, with J6g denoting thekth iterate
of log(-), and@ =1 — «,

_8)—p-1 3
]P’i“){lim sup f(a=S)=p10g,! _ g} =1,
=00 log,t B

so that the effect of the perturbation is only felt on the;logcale.
The result corresponding to the first part of Theorem 1.1 is:

THEOREM 3.2. — For any fixedx € [0, a) and any non-negative functigf such that
g() =1/(¢f(¢)) increases t@o,

P.{a—S, < f(t)i.0o.ast > o0} =0 or 1

according as

is finite or infinite.

The key to our analysis is
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LEMMA 3.3.—UnderP® the first passage proce$$,, x < y < a} has independent
increments and
E{e™h} = B e},
where the righthand side is given explicitly(@1).

Proof. —The first statement follows from the fajgtx,, S;), r > 0} is a Markov process
underP™®. Also the Laplace transform of the time at which @perturbed Brownian
motion first exits a finite interval is known, (see, e.g., [2]), and the second result follows
by a simple calculation. O

Next, we introduce, for any & b < ¢ < oo the distribution D (b, ¢) of a non-
negative random variable with Laplace transfdimx + ¢)/(c(x + b))}¥ if ¢ < oo, and
Laplace transforngb/(x + b)}¥ if ¢ = co. ThenD@ (b, c0) coincides with the (a, b)
distribution, and a random variabl2 has theD@ (b, ¢) distribution withc < oo if and
only if we can write

Yi=Y>+ D, (3.2)

whereY; andY, havel' (a, b) andT (&, ¢) distributions andr; and D are independent.
In the casexr = O the tail behaviour of this distribution is obvious, but now a little work
is required.

LEMMA 3.4.— If D has aD@ (b, ¢) distribution with ¢ < oo fixed, bt — oo, and
b% — Othen

T@)P(D >1t) (bt) e, (3.2)

Proof. —If ¢ = oo we know thatbD has aI'(a,1) distribution and the result is
immediate. Whenr: < oo we havel' (@) P(D > t) < T'(@)P (Y1 > t) « (bt)“e", so
we only need a corresponding lower bound. For this we wri¢e2b/c and use (3.1) to
get

D@)PY2<nt)P(D>1) 2T (@)P(Y1>1(141n)) — T (@) P(Y2> nt)
o (bt)—ae—bze—zbZz/c + O((nt)—ae—cm) o (bt)“"e"”.
SinceP (Y, < nt) — 1, the result follows. O
The analogue of Lemma 2.1 is straightforward:

LEMMA 3.5.—Forany0< x <y <a we have undeP®

T, LV, +U,, (3.3)

where the non-negative random variablés and U, are independentV, has the
D@ (B (y), ®(x)) distribution, and

]P))(Ca){Uy >t} < c2e_’”2/”2 forall r >0, (3.4)

wherec; is a constant, which depends only @and«.



732 R.A. DONEY, Y.B. NAKHI / Ann. I. H. Poincaré — PR 37 (2001) 725-736

Proof. —The proof is the same as that of Lemma 2.0
The result corresponding to Lemma 2.2 now follows.

LEMMA 3.6. — Put g = 72/a3; then for any fixed < x < a,
C(@)PT,_, >t} (Bte) e ?® aste — oo andre® — 0.

Proof. —It is immediate from (3.3), Lemma 3.4, and the fact that ®(a — &)
= Be + O(¢?) ase | 0 that

C@PNT, . >t} > T(@PY{V,_, >t} « (18) e « (Bre) e F*,
But with i = 2428 /mr?
PONT,—e > 1} SPO{ Ve > t (L= ) IPE{Uue < 71} + PO{U,—e > 71}
~ (18) € T(@) + O(e /%)  (Bre) e P/ T(@). O
Proof of Theorem 3.1 This follows the same lines as the proof of Theorem 1.2,
so we omit some of the details. As before, we will assume (2.6) is in force, and
again putA, ={a — S, > f(t)} = {Ta-fu,) > 1}, Wheret, =€',n > 1. A simple

calculation shows thak < oo is equivalent to the convergence Bf;°(h,) e Phn,
whereh, = g(t,). Then Lemma 3.6 gives

L(@P (A}~ (Bha) ™ exp(—Bhy),

and the Borel-Cantelli lemma establishes the result whienoco.

Now assume thak = oo, so that) " °P*'{A,} = co. As before we need to estimate
P*{A; N A;}, and here the fact thdf(,, 7 > 0} is not Markov unde'® introduces a
complication. Note that foj > i with r, =a — f(z,) we have

]P’)(C"‘){A,-ﬂAj}z//]P;"‘){Ai,Xliedy,S,iedz}]P’%{T,j>tj—t,~}, (3.5)
0 vy

WhereIP);‘f; stands for the measure under which the coordinate processigarturbed
taboo process satisfying the initial conditio@sg, So) = (y, z). Under this measure we
have the decomposition

T, =TY+1?, (3.6)

whereT ® andT @are independent; ® has the distribution of, under theunperturbed
measuré?,, and7 @ has the distribution of;, under theperturbed measuré?’*. Now
if « > 0itis clear that

Py(T, > 1) <PY(T. > 1) <PUT, > 1),
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whereP©@ =P§, and hence, from (3.6) we 9B UT,, > 1} < PUT,, > 1}. Using this
in (3.5) and appealing to Lemma 3.6 we see that, when0, we have

exp—pBh;(1—€e/)

POA; | A} SPOAT,, > 1; — 1) T(@){Bh;(1—e-i)e
J

(3.7)

It is now easy to conclude the proof in this case, as the final part of the proof of
Theorem 1.2 requires only minor modifications.
In the casex < 0 we use the fact that, in (3.6];'Y) and T® are stochastically

dominated by independent random variabfs’ and W@ which have the distribution
of 7,, under the measuti®, and the distribution of;, under the measui@® to see that,
forany6 € (0, 1),

POA; | Ay < PIWD + WP >t — 1)

SPIWP >0 —1)} + P{W? > 1 -0)1t; —1)}.

With the choice ob = f(¢;)/f (#;) the requirements of Lemma 2.2 are satisfied and

P{W®D >0(t; — 1)} ~exp—pO(1; — 1) f (1)

=exp—pB(t; — 1) f(t;) = of PUT,, > 1; —1;}},
becauser < 0, and it is easy to see that this term is asymptotically neglible. We can also
apply Lemma 3.6 to get

exp—ph,;(1—€e~)
F@){BL—-0)h;(1—€-7)}*
exp—pBh;(1—€/)
S T@{Bh;1—e))
Since it follows from (2.6) that, for a suitabtg
, e/~'h?
lim sup ( J) =0,

i—=00 j>itey i

P{W® = (1-0)(t; — 1))} - expoph;(1—€7)

exppe’ "' h%/h;.

itis not difficult to modify the argument used in the final part of the proof of Theorem 1.2
to get the required conclusion.O

Clearly the proof of Theorem 3.2 will involve the behaviour®{f{7,_. < ¢}, and
this is given in the following.

LEMMA 3.7.— (i) Suppose that— oo ander | 0. Then for any fixed € [0, a)

(Bet)*

PT,_, <1} )
S } MNa+1)

(3.8)
(i) Given arbitraryé$ > 0 there existsKs < oo such that for alle; sufficiently small,
teq sufficiently large and alé; € (0, &1)

@ £2\7 | (1+8)(Beat)®
]P’a_gl{Ta_szétKKa(gl) et D (3.9)
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Proof. —First note that, for any € [0, ¢],
PONT, e <1} 2 PT,_. <1} 2PV, <t — P U < ).

UnderP® V,_, has al'(a, &) distribution, so choosing = /7, so thatpy/t — 0 we
have

En*  (Ben)”
Na+1) T@+1’
But sincen — oo we see from (2.3) tha“{U,_, < n} — 1, and this proves one half

of (3.8).
To get the other half, we note that

P(a){va—s <t — 77} e

PENT, . <1} <PV, <1}

Assuming thatx is not a positive integer (the contrary case is easier to deal with) and
writing A = £/0©(x), Lemma 3.3 gives

1-A

E(a){ —AEV, ;}_{A_i_ } zAai<&)( 1—-A )k.
) CAVJAVNCESY

Inverting the Laplace transform, we see tR4{zV,_. = 0} = A% and thatV,_, has,
underP®, a density on0, co) given by

Gy (@ A—LVK Y an (@ A—LVk Y
A%e Z<k>(1 A )(k_l}!gA 1 <k>(1 A )(k_l)!. (3.10)

1

It follows that withy > 0 andz = y(1 — A™Y),

- i [ PN
Pi“){sVa_s<y}<A“Z<k> (1-a"Y o

0

kF(Ol+k 1) -1 ky_k
Z(_) 1)k' (1-27) k!

=A°‘F(Ot— ;L—) =A% F@+117z), (3.11)

where F (b; ¢; -) denotes the confluent hypergeometric function and we have used a
standard transformation result. (See [5, p. 267].) Now ifs fixed puttingy = &¢
we see that « £1/A — oo SO we can use the known asymptotic behaviour of the
hypergeometric function (see [5, p. 289]) to conclude that

A%Z” (En)” (Bet)®

e F(a+L1z2)- o
@+ LLd e ) "Tet+D Ta+
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which finishes the proof of (i). For (ii) we note that the same asymptotic result shows
that there existg; with

. _ 1+6
supz e “Fla+117) < —.
z}zE) ( ) Ma+1)

Now apply (3.11) withx =a — &1, e =&, andy = te, SO thatA = £,/21 « g2/eq, tO SEE
that (3.9) holds if we tak&s =2F (@ + 1; 1; z5). O

Proof of Theorem 3.2-Let B, ={a — S,, < f(t)} = {Tu—s,) < ta}, Wherer, =
€', n > 1. A simple calculation shows thdt < oo is equivalent to the convergence of
> {h(n)} "%, whereh, = g(z,). Sincex is fixed we can apply (i) of Lemma 3.7 to get

T'@+ DP,{B,} ~ { Bt £ (1)} = {Bhy} 0.

Then the Borel-Cantelli lemma establishes the result whenco.
Now assume thal = oo, so that} {°PP,{B,} = co. Note that for;j > i with r, =
a — f(t,) we have

1 t
Pf%&rﬂgh:/PfT&edﬂM?Hbgq—q}gﬂfﬂh<5}/Pfk&edﬂ
0 0
=P (B;}P¥(B;}.
It follows from (ii) of Lemma 3.7 that for arbitrary > 0,

f(t,-))‘i N (L+8)(Bt; f(1))®

(B} < Ka(

f@) Fa+1)

:Ka(tihi.> n (1+(§)(,3hj)a
tj/’l] Ma+1
(1+8)(Bh))*

<K e—&(j—i)
s LT

From this, sincé is arbitrary, it is immediate that

P P AB NB;
lim sup izt 2=t P i}

<1 3.12
oo (I Po{Bih? (3.12)

and the key step in the proof is finisheda

Remark 2— An interesting question is whether or not the tail sigma-field of the first
passage-time process is trivial un@&. In the caser = 0, the triviality can be seen as a
consequence of the ergodicity of the (Markovian) taboo process, which was establishe
in [4]; we have not been able to resolve this question whehO. If this sigma-field is
trivial whena # 0, some of our proofs would be shorter, since it would only be necessary
to show, for example, that the limsup in (3.12) is finite.
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