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ABSTRACT. – We consider onM = (S1)Z
d

a family of continuous local updatings, of finite
range type or Lipschitz-continuous in all coordinates with summable Lipschitz-constants. We
show that the infinite-dimensional dynamical system with independent identically Poisson-
distributed times for the individual updatings is well-defined. We then consider the setting
of analytically coupled uniformly expanding, analytic circle maps with weak, exponentially
decaying interaction. We define transfer operators for the infinite-dimensional system, acting
on Banach-spaces that include measures whose finite-dimensional marginals have analytic,
exponentially bounded densities. We prove existence and uniqueness (in the considered Banach-
space) of a probability measure and its exponential decay of correlations. 2001 Éditions
scientifiques et médicales Elsevier SAS

RÉSUMÉ. – On considère surM = (S1)Z
d

une famille de mises-à-jour continues et locales,
de type distance finie ou Lipschitzienne-continue sur toutes les coordonnées, les constantes
Lipschitziennes étant de somme finie. On montre que le système dynamique à dimension infinie
avec une distribution de Poisson identique et indépendante des instants de mise-à-jour est bien
défini. Ensuite on considère le cas des applications du circle, analytiques, couplées entre elles
analytiquement et à expension uniforme, à faible interaction exponentiellement décroissante.
On définit des opérateurs de transfert pour le système à dimension infinie, agissant sur des
espaces de Banach incluant des mesures dont les projections à dimensions finies ont des densités
analytiques bornées exponentiellement. On montre l’existence et l’unicité (dans l’espace de
Banach considéré) d’une mesure probabiliste et la décroissance exponentielle de ses corrélations.
 2001 Éditions scientifiques et médicales Elsevier SAS
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0. Introduction

In this paper we study coupled map lattices with indepentent identically (i.i.) Poisson-
distributed updatings at the individual sites.

A deterministic coupled map lattice (CML) is given by aZ
d -lattice with a copy of the

same Riemannian manifold at each lattice point (i.e. the state space is the product of these
manifolds with index setZd) and a map on the infinite space that can be decomposed
into an uncoupled map that acts individually on each component and an ‘interaction step’
where the change of each coordinate depends also on the other sites.

L.A. Bunimovich and Y.G. Sinai prove in [8] (cf. also the remarks on this in [5])
the existence and uniqueness of an invariant measure and its exponential decay of
correlations for a one-dimensional lattice of interval maps with weak coupling. By
constructing a Markov partition they relate the system to a two-dimensional spin system
whose Gibbs measure corresponds to the invariant measure of the CML.

G. Keller and M. Künzle prove in [21] the existence and uniqueness of an invariant
measure for periodic or infinite one-dimensional lattices of weakly coupled interval maps
by studying the transfer operators on the space of measures whose finite-dimensional
marginals have densities of bounded variation. For small perturbation of the uncoupled
map any invariant measure is ‘close’ to the one they found.

J. Bricmont and A. Kupiainen extend in [4] and [5,6] the result of Bunimovich
and Sinai [8] toZ

d -lattices of weakly coupled circle maps with analytic and Hölder-
continuous interaction, respectively.

They represent the iterates of the Perron–Frobenius operator for finite-dimensional
subsystems (over� ⊂ Z

d ) by a ‘polymer’- or ‘cluster’-expansion that gives rise to a
representation of the corresponding invariant measure in terms of a(d +1)-dimensional
spin system. The weak limit (as�→ Z

d ) of these measures is the unique (in a certain
class) invariant probability measure and it is exponentially mixing with respect to (w.r.t.)
spatio-temporal shifts.

C. Maes and A. Van Moffaert introduce in [25] for a similar setting as in [4] a
simplified ‘cluster’-expansion for the truncated Perron–Frobenius operator and show
stochastic stability of the CML under stochastic perturbation.

In [2] V. Baladi, M. Degli Esposti, S. Isola, E. Järvenpää and A. Kupiainen define
Frechet spaces, and, ford = 1, a Banach space and transfer operators for the infinite-
dimensional systems, considered by Bricmont and Kupiainen in [4], and study the
spectral properties of these operators.

In [13] we consider analytically coupled circle maps (uniformly expanding and
analytic) on theZ

d -lattice with exponentially decaying interaction and introduce
Banach spaces for the infinite-dimensional system that include measures whose finite-
dimensional marginals have analytic, exponentially bounded densities. We define
transfer operators on these spaces, get a unique (in the considered Banach spaces)
probability measure and prove its exponential decay of correlations.

CMLs with multi-dimensional local systems of hyperbolic type have been studied by
Ya.B. Pesin and Ya.G. Sinai [26], M. Jiang [17,18], M. Jiang and A. Mazel [19], M. Jiang
and Ya.B. Pesin [20] and D.L. Volevich [29,30].
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For detailed reviews on mathematical results on CMLs we refer to [2], [5], [7]
and [20].

An interacting particle system (IPS) is given by an infinite lattice with a copy of the
same state space (that is usually a finite or countable set but can also be a Riemannian
manifold) at each site. The updating at an individual site is a deterministic or stochastic
map (e.g. in the case of finite local state spaces it is given by a stochastic matrix
with transition probabilities as its coefficients) that is applied with ‘exponential waiting
times’, i.e. like the waiting times for jumps in a Poisson process. The jump rates for
the updating depends also on the other sites. R.J. Glauber introduces in [14] (a special
case of) the stochastic Ising model as a model for magnetism. The total state space
{−1,+1}Zd represents the spins of the atoms at all sites. The rate for a flip of an
individual spin depends on the states of the neighbour sites. F. Spitzer [27,28] and
R.L. Dobrushin [9,10] study more general systems where the individual jump rates do
not only depend on the nearest neighbours.

A basic problem is to establish the existence of infinite systems with asynchronous
updatings. The infinitely many jumps in a finite time-interval cannot be ‘listed’, i.e. there
is no order preserving bijection between the time-ordered set of jumps andN.

R.L. Dobrushin obtains in [9] the infinite system as the limit of subsystems over
finitely many sites.

By using a percolation argument T.E. Harris proves in [15] that for systems of finite
range interaction and a sufficiently small time interval the history of an individual
particle depends on only finitely many sites, and so he provides a natural definition of
the infinite system. With probability 1 the setZ

d splits into finite clusters such that each
site is affected at most by sites in the same cluster.

R. Holley shows in [16] for generators, corresponding to one-dimensional models,
and T.M. Liggett in [23] for the d-dimensioanal case, that these operators generate, in
fact, a semigroup, acting on continuous functions.

Here we have only mentioned different methods to establish the existence of the
infinite systems. For detailed reviews on IPSs and results on invariant measures, mixing
properties, phase transitions and applications to physics and other sciences we refer to
[11] and [24].

In this paper we consider the infinite topological productM = (S1)Z
d

and continuous
updating maps for the individual coordinates that are of finite range or Lipschitz-
continuous w.r.t. all coordinates with a summable family of Lipschitz constants (cf.
Section 2.2 for the definition). The times for the updatings at the individual sites are
independently Poisson-distributed with the same constant rateλ > 0. For the finite range
case we show that with probability 1 the updatings at any finite set of sites and any finite
time-interval depend on only finitely many sites. Our proof uses time- and space-oriented
percolation and is different from the one in [15]. This result provides a natural definition
of the infinite dynamical system.

For the systems with infinite range interaction we show that with probability 1 it is
well-defined as the net-limit of its finite-dimensional subsystems with arbitrary boundary
conditions. We combine standard estimates for error growth with ideas from percolation
theory. The limit of the corresponding Markov kernels, acting on continuous functions,
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exists and provides a definition of the infinite process, different from the widely used
generator approach.

Our proofs still work if we replaceS1 by any compact Riemannian manifold or
stochastic systems with finite state spaces. The assumption of having the same constant
jump rate at all sites is by no means essential and can be weakened to the case of upper
bounded individual jump rates that depend on other states as well. However, we do not
consider these generalizations in this paper.

In a setting similar to that of [13], i.e. for analytically coupled circle maps (uniformly
expanding and analytic) on theZd -lattice with weak, exponentially decaying interaction
but with asynchronous updatings as described above, we define transfer operators for
the Markov kernels of the infinite system. The operators act on the Banach spaceHϑ

(introduced in [13]) that includes measures whose finite-dimensional marginals have
analytic, exponentially bounded densities. Using ‘cluster-expansion’-like techniques, we
represent these integral operators in terms of configurations and prove the existence and
uniqueness (inHϑ ) of an invariant probability measure and its exponential decay of
correlations.

The paper is organized as follows. Section 1 provides definitions, notation and some
propositions about stochastic processes and metric spaces. In Section 2 we define the
infinite-dimensional systems for finite range (Section 2.1) and infinite range interaction
(Section 2.2) and the corresponding Markov kernels (Section 2.3). In Section 3 we study
the transfer operators for a specific class of interactions. In Section 4 we prove the mixing
properties of the invariant measure (found in Section 3) w.r.t. spatio-temporal shifts.

1. Basic definitions and examples

In this section we present definitions from probability theory and topology and also
introduce most of the notation used in this paper. We have taken most definitions and
statements on probability theory from [3].

DEFINITION 1.1. – N denotes the set of natural numbers including zero. Let(E,A2)

be a measurable space,(�,A1,P ) a probability space and(Xt )t∈I a family(with index
setI 	= ∅) of random variables on(�,A1,P ) with values inE.
• Then(�,A1,P, (Xt)t∈I ) is called astochastic process with values in(E,A2).
• If I =R

�0, [0, T ] or [0, T ) for someT > 0 the process is called acontinuous time
stochastic process.

• For fixedω ∈� the mapt �→Xt(ω) is called thetrajectoryof ω. It is also denoted
byX.(ω).

• We consider the setN as measurable space with the discreteσ -algebra. For any set
� we denote byN� the product space, equipped with the productσ -algebra.
A continuous time stochastic process with values inN

� and with index setI and
P -a.a. of whose trajectories are non-decreasing(i.e. the functionst �→ πq ◦Xt(ω)
are non-decreasing for allq ∈ � and P -a.a. ω ∈ �. ‘πq ’ denotes the projection
on theqth coordinate.), is called acounting processwith values inN

� We say
that such a process isof finite expectationif for all t ∈ I the random variable
ω �→∑

q∈� πq ◦Xt(ω) has finite expectation.
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Remark1.2. –
1. We will also use the short-hand-notationX. for a stochastic process if�, A1 and
P are obvious from the context.

2. The termpath seems to be more common thantrajectory but we will denote
something else later on bypath.

3. Finite expectation means that with probability 1 there are only finitely many jumps
(cf. Definition 1.3 below) in every finite time-interval.

DEFINITION 1.3 (cf. [3]). – Let (�,A1,P, (Xt)t∈I ) be a continuous time counting
process with values inN as in Definition 1.1 andω ∈�. We define

X+
t (ω)

def=
{
Xt(ω) if I = [0, t],
lims↘t Xs(ω) otherwise, (1)

X−
t (ω)

def=
{

lims↗t Xs(ω) t > 0,
X0(ω) t = 0.

(2)

We say thatX.(ω) jumps at timet � 0 if X−
t (ω) < X

+
t (ω). ThenX+

t (ω)−X−
t (ω) is

called the size of the jump.
LetX.(ω) be a continuous time counting process with values inN

� andω ∈ �. We
say thatX.(ω) jumps at timet and siteq ∈� if πq ◦X.(ω) jumps att . Then we also say
thatω jumps at(q, t).

We define thejump set�(ω, t) ofω at timet as the set of allq ∈� such thatω jumps
at (q, t).

DEFINITION 1.4 (cf. [3]). – Let I =R
�0 or I = [0, T ) for someT > 0. A stochastic

process(�,A,P, (Xt)t∈I ) with values inN is called (normalized) Poisson process with
parameterλ > 0 if the following holds:

1. The process has stationary and independent increments which for alls < t ∈ I
satisfy

P
({ω: Xt(ω)−Xs(ω)= n})= pλ(t − s, n) (3)

with

pλ(t, n).
def= e−λt

(λt)n

n! . (4)

2. P -almost every trajectoryX.(ω) is a right-continuous, increasing function having
at most jumps of size1.

3. At time 0P -a.a. trajectories have value0:

P
(
ω: X0(ω)= 0

)= 1. (5)

THEOREM 1.5 (cf. [3], Satz 41.2). –For any λ > 0 and I as in Definition1.4
there exists a(normalized) Poisson process with parameterλ. Any two such processes
are equivalent(i.e. if X1

. andX2
. are two such processes then for any finite sequence

t1 < · · · < tn in I the projections(X1
t1
, . . . ,X1

tn
) and (X2

t1
, . . . ,X2

tn
) have the same

distribution).

DEFINITION 1.6. – Let � be a nonempty set and(�q,Aq,Pq, (X
q
t )t∈I )q∈� be a

family of stochastic processes with values in(Eq,Aq), respectively. We set
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�
def=∏

q∈�
�q, (6)

Ã def=⊗
q∈�

Aq, (7)

P̃
def=⊗

q∈�
Pq, (8)

A def= completion ofÃ w.r.t. P̃ , (9)

P
def= extension ofP̃ to A (10)

and Xt
def= (Xq

t

)
q∈�. (11)

In (6) we mean the cartesian product of spaces, in(7) the product sigma-algebra and
in (8) the product measure.

Then the process(�,A,P, (Xt)t∈I ) with values in(
∏
q∈�Eq,

⊗
q∈�Aq) is calledthe

product of the family of processes.

Remark1.7. –
1. Products of stochastic processes as in Definition 1.6 exist. For example the

existence of the non-completed product measure follows from standard measure
theory (cf. [3].)

2. For non-empty, at most countable� and a family (indexed by�) of Poisson
processes two such productsX1

. andX2
. are equivalent because for allq ∈ �

the Poisson processesπq ◦ X1
. andπq ◦ X2

. are equivalent (cf. Theorem 1.5). It
follows from the definition of the productσ -algebra

⊗
q∈�Aq thatX1

. andX2
. are

equivalent.

DEFINITION 1.8. –Let λ > 0 and� a nonempty, at most countable set.A Poisson
process on� with parameterλ is the product of a family, indexed by�, of Poisson
processes with parameterλ.

Remark1.9. –
1. For λ > 0 the Poisson process onZd with parameterλ is clearly not of finite

expectation. In fact, for anyt > 0 there areP -almost surely infinitely many jumps
in [0, t], i.e.

P

({
ω:

∑
q∈Zd

πq ◦Xt(ω)=∞
})

= 1. (12)

2. But if �1 ⊂ Z
d is finite thenπ�1 ◦ X.(ω) has finitely many jumps in[0, t] for

P -a.a.ω ∈� and anyt > 0.
3. There are P-almost surely no simultaneous jumps at two different sites:

P
({
ω: ∃q1 	= q2 ∈ Z

d, t � 0 such thatω jumps at(q1, t) and(q2, t)
})= 0. (13)

4. For 0� t0< t

P
({ω: ω jumps att0})= 0. (14)
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Proof of Remark 1.9. –We only show (13). The proofs of the other statements are
similar. We set

A(q1, q2, T )
def= {ω: ∃t ∈ [0, T ) such thatω jumps at(q1, t) and(q2, t)

}
. (15)

We have to prove that the set⋃
T ∈N

⋃
q1,q2∈Zd

A(q1, q2, T ) (16)

hasP -measure zero and it is sufficient to show that

P
(
A(q1, q2, T )

)= 0 (17)

for fixedq1 	= q2 ∈ Z
d andT > 0. For this we set

IN,k
def=
[
(k− 1)

T

N
, k
T

N

)
(18)

for N ∈ N \ {0} and 1� k �N . By (4) we have fori = 1,2:

P
({ω: jumps at(qi, t) for somet ∈ IN,k})= 1− e−λ

T
N (19)

and so, using the estimate ex � 1+ x:

P
({ω: ∃k; t1, t2 ∈ IN,k such thatω jumps at(q1, t1) and(q2, t2)})
�N

(
1− e−λ

T
N
)2 � λ2T 2 1

N
(20)

which converges to 0 asN→∞. ✷
The following two definitions prepare Definition 1.13 that we will need in Section 2.

DEFINITION 1.10. – In view of Definition1.4and Remark1.9we define(for a given
Poisson process like in that remark) the setN1 of P -measure zero:

N1
def= {ω: X.(ω) is not non-decreasing, has jumps at 0, (21)

simultaneous jumps or jumps of size greater than1}.
DEFINITION 1.11. – Let�⊂ Z

d . Then we denote its complement by�C def= Z
d \�.

DEFINITION 1.12. –For q = (q1, . . . , qn) ∈ Z
d we define

‖q‖ def= |q1| + · · · + |qn|. (22)

For R � 0

BR(q)
def= {q̃ ∈ Z

d : ‖q − q̃‖� R
}

(23)

is the set of points that have distance at mostR from q.
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DEFINITION 1.13. – Leta, b ∈ Z
d andn� 0. A path froma to b is a finite sequence

Q= (q0 = a, q1, . . . , qn = b) of pointsqi ∈ Z
d . We call

∑n
i=1 ‖qi − qi−1‖ the lengthand

max0�i�n−1 ‖qi+1 − qi‖ thestep sizeofQ. Note the special case of a pathQ= (q0). It
is called theempty path at siteq0 and we define both its length and step size to be0.

DEFINITION 1.14. – Let (�,A,P, (Xt)t�0) be a Poisson process with parameter
λ > 0 and with values inNZd . Let T > 0, ω ∈ � andQ = (q0 = a, q1, . . . , qn = b) a
path. We extendQ to the infinite sequencẽQ= (q0, q1, . . . , qn, qn+1 = qn, . . .) in which
qn is repeated.

We define a process(�,A,P, (Zt)t∈[0,T ]) with values inN as follows.

Z : [0, t] ×�→N, (24)

(t,ω) �→Zt(ω).

If ω ∈N1 or it does not jump at(q0, t) for any t ∈ (0, T ) we setZ.(ω)= 0 on [0, T ].
Otherwise there is a maximal sequence

t−1
def= T > t0> t1> · · ·> tm(ω) (25)

such that

ti
def= max

{
t ∈ (0, ti−1): ω jumps at(qi, t)

}
for 0� i �m(ω). (26)

‘Maximal’ means thatω does not jump atqm(ω)+1 in the time interval(0, tm(ω)) and so
the sequence(25)cannot be extended.(Intuitively one can think that one sits at timeT at
siteq0 and, goingbackwardsin time, waits for the next jump ofω at q0 (which happens
at timet0), then jumps (instantly) toq1 and waits(backwardsin time) for the next jump
of ω at q1, then jumps toq2 etc. Aftern jumps(should this occur) one does not change
the sites any more, but possibly jumps fromqn to qn. m(ω) is the total number of jumps.
It is P -a.s. finite becauseP -a.a.ω have only finitely many jumps atqn.)

We set fort ∈ [0, T ]:

Z̃t (ω)
def=
{
i for t ∈ [ti , ti−1),
m(ω) for t ∈ [0, tm(ω)]. (27)

And Z.(ω) is the (uniquely defined) right-continuous function, such thatZ.(ω) =
Z̃T−.(ω) everywhere, except possibly where these functions jump. Then(�,A,P,
(Zt)t∈[0,T ]) is a Poisson process with parameterλ. (A precise proof of this uses that
the constructed process is ‘made of’ independent Poisson processes and that these have
independent increments.) We call it thePoisson process induced by the pathQ.

DEFINITION 1.15. – In the setting of Definition1.14we callQ a causal path w.r.t.
(t,ω) if ZT (ω) � n and amaximal causal path w.r.t.(t,ω) if ZT (ω) = n. (The latter
means thatQ= (q0, . . . , qn) cannot be extended to any causal path(q0, . . . , qn, qn+1).)

We define:
• Path(q, n,R) to be the set of paths that start atq, have exactlyn steps and are of

step size at mostR.
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• Path(q→�) for any∅ 	=� ∈ Z
d to be the set of paths starting atq and ending in

�.
• Pathc(t,ω, q,�) for q ∈ � to be the set of causal w.r.t.(t,ω) pathsQ = (q0 =
q, . . . , qn) such that

1. Q is maximal causal andq0, . . . , qn ∈�, or

2. q0, . . . , qn−1 ∈� andqn ∈�C .

• Pathc(t,ω, q → �C) for q ∈ � to be the set of causal paths(q0 = q, . . . , qn)

such thatq0, . . . , qn−1 ∈ � and qn ∈ �C . (So this is the subset of elements in
Pathc(t,ω, q,�) for which case2. applies.)

Remark1.16. –
1. We have defined the property of being causal for general paths and not related this

definition to any kind of interaction. When we study finite range interaction, of
rangeR say, we will consider only causal paths of step size at mostR.

2. A term like inverse causal pathfrom a to b instead ofcausal pathwould actually
be more appropiate as it corresponds tob affectinga (cf. Definition 2.1) but not
necessarily the other way around. However, we prefer the shorter notion.

DEFINITION 1.17 (cf. [3]). – Let (�1,A1) and (�2,A2) be measurable spaces. A
mapK :�1 ×A2 → [0,1] is called aMarkov kernel from(�1,A1) to (�2,A2) if the
two following conditions are satisfied:

MK1 ω1 �→K(ω1,A2) isA1-measurable for allA2 ∈A2.

MK2 A2 �→K(ω1,A2) is a probability measure onA2 for all ω1 ∈�1.
If (�1,A1)= (�2,A2) thenK is called aMarkov kernel on(�1,A1).

Example1.18. – Let(Y, +Y ) be a metric space andBY its Borelσ -algebra.C0(Y,Y )

is the space of continuous maps fromY to Y . It has a uniform metric, defined by
+C0(Y,Y )(g1, g2) = supy∈Y +Y (g1(y), g2(y)) and the Borelσ -algebraBC0(Y,Y ) w.r.t. this
metric. Further, let(�,A,P ) be a probability space and

S :�→ C0(Y,Y ), (28)

ω �→ Sω,

a measurable (w.r.t. theσ -algebrasA andBC0(Y,Y )) map.
Then

KS(y,Y1)
def= P

({ω: Sω(y) ∈ Y1}) (29)

for all y ∈ Y,Y1 ∈ BY , defines a Markov kernel on(Y,BY ).
Proof. –To verify MK1 we fix anY1 ∈ BY and show that the mapy �→KS(y,Y1) is

measurable. First we note thatS can be seen as a measurable map from�× Y to Y . We
write it as the composite of measurable mapsS × idY and the ‘evaluation map’:

(ω, y) �→ (Sω, y) �→ Sω(y). (30)

The mapS× idY is measurable by assumption and the definition of the productσ -algebra
of C0(Y,Y )× Y . The evaluation map is continuous (w.r.t. the product topology), hence
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measurable w.r.t. the Borelσ -algebras. So the composite in (30) is measurable in�×M .
It follows that the mapy �→ P({ω: Sω(y) ∈ Y1}) is measurable (cf. Lemma 8.1 on p. 159
in [22]) and so MK1 holds.

Next we show MK2. Consider for fixedy ∈ Y the composite of measurable maps

ω �→ (ω, y) �→ Sω(y) (31)

that maps� to Y . We see thatK(y, ·) is the image ofP w.r.t. this map and so a
probability measure which was to be shown.✷

DEFINITION 1.19 (cf. [3]). – LetK be a Markov kernel from(�1,A1) to (�2,A2)

andE∗(Ai) (i = 1,2) the set ofAi-measurable functions with values in[0,∞]. ThenK
defines a map fromE∗(A2) toE∗(A1) as follows:

(Kf )(ω1)
def=
∫
�2

K(ω1, dω2)f (ω2) (32)

for anyf ∈E∗(A2). The notation on the rhs of(32)means thatf is integrated w.r.t. the
probabiltiy measure on�2 that is described in Definition1.17, MK2.

Example1.20 (cf. [3]). – For the characteristic functionχA2 of anA2-measurable set
A2 we get

KχA2(ω1)=K(ω1,A2). (33)

Now we consider a special case of Example 1.18.

Example1.21. – LetS :Y → Y be a continuous map on(Y, +Y ) and let(�,A,P,
(Xt)t∈I ) be a counting process with values inN andt ∈ I .

The map

Stω: Y→ Y, (34)

y �→ SXt (ω)(y),

whereSXt(ω) denotes theXt(ω)th iterate ofS, is well-defined for allω ∈ �. Further,
Sω(y) is measurable w.r.t.(ω, y). In fact, Sω depends just onXt(ω) and so we get a
countable, measurable partition of�:

�= ⋃
n∈N

U(n), (35)

with U(n) def= {ω ∈�: Xt(ω)= n}. (36)

We define a Markov kernel by

Kt
S(y,Y1)

def= P ({ω: Stω(y) ∈ Y1
})

= ∑
n:Sn(y)∈Y1

P
(
U(n)

)
=
∫
�

dP(ω)χY1 ◦ Stω(y) (37)
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for y ∈ Y andY1 ∈ BY .
We see that this Markov kernel acts on a measurable functionf :Y →[0,∞] by

(
Kt
Sf
)
(y)=

∞∑
n=0

P
(
U(n)

)
f
(
Sn(y)

)
. (38)

We prepare a generalization of Example 1.21 with a definition and a technical lemma.

DEFINITION 1.22. – Let F be the set of finite subsets ofZ
d . Consider a fixed

� ∈ F \ {∅}. We defineJ to be the union of a one-point set{j∞} and the set of finite
sequences(�1, . . . ,�n) of subsets of�. ThenJ is countable and we consider it as a
measurable space, equipped with the discreteσ -algebra.

Let (�,A,P, (Xt)t∈I ) be a continuous time counting process with values inN
� and

index-setI = [0, T ) or [0, T ]. We define a map

j :�→J (39)

ω �→ j(ω).

If X.(ω) is non-decreasing, has only finitely many jumps and at most jumps of size 1
then we definej(ω) to be the(time-ordered) sequence of jump sets ofω. Otherwise we
setj(ω)= j∞. We define forj ∈ J :

U(j)
def= {ω: j(ω)= j} (40)

LEMMA 1.23. – Let� ∈ F \ {∅} be fixed and(�,A,P, (Xt)t∈I ) a continuous time
counting process with index-setI = [0, T ) or I = [0, T ] and values inN� such that for
P -a.a.ω the trajectoryX.(ω) is non-decreasing, has only finitely many jumps and at
most jumps of size1. Then the mapj, as defined in Definition1.22, is measurable.

Proof. –We consider the caseI = [0, T ]. The caseI = [0, T ) is analogous. By
assumptionN = U(j∞) is measurable and has measure zero. We have to show that
U(j) is measurable for anyj = (�1, . . . ,�n). For anyq1, q2 ∈� andn1, n2 ∈ N \ {0}
we defineA1(q1, n1, q2, n2) to be the set of allω ∈ � \N that have at leastn1 jumps
at q1 and at leastn2 jumps atq2 and then1th jump atq1 happens at the same time as
then2th jump atq2. Similarly,A2(q1, n1, q2, n2) is the set of allω ∈� \N that have at
leastn1 jumps at siteq1 and then1th jump atq1 occurs before then2th jump atq2 (if
there is ann2th jump atq2 at all – if that is not the case then this second condition is
automatically satisfied). We only show the measurability of the setsA2(·). The proof of
the measurability of the setsA1(·) uses similar arguments.

A�(q1, n1, t)
def= {ω ∈� \N : πq1 ◦Xt(ω)� n1

}
(41)

is the set of allω ∈ � \N that have at leastn1 jumps at siteq1 and then1th of these
jumps happens at the latest at timet .

Analogously,

A<(q2, n2, t)
def= {ω ∈� \N : πq2 ◦Xt(ω) < n2

}
(42)
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is the set of allω ∈� \N with at mostn2− 1 jumps atq2 in the time interval[0, t].
The setsA�(q1, n1, t) andA<(q2, n2, t) are measurable, and so isA2(q1, n1, q2, n2)

since

A2(q1, n1, q2, n2)=
⋃

t∈[0,T ]∩Q

(
A�(q1, n1, t)∩A<(q2, n2, t)

)
. (43)

Nowω belongs toU(j) if and only if, for all 1� k � n andq1, q2 ∈�k andq3 ∈� \�k

the following holds:
• If for exactly n1 indices 1� i � k the pointq1 belongs to�i and for exactlyn2

indices 1� j � k the pointq2 belongs to�j thenω ∈A1(q1, n1, q2, n2).
• If for exactlyn1 indices 1� i � k the pointq1 belongs to�i and for exactlyn3−1

indices 1� j < k the pointq3 belongs to�j thenω ∈A2(q1, n1, q3, n3).
• If for exactly l � 0 indices 1� n1 < n2 < · · · < nl � n a pointq ∈ � belongs to
�ni thenω ∈ {ω̃ ∈� \N : πq ◦XT (ω̃)= l}.

We see thatU(j) is the intersection of finitely many measurable sets and hence
measurable. ✷

Example1.24. – We consider a generalization of Example 1.21. Let(Y, +Y ) be a
measurable space,Y its Borel sigma-algebra,� a non-empty finite set and(�,A,P,
(Xt)t∈I ) a counting process with values inN� that has finite expectation and withP -
almost surely only jumps of size at most 1. LetS = (S�1)�1⊂� be a family of continuous
maps onY�, such thatS�1 changes at most the�1-coordinates, i.e. ify� ∈ Y� and
q ∈� \�1 we have for theqth coordinateπq ◦ S�1(y�)= yq .

For t ∈ I andP -a.a.ω ∈� with Xt(ω) ∈ N
� we have a finite sequence of jump-sets

j(ω)= (�1, . . . ,�n), as defined in Definition 1.22, and it depends measurably onω, as
was shown in Lemma 1.23. We define

Stω : Y�→ Y�, (44)

y� �→ Sj(ω)(y�)
def= S�n ◦ · · · ◦ S�1(y�). (45)

We get a representation ofKt
S(y�,Y1), similar to the one in (37):

Kt
S(y�,Y1)=P ({ω: Stω(y�) ∈ Y1

})
=
∫
�

dP(ω)χY1 ◦ Stω(y�)

= ∑
j∈J : Sj (y�)∈Y1

P
(
U(j)

)
(46)

for y� ∈ Y� andY1 ∈⊗q∈�Y .

We have seen in Example 1.24 thatStω depends onj(ω) only.
As we are interested in spatially extended systems we need some definitions and facts

about infinite-dimensional systems.

DEFINITION 1.25. –S1 is the one-dimensional sphere. We define it to be isometric as
Riemannian manifold toR/2πZ. This defines in particular a metric+S1 onS1 and also
the normalized Lebesgue measure on the(completed) Borelσ -algebra.
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The diameter ofS1 is

cS
def= diam+

S1

(
S1)= π. (47)

(It seems a bit redundant to introduce the constantcS instead of usingπ in the
following. But we indicate that the proofs in Section2 work if S1 is replaced by any
compact Riemannian manifold or more general by a bounded metric space with a Borel
probability measure. Further, we use the letter ‘π ’ as notation for projections.)

We set

M
def= (S1)Zd (48)

and give it the product topology and product Lebesgue measure on the(completed) Borel
σ -algebra.

For�⊂ Z
d we denote byπ� the projection on the�-coordinates.

Note that the product of the Borelσ -algebras is the same as the Borelσ -algebra for
the product space.M is compact and metrizable in the following way:

DEFINITION 1.26. – Let (b(q))q∈Zd be a family of positive numbers such that

lim
R→∞ sup

‖q‖�R
b(q)= 0. (49)

Then the metric+M onM , associated to(b(q))q∈Zd , is defined by

+M(x,y)
def= sup

q∈Zd
b(q)+S1(xq, yq) (50)

for x,y ∈M .

Remark1.27. –
1. One can easily show that+M , as defined in Definition 1.26, is in fact a metric and

also compatible with the product topology.
2. A sequence(x(n))n∈N in M converges w.r.t. the product topology iff it converges

w.r.t. each coordinate, i.e.(x(n)q )n∈N converges for everyq ∈ Z
d . The same holds

also for nets(x�)�∈F .
3. The product topology does not distinguish any particular sites despite the fact that

the weightsb(q) depend onq. Spatial shifts, likex �→ x̃ with x̃q = xq−r for some
r ∈ Z

d , are homeomorphisms.
4. The spaceC0(M,M) of continuous maps on(M,+M) is complete w.r.t. the metric

defined by

+C0(M,M)(f, g)
def= sup

x∈M
+M
(
f (x), g(x)

)
. (51)

We denote byBC0(M,M) the Borelσ -algebra w.r.t. this metric.

LEMMA 1.28. – Let (�,A) be a measurable space and(f �)�∈F\{∅} be a net of
measurable maps
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f � :�→ C0(M,M), (52)

ω �→ f �ω ,

such that for all�1 ∈ F \ {∅} and ω ∈ � the net(π�1 ◦ f �ω )�1⊂�∈F converges(as
�→ Z

d ) in C0(M, (S1)�1), say toπ�1 ◦ fω.
Then

fω,q(x)
def= lim

�→Zd
πq ◦ f �ω (x) (53)

defines a measurable map

f :�→ C0(M,M), (54)

ω �→ fω,

whoseqth coordinate function is given by(53).

Proof. –Fix ω ∈�, x ∈M and a metric+M like in Definition 1.26. We show thatfω
is continuous inx. For that letε > 0 and chooseR0 ∈N such that

cSb(q) < ε (55)

for all q with ‖q‖ > R0. We note that theqth coordinate function ofπ�1 ◦ fω ∈
C0(M, (S1)�1) is the same as theqth coordinate functionfω,q of fω.

By continuity ofπBR0(0)
◦ fω we can choose aδ > 0 such that for ally ∈ Bδ(x) and all

q with ‖q‖� R0:

cSb(q)+S1

(
fω,q(x), fω,q(y)

)
< ε. (56)

From (55) and (56) we conclude that for ally ∈ Bδ(x)
+M
(
fω(x), fω(y)

)
< ε (57)

which was to be shown. Finallyf depends measurably onω because it is pointwise limit
of measurable functions with values in a metric space (cf. [22], p. 117, for example).✷

Remark1.29. –
1. Lemma 1.28 is in particular based on the compactness onM w.r.t. the product

toplology.
M is not compact w.r.t. the different metric, defined by

+̃M(x,y)
def= sup

q∈�
+S1(xq, yq).

In this case the conclusion from ‘local’ to ‘global’ does not hold.
2. As f in (54) is (A,BC0(M,M))-measurable, the map(ω,x) �→ fω(x) is (A ×

BM,BM)-measurable. We have proved this fact in Example 1.18.

2. Infinite-dimensional systems

In Example 1.24 we used a counting process with values inN
� (for finite �) and

a family of updating-maps onY� to define Markov kernels on the productY�. These
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kernels act on the product spaceC0(Y�) of continuous functions (cf. Definition 1.19 and
Proposition 2.15). In view of spatially extended systems like coupled map lattices or
interacting particle systems we would like to define analogous operators for infinite-
dimensional systems (� = Z

d). As counting process we take the Poisson process
(�,A,P, (Xt)t�0) with parameterλ > 0 and values inNZd .

Recall that the setN1, defined in Definition 1.10, of allω ∈� such thatX.(ω) is not
nondecreasing, jumps at time 0, has simultaneous jumps or jumps of size greater than
one, hasP -measure zero. So we have to consider updatings only at single sites. They
are given by a family of continuous maps(Sq)q∈Zd such thatSq :M→M changes only
theqth coordinate (cf. Example 1.24 for a definition.)

A problem is obviously that the Poisson process, restricted to any finite interval[0, t]
of length t > 0 is not of finite expectation (cf. Definition 1.1 and Remark 1.9.1).P -a.s.
there are infinitely many jumps and it is even impossible to define an order preserving
bijection between them andN. However, in Section 2.1 we will show for systems
with finite range interaction that forP -a.a.ω ∈ �, any q ∈ Z

d and t > 0 the siteq is
affected in[0, t] (cf. Definition 2.1) by only finitely many sites, so that maps ‘πq ◦ Stω’
from M to (S1){q} and then also ‘Stω’ from M to M can be defined in a natural way.
The proof is based on a percolation argument. Percolation techniques, but different
from the ones presented here, were already used by Harris in [15] for proving the
existence of certain interacting particle systems of finite range. It follows in particular
that π� ◦ Stω :M → (S1)� for finite � 	= ∅ is the limit (as�̃→ Z

d ) of maps that are
constructed by using the ‘cut offs’π� ◦ St�̃,ξ,ω, corresponding to a finitẽ� ⊃ � and
boundary conditionsξ . In fact, this limit also exists and is independent of the boundary
conditions for a huge class of infinite range interactions as we will show in Section 2.2.
It gives rise to a natural definition of the system. But we also note that for infinite range
interaction each site is with positive probability affected by infinitely many other sites.
So we cannot use the same definition as for finite range interaction.

In Section 2.3 we define Markov kernelsKt
S for the infinite systemSt andKt

S,�̃
for

the systemSt
�̃

that fixes the�̃C -coordinates for a finitẽ� (Recall the notation for the
complement from Definition 1.11). We show thatKt

S is the weak limit ofKt

S,�̃
(as

�̃→ Z
d ), i.e. the corresponding operators on continuous functions converge weakly.

2.1. Finite range interaction

Now we are considering an interaction of rangeR ∈ N \ {0}, i.e.πq ◦ Sq(x) depends
only onxBR(q). (Recall thatBR(q) was defined in (23).)

DEFINITION 2.1. – GivenR as above,q, q̃ ∈ Z
d , T > 0,ω ∈�. We say that̃q affects

q w.r.t. (R, t,ω) if there is a causal path fromq to q̃ of step size at mostR. (Recall that
we definedpathetc. in Definitions1.13to 1.15). If ∅ 	=�⊂ Z

d we say that̃q affects�
w.r.t. (R, t,ω) if q̃ affects at least one point in� w.r.t. (R, t,ω).

We set

Aff (R,t,ω)(�)
def= {q̃ ∈ Z

d : q̃ affects� w.r.t. (R, t,ω)
}
, (58)

and �R
def= {ω: ∃t > 0, q ∈ Z

d such that|Aff (R,t,ω)(q)| =∞}, (59)
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Fig. 1. The history ofq0.

where| · | denotes the cardinality.

Fig. 1 is a picture of Aff(1,T ,ω)(q0). We consider the finite time-interval(0, T ] and
nearest neighbour interaction and a particularω. For each jump we draw a cross at the
particular point(q, t). There are jumps at(q2, t6), (q0, t5), (q−2, t4), (q1, t3), (q0, t2) and
(q3, t1) The last jump atq0 is at timet2. We draw a thick horizontal line between(q0, t2)

and(q, t2) for all nearest neighboursq of q0 because the updating ofq2 depends also on
these sites. So we have to consider the ‘histories’ ofq0 and its nearest neighboursbefore
time t2. Note thatq3 ∈ Aff (1,T ,ω)(q0) and it is updated at timet1 (and so affected byq4

for example) but that updating has no influence onq0 (at timeT ). We also note that, for
example,q−1 affectsq0 (w.r.t. (1, T ,ω)) but not the other way around. So we have to
consider only the time- and space-ordered percolation.

PROPOSITION 2.2. –�R hasP -measure zero:

P(�R)= 0. (60)

Proof. –Aff (R,t,ω)(q) is increasing int and so

�R =
⋃
t∈N

⋃
q∈Zd

{
ω: |Aff (R,t,ω)(q)| =∞}. (61)

So it is sufficient to show that for fixedq ∈� andt > 0 the set{ω: |Aff (R,t,ω)(q)| =∞}
hasP -measure zero. If we set

AN
def= {ω: Aff (R,t,ω)(q) 	⊂ BN(q)} (62)

it is sufficient to show that

lim
N→∞P(AN)= 0. (63)

If q is affected by somẽq /∈ BN(q) w.r.t. (R, t,ω) then there is a maximal causal path of
step size at mostR from q to q̃ with at leastN0 steps, whereN0 is the smallest integer
greater thanN

R
.
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Consider any maximal causal pathQ = (q0 = q, . . . , qn) of step size at mostR and
with n � N0. Q is a maximal causal path w.r.t.(t,ω) iff the trajectory ofω w.r.t. the
Poisson process induced byQ (cf. Definition 1.14) has exactlyn jumps. The probability
of this ispλ(t, n) (which was defined in (4).)

We set

cd,R
def= |BR(q)|. (64)

(Recall thatBR(q) was defined in (23) and| · | denotes the cardinality.)
Then

|Path(q, n,R)| = cnd,R (65)

because at each step in the path one can choose betweencd,R lattice-points.
So we have

AN ⊂
⋃
n�N0

⋃
Q∈Path(q,n,R)

{ω: Q is maximal causal w.r.t.(R, t,ω)} (66)

and so

P(AN)�
∑
n�N0

cnd,Re−λt
(λt)n

n! (67)

� e(cd,R−1)λt(cd,Rλt)
N0

1

N0! (68)

which converges to 0 asN0 →∞ which was to show. For the last inequality we have
used the estimate for the Lagrange remainder in Taylor’s formula.✷

DEFINITION 2.3. – Let a finite range interaction(i.e. a family of updatings) be given
by (Sq)q∈Zd . Fix ω ∈� \ (�R ∪N1), ∅ 	=�⊂ �̃ ∈F , ξ ∈M andt > 0. Thenω has only
finitely many jumps iñ�× (0, t), say at(q1, t1), . . . , (qn, tn) with 0< t1< · · ·< tn < t .

We denote byx�̃ ∨ ξ�̃C the point inM that has the samẽ�-coordinates asx and the
same�̃C -coordinates asξ .

We define

Sq,�̃,ξ :
(
S1)�̃→ (

S1)�̃, (69)

Sq,�̃,ξ (x�̃)
def= π�̃ ◦ Sq(x�̃ ∨ ξ�̃C ),

and

� \ (N1∪�R) " ω �→ St
�̃,ξ,ω

∈ C0(M,M), (70)

St
�̃,ξ,ω

(x) def= Sqn,�̃,ξ ◦ · · · ◦ Sq1,�̃,ξ
(x�̃)∨ ξ�̃C .

The mapsSt
�̃,ξ,ω

are continuous as composites of continuous maps. Furthermore,St
�̃,ξ,ω

depends only onω�̃ (i.e. onπ�̃ ◦X.(ω)) and(70) gives rise to a countable, measurable
partition of� \ (N1∪�R): ω andω̃ belong to the same set of this partition if they have
the same list of jump sites(q1, . . . , qn) (ordered w.r.t. the jump times).

Now let�̃⊃ Aff (R,t,ω)(�) andξ ∈M and define
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π� ◦ St :� \ (N1∪�R)→ C0(M, (S1)�), (71)

π� ◦ Stω(x) def= π� ◦ St�̃,ξ,ω(x�̃). (72)

The definition does not depend on the choice of�̃ or ξ because the right-hand side(rhs)
of (72) depends, by definition, on theAff (R,t,ω)(�)-coordinates ofx only.

Further, the family(π� ◦ Stω(x))�∈F\{∅} is consistent in the sense that for any∅ 	=
�1 ⊂�2 ∈ F :

π�1

(
π�2 ◦ Stω(x)

)= π�1 ◦ Stω(x), (73)

and so defines a map

Stω :M→M, (74)(
Stω(x)

)
q

def= πq ◦ Stω(x).
Finally, we setStω = idM for ω ∈�R ∪N .

PROPOSITION 2.4. – The mapStω, defined in(72)and(74) is continuous and depends
measurably onω.

Proof. –The net(S̃t
�̃,ξ,ω

)�̃∈F\{∅} satisfies the assumptions in Lemma 1.28 and so all
statements of Proposition 2.4 follow.✷
2.2. Infinite range interaction

We extend our notion of ‘Stω ’ to interactions that are not necessarily of finite range.
Consider a family(Sq)q∈Zd of mapsSq :M →M such thatSq does not change the

Z
d \ {q}-coordinates andπq ◦ Sq :M→ S1 is Lipschitz-continuous w.r.t. all coordinates

and the Lipschitz constants depend only on the relative positions of the sites, i.e.
there are constantsw(r) for all r ∈ Z

d such that for allq, q̃ ∈ Z
d and x,y ∈ M with

xZd\{q̃} = yZd\{q̃} (i.e. x andy differ at most in theirq̃-coordinates.)

+S1

(
πq ◦ Sq(x),πq ◦ Sq(y))�w(q̃ − q)+S1(yq̃ , zq̃). (75)

We further assume summability of the Lipschitz-constants, i.e.∑
q∈Zd

w(q)= c1 (76)

with a positive constantc1.
We need the following technical lemma.

LEMMA 2.5. – If (w(q))q∈Zd is a family of non-negative real numbers satisfying
(76) then there are families(w1(q))q∈Zd and (w2(q))q∈Zd of non-negative and positive
numbers, respectively, such that

w(q)=w1(q)w2(q) for all q ∈ Z
d, (77)∑

q∈Zd

w1(q)� 2c1+ 1, (78)

and lim
R→∞a(R)= 0, (79)
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where the positive functiona(·) is defined by

a(R)
def= sup

‖r1‖+···+‖rn‖=R
w2(r1) · · · · ·w2(rn). (80)

(The empty product is defined to be equal to1.)

Proof. –We can chooser0 = 0< r1< · · · ∈N such that∑
‖q‖<ri

w(q)� c1− 4−(i+1) for i � 1. (81)

Then we have∑
‖q‖<r1

w(q)� c1 and
∑

ri�‖q‖<ri+1

w(q)� 4−(i+1) for i � 1. (82)

We set fori � 1 andri−1 � ‖q‖< ri :
w2(q)

def= 2−i , (83)

w1(q)
def= 2iw(q). (84)

Then (77) is obviously satisfied. To prove (78) we use (82) and (84):

∑
q∈Zd

w1(q)=
∞∑
i=0

∑
ri�‖q‖<ri+1

w1(q)� 2c1+
∞∑
i=1

2−i = 2c1+ 1. (85)

Now we prove (79). We show by induction (w.r.t.i) that for everyi � 1 there is anni
such that

a(R) < 2−i for all R � ni. (86)

For i = 1 the statement is true withn1= 1 becausea(R)� 1
2 for everyR � 1 as there is

at least one factor on the right-hand-side in (80) and each such factor is at most1
2.

Now we assume that the statement holds fori andni . We set

ni+1
def= ri + 2ni. (87)

Then every path(q0, . . . , qn) of length R � ni+1 has at least one step of size at
least ri (i.e. there is an 1� l � n such that‖ql − ql−1‖ � ri ) or it can be divided
into two paths both of length at leastni (i.e. there is an 1� l � m − 1 such that
‖q0− q1‖ + · · · + ‖ql−1 + ql‖� ni and‖ql+1− ql‖ + · · · + ‖qn + qn−1‖� ni). So each
product on the right-hand side of (80) has at least one factor less than or equal to 2−(i+1)

or two factors less than or equal to 2−i . As the other factors are smaller than 1 the product
is bounded by 2−(i+1) as was to be shown.✷

Now we fix (like in Lemma 2.5) a choice of(w1(q))q∈Zd and(w2(q))q∈Zd and so the
functiona.
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DEFINITION 2.6. – We fix the metric+M onM by

+M(x,y)
def= sup

r∈Zd
a(‖r‖)+S1(xr , yr). (88)

Remark2.7. – It follows from Remark 1.27.1 and (79) that+M is a metric and
compatible with the product topology.

LEMMA 2.8. – The mapsSq :M→M are continuous(w.r.t. the product topology on
M).

Proof. –According to Remark 1.27.2 and the uniform choice of the Lipschitz-
constants (cf. (75)) we only have to show that the mapsπq ◦S0 :M→ S1 are continuous.

If q 	= 0 then theqth coordinate is not changed byS0 and

a(‖q‖)+S1
(
πq ◦ S0(x),πq ◦ S0(y)

)= a(‖q‖)+S1(xq, yq)� +M(x,y). (89)

If q = 0 we estimate

a(0)+S1

(
π0 ◦ S0(x),π0 ◦ S0(y)

)
� a(0)

∑
r∈Zd

w(r)+S1(xr , yr)

� a(0)
∑
r∈Zd

w(r)
1

a(‖r‖)+M(x,y)

� a(0)(2c1 + 1)+M(x,y), (90)

where we have used (75) for the first, the definition of+M for the second and (77) for the
third inequality. Soπq ◦ S0 is continuous for allq ∈ Z

d . ✷
In the following we estimate the distance (w.r.t. the uniform norm) betweenπ0◦St�,ξ,ω

andπ0◦St�,ξ̃ ,ω for different boundary conditionsξ�C andξ̃�C (that might even depend on

the time) at the�C -sites. Conditions (75) and (76) allow us to apply standard estimates
for the ‘error-growth’ for composites of maps. Using the linear nature of the ‘Lipschitz-
condition’ (75), we write the products of sums (over all coordinates, like in (75)) as sums
(over paths) of products (corresponding to the particular paths).

We fix t > 0, � ∈ F and ω ∈ � \ N1. By definition of N1 (cf. (21)) ω has no
jumps at 0, no simultaneous jumps and only finitely many jumps in� × (0, t), say

at (q1, t1), . . . , (qN, tN) with 0 < t1 < · · · < tN < t . We set t0
def= 0 and fix arbitrary

ξ = (ξ(t0), . . . , ξ(tN)), ξ̃ = (ξ̃ (t0), . . . , ξ̃ (tN)) ∈MN+1 andx,y ∈M .

We setx(0) def= x�∨ ξ�C(0), y(0) def= y�∨ ξ̃�C (0) and define for 1� i �N recursively:

xq(ti)
def=

πq ◦ Sq(x(ti−1)) for q = qi ,
xq(ti−1) for q ∈� \ {qi},
ξq(ti) for q ∈�C .

(91)

We definey(ti) analogously, usingy andξ̃ instead ofx andξ , respectively.
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Two points inS1 can have distance at mostcS = diam+
S1(S

1). For estimating the
distance betweenxq(ti) andyq(ti) we define

:q(0)
def= :̃q(0)

def=
{
+S1(xq(0), yq(0)) for q ∈�,
cS for q ∈�C ,

(92)

and for 1� i �N

:q(i)
def=

∑

r∈Zd w(r − q):r(i − 1) for q = qi ,
:q(i − 1) for q ∈� \ {qi},
cS for q ∈�C ,

(93)

:̃q(i)
def=


min{cS,∑r∈Zd w(r − q):̃r (i − 1)} for q = qi,
:̃q(i − 1) for q ∈� \ {qi},
cS for q ∈�C .

The functions:q and :̃q depend onx, y and� but we do not refer to this in our
notation. We have introduced them for estimating the difference betweenxq(ti) and
yq(ti) (cf. (94)) and so the difference betweenxq(t) andyq(t). This difference depends
also onω and so do the corresponding estimates for:q and:̃q . In Definition 2.11 we
will relate :q and :̃q to families of random variables(Y�)�∈F\{∅} and (Ỹ�)�∈F\{∅},
respectively. For:q we find a particularly nice expansion (cf. (95)). From this follows
the convergence ofY� to zero in expectation (as�→ Z

d ). We will show thatỸ�
is bounded byY� and decreasing and so convergesP -almost surely to zero by the
Monotone Convergence Theorem (cf. Theorem 2.13).

PROPOSITION 2.9. – The following holds for0� i �N :
1.

+S1
(
xq(ti), yq(ti)

)
� :̃q(i)�:q(i). (94)

2.

:q(i)=
∑

(r0=q,r1,...,rn)
∈Pathc(ti ,ω,q,�)

w(r1− r0) · · · · ·w(rn − rn−1):rn(0). (95)

3. If in particular x� = y� andq ∈� then

:q

(
N(ω)

)
� cSa

(
distZd

(
q,�C

)) ∑
(r0=q,r1,...,rn)

∈Pathc(t,ω,q→�C)

w1(r1− r0) · · · · ·w1(rn− rn−1),

(96)
whereN(ω) is the number of jumps ofω in �× (0, t).

Proof. –We prove (94) and (95) by induction w.r.t.i.
i = 0: (94) holds by definition of:q(0) and:̃q(0) (cf. (92)). At time 0 no jump has

happened and the only summand on the right-hand-side in (95) corresponds to the empty
path at siteq and so the equality in (95) holds.
i − 1→ i: (95) holds obviously fori andq 	= qi as there is no updating at siteq and

Pathc(ti ,ω, q,�)= Pathc(ti−1,ω, q,�). (97)
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At site qi there is a jump at timeti and so we have

:qi (i)=
∑
r∈Zd

w(r − qi):r(i − 1). (98)

Using the representation (95) for:r(i − 1) and the fact that every(qi, r1, . . . , rn) ∈
Pathc(ti ,ω, qi,�) can be (uniquely) split into(qi, r1) and(r1, . . . , rn) ∈ Pathc(ti−1,ω,

r1,�), we see that (95) holds fori.
Next we show the first inequality in (94) fori. For q ∈ �C the distances between

xq(ti) = ξq(ti) and yq(ti) = ξ̃q(ti) is bounded bycS and for q ∈ � \ {qi} we have
xq(ti)= xq(ti−1) andyq(ti)= yq(ti−1). So in both cases the first inequality in (94) holds.

Now we consider the siteqi where a jump happens at timeti . Using (75), assumption
(94), for i − 1, and (98), we get

+S1

(
xq(ti), yq(ti)

)
�
∑
r∈Zd

w(r − qi)+S1

(
xr(ti−1), yr(ti−1)

)
�
∑
r∈Zd

w(r − qi):r(i − 1)�:qi (i). (99)

So the first inequality in (94) is proved fori. The second follows immediately from (94).
So statements 1 and 2 are proved.

Finally, (96) follows from (95)::q(0) = 0 for q ∈ �. So we only have to sum over
paths(r0 = q, . . . , rn) that end inrn ∈�C .

In particular, if we setR def= ‖rn‖, then

:̃rn(0)= cS, (100)

distZd
(
q,�C

)
�R, (101)

R� ‖rn − rn−1‖ + · · · + ‖r1− r0‖, (102)

and so by the choice ofw1, w2 anda, made before Definition 2.6, we get

w(r1− r0) · · · · ·w(rn − rn−1)

�w1(r1− r0) · · · · ·w1(rn − rn−1)a(R)

�w1(r1− r0) · · · · ·w1(rn − rn−1)a
(
distZd

(
q,�C

))
. (103)

Using (95), (100) and (103), we get (96) .✷
Remark2.10. – The summing over causal paths in Proposition 2.9 reflects that the

result of an updating depends only on what has happened before.

DEFINITION 2.11. – We define two families(Y�)�∈F\{∅} and(Ỹ�)�∈F\{∅} of random
variables on� \N1. Let� ∈ F \ {∅} andω ∈� \N1, say with exactlyN(ω) jumps in
�× [0, t]. If we choosex,y ∈M with x� = y� the value of:0(N(ω)) (as defined by
(92) and(94)) does not depend onx or y. We defineY�(ω) to be equal to this value:

Y�(ω)
def= :0

(
N(ω)

)
(104)

Ỹ� is defined analogously, using̃:0(N(ω)) instead of:0(N(ω)).
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Remark2.12. –
1. We remark thatY� depends measurably onω. In fact there is a countable,

measurable partition of� \N1 such thatω and ω̃ belong to the same set (of that
partition) if the sums for:0(tN(ω)) and:0(tN(ω̃)) (cf. (95)) are over the same paths.

2. From (94) we see that

Ỹ� � Y�. (105)

Now we fix ξ,x ∈M and define the mapSt�,ξ,ω like in (70).

THEOREM 2.13. –
1. There is a setN2 of P -measure zero such that

lim
�→Zd

Ỹ� = 0 for ω ∈� \ (N1∪N2). (106)

2. The limit

π0 ◦ Stω def= lim
�→Zd

π0 ◦ St�,ξ,ω (107)

exists inC0(M,S1) for all ω ∈� \ (N1 ∪N2). It is measurable inω and does not
depend onξ .

3. There is a setN ⊂� of P -measure zero such that we can define maps

πq ◦ Stω def= lim
q∈�→Zd

πq ◦ St�,ξ,ω (108)

for all q ∈ Z
d andω ∈� \N .

Further, we can define a mapStω ∈ C0(M,M) by

(
Stω(x)

)
q

def= πq ◦ Stω(x). (109)

Stω depends measurably onω.

Proof. –First we show that

lim
�→Zd

E(Y�)= 0. (110)

We setR def= distZd (0,�
C). Using (96) we get

E(Y�)�
∫
�

dP(ω) cSa(R)
∑

(r0=0,r1,...,rn)
∈Pathc(t,ω,0→�C)

w1(r1− r0) · · · · ·w1(rn − rn−1)

= cSa(R)
∑

Q∈Path(0→�C)

w1(r1− r0) · · · · ·w1(rn − rn−1)

× P ({ω: Q ∈ Pathc
(
t,ω,0→�C

)})
(111)

A path Q = (q0 = 0, q1, . . . , qn) with qn ∈ �C is causal w.r.t.(t,ω) (i.e. Q ∈
Pathc(t,ω,0→ �C)) iff the Poisson process induced byQ has at leastn jumps. So
we can estimate the probability
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P
({
ω: Q ∈ Pathc

(
t,ω,0→�C

)})=∑
m�n

e−λt
(λt)m

m! (112)

� (λt)n

n! . (113)

For the last line we have used Taylor’s formula, as we did in (68). So we get, using (78),

E(Y�)� cSa(R)

∞∑
n=1

(λt)n

n!
(∑
r∈Zd

w1(r)

)n
(114)

� c2a(R) (115)

with c2 = cSeλt (2c1+1). (Recall that we consider a fixedt at the moment, soc2 is a
constant.) By (79) we get

lim
�→Zd

E(Y�)= 0 (116)

and, using (105),

lim
�→Zd

E(Ỹ�)= 0. (117)

Ỹ�(ω) is decreasing for allω ∈� \N1: For a fixedω and 0∈�1 ⊂�2 ∈F we consider
the (time-ordered) sequence of jumps(q1, t1), . . . , (qn, tn) of ω at sitesq1, . . . , q2 ∈
�1. It is a subsequence of the sequence of jumps(q1, t1), . . . , (qm, tm) of ω at sites
q1, . . . , qm ∈�2. The jumps(qi, ti) in the first sequence correspond to jumps(qj (i), tj (i))

in the second one. Thenqi = qj(i) and ti = t j (i) but the indicesi andj (i) are not the
same in general.

We define:̃1
q(i) and:̃2

q(j) as in (92) and (94) for the sets�1 and�2, respectively.
We show that

:̃1
q(i)� :̃2

q

(
j (i)

)
. (118)

If q ∈�C
1 then (118) obviously holds because:̃1

q(i)= cS is an upper bound for̃:2
q(j).

Forq ∈�1 we show (118) by induction w.r.t.i.
If i = 0 then (118) is true by (92). Now assume that (118) holds for allq and a

particulari < n. Forq ∈�1 \ {qi+1} we have

:̃1
q(i + 1)= :̃1

q(i)� :̃2
q

(
j (i)

)= :̃2
q

(
j (i + 1)

)
(119)

where the inequality holds by assumption and the equalities by (94). For the siteq = qi+1

we have by (94)

:̃1
q(i + 1)=max

{
cS,

∑
r∈Zd

w(r − q):̃1
r (i)

}

� max
{
cS,

∑
r∈Zd

w(r − q):̃2
r

(
j (i + 1)− 1

)}
= :̃2

q

(
j (i + 1)

)
(120)
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which was to be shown. Here we have used that:̃1
r (i)� :̃2

r (j (i+ 1)− 1). This follows
for r ∈�C

1 from the definition of:̃1
r and:̃2

r and forr ∈�1 from assumption (118) and
the fact that:̃2

r (j (i + 1)− 1)= :̃2
r (j (i)).

Using the definition ofỸ�1(ω) andỸ�2(ω) (cf. Definition 2.11), we conclude

Ỹ�1(ω)� Ỹ�2(ω) (121)

which was to be shown.
We have proved (117) and that(Ỹ�)�∈F\{∅} is decreasing. So we conclude (106), by

using the Monotone Convergence Theorem.
Now we prove the second statement in Theorem 2.13, using the first one. First we

note that forω ∈� \ (N1∪N2) the mapSt�,ξ,ω is continuous since it is the composite of
finitely many continuous (cf. Lemma 2.8) updating maps.

For�⊂ �̃ we have

+C0(M,S1)

(
π0 ◦ St�,ξ,ω,π0 ◦ St�̃,ξ,ω

)
� Ỹ�(ω). (122)

So by (106) the net(π0 ◦ St�,ξ,ω)�∈F\{∅} is a Cauchy net with values inC0(M,S1) for
ω ∈ � \ (N1 ∪N2) and so converges. Furthermore, it is a pointwise limit, i.e. for each
particularω, and soπ0◦Stω is measurable inω. (The last conclusion uses the theorem that
the pointwise limit of measurable functions with values in a metric space is measurable.
(cf. for example [22], p. 117)).

As mentioned in Remark 1.27.3 there is no distinction of the point 0 by the product
topology. So for allq ∈ Z

d we can defineπq ◦ Stω for all ω ∈� \N q whereP(N q)= 0.
In the same way we can define for each� ∈F \ {∅} andω ∈� \N� (with P(N�)= 0)
mapsπ�◦Stω ∈ C0(M, (S1)�) that depend measurably onω, and such thatStω(x) depends
measurably on(ω,x).

The set

N def= ⋃
�∈F\{∅}

N� (123)

hasP -measure zero. So by Lemma 1.28 the mapStω is well-defined forω ∈� \N and
the statements in 3. hold.✷

Remark2.14. –
1. It follows from the proof of Theorem 2.13 that one can define a random dynamical

system (cf. [1]), given by the map[0,∞)×�×M " (t,ω, x) �→ Stω(x) and the

shiftsθ(t) on� such thatXq
t2(θ(t1)ω)

def= X
q
t1+t2(ω)−Xq

t1(ω) whereXq
t (ω) denotes

the number of jumps ofω at siteq in the time interval(0, t].
One can further define forP -a.a.ω ∈ � the linear operators ‘◦Stω ’, acting on
continuous functions and the corresponding transfer operators ‘Ltω ’. So one has
operator-valued random variables. However, in the following we consider only the
averaged (w.r.t.ω) operators.

2. We have defined mapsStω ∈ C0(M,M) for finite range updating in (74) and a
special class of infinite range updatings in (109), using (107). Note that the second
class does not include the first. It might be interesting to find more general classes
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of (single site) updating functions for which the limit in (107) exists, or examples
where it does not exist.

2.3. Markov kernels

In Section 1 we defined the Poisson process(�,A,P, (Xt)t∈[0,T ]) with parameter
λ and values inN

�, the measure space(M,BM,µ) and the measurable space
(C0(M,M),BC0(M,M)).

We have nets(ST�)�∈F\{∅} of maps ST� :� \ N → C0(M,M) with limit ST ∈
C0(M,M), and the following statements hold:

1. ST� andST are(A,BC0(M,M))-measurable.
2. ST is the pointwise limit of the net(ST�)�∈F\{∅}.
3. For fixedx ∈M the mapST�,.(x) :�→M is (A,BM)-measurable.

More precisely, for finite range interaction (cf. Section 2.1)ST was defined in (74) and
ST� in (70). (Now we drop the fixed boundary conditionξ and the ‘̃ ’ in the notation for
convenience.) For infinite range interaction (cf. Section 2.2) we defineST� in the same
way as for finite range interaction and the existence of the limitST is established in
(109). Note that these maps are a priori not defined on a set ofP -measure zero. For
these exceptionalω ∈� we defineSTω andST�,ω to be equal to the identity onM .

Statement 3. follows from measurability w.r.t.(ω,x) of ST�,ω(x) (Proposition 2.4
and Remark 1.29.2 for finite range interaction and statement 3. of Theorem 2.13 and
Remark 1.29.2 for infinite range interaction), the fact that one-point-sets inM are
measurable, and Fubini’s Theorem.

Like in Example 1.18 we set

KT
S :M ×BM→[0,1], (124)

KT
S (x,A)

def= P
({
ω: STω (x) ∈A

})
.

The corresponding operator, applied to anf ∈ C0(M), is(
KT
S f
)
(x)=

∫
M

KT
S (x, dy)f (y) (125)

=
∫
�

dP(ω)f ◦ STω (x). (126)

(125) is the definition (cf. (32)), and (126) is a consequence of (124).
We define analogously the Markov kernelsKT

S,� and corresponding operators for the
Poisson process with values inN

�.

PROPOSITION 2.15. –KT
S andKT

S,� are bounded linear operators onC0(M).

Proof. –We give the proof forKT
S . The one forKT

S,� is analogous. Letω ∈ �,
f ∈ C0(M) and(x(n))n∈N a sequence inM with limit x. Then

lim
n→∞S

T
ω

(
x(n)

)= STω (x) (127)

and so lim
n→∞f ◦ S

T
ω

(
x(n)

)= f ◦ STω (x). (128)
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Further, ∥∥f ◦ STω ∥∥∞ � ‖f ‖∞. (129)

Using the Dominated Convergence Theorem, we conclude

lim
n→∞

(
KT
S f
)(

x(n)
)= lim

n→∞

∫
�

dP(ω)f ◦ STω
(
x(n)
)

=
∫
�

dP(ω)f ◦ STω (x)

= (KT
S f
)
(x). (130)

SoKT
S f is continuous. Continuity of the operator follows from (126) and (129).✷

PROPOSITION 2.16. –The net(KT
S,�)�∈F\{∅} converges weakly toKT

S (as�→ Z
d ),

i.e. for all f ∈ C0(M):

lim
�→Zd

KT
S,�f =KT

S f. (131)

Proof. –We have∥∥KT
S f −KT

S,�f
∥∥∞ �

∫
�

dP(ω)
∥∥f ◦ STω − f ◦ ST�,ω∥∥∞. (132)

Because of condition 2 on p. 26 and (129) the rhs converges to 0 (as�→ Z
d ). ✷

Remark2.17. – It follows from Remark 2.14.1 and the homogeneity of Poisson
processes w.r.t. time that(Kt

S)t�0 is a semigroup.

3. Transfer operators

In this section we define transfer operators for the Markov kernels for a special class of
updating functions that we have already studied in [13]. First we recall some definitions
and notations from [13].

For δ > 0 we denote byAδ the annulus

Aδ
def= {z ∈C | −δ � ln |z|� δ} (133)

and by= its positively oriented boundary.
For ∅ 	=� ⊂ Z

d the normalized Lebesgue measure on(S1)� is denoted byµ�. For
finite� it is given by

dµ�(z)= dz
(2π i)|�|

1

z
def= ∏

p∈�

dzp
2π i

1

zp
. (134)

We also use dµ�(z) as a shorthand notation for the right-hand side of (134) forz ∈A�δ .
In Assumption I(see below) we will fix aδ > 0. For� ∈F we denote byH� the space

of continuous functions on the polyannulusA�δ that are holomorphic on its interior and
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write ‖ · ‖� for the uniform norm onH�. As a function onA�δ is also a function on
AZd

δ we can drop the index� and mean the uniform norm on the infinite-dimensional
polyannulus.H is the vectorspace of all consistent familiesφ = (φ�)�∈F of functions
φ� ∈H�. Consistency means

(π�1φ�2)(z�1)
def=

∫
(S1)�2\�1

dµ�2\�1(z�2\�1) φ(z�1 ∨ z�2\�1)

= φ�1 (135)

for all �1 ⊆ �2 ∈ F and z�1 ∈ A�1
δ . (Note that we use the same symbol ‘π�’ for

projections of functions and projections of coordinates, for example fromM to (S1)�.)
For 0< ϑ < 1 andφ ∈H we define

‖φ‖ϑ = sup
�∈F

ϑ |�|‖φ�‖�, (136)

‖φ‖var
def= lim

�→Zd

∫
(S1)�

dµ� |φ�|. (137)

We set

Hϑ
def= {φ ∈H: ‖φ‖ϑ <∞}, (138)

Hbv def= {φ ∈H: ‖φ‖var <∞}, (139)

Hbv
ϑ

def=Hbv∩Hϑ . (140)

Then(Hϑ,‖ · ‖ϑ ) is a Banach space. Forφ ∈Hbv andψ ∈ C0(M) we define

ψ�(z�)
def=

∫
(S1)�

C

dµ�
C

(z�C )ψ(z� ∨ z�C ), (141)

∫
M

dµψφ def= lim
�→Zd

∫
(S1)�

dµ�ψ�φ�. (142)

Finally we recall the definition of a transfer operator: Letµ̃ be a measure on the
(completed) Borelσ -algebra of a metric spacẽM and S̃ : M̃ → M̃ be a measurable
map that is non-singular w.r.t.µ, i.e. for all measurableA ∈ M̃ , µ(A) = 0 implies
µ(S̃−1(A)) = 0. ThePerron–Frobenius operator(or transfer operator) L

S̃
, acting on

L1(M̃), is defined via the equation∫
M̃

dµ̃ψ ◦ S̃φ =
∫
M̃

dµ̃ψL
S̃
φ (143)

that must hold for allψ ∈ L∞(M̃) andφ ∈L1(M̃).
The Markov kernels for our stochastic systems are analogous to the composition

operator ‘◦S ’ (with deterministicS), acting on functions.
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DEFINITION 3.1. –We define transfer operator for a Markov kernelK analogously
to (143)by the equation ∫

M̃

dµ̃ (Kψ)φ =
∫
M̃

dµ̃ψ(LKφ). (144)

Remark3.2. –
1. In the cases we consider, the Markov kernelKS is given by

(KSψ)(x)=
∫
�

dP(ω)ψ ◦ Sω(x), (145)

where� is a probability space,Sω depends measurably onω and the mapω �→ LSω
is well-defined and integrable. Then∫

M̃

dµ̃ (Kψ)φ =
∫
M̃

dµ̃(x)
∫
�

dP(ω)ψ ◦ Sω(x)φ(x)

=
∫
M̃

dµ̃(x)
∫
�

dP(ω)ψ(x)(LSωφ)(x)

=
∫
M̃

dµ̃(x)ψ(x)
∫
�

dP(ω) (LSωφ)(x). (146)

SoLKS is given by

(LKSφ)(x)=
∫
�

dP(ω) (LSωφ)(x). (147)

2. The operator for the infinite dimensional system that we are going to consider act
on elements ofHϑ that do not in general correspond to elements ofL1(M). Recall
(see [13]) thatHbv

ϑ can be identified with a subset ofrca(M) (or, in other words, a
subset of the Borel measures). So for example in Theorem 3.25 we will show that
the equation analogous to (144) holds forψ ∈ C0(M) (rather thanL∞(M)) and
φ ∈Hbv

ϑ .

Now we consider a special class of interactions (cf. [13]), namely a family(S�)�∈F
of maps onM that can be written as

S� :M→M, (148)

S�(z) = F� ◦ T�(z)∨ z�C ,

where

F� :
(
S1)�→ (

S1)�, (149)

z� = (zq)q∈� �→ (
fq(zq)

)
q∈�,

and
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T� :M→ (
S1)�, (150)

(
T�(z)

)
q

def= zq exp

(
2π iε

∞∑
k=1

gq,k(z)

)
for q ∈� (151)

andfq andgq,k satisfy the following assumptions:

Assumption I. –F(z) = (fq(zq))q∈Zd where fq :S1 → S1 are real analytic and
expanding (i.e.f ′q � λ0 > 1) maps that extend for someδ1 holomorphically to the
interior of an annulusAδ1. In Proposition 3.1 and 3.2 of [13] we have shown that the
holomorphic extension to a sufficiently thin annulusAδ is expanding in the sense that the
preimage ofAδ w.r.t.fq lies in the interior ofAδ . We fix such aδ1. Then for everyq ∈ Z

d

the Perron–Frobenius operatorLfq , acting onH{q}, has a simple largest eigenvalue 1
with eigenvectorhq , such thatπ∅(hq)= 1 and the restriction ofhq to S1 is positive and
it splits into

Lfq =Qq +Rq, (152)

whereQq is a projection onto span(hq). We assume that there are positive constants
η < 1, ch andcr such that the following two estimates hold for allq ∈ Z

d :

‖Qq‖{q} � ch, (153)

‖Rn
q‖{q} � crη

n, (154)

where‖ · ‖{q} denotes both the uniform norm onH{q} (for this we might have to takeδ1

even smaller) and the induced operator-norm. We note that this holds in particular iffq
does not depend onq.

We further have

QqRq =RqQq = 0. (155)

Assumption II. – For all q ∈ Z
d andk � 1 each mapgq,k extends to a holomorphic

mapgq,k :ABk(q)δ1
→ C (recall definition (23) ofBk(q)) and its sup-norm (of modulus) is

exponentially bounded by

‖gq,k‖ABk(q)
δ1

� c3 exp
(−cgkd) (156)

with c3 > 0 and ‘large’cg > 0. (In several statements in Section 3 and 4 a lower bound
for cg will come out of our computations. The idea is always that our estimates work,
providedcg is bigger than a certain constant.)

For� ∈F \ {∅} we denote byh� the function

h�(z�)
def= ∏

q∈�
hq(zq), (157)

wherehq is as in Assumption I. We seth∅ = 1 and

hZd
def= (h�)�∈F ∈H. (158)
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We further define for a fixedξ ∈M and� ∈ F \ {∅} and�1 ⊆ � the updating at the
�1-sites with fixed boundary conditionsξ�C outside� (or cut-off of S�1):

S�1,� :
(
S1)�→ (

S1)�, (159)

z� �→ π� ◦ S�1(z� ∨ ξ�C ).
And for z�\�1 ∈ (S1)�\�1 we define

π�1 ◦ S�1,�(· ∨ z�\�1) :
(
S1)�1 → (

S1)�1
, (160)

z�1 �→π�1 ◦ S�1,�(z�1 ∨ z�\�1).

Remark3.3. –
1. The map defined in (160) is the cut-off ofS w.r.t. �1 and boundary conditions

z�\�1 ∨ ξ�. So we can use the special representation in terms of integral kernels
for its transfer operator, restricted toH�1, for the proposition below.

2. The family(Sq)q∈Zd , defined by (148), satisfies conditions (75) and (76) as one can
see from [13]: The partial derivatives are estimated in the proof of Proposition 3.1
there.

LEMMA 3.4. –Let � ∈ F \ {∅} be the disjoint union of�1 and �2. The transfer
operator, restricted toH�1, of the mapS�1,� : (S1)�→ (S1)�, defined in(159)has the
following representation in terms of integral kernels:

(LS�1,�
φ)(w�1 ∨w�2) (161)

=
∫
=�1

dµ�1(z�1) φ(z�1 ∨w�2)
∏
q∈�1

(S�1,�(z�1 ∨w�2))q

(S�1,�(z�1 ∨w�2))q −wq
for φ ∈H�.

Proof. –Let ψ ∈ C0((S1)�). We use the notationφw�2
for the function w�1 �→

φ(w�1 ∨w�2).∫
(S1)�

dµ�(w�)ψ ◦ S�1,�(w�)φ(w�)

=
∫

(S1)�2

dµ�2(w�2)

∫
(S1)�1

dµ�1(w�1)ψw�2
◦ π�1 ◦ S�1,�(w�1 ∨w�2)φw�2

(w�1)

=
∫

(S1)�2

dµ�2(w�2)

∫
(S1)�1

dµ�1(w�1)ψw�2
(w�1)(Lπ�1◦S�1,�(·∨w�2)

φw�2
)(w�1)

=
∫

(S1)�

dµ�(w�)ψ(w�)(Lπ�1◦S�1,�(·∨w�2)
φw�2

)(w�1). (162)

Using the representation of the transfer operator forπ�1 ◦ S�1,�(· ∨ w�2) that we
established in Proposition 3.3 of [13], we obtain the rhs of (162).✷
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Remark3.5. –
1. We see in particular thatLS�1,�

‘acts on the�1-coordinates’ only. There is no
integration w.r.t. the�2-coordinates.
For q ∈�1 we can split the factor

(S�1,�(z�1 ∨w�2))q

(S�1,�(z�1 ∨w�2))q −wq
= hq(wq, zq)+ rq(wq, zq)+

∞∑
k=1

βq,k(wq, z�1 ∨w�2 ∨ ξ�C ) (163)

as in [13]. The integral kernelshq andrq correspond to the operatorsQq andRq ,
introduced in (152) andβq,k to Bq,k, say. In addition to (155) we have

Qq ◦Bq,k = 0 (164)

for all k.
For a detailed analysis on composites of operatorsQq , Rq , Bq,k that have value 0
we refer to Section 5 in [13].

2. We have established a representation of the transfer operator also for updatings
at more than one point at one time. Such simultaneous updatings happen, for
example, in certain discrete time processes with positive probability (cf. [12]).
As in the systems considered here simultaneous updatingsP -almost never happen,
we can restrict ourself in the following to the case of updatings at single sites, i.e.
�1 = {q}.

DEFINITION 3.6. – We define for fixed� ∈ F \ {∅}, ξ ∈M and a finite sequence
j = (q1, . . . , qn) ∈ J of points in� the map

Sj,� :
(
S1)�→ (

S1)�, (165)

Sj,�
def= Sqn,� ◦ · · · ◦ Sq1,�.

HereSq,� is the map for the updating at siteq. Recall that in Definition1.22we defined
the mapsj. For all ω ∈� there is a finite sequencej(ω)= (q1, . . . , qn) and so

LSj(ω),�

def= LSqn,� ◦ · · · ◦LSq1,� (166)

is well-defined.

Before establishing particular representations of the transfer operatorsLT� andπ�◦LT
we consider some special examples. For these we need the following definition.

DEFINITION 3.7. – We define:

R(t) def= e−λt
∞∑
k=0

(λt)k

k! Rk (167)

= exp
(−λt (id−R)

)
. (168)

Then we have, using(154),



T. FISCHER / Ann. I. H. Poincaré – PR 37 (2001) 421–479 453

R(t1)R(t2)=R(t1+ t2), (169)

‖R(t)‖� cre
−(1−η)λt . (170)

Example3.8. – Consider a single site system, say at siteq of a lattice, with an
updating mapf :S1 �→ S1 that satisfiesAssumptionI. We have for fixed timeT > 0
and jump rateλ > 0 a Markov kernelKT

f , acting on functionsψ ∈ C0(S1) as in (38).
Using thatLnf ist the transfer operator off n (this is a special case of (166)), we get a
transfer operatorLTf , acting onH{q} (this space is defined on p. 28):

LTf =
∞∑
n=0

e−λT
(λT )n

n! Lnf

=
∞∑
n=0

e−λT
(λT )n

n! (Q+R)n (171)

= (1− e−λT
)
Q+R(T ) (172)

with R(t) as in Definition 3.7. Note that we think of the summand e−λt id, corresponding
to n = 0, as e−λtR0. By (155) we have forn � 1 that(Q+R)n =Q+Rn, and so we
get (172).

We represent the two summands in (172) diagrammatically in Fig. 2. The operator
(1− e−λT )Q is represented by a thin vertical line (h-strip) andR(T ) as a thick vertical
line (r-strip). Note that the operatorR(T ) is a sum of operators, each corresponding to
an exponent 0� n <∞. So ther-strip corresponds to that sum of operators rather than
to a particular product e−λT (λT )

n

n! Rn. An analogous statement holds for theh-strip.

Example3.9. – Now we consider a small perturbationfε of the single site system
f0 = f of Example 3.8, that depends on fixed boundary conditions. For simplicity we
split the transfer operator for the single updating intoLfε =Q+R+ B whereB is the
difference between the operators for the perturbed and the unperturbed system. We note
thatB corresponds to the sum

∑∞
k=1Bq,k of operators defined in Remark 3.5.1. It follows

from (164) that

Q ◦B = 0. (173)

Fig. 2. Single site, unperturbed case: There are only two gum configurations.
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For a given numberN of updatings we distribute

LNfε = (Q+R+B)N, (174)

using (155) and (173). LetK denote the number of factorsB, n0 the number of factors,
either allQ or all R, before the first factorB andni the number of factorsR after the
ith B. So the total number of factors isN = n0+ · · · + nK +K .

We get

LTfε =
∞∑
N=0

e−λT
(λT )N

N ! LNfε (175)

=
∞∑
N=0

e−λT
∑

n0,...,nK�0
n0+···+nK+K=N

(λT )N

N ! RnK ◦B ◦ · · · ◦B ◦Rn1 ◦ B ◦ (Q+R)n0 (176)

=
∞∑
K=0

∑
n0�1

n1,...,nK�0

e−λT
(λT )n0+···+nK+K

(n0+ · · · + nK +K)!R
nK ◦B ◦ · · · ◦ B ◦Rn1 ◦B ◦Q (177)

+
∞∑
K=0

∑
n0,...,nK�0

e−λT
(λT )n0+···+nK+K

(n0+ · · · + nK +K)!R
nK ◦B ◦ · · · ◦ B ◦Rn1 ◦B ◦Rn0

=
∞∑
K=0

T∫
0

λdt1

T∫
t1

λdt2 · · ·
T∫

tK

λdtK
(
1− e−λt1

)
R(tK) ◦B ◦ · · · ◦B ◦R(t1) ◦B ◦Q

+
∞∑
K=0

T∫
0

λdt1

T∫
t1

λdt2 · · ·
T∫

tK

λdtKR(tn) ◦B ◦ · · · ◦R(t0). (178)

For the step from (177) to (178) we have used Lemma 3.10 (s. below). We interpret
(178) in the following way. We write the operatorLTfε as a sum of operatorsLCg,T . For
the time being we think ofCg as a diagram like, for example, in Fig. 3. The vertical axis
from top to bottom corresponds to the positively oriented time line. Along this axis we
drawK thick horizontal bars, denoted byB, that correspond to the operatorsB. Between
consecutiveB ’s or between the firstB and the top or the lastB and the bottom or, in the
caseK = 0, between the top and the bottom we draw either a thick (r-strip) or a thin (h-
strip) line, representing the choice of factorsR or Q in the product (174), respectively.
Note that below aB there must be a thick vertical line. For a fixedT and aK-tuple

t= (t1, . . . , tK) ∈ {t: −T < t1< · · ·< tK < 0} (179)

we think of the top as being fixed at time−T , the bottom at 0 and theith symbolB
at ti . That also fixes the lengths of the particularh- andr-strips. We assign to the triple
(Cg, T , t) an operatorLCg,T ,t. For example withCg, T andt as in Fig. 3, we get

LCg,T ,t =
(
1− e−λ(t1+T )

)
R(0− tK) ◦B ◦ · · · ◦B ◦R(t2− t1) ◦B ◦Q. (180)



T. FISCHER / Ann. I. H. Poincaré – PR 37 (2001) 421–479 455

Fig. 3. Single site, perturbed case: example for a gum configuration.

To get LTCg we integrate (180) over the simplex given by (179) w.r.t. the scaled

Lebesgue measureλK dt1 · · · dtK . The simplex has dimensionK , so for eachB in Cg
we get one integration. Heuristically, the measure ‘λdt1’ corresponds to the probability
that a Poisson process with rateλ jumps in a small time interval. The approach of
approximating the continuous time system by discrete time systems is made precise
in [12]. We also note the special caseK = 0 where the simplex degenerates to a single
point of measure 1.

Above we have used the following lemma.

LEMMA 3.10. – Let (ni,j ) 0�i�K
1�j�N

be a family of non-negative integers andλ,T > 0.

Then, with the notationt0
def= −T , tK+1

def= 0:

e−NλT
(λT )n0,1+···+nK,N+K

(n0,1+ · · · + nK,N +K)!
(
n0,1+ · · · + n0,N

n0,1, . . . , n0,N

)
· · · · ·

(
nK,1+ · · · + nK,N
nK,1, . . . , nK,N

)

=
0∫

−T
λdt1

0∫
t1

λdt2 · · ·
0∫

tK−1

λdtK
∏

0�i�K
1�j�N

(
e−λ(ti+1−ti ) (λ(ti+1− ti ))ni,j

ni,j !
)
. (181)

Proof. –We see that the rhs of (181) is equal to

e−NλT λn0,1+···+nK,N+K ∏
0�i�K
1�j�N

1

ni,j !
0∫

−T
dt1 · · ·

0∫
−tK−1

dtK
∏

0�i�K
(ti+1− ti )ni,1+···+ni,N , (182)

and so (181) follows byK times applying the identity

0∫
τ

dt (−t)n(t − τ)m = n!m!
(n+m+ 1)! (−τ)

n+m+1 (183)

which can be easily shown by iterated integration by parts.✷
Example3.11. – Now we consider a system with nearest neighbour coupling where

only two adjacent sites (1 and 2) are updated and the states at the other sites are fixed.
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Fig. 4. Two sites, example for a gum configurations.

This time an expansion as in Example 3.9 gives rise to summing operatorsLCg,T where
theCg correspond to diagrams like in Fig. 4.

We have to consider all finite ordered sequences of symbolsB1 andB2.
In the example of Fig. 4 we have the sequence(B2,B1). For eachBi we draw a

thick horizontal bar, centered in the column corresponding to theith site and connecting
to all sites (columns) on which the operatorBi depends. We draw the sequence of
Bi ’s ‘downwards’. As we consider only nearest neighbour updatings here, theBi have
width 2.

Then we can choose at sites 1 and 2 betweenh- and r-strips. Note that in Fig. 4
at site 2 anh-strip follows anr-strip. This is possible because they are ‘separated’ by
B1 and so the corresponding operator is not necessarily 0. (In Section 5.3 of [13] we
list combinations of operators that lead to value 0.) Now we consider the particularCg
andT shown in Fig. 4. Letn0,1 denote the number of jumps at site 1 before the jumps
that corresponds to id1 ⊗ B2 etc. The definition ofni,j in general is analogous. So the
total number of jumps isN = n0,1 + · · · + n2,2 + 2. The first two factors in (184) give
the probability that a particular sequence of exactlyN jumps occurs. The first binomial
coefficient counts the combinations (different sequences) ofn0,1 jumps at site 1 andn0,2

jumps at site 2, the others are explained analogously.
We get the operator:

LCg,T =
∑

n0,1,n1,1,n2,2�1
n0,2,n1,2,n2,1�0

e−2λT (λT )n0,1+···+n2,2+2

(n0,1+ · · · + n2,2+ 2)!
(
n0,1+ n0,2

n0,1, n0,2

)(
n1,1+ n1,2

n1,1, n1,2

)
(
n2,1+ n2,2

n2,1, n2,2

)
Rn2,1

1 ⊗Q2 ◦B1⊗ id2 ◦Q1⊗Rn1,2
2 ◦ id1⊗ B2 ◦Q1⊗Rn0,2

2

=
0∫

−T
λdt1

0∫
t1

λdt2

( ∑
n2,1�0

e−λ|t2|
(λ|t2|)n2,1

n2,1! Rn2,1
1

)

⊗
( ∑
n2,2�1

e−λ|t2|
(λ|t2|)n2,2

n2,2! Q2

)
◦B1⊗ id2

◦
( ∑
n1,1�1

e−λ(t2−t1)
(λ(t2− t1))n1,1

n1,1! Q1

)
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⊗
( ∑
n1,2�0

e−λ(t2−t1)
(λ(t2− t1)n1,2

n1,2! Rn1,2
2

)
◦ id1⊗ B2

◦
( ∑
n0,1�1

e−λ(t1+T )
(λ(t1+ T ))n0,1

n0,1! Q1

)

⊗
( ∑
n0,2�0

e−λ(t1+T )
(λ(t1+ T )n0,2

n0,2! Rn0,2
2

)

=
0∫

−T
λdt1

0∫
t1

λdt2
(
1− e−λ|t2|

)(
1− e−λ(t2−t1)

)(
1− e−λ(t1+T )

)
R1(|t2|)⊗Q1

◦ B1⊗ id2 ◦Q1⊗R2(t2− t1) ◦ id1⊗ B2 ◦Q1⊗R2(t1+ T ). (184)

Note that the operator ‘⊗’ here has higher precedence than ‘◦’, so, for example,
A1⊗A2 ◦A3⊗A4 is understood as(A1⊗A2) ◦ (A3⊗A4).

Remark3.12. – In these introductory examples we have seen that our transfer
operators can be represented as a sum of particular transfer operatorsLCg,T each of
whose corresponds to a certain diagramCg and the timeT . We will call such aCg a
gum configuration(see Definition 3.16). TheBi correspond to particular sets of sites in
the lattice (The corresponding integral operatorBi takes these sites into account) and
the sequence(. . . ,B2,B1) reflects a fixed temporal order. Heuristically, we think of the
vertical (corresponding to the time coordinate) distances between theBi as as being not
yet fixed. The (vertical)h- andr-strips of the gum configuration are flexible.

Further, eachLCg,T can be written as an operator-valued integral where the variable
t of integration is interpreted as time vector and the integrandLCg,T ,t corresponds to
a specific gum configuration(see Definition 3.19) that can be thought of as the gum
configurationCg whose vertical coordinates are specified byT andt.

Now we establish in a formal way a diagrammatic representation of operators
π�1 ◦LTS,� andπ�1 ◦LTS .

For that we need some technical definitions and notation. Some of them are taken
from [13]. Note that we also use some standard terminology from elementary graph
theory here that we assume to be known to the reader.

Fig. 5. Specific gum configuration and its labelled tree.
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DEFINITION 3.13 (cf. [13]). – We define thedistancebetween two verticesv1 and
v2 of a connected graph to be the smallest numberl such that there is a sequence
(w0 = v1,w1, . . . ,wl = v2) of vertices and for all1 � i � l the verticeswi andwi−1

have a common edge. Two vertices of distance 1 from each other are calledneighbours.
A labelled treeis a tree graph whose vertices are labelled in the following way

(see also the rhs of Fig.5 for an example): The root has label(0). If the root hasn
neighbours then these are labelled by(0,1), . . . , (0, n), respectively. In general, any
vertexv of distancel from the root has a label(0, s1, . . . , sl). If such av hasn neighbours
each of whose has distancel + 1 from the root then these neighbours are labelled by
(0, s1, . . . , sl,1), . . . , (0, s1, . . . , sl, n), respectively.

We call a vertex of distancel � 1 from the root a leaf if it has no neighbour of distance
l + 1 from the root. All vertices that are not the root or a leaf are calledbranchings.

For k � 1, we denote by ak-branchinga branching, say of distancel to the root,

that has exactlyv(k) neighbours of distancel + 1 to the root, wherev(k) def= |Bk(0)| and
Bk(0) is as defined in(23). In this case we kallk thedegree of the branching.

In the following we consider only labelled trees, each of whose branchings is of
degreek (for somek depending on the particular branching). The number of branchings

of degreek is denoted bynβ,k. We collect these numbers in the parameternβ
def=

(nβ,1, nβ,2, . . .).
A labelled tree that has exactlyK vertices of distance1 from the root and exactlynβ,k

k-branchings is called alabelled tree with parametersK andnβ .
(Below and also in[13] a on-to-one-correspondence between thek-branchings of a

configuration and thek-branchings of the corresponding labelled tree is specified. That
explains why we are only interested in labelled trees with those particular branchings.)

The(non-reflexive) linear order≺v on the set of labels, and so on the set of vertices
(of a labelled tree), is generated by the set of all relations of the form(0, s1, . . . , sl)≺v

(0, s1, . . . , sl, i) or (0, s1, . . . , sl, i, . . .)≺v (0, s1, . . . , sl, j, . . .) (for i < j ).
We say that a linear order≺b on the set of branchings(of a labelled tree) is compatible

with the labellingif for any two branchings the following implication holds:

label(v1)= (0, s1, . . . , sl) and label(v2)= (0, s1, . . . , sl, i) ⇒ v2 ≺b v1. (185)

Finally, we introduce alinear order≺ on Z
d :

(k1, . . . , kd)≺ (k̃1, . . . , k̃d) if ki < k̃i for the lowest indexi such thatki 	= k̃i . (186)

DEFINITION 3.14. – Agum treeτg with parametersnβ = (nβ,1, nβ,2, . . .) and�2 ∈
F \ {∅} is given by the following data:

1. A labelled treeτ with parametersnβ and |�2| (as defined in Definition3.13).
2. A linear order≺b on the set of branchings ofτ that is compatible with the labelling.
3. A mappin from the set of vertices(except the root) of τ to Z

d that satisfies the
following conditions:
(a) The restriction ofpin to the set of vertices, that are labelled by(0,1), . . . ,

(0, |�2|) (We denote the restriction ofpin to this set bypin0.), is an order-
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preserving bijection onto�2, i.e. for any two such verticesv and ṽ

label(v)≺v label(ṽ) ⇒ pin(v)≺ pin(ṽ). (187)

(b) If v with label(v) = s = (s1, . . . , sm) is a k-branching andpin(v) = q ∈ Z
d

then the restriction ofpin to the set of vertices with labels(s,1), . . . , (s, v(k))
(We denote the restriction ofpin to this set bypinv.) is an order-preserving
bijection ontoBk(q)⊂ Z

d .
(c) If label(v2) = (0, i) then there is nok-branchingv3 such that bothv2 ≺b v3

and pin(v2) ∈ Bk(pin(v3)).
Similarly, if label(v2) = (0, s1, . . . , sl, i) is a branching andlabel(v1) =
(0, s1, . . . , sl) then there is nok-branchingv3 such that bothv2 ≺b v3 ≺b v1

and pin(v3) ∈ Bk(pin(v3)).

Remark3.15. –
1. Note that for each choice of�2 ⊂�1 and a labelled tree with parametersnβ and
|�2| the map pin is automatically fixed (by the first two conditions on pin in
Definition 3.14). Then it depends on the third condition (on pin) if the given set
�2, gum treeτ and order≺b can be assigned to a (unique) gum configuration.

2. Condition 3(c) on the map pin will be justified in the proof of Proposition 3.23
where we assign to the product of operators a (unique by condition 3(c)) gum
configuration and hence a gum tree. Also note that in Definition 3.20 we will
define operators for a given gum configuration so we will use assignments between
operators and diagrammatic data in both directions.

DEFINITION 3.16. – A gum configurationCg on � ending in�1 is given by the
following data:

1. A gum treeτg with parametersnβ and�2 such that�2 ⊆�1. The corresponding
tree has branchingsv1 ≺b · · · ≺b vn, say, with branching-degreesb1, . . . , bn,
respectively.
We denote the gum tree of a gum configurationCg by τg(Cg), the corresponding
tree byτ(Cg) and its branching parameter bynβ(Cg). So the number of branchings

is |nβ(Cg)| def=∑∞
k=0nβ,k(Cg).

2. For each1� i � n there are maps

ui :Bbi
(
pin(vi)

)∩�→{0,1}, (188)

di :Bbi
(
pin(vi)

)∩�→{0,1} (189)

such that
(a) If q ∈ Bbi (pin(vi)) ∩� and j is the smallest number greater thani such that

q ∈ Bbj (pin(vj)) (if such aj exists at all) thendi(q)= uj(q).
(b) For every1 � i � n

di
(
pin(vi)

)= 1. (190)

(c) If q ∈ Bbi (pin(vi))∩ (� \�1) and there is noj > i such thatq ∈ Bbj (qj ) then
di(qi)= 0.
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(We will see later that the mapsui define from a vertex upwards goingh-strips (if
ui = 0) or r-strips (if ui = 1). Similarly, the mapsdi determine downwards going
strips. For a strip between two vertices it should be well-defined if it is anh-strip
or an r-strip. Hence we impose condition(a). Condition(b) says that a strip that
goes downwards from a branching must be anr-strip.)

3. A maplong from� \⋃ni=1Bbi (pin(vi)) to {0,1} such that

long(q)= 0 if q /∈�1. (191)

DEFINITION 3.17. – We define in analogy to Definition5.2 in [13]

�̃(Cg) def=
n⋃
i=1

Bbi
(
pin(vi)

)
, (192)

�r(Cg) def= {q ∈� \ �̃(Cg): long(q)= 1
}
, (193)

�(Cg) def= �̃(Cg)∪�r(Cg). (194)

We introduce the following notation:
• In the situation of2(a) the pointq is the image(w.r.t. pin) of the verticespin−1

vi
(q)

and pin−1
vj
(q). We say thatCg has anh-strip (r-strip) from pin−1

vi
(q) to pin−1

vj
(q) if

di(q)= 0 (di(q)= 1). (We note that we do not distinguish the order of the vertices
in this notation: A strip fromv to ṽ is the same as a strip from̃v to v.)

• If q ∈ Bbi (pin(vi)) ∩ � and v = pin−1
vi
(q) and there is noj > i such thatq ∈

Bbj (pin(vj)) and if di(q) = 0 (di(q) = 1) we say thatCg has anh-strip (r-strip)
from v to the bottom.

• If q ∈ Bbi (pin(vi)) ∩� and v = pin−1
vi
(q) and there is no numberj < i such that

q ∈ Bbj (pin(vj)) and ifui(q)= 0 (ui(q)= 1) we say thatCg has anh-strip (r-strip)
from v to the top.

• In the situation of2(b) we call the correspondingr-strip anapex-r-strip.
• If q ∈� \ �̃(Cg) and long(q)= 0 (long(q)= 1) then we say thatCg has along h-

strip (longr-strip) at q. So�r(Cg)⊂�1 is the set ofq whereCg has longr-strips.
• If Cg has anr-strip to the top or a longr-strip we say thatCg reaches the top.
We denote byConfg(�,�1) the set of all gum configurations on� ending in�1.

DEFINITION 3.18. –Let Cg be a gum configuration on� ending in �1 with
branchingsv1 ≺b . . . ≺b vn of branching-ordersb1, . . . , bn, respectively, and letT ∈
(0,∞]. Then we define

Simplex(Cg, T ) def= {(t1, . . . , tn): −T < t1< · · ·< tn < 0
}
. (195)

Simplex(Cg, T ) is an open subset ofR
n and so carries the induced Lebesgue measure.

For the special casenβ(Cg)= 0 we defineSimplex(Cg, T ) to be a single point having
measure1.

DEFINITION 3.19. – For Cg ∈Confg(�,�1), T ∈ (0,∞] andt ∈ Simplex(Cg, T ) we
call the triple(Cg, T , t) a specific gum configuration.
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Specific gum configurations can be viewed graphically: The vertices are placed in
Z
d × [−T ,0] and the strips are ‘spanned’ between vertices, the top(t =−T ) and the

bottom(t = 0):
• We assign to each vertexv in τ(Cg) a point inZ

d × [−T ,0] in the following way.
If vi is a branching of degreebi , q ∈ Bbi (pin(vi)) and v = pin−1

vi
(q) then v has

time-coordinateti . In particular vi has time-coordinateti . As furtherpin(v)= q we
assignv to (q, ti).
Let for the following two verticesv and ṽ be assigned to(q, t) and (q, t̃ ),
respectively.

• If Cg has anh-strip (r-strip) fromv to ṽ we say that(Cg, T , t) has amaximalh-strip
(maximalr-˚strip) from (q, t) to (q, t̃ ). We define its length to be|t − t̃ |.

• If Cg has anh-strip (r-strip) from v to the bottom(this has time-coordinate0.) we
say that(Cg, T , t) has amaximalh-strip (maximalr-strip) from (q, t) to (q,0). Its
length is|t|.

• If Cg has anh-strip (r-strip) from v to the top(this has time-coordinate−T .) we
say that(Cg, T , t) has amaximalh-strip (maximalr-strip) from (q, t) to (q,−T ).
Its length isT − |t|. (Note that forT =∞ this length is∞.)

• If Cg has a longh-strip (long r-strip) at q we say that(Cg, T , t) has along h-strip
(long r-strip)at q. Its length isT . (Longh-strips(long r-strips) are also considered
as maximal strips.)

If (Cg, T , t) has a maximalh-strip (r-strip) from (q, t̃1) to (q, t̃4) and t̃1 � t̃2< t̃3 � t̃4
then we say that(Cg, T , t) has anh-strip (r-strip) from (q, t̃2) to (q, t̃3) (or from (q, t̃3)

to (q, t̃2)).
For a branching vi and a q ∈ Bbi (pin(vi)) we call the maximalh-strip (if any)

from (q, ti) to (q, t) with ti < t (ti > t) a downwards going (upwards going)h-strip
associated to the branching. (Note that in our pictures the positively oriented time-axis
goes downwards.) The notation forr-strips is analogous.
(Cg, T , t) must have a downwards goingr-strip at the points(pin(vi), ti) because of

condition2(b).We call it an apex-r-strip.
An h-strip (r-strip) in (Cg, T , t) goes to the bottom (to the top)if the corresponding

h-strip (r-strip) in Cg goes to the bottom(to the top).
We define

c̃(Cg, T , t) def=∏
H

(
1− exp

(
λlength(H)

))
, (196)

where the product is over all maximalh-stripsH that do not end in(� \�1)× {0}.
We draw in the specific gum configuration in Fig. 5 thick horizontal lines for

branchings and thin or thick vertical lines forh-strips orr-strips, respectively. There
are two branchings of degree 1, at(q2, t1) and at(q3, t2). The specific gum configuration
has, for example, a longr-strip at siteq5, anr-strip from(q1, t1) to the top and anh-strip
from (q1, t1) to the bottom.

Note that the vertices in the labelled gum tree (except the root) are assigned to points
in Z

d (in this exampled = 1) by the map pin. For example pin(v1)= q2.
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DEFINITION 3.20. – We denote byRq(t) the operator as defined in Definition3.7,
acting on theqth coordinate. ForCg ∈ Confg(�,�1) with |nβ(C)| � 1 branchings at

v1 ≺b · · · ≺b vn of degreeb1, . . . , bn, respectively, we sett0
def= −T , tn+1

def= 0 and define:

Op1(i,Cg, T , t)
def= ⊗

q∈�Q(i,Cg)
Qq

⊗
q∈�R(i,Cg)

Rq(ti+1− ti ), (197)

Op2(i, k)
def= Bpin(vi),k

⊗
q∈�\{pin(vi)}

idq, (198)

LTCg,t
def= c̃(Cg, T , t)Op1(n,Cg, T , t) ◦Op2(n, bn) ◦ · · · (199)

◦Op1(1,Cg, T , t) ◦Op2(1, b1) ◦Op1(0,Cg, T , t),

and LTCg
def=

∫
Simplex(Cg,T )

λ|nβ(Cg)| dtLTCg,t, (200)

where�Q(i,Cg) is the set ofq ∈ � such that(Cg, T , t) has anh-strip from (q, ti) to
(q, ti+1) and�R(i,Cg) is the set ofq ∈ Z

d such that(Cg, T , t) has anr-strip from(q, ti)
to (q, ti+1).

If nβ(Cg)= 0 we simply set

LTCg,t
def= ⊗

q: long(q)=0

Qq

⊗
q: long(q)=1

Rq , (201)

LTCg
def= LTCg,t. (202)

Finally we set

π�1 ◦LTS,� def= ∑
Cg∈Confg(�,�1)

π�1 ◦LTCg . (203)

Remark3.21. –
1. If H is a maximalh-strip from time ti to time tj with 1 � i < j � n + 1 then

length(H)= |ti − tj | and so the factor 1− exp(−λ|ti − tj |) does not depend onT .
However, in the casei = 0, i.e.ti =−T , the factor 1−exp(−λ(T − |tj |)) depends
onT . ForT =∞ this is equal to 1.

2. From (196), (197), (198) and (199) we see that the mapt �→ π�1 ◦ LTCg,t, defined
on Simplex(Cg, T ), is uniformly continuous (because all factors are uniformly
continuous w.r.t.t), hence integrable ifT <∞. We will see in the next proposition
that the integral also exists in the caseT =∞. So (200) is well-defined.

3. We see that if(Cg,∞, t) has anr-strip going to the top thenL∞Cg,t = 0.

For the following proposition recall that the parametersε andcg were introduced in
(151) and (156), respectively. The coupling of the interaction between different sites is
‘small’ if ε is ‘small’ and a ‘large’cg means ‘strong’ exponential decay of the interaction
(w.r.t. spatial distance).



T. FISCHER / Ann. I. H. Poincaré – PR 37 (2001) 421–479 463

PROPOSITION 3.22. – There are constants0< ϑ̃ < ϑ < 1 and ac4> 0 such that for
sufficiently smallε > 0, large cg, all T > 0,�1 ⊂� ∈F \ {∅} andφ ∈Hϑ

ϑ̃ |�1| ∑
Cg∈Confg(�,�1)

∫
Simplex(Cg,T )

λ|nβ(Cg)| dt
∥∥π�1 ◦LTCgφ�

∥∥� c4‖φ‖ϑ . (204)

For sufficiently largeT this also holds for suitably choseñϑ = ϑ .

Proof. –First we estimate for eachCg ∈ Confg(�,�1) and t ∈ Simplex(Cg, T ) the
norm ‖π�1 ◦ LTCg,tφ�‖�1. For that we follow the proof of (57) and (58) in [13]. The

operatorsQq ,Rq(ti+1− ti ) andBq,k in the representation (199) of the operator�1◦LTCg ,t
as well as the projection operatorπ�1 can be represented by integral operators (see
comment after (163) and cf. [13].) Note that by (167),Rq(ti+1− ti) is the sum of integral
operators.

Using the integral representation of the functionπ�1 ◦LTCg,tφ� ∈H�1, we proceed as
follows:

1. We perform the integration corresponding to all maximalr-strips of the specific
gum configuration(Cg, T , t). In the estimate (205) anr-strip R gives rise to a
factorcr exp(−(1− η)λlength(R)) (see (170).)

2. For each maximalh-strip that does not end in(� \ �1) × {0} we perform the
integration(1− exp(λlength(H)))hq · µq (i.e. integration w.r.t. theq-coordinate
and multiplication by a scalar factor ofhq .) That leads to a factorch(1 −
exp(λlength(H))) (see (153).)

3. For all maximalh-strips ending in(� \ �1) × {0} we perform the integration
corresponding to the projectionπ�1 which leads to a factor 1 in the estimate.

4. For each operatorBq,k we estimate the contribution of its integral kernel from
above byc̃3ε exp(−cgkd). That estimate is derived from (156) in the same way as
(55) in [13] is proved. In particular, the constantc̃3 is a product of the constantc3

in (156) and constants depending on the geometry of the annulus defined in (133)
and with parameterδ as fixed inAssumptionI.

5. The integral operatorπ�1 ◦ LTCg ,t acts on the functionφ� ∈ H�. However, we
only have to estimate the norm ofφ�(Cg) as φ� is simply integrated w.r.t. the
(� \�(Cg))-coordinates, i.e. at least w.r.t. these, possibly also w.r.t. others. To see
that, note that the application of the projection operatorπ�1 orQq mean integration
w.r.t. the(� \�1)- or theq-coordinates, respectively.

By ñh we denote the number of maximalh-strips that have spatial coordinate in
�(Cg) ∪ �1 (for the otherh-strips there is simply an integration to do, giving rise to
a factor 1 in the estimates) and byñr the number of maximalr-strips.

Then we get the estimates

∥∥π�1 ◦LTCg,tφ�
∥∥
�1

� (c3ε)
|nβ | exp

(
− cg

∞∑
k=1

kdnβ,k

)
c
ñh
h c

ñr
r

×∏
R

exp
(−(1− η)λlength(R)

)
c̃(Cg, T , t)‖φ�(Cg)‖�(Cg), (205)
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where the product is over all maximalr-stripsR of (Cg, T , t) andc̃(Cg, T , t) is as defined
in (196), and

‖φ�(Cg)‖�(Cg) � ϑ−|�r |−
∑∞

k=1
(3k)dnβ,k‖φ‖ϑ

� ϑ−|�r |
∞∏
k=1

ϑ−(3k)
dnβ,k‖φ‖ϑ . (206)

Now we consider a labelled treeτ with parametersnβ,k andK , a set�2 ⊂ �1 with
|�2| = K and the setA(τ,�2) of all Cg ∈ Confg(�,�1) whose labelled tree isτ and
whose gum tree has parameter�2. Note that there can be different linear orders on the
branchings ofτ . We want to estimate

ϑ̃ |�1| ∑
Cg∈A(τ,�2)

∫
Simplex(Cg,T )

λ|nβ(Cg)| dt
∥∥π�1 ◦LTCg,tφ�

∥∥ (207)

and consider this expression as integral over the union of all sets Simplex(Cg, T ).
We change the variables of integration: Let the branchings ofτ denote bỹv1, . . . , ṽ|nβ |.

A given Cg ∈ A(τ,�2) has an ordered set of branchingsv1 ≺b · · · ≺b v|nβ |, so that
vi = ṽj(i), wherej is a permutation on the set of indices.

Further, for givenT > 0 andt ∈ Simplex(Cg, T ) the time-coordinateti corresponds to
the branchingvi whereas we denote bỹt1, . . . , t̃|nβ | the lengths of the apex-r-strips that
correspond to the branching̃v1, . . . , ṽ|nβ |, respectively. In particular, thẽti are bounded
by T .

For eacht = (t1, . . . , t|nβ |) ∈
⋃

Cg∈A(τ)Simplex(Cg, T ) there is a uniquẽt = (t̃1, . . . ,

t̃|nβ |). The images of the different simplices Simplex(Cg, T ) w.r.t. this map are disjoint
subsets of[0, T ]n. Further, the change of variables fromt to t̃ is linear and has a
determinant of modulus 1. We see that by doing the transformation in several steps:
t̃j (1) is given by a linear equation

t̃j (1) = Lin1(t2, . . . , tn)− t1 (208)

andt̃j (2) by

t̃j (2) = Lin2(t̃j (1), t3, . . . , tn)− t2 (209)

etc. and the statement about the determinant follows. So we can estimate in (207) the
term ‘

∑
Cg∈A(τ,A2)

∫
Simplex(Cg,T ) dt . . .’ by ‘

∫
[0,T ]|nβ (τ )| dt̃ . . .’ and so in the estimate of (204)

we replace ‘
∑

Cg
∫

Simplex(Cg,T ) dt . . .’ by ‘
∑

�2,τ

∫
[0,T ]|nβ (τ )| dt̃ . . .’ where the sum is over all

�2 ⊆�1 and labelled treesτ with parameters|�2| andnβ .
Next we want to estimate in the last sum the contribution corresponding to all labelled

trees with parameterK (and arbitrarynβ): For a fixed 0� K � |�1| there are exactly(|�1|
K

)
subsets�2 ⊂�1 with |�2| =K . By Lemma 8.2.(2) of [13], for fixed�2 andnβ

with |nβ| � |�2|, the number of labelled trees with parameter|�2| andnβ is bounded
from above by 4|�2|∏∞

k=1(exp(c̃dkd))nβ,k , wherec̃d is a constant depending only on the
dimensiond of the lattice.
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Now we consider a given a set�2, a labelled treeτ and a choice of̃t. There is at most
one gum treeτg , having treeτ , such that a specified gum configuration with parameter
�2 and gum treeτg exists and thẽti are the lengths of apex-r-chains. (Then the order on
the branches is determined by thet̃i .)

If such a gum tree exists then the (specific) gum configuration is uniquely defined by
the choice of up- and downwards goingh- andr-strips and longh- andr-strips.

For each choice of anh-strip or r-strip we get a factorch(1− exp(λlength(H))) or
cr exp(−(1− η)λlength(R)), respectively, as mentioned at the beginning of this proof.
So for each branching we can estimate the contribution of constant factorsch andcr of
all possible choices from above by a factor exp(c12k

d). This factor will be compensated
for by the factor exp(−cgkd) that, as mentioned at the beginning of the proof, from the
estimate for the operatorBq,k corresponding to the branching. For that the constantcg
has to be sufficiently large.

There are not more than|�1| − |�2| sites for which we can choose between longh-
strips and longr-strips. A longr-strip gives rise to a factorcr exp(−(1− η)λT ), and a
longh-strip to a factor at mostch.

Gum configurationsCg without branchings (i.e.nβ(Cg) = 0) can only have long r-
chains (that must end in�1) or long h-chains. This case corresponds to the summand for
K = 0 in (211).

We remark that the sum ‘
∑∞

n=0’ in (211) also includes the estimate for this special
caseK = 0. Then the gum configurations have no branchings and sonβ = 0. The sum
‘
∑∞
n=0’ should then be replaced by a factor 1 (to avoid confusion). However, this sum is

at least 1 and so the estimate is correct.
We estimate the left-hand side (lhs) of (204):

ϑ̃ |�1| ∑
Cg∈Confg(�,�1)

∫
Simplex(Cg,T )

λ|nβ(Cg)| dt
∥∥π�1 ◦LTCg ,tφ�

∥∥ (210)

� ϑ̃ |�1|
|�1|∑
K=0

( |�1|
K

)(
ch + ϑ−1cr exp

(−(1− η)λT ))|�1|−K4K (211)

×
∞∑
n=K

(
ελ

∞∑
k=1

exp
(−cgkd)exp

(
(c̃d + c12)k

d
)
ck

d

ϑ−ck
d

×
T∫

0

dtcr exp
(−(1− η)λT ))n‖φ‖ϑ

� c4

(
ϑ̃ch + ϑ̃

ϑ
cr exp

(−(1− η)λT )+ ϑ̃ε1

)|�1|
‖φ‖ϑ

with limε→0 ε1 = 0. So there are 0< ϑ̃ < ϑ such that for sufficiently smallε

ϑ̃ch + ϑ̃

ϑ
cr exp

(−(1− η)T )+ ϑ̃ε1< 1 (212)
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and so (204) holds uniformly in�1 and�. For sufficiently largeT we can choosẽϑ = ϑ
such that (212) holds. So (204) is proved.✷

PROPOSITION 3.23. – LTS,�
def= π� ◦ LTS,� is the transfer operator, restricted toH�,

for KT
S,�, i.e. ∫

(S1)�

dµ
(
KT
S,�ψ�

)
φ� =

∫
(S1)�

dµψ�
(
LTS,�φ�

)
. (213)

For all ψ ∈ C0((S1)�) andφ� ∈H� the operatorπ�1 ◦LTS,� is the composite ofπ�1

andLTS,� for any�1 ⊂�.

Proof. –The first claim is a special case of the last statement. Note thatπ�1 ◦LTS,� is a
priori the operator defined in (203). Now we prove that it is actually the composite ofπ�1

and the transfer operator, restricted toH�, for KT
S,�. The convergence of the following

expressions follows from Proposition 3.22.
We consider all ordered finite sequences of jump-sites in�. A particular sequence

(q1, . . . , qN) occurs in a fixed time interval(−T ,0) with probability e−|�|λT (λT )
N

N !
because this is the probability of having exactlyN jumps in total, divided by the number
|�|N of different sequences of lengthk (which have all the same probability).

The sequence corresponds to a mapSqN ◦ · · · ◦Sq1 (cf. Definition 3.6) and so by (166),
to a transfer operator

π�1 ◦LSqN ◦ · · · ◦LSq1 . (214)

So the composite ofπ�1 and the transfer operator forKT
S,� is equal to the following sum

over all (possibly empty) sequences:

∑
(q1,...,qN )

e−|�|λT
(λT )N

N ! π�1 ◦LSqN ◦ · · · ◦LSq1 (215)

because this is equal to the rhs of (147). The probability space� is partitioned into
countably many sets, each corresponding to a particular sequence of jump sites. So we
can write the integral here as a weighted sum.

The factors in (214) can be split

LSq =
(
Qq +Rq +

∞∑
l=1

Bq,l
)
⊗ id�\{q}. (216)

Expanding the product in (214), we get a sum of operators. Recall the rules (155) and
(164), and also that we have, withµq denoting the integration w.r.t. the normalized
Lebesgue measureµ{q} (as defined in (134)),

µq ◦Rq = 0, (217)

µq ◦Bq,l = 0,

for all q ∈ � and l � 1 (asQq = hq · µq ). So some of the summands in the expansion
are zero, namely ifQq is followed by Rq , or Rq or Bq are followed byQq or a
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projectionπ�1 with q /∈ �1. ‘Following’ here means that there is in between noBq,l
with ‖q̃ − q‖� l. In the following we rule out these combinations. (Compare this to the
notion of non-zero configurations in [13].)

Now we represent each summand

π�1 ◦AN ◦ · · · ◦A1 (218)

in the expansion of (214) which is the composite of operatorsπ�1, Bq ⊗ id�\{q},
Rq ⊗ id�\{q} andQq ⊗ id�\{q} with variableq ∈�, by a gum configuration as follows:

We define the obvious order of the factors in (218) such thatA1 comes beforeA2 etc.
EachBq,l corresponds to al-branching (which is assigned by the map pin toq) and the
order of the operatorsBq,l defines the linear order of the branchings. The other factors
Qq andRq determine theh- andr-strips in the following way:

1. Strips between two vertices:Let vi ≺b vj be two branchings of degreebi andbj ,
respectively, andq ∈ Bbi (pin(vi )) ∩ Bbj (pin(vj )) ∩� such that there is no other
branchingvk , of degreebk , say, withvi ≺b vk ≺b vj andq ∈ Bbk(pin(vk)). Then
Cg has anh-strip between pin−1

vi (q) and pin−1
vj (q) if there is a factorQq ⊗ id�\{q}

in (218) between the two factors corresponding tovi andvj . OtherwiseCg has an
r-strip there (even if there is no factorRq ⊗ id�\{q}.)

2. Strips from a vertex and the top:Let vj be abj -branching andq ∈ Bbj (pin(vj )).
Assume there is nobi -branchingvi with vi ≺b vj andq ∈ Bbi (pin(vi )). ThenCg
has anh-strip from pin−1

vj (q) to the top if there is a factorQq ⊗ id�\{q} in (218)
before the factor corresponding tovj . OtherwiseCg has anr-strip there.

3. Strips from a vertex and the bottom:Let vi be abi -branching andq ∈ Bbi (pin(vi)).
Assume there is nobj -branchingvj with vi ≺b vj andq ∈ Bbj (pin(vj )). ThenCg
has anh-strip from pin−1

vi (q) to the bottom if there is a factorQq ⊗ id�\{q} in (218)
after the factor corresponding tovj or if q ∈� \�1. OtherwiseCg has anr-strip
there.

4. Long strips: Let q ∈ � and assume that there is nobi-branchingvi with q ∈
Bbi (pin(vi )). ThenCg has a longh-strip at siteq if there is a factorQq ⊗ id�\{q} in
(218) or ifq ∈� \�1. OtherwiseCg has a longr-strip there.

The assignment of a summand in the sequence (218) of operators to a gum configuration
is not injective, as we have already seen in the simple Example 3.8. Now we consider a
fixed gum configurationCg on� ending in�1 and all sequences corresponding to it. We
assumeCg to have at least one branching. The case of no branching is treated in a similar
but easier way. To keep the notation simpler, let� = {1, . . . , |�|}. Any such sequence
has the factorsBqi ,li (i = 1, . . . ,K) that correspond 1− 1 and order preserving to theK
branchings ofCg as described above. Between two consecutive factorsBqi ,li andBqi+1,li+1

there can be factorsQq ⊗ id�\{q} (factorsRq ⊗ id�\{q}) if for any t ∈ Simplex(Cg, T ) the
specific gum configuration(Cg, T , t) has anh-strip (anr-strip) from (q, ti) to (q, ti+1).
Similarly, the option of having such factors beforeBq1,l1 or afterBqK,lK depends on the
h-strips andr-strips ofCg in the obvious way. Further, such factors belong to particular
maximalr-strips orh-strips in the obvous way.

Let us denote the number of factorsQq ⊗ id�\{q} orRq ⊗ id�\{q} beforeBq1,l1 by n0,q

and the number of such factors afterBqi ,li by ni,q .
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Note that for every maximalh-strip, at siteq,say, that does not go to the bottom at a
site in� \�1, there must be at least one factorQq ⊗ id�\{q} because of rules 1, 3 and 4
on p. 47. We denote this condition on the family(ni,q ) 0�i�K

q∈�
of numbers bycondition A.

In total there are

N =∑
q∈�

K∑
i=0

ni,q +K (219)

factors that correspond to a particular sequence ofN jump sites and such a sequence
occurs with probability e−|�|λT (λT )

N

N ! . The
∑

q∈� n0,q factors beforeBq1,l1 can occur in
any of the

(n0,1+···+n0,|�|
n0,1,...,n0,|�|

)
different orders, that all have the same probability.

So if we sum over all (products of) operators that correspond toCg , weighted with the
probability that the corresponding sequence of jumps (in the underlying Poisson process)
occurs, we get∑

(ni,q )

condition A

e−|�|λT
(λT )N

N !
(
n0,1+ . . .+ n0,|�|
n0,1, . . . , n0,|�|

)
· · ·
(
nK,1+ · · · + nK,|�|
nK,1, . . . , nK,|�|

)
(220)

×AnK,1K,1 ⊗ · · · ⊗AK,n|�|K,|�| ◦BqK,lK ⊗ id�\{qK } ◦ · · · ◦Bq1,l1 ⊗ id�\{q1}
◦An0,1

0,1 ⊗ · · · ⊗An0,|�|
0,|�|

= ∑
(ni,q )

condition A

∫
Simplex(Cg,T )

λK dt
(

e−λ(−tK)
(λ(−tK))nK,1

nK,1! A
nK,1
K,1

)
⊗ · · ·

⊗
(

e−λ(−tK)
(λ(−tK))nK,|�|

nK,|�|! A
nK,|�|
K,|�|

)
◦BqK,lK ⊗ id�\{qK } ◦ · · · ◦Bq1,l1 ⊗ id�\{q1}

◦
(

e−λ(t1+T )
(λ(t1+ T ))n0,1

n0,1! A
n0,1
0,1

)
⊗ · · · ⊗

(
e−λ(t1+T )

(λ(t1+ T ))n0,|�|

n0,|�|! A
n0,|�|
0,|�|

)
=

∫
Simplex(Cg,T )

λK dt
∏
H

(
1− e−λlength(H))( ∑

nK,1�0

e−λ(−tK )
(λ(−tK))nK,1

nK,1! A
nK,1
K,1

)
⊗ · · ·

⊗
( ∑
nK,|�|�0

e−λ(−tK )
(λ(−tK))nK,|�|

nK,|�|! A
nK,|�|
K,|�|

)

◦BqK,lK ⊗ id�\{qK } ◦ · · · ◦Bq1,l1 ⊗ id�\{q1} ◦
( ∑
n0,1�0

e−λ(t1+T )
(λ(t1+ T ))n0,1

n0,1! A
n0,1
0,1

)

⊗ · · · ⊗
( ∑
n0,|�|�0

e−λ(t1+T )
(λ(t1+ T ))n0,|�|

n0,|�|! A
n0,|�|
0,|�|

)
= LTCg . (221)

In (220) each operatorAk,q stands for eitherQq or Rq .
We have interchanged summation with integration and multiplication and applied the

following computations to each set of factors belonging to the same maximalh-strip that
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does not end in(� \�1)× {0}. For notational simplicity, let the maximalh-strip under
consideration cover the time intervals(t0, t1), . . . , (tl−1, tl). So its length istl − t0. And
let the operatorsQq have exponentsn1, . . . , nl:

∑
n0,...,nl�0
n0+...+nl�1

l∏
i=1

(
e−λ(ti−ti−1)

(λ(ti − ti−1))
ni

ni ! Qq

)
(222)

=
l∏
i=1

( ∞∑
ni=0

e−λ(ti−ti−1)
(λ(ti − ti−1))

ni

ni ! Qq

)
−

l∏
i=1

e−λ(ti−ti−1)Qq

= (1− e−λ(tl−t0)
)
Qq. (223)

This explains the appearance of the factor (196) in (221). Recall that each operatorAi,q
in (221) stands for eitherQq or Rq . So we can replace

∑
ni,q�0

e−λ(ti−ti−1)
(λ(ti − ti−1))

ni,q

ni,q ! Qni,q
q =Qq , (224)

∑
ni,q�0

e−λ(ti−ti−1)
(λ(ti − ti−1))

ni,q

ni,q ! Rni,q
q =Rq(ti − ti−1) (225)

and get (221).
So we have seen that (215) is equal toπ�1 ◦LTS,�, as defined in (203). ✷
For the representation of the transfer operator for the infinite dimensional system we

need the following definition.

DEFINITION 3.24. –Let�1,�2 ⊆� ∈ F \ {∅} andCg ∈ Confg(�,�1). We say that
Cg lies in�2 if �(Cg) ∪ �1 ⊆ �2. (Recall that�(Cg) was defined in(194).) Let both
Cg ∈ Confg(�,�1) and C̃g ∈ Confg(�̃,�1) lie in � ∩ �̃. If further Cg and C̃g have the
same gum tree with the same linear order and if they have the samer-strips then we say
thatCg is equivalentto C̃g . Then we have defined an equivalence relation and further, for
Cg equivalent toC̃g, we have:

Simplex(Cg, T )=Simplex(C̃g, T ) for all T ∈ (0,∞], (226)

π�1 ◦LTCg ,t ◦ π�=π�1 ◦LTC̃g,t ◦ π�̃ for all t ∈ Simplex(Cg, T ) (227)

and π�1 ◦LTCg ◦ π�=π�1 ◦LTC̃g ◦ π�̃. (228)

(227) and (228) say that the operators inL(Hϑ,H�1) are the same. We define
by Confg(Zd,�1) the set of equivalence classes. Because of(226) and (227) the
simplices and operators for each equivalent class can be defined as being equal to the
corresponding object for any representative.

We will write π�1 ◦ LTCg,t instead ofπ�1 ◦ LTCg,t ◦ π� and π�1 ◦ LTCg instead of

π�1 ◦LTCg ◦ π� for the operators fromHϑ to H�1.
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THEOREM 3.25. –
1. There are0< ϑ̃ < ϑ < 1 such that for sufficiently smallε, large cg and every
T ∈ [0,∞] we can define an operatorLTS fromHϑ to Hϑ̃ by

π�1 ◦LTS φ =
∑

Cg∈Confg(Zd ,�1)

π�1 ◦LTCgφ. (229)

There is aT0> 0 such that forT � T0 the operatorLTS mapsHϑ into Hϑ .
LTS is the transfer operator, restricted toHbv

ϑ , for the kernelKT
S , i.e.∫

M

dµ
(
KT
S ψ
)
φ =

∫
M

dµψ
(
LTS φ

)
(230)

for all ψ ∈ C0(M) andφ ∈Hbv
ϑ .

2. The family(LTS )T�0 in L(Hϑ) converges exponentially fast toL∞S :∥∥L∞S −LTS
∥∥
L(Hϑ ,Hϑ̃

)
� c5e−c6T (231)

for some positive constantsc5, c6. For sufficiently largeT estimate(231) holds
also in the norm ofL(Hϑ). So among the probability measures corresponding to
elements inHϑ there is a uniqueKT

S -invariant probability measureν∗ onM , say
corresponding toν ∈Hϑ . The operatorL∞S is a projection ontospanν:

L∞S φ = µ(φ)ν. (232)

Proof. –The infinite sum on the rhs of (229) converges as the prove of estimate (204)
applies literally to the case� = Z

d . Next we want to show thatπ�1 ◦ LTS is the limit
of π�1 ◦ LTS,� (as�→ Z

d ). The difference between these two operators is due to
configurationsCg in Confg(�,�1) or in Confg(Zd,�1) with �(Cg) 	⊂ �. For these
we can split in estimate (205) the factor that arises from the decay of interaction in the
following way (which is the same as the splitting (110) in [13]).

exp

(
− cg

∞∑
k=1

kdnβ,k

)
� exp

(
− c̃g

∞∑
k=1

kdnβ,k

)
exp
(−ξdist

(
�1,�

C
))

(233)

with a suitably chosenξ > 0 such that̃cg = cg − ξ > 0. (Note that we can chooseξ so
small that the estimates, formerly done withcg work with c̃g instead as well.) So we can
estimate

ϑ̃ |�1|∥∥π�1 ◦LTS,� − π�1 ◦LTS
∥∥
L(Hϑ ,H�1)

� 2
∑

Cg∈Conf(Zd ,�1),
�(Cg) 	⊂�

ϑ̃ |�1|∥∥π�1 ◦LTCg
∥∥
L(Hϑ ,H�1)

� c7 exp
(−ξdist

(
�1,�

C
))
. (234)

Next we show (230) for the special case thatψ depends only on the�1-coordinates,
using (213):
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M

dµ(z)
(
KT
S ψ
)
(z)φ(z)= lim

�→Zd

∫
M

dµ�(z�)
(
KT
S,�ψ

)
(z�)φ�(z�)

= lim
�→Zd

∫
(S1)�

dµ�(z�)ψ(z�)
(
LTS,�φ�

)
(z�)

= lim
�→Zd

∫
(S1)�1

dµ�1(z�)ψ(z�1)
(
π�1 ◦LTs φ�

)
(z�1)

=
∫
M

dµ(z)ψ(z)
(
LTS φ

)
(z). (235)

We conclude (230) for generalψ ∈ C0(M) by approximating it byψ�1 (cf. (141)),
depending only on the�1-coordinates and using continuity w.r.t.ψ of both sides of
(230). So 1. is proved.

Next we show (231). We note that for�1 = ∅ the lhs (236) in the following estimate
is equal to zero as both transfer operators preserve the Lebesgue integral (µ is a ‘left
eigenvector’ with eigenvalue 1.) So we only have to consider the case|�1|� 1.

ϑ̃ |�1|∥∥π�1 ◦L∞S − π�1 ◦LTS
∥∥
L(Hϑ ,H�1)

(236)

� ϑ̃ |�1| ∑
Cg∈Conf(Zd ,�1)

∥∥π�1 ◦L∞Cg − π�1 ◦LTCg
∥∥
L(Hϑ ,H�1)

� ϑ̃ |�1|∥∥Q�1 ◦ π�1 −
(
1− e−λT

)|�1|Q�1 ◦ π�1

∥∥
L(Hϑ ,H�1)

(237)

+ ϑ̃ |�1| ∑
Cg∈Confg(Zd ,�1),

Cgreaches the top

∥∥π�1 ◦LTCg
∥∥
L(Hϑ ,H�1)

(238)

+ ϑ̃ |�1| ∑
Cg∈Confg(Zd ,�1),

Cgdoes not
reach the top,
|nβ (Cg)|�1

∫
Simplex(Cg, T2 )

λ|nβ(Cg)| dt

× ∥∥π�1 ◦L∞Cg,t − π�1 ◦LTCg,t
∥∥
L(Hϑ ,H�1)

(239)

+ ϑ̃ |�1| ∑
Cg∈Confg(Zd ,�1),

Cgdoes not reach the top,
|nβ(Cg)|�1

∫
Simplex(Cg,∞)
\Simplex(Cg, T2 )

λ|nβ(Cg)| dt

× ∥∥π�1 ◦L∞Cg,t
∥∥
L(Hϑ ,H�1)

(240)

+ ϑ̃ |�1| ∑
Cg∈Confg(Zd ,�1),

Cgdoes not reach the top,
|nβ(Cg)|�1

∫
Simplex(Cg,T )
\Simplex(Cg, T2 )

λ|nβ(Cg)| dt

× ∥∥π�1 ◦LTCg,t
∥∥
L(Hϑ ,H�1)

. (241)
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We have distinguished between the following classes of gum configurations. The
first summand (237) corresponds to the operatorπ�1 ◦ L∞Cg − π�1 ◦ LTCg where Cg
is the gum configuration that has only longh-strips (no branchings orr-strips). The
second summand (238) takes allCg into account that reach the top. So all specified
configurations(Cg, T , t) have anr-strip ending at time−T . All (Cg,∞, t) have an
infinitely long r-strip and so the corresponding operator is zero (cf. Remark 3.21.3) and
does not appear in (238). The last three summands, (239), (240) and (241), correspond
to Cg that do not reach the top and do not consist only ofh-strips. That implies that it has
at least one branching and the corresponding domains of integration, Simplex(Cg,∞)
and Simplex(Cg, T ), are not degenerated to a point. We divide them into Simplex(Cg, T2 )
and the particular complements. The reason for this will become clear when we do the
estimates. In (239) we integrate the norm of the operator differenceπ�1 ◦L∞Cg−π�1 ◦LTCg
over Simplex(Cg, T2 ) and in (240) and (241) we integrate the norms of the two operators
separately over the particular complement sets.

Now we estimate each summand: The first summand (237) is estimated by

ϑ̃ |�1|c|�1|
h

(
1− (1− e−λT

)|�1|)� (ϑ̃ch)
|�1|

|�1|∑
k=1

( |�1|
k

)(
e−λT

)k
�
(
ϑ̃ch

(
1+ e−

1
2λT
))|�1|e−

1
2λT � e−

1
2λT , (242)

where the last inequality holds if̃ϑ is chosen sufficiently small.
For estimating the last summand (241) we note that fort ∈ Simplex(Cg, T ) \

Simplex(Cg, T2 ) the sum of the lengths of allr-strips of (Cg, T , t) is at leastT2 . (This
is because(Cg, T , t) has a branching, say at timeti with |ti| � T

2 and there must be
a sequence of apex-r-strips whose lengths add up to at leastT

2 .) So if we split in the
estimate (170) for each maximalr-chain, of lengtht say, the rhs

‖R(t)‖� cre
−(1−η)λt = cre− 1−η

2 λte−
1−η

2 λt (243)

we can extract the second factor exp(−1−η
2 λt). Their product is bounded from

above by exp(−1−η
2 λT2 ). We assume that the coupling parametersε (small) andcg

(large) are such that our analysis still holds with the (in the sum) remaining factors
exp(−1−η

2 λlength(R)) for each maximalr-chainR.
We get

ϑ̃ |�1| ∑
Cg∈Confg(Zd ,�1),

Cgdoes not reach the top,
|nβ (Cg)|�1

∫
Simplex(Cg,T )
\Simplex(Cg, T2 )

λ|nβ(Cg)| dt
∥∥π�1 ◦LTCg,t

∥∥
L(Hϑ ,H�1)

� c8 exp
(
−λ1− η

2

T

2

)
. (244)

Similarly, we can estimate the second (238) and the fourth (240) summand:

ϑ̃ |�1| ∑
Cg∈Confg(Zd ,�1),

Cg reaches the top

∥∥π�1 ◦LTCg
∥∥
L(Hϑ ,H�1)

� c9 exp
(
−1− η

2
λT

)
, (245)
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ϑ̃ |�1| ∑
Cg∈Confg(Zd ,�1)

∫
Simplex(Cg,∞)
\Simplex(Cg, T2 )

λ|nβ(Cg)| dt
∥∥π�1 ◦L∞Cg,t

∥∥
L(Hϑ ,H�1)

� c10exp
(
−1− η

2
λ
T

2

)
. (246)

We estimate the third summand (239) we use Lemma 3.26 (see below). For that we
note that forCg ∈ Confg(Zd,�1) and t ∈ Simplex(Cg, T2 ) the operatorsπ�1 ◦ L∞Cg ,t
and π�1 ◦ LTCg,t can both be written as a product of numbers(1 − e−length(H)) and
operatorsQq ⊗ id�\{q}, corresponding to maximalh-strips,Rq ⊗ id�\{q}, corresponding
to maximalr-strips, andBq ⊗ id�\{q}, corresponding to branchings. They have the same
structure in the sense that these factors are in 1−1-correspondence and the quantitative
difference is only due toh-strips going to the top or longh-strips in�1 as we can see
from representation (199) forL∞Cg,t andLTCg,t and also from Remark 3.21.1. So they
differ only in the constants̃c(Cg,∞, t) and c̃(Cg, T , t). More precisely, anh-strip in
Cg that goes to the top and therefore corresponds to anh-strip in (Cg, T , t), say from
(q, ti) to (q,−T ), and so gives rise to a factor 1−exp(−λ(T − |ti|)) (note that|ti |< T

2 )

whilst the correspondingh-strip in (Cg,∞, t) ends at time−∞ and gives rise to a
factor 1. Similarly a longh-strip of Cg in �1 gives rise to factors 1− exp(−λT ) and
1, respectively. In both cases the difference between the scalar factors (for eachh-strip
to the top) is bounded by

δ2= exp
(
−λ

2
T

)
. (247)

The number ofh-strips to the top is bounded by
∑∞

k=1 3dnβ,kkd and the number of long
h-strips at sites in�1 by |�1| −K (wherenβ,k andK are the parameters of the labelled
tree ofCg.)

So we estimate

ϑ̃ |�1|∥∥π�1 ◦L∞Cg,tφ − π�1 ◦LTCg ,tφ‖�1

� δ

∞∏
k=1

(1+ δ)3dnβ,kkd (1+ δ)|�1|−K(c3ε)
|nβ | exp

(
− cg

∞∑
k=1

kdnβ,k

)
c
ñh
h c

ñr
r

×∏
R

exp
(−(1− η)λlength(R)

)
c̃(Cg, T , t)‖φ�(Cg)‖�(Cg). (248)

The factor(1+ δ)3dnβ,kkd and the factorϑ−(3k)dnβ,k that we get from the estimate (206)
of ‖φ�(Cg)‖�(Cg) are compensated for by exp(−cgkdnβ,k) ‘in the usual way’. If ε is
sufficiently small andcg large we can estimate

ϑ̃ |�1| ∑
Cg∈Confg(Zd ,�1),

Cgdoes not reach the top,
|nβ(Cg)|�1

∫
Simplex(Cg, T2 )

λ|nβ(Cg)| dt
∥∥π�1 ◦L∞Cg,t − π�1 ◦LTCg,t

∥∥
L(Hϑ ,H�1)

� c11e
− λ

4T . (249)
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From (242), (245), (249), (246), and (244) we conclude (231) withc6 = 1−η
4 λ and c5

sufficiently large.
For anyφ ∈Hϑ and any� ∈F we have

π� ◦L∞S φ=
∑

Cg∈Confg(Zd ,�),
Cgdoes not reach the top

π� ◦L∞Cgφ

= ∑
Cg∈Confg(Zd ,�),

Cgdoes not reach the top

(
π� ◦L∞CghZd

)
.µ(φ). (250)

The sum in (250) is a priori over allCg ∈ Confg(Zd,�) but, as we have seen before,
if Cg reaches the top the corresponding operatorπ� ◦ L∞Cg is zero. IfCg does not reach
the top there are onlyh-strips going to the top (−∞) andπ� ◦ L∞Cg is a projection onto
span(hZd ).

We setν�
def= π�◦L∞CghZd and this definesν = (ν�)�∈F . Note that the transfer operator

L∞S preserves the Lebesgue integral and soν∅ = 1, i.e. ν corresponds to a probability
measure. ✷

In the proof of Theorem 3.25 we have used the following lemma.

LEMMA 3.26. – LetA1, . . . ,An, Ã1, . . . , Ãn be operators on the same Banach space,
0< δ < 1 anda1, . . . , an positive numbers such that:

‖Ai‖� ai for all 1 � i � n (251)

and ‖Ai − Ãi‖� δ2ai. (252)

Then

‖A1 ◦ · · · ◦An − Ã1 ◦ · · · ◦ Ãn‖� δ(1+ δ)na1 · · · · · an. (253)

Proof. –From (252) we get

‖Ãi‖�
(
1+ δ2)ai. (254)

So we get via ‘telescope expansion’:

‖A1 ◦ · · · ◦An − Ã1 ◦ · · · ◦ Ãn‖
� ‖A1 ◦ · · · ◦An − Ã1 ◦A2 ◦ · · · ◦An‖ + · · ·
+ ‖Ã1 ◦ · · · ◦ Ãn−1 ◦An − Ã1 ◦ · · · ◦ Ãn‖

� δ2(1+ (1+ δ2)+ · · · + (1+ δ2)n−1)
a1 · · · · · an

= ((1+ δ2)n − 1
)
a1 · · · · · an

=
n∑
k=1

(
n

k

)
δ2ka1 · · · · · an � δ

n∑
k=1

(
n

k

)
δka1 · · · · · an

� δ(1+ δ)na1 · · · · · an (255)

and the lemma is proved.✷
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Remark3.27. – Analogously to Proposition 6.1.3 in [13], one can also prove a
semigroup-like property of the family(LtS)t�0, using Remark 2.17 and the diagrammatic
representation of the operators.

4. Decay of correlations

In the following theorem which is completely analogous to Theorem 7.1 in [13],
we state the mixing properties for the invariant probability measureν∗ in terms of the
weighted norms.

THEOREM 4.1. – For sufficiently smallϑ , ϑ̃ , ε and bigcg there is aκ ∈ (0,1) and
positive constantsc12, c13, c14 and c15 such that for all finite disjoint�1,�2 ⊂ Z

d and
ψ ∈H�2 the following holds:

‖ν�1∪�2 − ν�1ν�2‖�1∪�2 � c12ϑ
−|�1∪�2|κdist(�1,�2), (256)

‖π�1(ψν)− ν∗(ψ)ν�1‖�1 � c13ϑ
−|�1∪�2|‖ψ‖�2κ

dist(�1,�2), (257)∥∥π�1 ◦LTS (ψν)− ν∗(ψ)ν�1

∥∥
�1

� c14ϑ
−|�2|ϑ̃−|�1|‖ψ‖�2κ

dist(�1,�2) (258)

× exp(−c15T )

for everyT > 0.

Proof. –For a gum configurationCg we define in analogy to (109) in [13]

b(Cg) def=
∞∑
k=1

knβ,k(Cg). (259)

In the following we split gum configurationsCg ∈ Conf(Zd,�1 ∪ �2) with b(Cg) �
1
2dist(�1,�2) into Cg = C1

g ∪ C2
g with C1

g ∈ Conf(Zd,�1), C2
g ∈ Conf(Zd,�2) and

�(C1
g)∩�(C2

g)= ∅.
We write, using (232) and the notation of (158):

ν�1∪�2 =
∑

Cg=C1
g∪C2

g∈Confg(Zd ,�1∪�2),

b(Cg)� 1
2dist(�1,�2)

(
π�1 ◦LTC1

g
hZd
)(
π�2 ◦LTC2

g
hZd
)

+ ∑
Cg∈Confg(Zd ,�1∪�2),

b(Cg)> 1
2dist(�1,�2)

π�1∪�2 ◦LTCghZd . (260)

In estimating the norm of the second summand in (260) we can take out from the estimate
for ‖π�1 ◦L∞CghZd‖ a factor

exp
(
−ξ 1

2
dist(�1,�2)

)
= κdist(�1,�2) (261)
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like in (233) such that we get∥∥∥∥ ∑
Cg∈Confg(Zd ,�1∪�2),

b(Cg)> 1
2dist(�1,�2)

π�1∪�2 ◦LTCghZd

∥∥∥∥� c16ϑ
|�1∪�2|κdist(�1,�2). (262)

We write the first summand in (260) as∑
Cg=C1

g∪C2
g∈Confg(Zd ,�1∪�2),

b(Cg)� 1
2dist(�1,�2)

(
π�1 ◦LTC1

g
hZd
)(
π�2 ◦LTC2

g
hZd
)

(263)

= ν�1ν�2 −
∑

C1
gConfg(Zd ,�1),

C2
g∈Confg(Zd ,�2),

b(C1
g)+b(C2

g)>
1
2dist(�1,�2)

(
π�1 ◦LTC1

g
hZd
)(
π�2 ◦LTC2

g
hZd
)

and estimate∥∥∥∥ ∑
C1
gConfg(Zd ,�1),

C2
g∈Confg(Zd ,�2),

b(C1
g)+b(C2

g)>
1
2dist(�1,�2)

(
π�1 ◦LTC1

g
hZd
)(
π�2 ◦LTC2

g
hZd
)∥∥∥∥� c17ϑ

|�1∪�2|κdist(�1,�2).

(264)
From (262), (263) and (264) we conclude (256). The proof of (257), using (256), is the
same as in [13].

To prove (258) we setφ =ψν − ν(ψ)ν. So

π�1 ◦LTS φ = π�1 ◦LTS (ψν)− ν(ψ)ν�1 (265)

and in particular

L∞S φ = 0. (266)

We estimate (265), analogously to (129) in [13], using the finer estimate

‖φ�(C)‖�(C) � c13ϑ
−|�2|‖ψ‖�2ϑ

−|�r(C)|−
∑∞

k=1
(3k)dnβ,k κdist(�1,�2)−

∑∞
k=1

knβ,k (267)

that we get from (257). For eachCg we get a ‘good’ factorκdist(�1,�2) that we can take

out of the sum (over gum configurations), and a ‘bad’ factorκ−
∑∞

k=1
knβ,k . The latter is

compensated for in the usual way by the factor exp(−cg∑∞
k=1 k

dnβ,k), provided thatcg
is sufficiently large.

Using (266) and (267), we get with the same argument as for the proof of (231):

ϑ̃ |�1|∥∥π�1 ◦LTS φ
∥∥� c18ϑ

−|�2|‖ψ‖κdist(�1,�2) exp(−c15T ) (268)

and (258) follows. ✷
For our last theorem we need some definitions.
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DEFINITION 4.2. – Every τ = (τ1, . . . , τd) ∈ Z
d defines a shift on latticeZd by

(α1, . . . , αd) + (τ1, . . . , τd) = (α1 + τ1, . . . , αd + τd), and so a shift on (S1)Z
d

by

(τ (x))α
def= xα+τ for x ∈ (S1)Z

d

. The sizem(τ) of the shiftτ ism(τ) def= |τ1| + . . .+ |τd |.
We further definea shift on functionsψ ∈ C((S1)Z

d

) by (ψ ◦ τ)(x) def= ψ(τ(x)).
The family of maps(fq)q∈Zd , introduced in(149), is called translation-invariantif

these maps are all the same, i.e.fq = f for somef and allq ∈ Z
d .

The family (gq,k)q∈Zd , introduced in (151), is called translation-invariant if

gq,k(τ (z))= gq−τ,k(z) for all q, τ ∈ Z
d andz ∈ ((S1)Z

d

).
If (fq)q∈Zd and also the families(gq,k)q∈Zd are translation-invariant then we say that

thesystemis translation-invariant.

Remark4.3. – In case of a translation-invariant system we also have translation-
invariance of the action of Markov-kernels on functions:KT

S (ψ ◦ τ) = (KT
S (ψ)) ◦ τ

for all ψ ∈ C((S1)Z
d

) andτ ∈ Z
d .

We can state the mixing properties ofν∗ w.r.t. spatio-temporal shifts in terms of
correlation functions for observablesψ1,ψ2 ∈ C0(M) like in Theorem 2.2 of [13] and,
using Theorem 4.1, prove them in exactly the same way.

THEOREM 4.4. –For sufficiently smallϑ , ε and largecg there is aκ ∈ (0,1) such

that for all nonempty�1,�2 ∈ F the following holds with the constantc(�1,�2, κ)
def=

κ−max{‖p−q‖:p∈�1,q∈�2}) and some positive constantsc19, c20:
1. If ψ1 ∈ C((S1)�1) andψ2 ∈ C((S1)�2) then∣∣∣∣ ∫

M

dν∗ψ1ψ2−
(∫
M

dν∗ψ1

)(∫
M

dν∗ψ2

)∣∣∣∣
� c19ϑ

−|�1|−|�2|‖ψ1‖∞‖ψ2‖∞κdist(�1,�2). (269)

2. If ψ1 ∈ C((S1)�1) andψ2 ∈H ∩ C((S1)�2) then∣∣∣∣ ∫
M

dν∗KT
S (ψ1 ◦ τ)ψ2−

(∫
M

dν∗ψ1 ◦ τ
)(∫

M

dν∗ψ2

)∣∣∣∣
� c(�1,�2, κ)c

|�1|+|�2|
20 ‖ψ1‖∞‖ψ2‖�2κ

m(τ) exp(−c21T ). (270)

3. If the system is translation-invariant andψ1,ψ2 ∈ C(M) then

lim
max{m(τ),T }→∞

∫
M

dν∗KT
S (ψ1 ◦ τ)ψ2=

(∫
M

dν∗ψ1

)(∫
M

dν∗ψ2

)
. ✷ (271)
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