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ABSTRACT. — We consider oM = (Sl)Zd a family of continuous local updatings, of finite
range type or Lipschitz-continuous in all coordinates with summable Lipschitz-constants. We
show that the infinite-dimensional dynamical system with independent identically Poisson-
distributed times for the individual updatings is well-defined. We then consider the setting
of analytically coupled uniformly expanding, analytic circle maps with weak, exponentially
decaying interaction. We define transfer operators for the infinite-dimensional system, acting
on Banach-spaces that include measures whose finite-dimensional marginals have analyti
exponentially bounded densities. We prove existence and uniqueness (in the considered Banac
space) of a probability measure and its exponential decay of correlatiod801 Editions
scientifiques et médicales Elsevier SAS

RESUME. — On considére suM = (Sl)Zd une famille de mises-a-jour continues et locales,
de type distance finie ou Lipschitzienne-continue sur toutes les coordonnées, les constant
Lipschitziennes étant de somme finie. On montre que le systéeme dynamique a dimension infini
avec une distribution de Poisson identique et indépendante des instants de mise-a-jour est bi
défini. Ensuite on considére le cas des applications du circle, analytiques, couplées entre ells
analytiguement et a expension uniforme, a faible interaction exponentiellement décroissantt
On définit des opérateurs de transfert pour le systéeme a dimension infinie, agissant sur d¢
espaces de Banach incluant des mesures dont les projections a dimensions finies ont des dens
analytiques bornées exponentiellement. On montre I'existence et I'unicité (dans I'espace d
Banach considéré) d’une mesure probabiliste et la décroissance exponentielle de ses corrélatio
0 2001 Editions scientifiques et médicales Elsevier SAS

E-mail addresstorsten.fischer@iwr.uni-heidelberg.de (T. Fischer).
1The largest part of work on this paper was done at the University of Warwick and supported by the
EC via TMR-Fellowship ERBFMBICT-961157. The paper was completed at the Niels Bohr Institute in
Copenhagen.



422 T. FISCHER/ Ann. |. H. Poincaré — PR 37 (2001) 421-479

0. Introduction

In this paper we study coupled map lattices with indepentent identically (i.i.) Poisson-
distributed updatings at the individual sites.

A deterministic coupled map lattice (CML) is given byZ&-lattice with a copy of the
same Riemannian manifold at each lattice point (i.e. the state space is the product of the
manifolds with index seZ) and a map on the infinite space that can be decomposed
into an uncoupled map that acts individually on each component and an ‘interaction stef
where the change of each coordinate depends also on the other sites.

L.A. Bunimovich and Y.G. Sinai prove in [8] (cf. also the remarks on this in [5])
the existence and uniqueness of an invariant measure and its exponential decay
correlations for a one-dimensional lattice of interval maps with weak coupling. By
constructing a Markov partition they relate the system to a two-dimensional spin systen
whose Gibbs measure corresponds to the invariant measure of the CML.

G. Keller and M. Kiinzle prove in [21] the existence and uniqueness of an invariant
measure for periodic or infinite one-dimensional lattices of weakly coupled interval maps
by studying the transfer operators on the space of measures whose finite-dimension
marginals have densities of bounded variation. For small perturbation of the uncouple
map any invariant measure is ‘close’ to the one they found.

J. Bricmont and A. Kupiainen extend in [4] and [5,6] the result of Bunimovich
and Sinai [8] toZ‘-lattices of weakly coupled circle maps with analytic and Hélder-
continuous interaction, respectively.

They represent the iterates of the Perron—Frobenius operator for finite-dimensione
subsystems (oven C Z¢) by a ‘polymer’- or ‘cluster-expansion that gives rise to a
representation of the corresponding invariant measure in termg&iof-d)-dimensional
spin system. The weak limit (a8 — Z?) of these measures is the unique (in a certain
class) invariant probability measure and it is exponentially mixing with respect to (w.r.t.)
spatio-temporal shifts.

C. Maes and A. Van Moffaert introduce in [25] for a similar setting as in [4] a
simplified ‘cluster-expansion for the truncated Perron—Frobenius operator and show
stochastic stability of the CML under stochastic perturbation.

In [2] V. Baladi, M. Degli Esposti, S. Isola, E. Jarvenpda and A. Kupiainen define
Frechet spaces, and, fdr= 1, a Banach space and transfer operators for the infinite-
dimensional systems, considered by Bricmont and Kupiainen in [4], and study the
spectral properties of these operators.

In [13] we consider analytically coupled circle maps (uniformly expanding and
analytic) on theZ‘-lattice with exponentially decaying interaction and introduce
Banach spaces for the infinite-dimensional system that include measures whose finite
dimensional marginals have analytic, exponentially bounded densities. We define
transfer operators on these spaces, get a unique (in the considered Banach spac
probability measure and prove its exponential decay of correlations.

CMLs with multi-dimensional local systems of hyperbolic type have been studied by
Ya.B. Pesin and Ya.G. Sinai [26], M. Jiang [17,18], M. Jiang and A. Mazel [19], M. Jiang
and Ya.B. Pesin [20] and D.L. Volevich [29,30].
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For detailed reviews on mathematical results on CMLs we refer to [2], [5], [7]
and [20].

An interacting particle system (IPS) is given by an infinite lattice with a copy of the
same state space (that is usually a finite or countable set but can also be a Riemanni
manifold) at each site. The updating at an individual site is a deterministic or stochastic
map (e.g. in the case of finite local state spaces it is given by a stochastic matri
with transition probabilities as its coefficients) that is applied with ‘exponential waiting
times’, i.e. like the waiting times for jumps in a Poisson process. The jump rates for
the updating depends also on the other sites. R.J. Glauber introduces in [14] (a speci
case of) the stochastic Ising model as a model for magnetism. The total state spac
{—1,+1}Zd represents the spins of the atoms at all sites. The rate for a flip of an
individual spin depends on the states of the neighbour sites. F. Spitzer [27,28] an
R.L. Dobrushin [9,10] study more general systems where the individual jump rates dc
not only depend on the nearest neighbours.

A basic problem is to establish the existence of infinite systems with asynchronous
updatings. The infinitely many jumps in a finite time-interval cannot be ‘listed’, i.e. there
is no order preserving bijection between the time-ordered set of jumpl.and

R.L. Dobrushin obtains in [9] the infinite system as the limit of subsystems over
finitely many sites.

By using a percolation argument T.E. Harris proves in [15] that for systems of finite
range interaction and a sufficiently small time interval the history of an individual
particle depends on only finitely many sites, and so he provides a natural definition o
the infinite system. With probability 1 the &t splits into finite clusters such that each
site is affected at most by sites in the same cluster.

R. Holley shows in [16] for generators, corresponding to one-dimensional models,
and T.M. Liggett in [23] for the d-dimensioanal case, that these operators generate, i
fact, a semigroup, acting on continuous functions.

Here we have only mentioned different methods to establish the existence of the
infinite systems. For detailed reviews on IPSs and results on invariant measures, mixin
properties, phase transitions and applications to physics and other sciences we refer
[11] and [24].

In this paper we consider the infinite topological proditt= (S1)Z* and continuous
updating maps for the individual coordinates that are of finite range or Lipschitz-
continuous w.r.t. all coordinates with a summable family of Lipschitz constants (cf.
Section 2.2 for the definition). The times for the updatings at the individual sites are
independently Poisson-distributed with the same constankt rat@. For the finite range
case we show that with probability 1 the updatings at any finite set of sites and any finite
time-interval depend on only finitely many sites. Our proof uses time- and space-orientec
percolation and is different from the one in [15]. This result provides a natural definition
of the infinite dynamical system.

For the systems with infinite range interaction we show that with probability 1 it is
well-defined as the net-limit of its finite-dimensional subsystems with arbitrary boundary
conditions. We combine standard estimates for error growth with ideas from percolatior
theory. The limit of the corresponding Markov kernels, acting on continuous functions,
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exists and provides a definition of the infinite process, different from the widely used
generator approach.

Our proofs still work if we replaces! by any compact Riemannian manifold or
stochastic systems with finite state spaces. The assumption of having the same constz
jump rate at all sites is by no means essential and can be weakened to the case of upyf
bounded individual jump rates that depend on other states as well. However, we do nc
consider these generalizations in this paper.

In a setting similar to that of [13], i.e. for analytically coupled circle maps (uniformly
expanding and analytic) on t#&-lattice with weak, exponentially decaying interaction
but with asynchronous updatings as described above, we define transfer operators f
the Markov kernels of the infinite system. The operators act on the Banach Hpace
(introduced in [13]) that includes measures whose finite-dimensional marginals have
analytic, exponentially bounded densities. Using ‘cluster-expansion’-like techniques, we
represent these integral operators in terms of configurations and prove the existence a
unigueness (ir{y) of an invariant probability measure and its exponential decay of
correlations.

The paper is organized as follows. Section 1 provides definitions, notation and som
propositions about stochastic processes and metric spaces. In Section 2 we define t
infinite-dimensional systems for finite range (Section 2.1) and infinite range interaction
(Section 2.2) and the corresponding Markov kernels (Section 2.3). In Section 3 we stud
the transfer operators for a specific class of interactions. In Section 4 we prove the mixing
properties of the invariant measure (found in Section 3) w.r.t. spatio-temporal shifts.

1. Basic definitions and examples

In this section we present definitions from probability theory and topology and also
introduce most of the notation used in this paper. We have taken most definitions an
statements on probability theory from [3].

DEfFINITION 1.1. — N denotes the set of natural numbers including zero(EetA,)
be a measurable spac€, A;, P) a probability space andX,),c; a family (with index
setl £ @) of random variables o2, A;, P) with values inE.

e Then(R2, Ay, P, (X;):<;) is called astochastic process with values(if, A,).

e If I =R>% [0, T]or[0, T) for someT > 0 the process is called eontinuous time

stochastic process
o Forfixedw € © the map — X;(w) is called thetrajectoryof w. It is also denoted
by X (w).

e We consider the s&t as measurable space with the discretalgebra. For any set
A we denote bN2 the product space, equipped with the produealgebra.
A continuous time stochastic process with valuediand with index sef and
P-a.a. of whose trajectories are non-decreas(ng. the functions — r, o X; ()
are non-decreasing for alf € A and P-a.a. w € Q. ‘m,’ denotes the projection
on thegth coordinate), is called acounting processvith values inN* We say
that such a process isf finite expectationf for all r € I the random variable
> 30 .en g © X, (w) has finite expectation.
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Remark1.2. —

1. We will also use the short-hand-notatian for a stochastic process§t, A, and
P are obvious from the context.

2. The termpath seems to be more common thémajectory but we will denote
something else later on Ipath

3. Finite expectation means that with probability 1 there are only finitely many jumps
(cf. Definition 1.3 below) in every finite time-interval.

DerINITION 1.3 (cf. [3]). — Let (2, A4, P, (X,),e;) be a continuous time counting
process with values il as in Definition 1.1 and € 2. We define

def [ X/ (w) if I =1[0,1],
X (@)= {Iims\l X,(w) otherwise, @)
_ def [ limg » Xs(w) t>0,
X (@) @ { e @ = 8 @

We say thatX . (w) jumps at time > 0if X, (w) < X" (w). ThenX " (0) — X, (w) is
called the size of the jump.

Let X (w) be a continuous time counting process with valueblfnand w € Q2. We
say thatX (o) jumps attime and siteg € A if 7, 0 X (@) jumps atr. Then we also say
thatw jumps at(q, ).

We define theimp setA (w, t) of w at timet as the set of aly € A such thatw jumps
at(q,1).

DEFINITION 1.4 (cf. [3]). — Let/ =R>%or I =[0, T') for someT > 0. A stochastic
process(2, A, P, (X,):e;) With values inN is called (normalized) Poisson process with
parameten > O if the following holds

1. The process has stationary and independent increments which fer<al € 1

satisfy
P({w: X,(®) — X;(w) =n}) = py(t —s,n) 3)
with
def 5, (A1)"

pi(t,n). =€ py 4)

2. P-almost every trajectorX (w) is a right-continuous, increasing function having
at most jumps of size
3. Attime OP-a.a. trajectories have value:

P(w: Xo(w) =0) =1. (5)

THEOREM 1.5 (cf. [3], Satz 41.2). -For any » > 0 and I as in Definition1.4
there exists gnormalized Poisson process with parametgr Any two such processes
are equivalenti.e. if X* and X2 are two such processes then for any finite sequence
n<--- <t in I the projections(X},....X}) and (X2,..., X2) have the same
distribution).

DEFINITION 1.6.— Let A be a nonempty set and2,, A,, P,, (X{)ie1)qen be a
family of stochastic processes with valueg i, A7), respectively. We set
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QE' T 2, (6)
geA

AL A, (7
geA

PER P, ®)
geA

A% completion ofd w.rt. P, (9)

P L' extension o to A (10)

and X, &'(x9) (11)

In (6) we mean the cartesian product of spaced;7iithe product sigma-algebra and
in (8) the product measure.

Then the proces&?, A, P, (X,)/c;) With values in(I[, .5 E,, @, A?) is calledthe
product of the family of processes

Remark1.7. —

1. Products of stochastic processes as in Definition 1.6 exist. For example the
existence of the non-completed product measure follows from standard measur
theory (cf. [3].)

2. For non-empty, at most countable and a family (indexed byA) of Poisson
processes two such producks' and X2 are equivalent because for alle A
the Poisson processes o X! andx, o X2 are equivalent (cf. Theorem 1.5). It
follows from the definition of the produet-algebra®), ., A’ that X! and X2 are
equivalent.

geN”

DEFINITION 1.8.—-LetA > 0 and A a nonempty, at most countable satPoisson
process onA with parametern. is the product of a family, indexed hy, of Poisson
processes with parameter

Remark1.9. —

1. For » > O the Poisson process ¢ff with parameter is clearly not of finite
expectation. In fact, for any> O there areP-almost surely infinitely many jumps
in [0, t], i.e.

P({a): anoX,(w):oo}) =1 (12)
qezd

2. Butif Ay C Z¢ is finite thenm,, o X (w) has finitely many jumps in0, ¢] for
P-a.a.w € Q and anyr > 0.
3. There are P-almost surely no simultaneous jumps at two different sites:

P({w: 3q1 # g2 € Z%, 1 > 0 such that jumps at(q1, ) and(gz, 1) }) =0. (13)

4, ForO<np<t

P ({w: w jumps atrp}) = 0. (14)
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Proof of Remark 1.9. We only show (13). The proofs of the other statements are
similar. We set

A(q1, g2, T) déf{w: 3r € [0, T) such thatw jumps at(g1, ) and(gz, 1) }. (15)

We have to prove that the set

U U A(Ql» q2, T) (16)

TeN q1,q2€24

hasP-measure zero and it is sufficient to show that
P(A(q1,92.T)) =0 (17)

for fixed g1 # g2 € Z¢ andT > 0. For this we set

. T T
Iv & {(k ~D kﬁ) (18)

for N e N\ {0} and 1< k < N. By (4) we have fori =1, 2:
P({w: jumps at(q;,t) for somer € Iy ;}) =1— e (19)
and so, using the estimaté 2 1 + x:
P ({w: 3k; 11, 1, € Iy such thaw jumps at(q1, 11) and(gz, t)})
<N(1—e‘*%)2<A2T2% (20)
which convergesto 0 a — co. O

The following two definitions prepare Definition 1.13 that we will need in Section 2.

DEFINITION 1.10.—In view of Definitionl.4and Remark..9we defingfor a given
Poisson process like in that remarthe set\V; of P-measure zero

M d:‘Ef{co: X (w) is not non-decreasing, has jumps at0 (22)
simultaneous jumps or jumps of size greater than

DEFINITION 1.11. —Let A C Z¢. Then we denote its complementh§ £'74\ A.
DEFINITION 1.12. —For g =(qu, ..., q,) € Z* we define
def
gl = lgal + -+ + Igal. (22)
ForR>0
def [ ~ -
Br(q) = {G € Z" llg — gl < R} (23)

is the set of points that have distance at mRgtomg.
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DEFINITION 1.13.—Leta, b € Z¢ andn > 0. A path froma to b is a finite sequence
Q=(q=a,q,...,q, =b) of pointsq; € Z¢. We call}""_, |lg; — g;_1| the lengthand
max<i<n—1 l1gi+1 — q: |l the step sizeof Q. Note the special case of a pagh= (¢o). It
is called theempty path at sitgy and we define both its length and step size t0.be

DEFINITION 1.14. - Let (22, A, P, (X,);>0) be a Poisson process with parameter
A > 0 and with values ilN%'. Let T > ObweQandQ=(gp=a,q1,....q.=b) a
path. We extend to the infinite sequenc® = (qo, 91, - - ., gn» gui1 = qa, . . .) i Which
g, s repeated.

We define a process2, A, P, (Z;),c[0.77) With values inN as follows.

Z:[0,¢] x 2 — N, (24)
(t,w) > Z;(w).

If @ € N7 or it does not jump atqo, ¢) for anyt € (0, T) we setZ (w) =0on [0, T.
Otherwise there is a maximal sequence

def
t_lzeT>t0>tl>--->tm(a,) (25)

such that

t d:efmax{t €(0,5,_1): wjumps at(g;, 1)} for 0<i < m(w). (26)

‘Maximal’ means thatw does not jump ag,,,)+1 in the time interval(0, #,,,) and so
the sequencg5) cannot be extendedntuitively one can think that one sits at tirfieat
site go and, goingbackwardsn time, waits for the next jump af at go (which happens
at timet), then jumps (instantly) tg, and waits(backwardsn time) for the next jump
of w at g1, then jumps t@y, etc. Aftern jumps(should this occuyrone does not change
the sites any more, but possibly jumps frgpto g,,. m(w) is the total number of jumps.
Itis P-a.s. finite becaus®-a.a. have only finitely many jumps af.)

We set for € [0, T']:

i fort e[y, t,_1),
m(w) fort e|[0, tywl.

def

Z,(w) = { (27)

And Z () is the (uniquely defined) right-continuous function, such tAatw) =

Zr_ (w) everywhere, except possibly where these functions jump. Ten, P,
(Zy)ie10.17) IS a Poisson process with parameter (A precise proof of this uses that
the constructed process is ‘made of’ independent Poisson processes and that these he
independent incremen}d/le call it thePoisson process induced by the péth

DEFINITION 1.15. - In the setting of DefinitiorL..14 we call Q a causal path w.r.t.
(t,w) if Zr(w) > n and amaximal causal path w.r.tz, w) if Zy(w) = n. (The latter
means tha = (qo, ..., ¢g,) cannot be extended to any causal p&jb. ..., g., gut1).)

We define

e Path(g, n, R) to be the set of paths that start @f have exactly: steps and are of

step size at mosk.
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e Path(g — A) for any® # A e Z? to be the set of paths starting atand ending in
A.

e Pathe(z, w, g, A) for g € A to be the set of causal w.r.tz, w) paths Q = (go =
qg,...,qy) such that

1. Q is maximal causal andy, ..., g, € A, or

2. qo,...,qu—1 € A andg, € A€.
e Path.(t,w,q — A€) for ¢ € A to be the set of causal pathgo = ¢, ..., g,)
such thatgg, ...,q,—1 € A and ¢, € AC. (So this is the subset of elements in
Path.(z, w, g, A) for which case. applies)

Remark1.16. —

1. We have defined the property of being causal for general paths and not related thi
definition to any kind of interaction. When we study finite range interaction, of
rangeRr say, we will consider only causal paths of step size at rRost

2. Aterm likeinverse causal patfrom a to b instead ofcausal pathwould actually
be more appropiate as it corresponds taffectinga (cf. Definition 2.1) but not
necessarily the other way around. However, we prefer the shorter notion.

DEFINITION 1.17 (cf. [3]). — Let (21, A1) and (22,, A,) be measurable spaces. A
mapK :2; x A, — [0, 1] is called aMarkov kernel from(21, A1) to (22,, A) if the
two following conditions are satisfied

MK1 w1+ K(wi, Ay) is Aj;-measurable for alld, € A,.
MK2 A, K(wi, Ay) is a probability measure o, for all w; € ;.
If (21, A1) = (25, Ay) thenK is called aMarkov kernel on(Q24, A1).

Example1.18. — Let(Y, oy) be a metric space arisy its Borelo-algebraC®(Y, Y)
is the space of continuous maps fromto Y. It has a uniform metric, defined by

0co(y,v) (81, 82) = SURey 0y (21(Y), 82(¥)) and the Borelr-algebraBgoy y, W.I.t. this
metric. Further, le{2, A, P) be a probability space and

S:Q—CY, V), (28)
w—S,,

ameasurable (w.r.t. the-algebrasA andBgoy y)) Map.
Then

Ks(y, Y1) € P({w: S,(y) € 1)) (29)
forall y € Y, Y; € By, defines a Markov kernel ofY, By).

Proof. —To verify MK1 we fix anY; € By and show that the map+— Kg(y, Y1) is
measurable. First we note thfitan be seen as a measurable map ffom Y to Y. We
write it as the composite of measurable m&ps idy and the ‘evaluation map’:

(@,9) = (S, y) = Su (). (30)

The mapS x idy is measurable by assumption and the definition of the prachatgebra
of C°(Y,Y) x Y. The evaluation map is continuous (w.r.t. the product topology), hence
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measurable w.r.t. the Borelalgebras. So the composite in (30) is measurabfe /.
It follows that the map — P ({w: S,(y) € Y1}) is measurable (cf. Lemma 8.1 on p. 159
in [22]) and so MK1 holds.

Next we show MK2. Consider for fixed € Y the composite of measurable maps

0> (@, y) > So(y) (31)
that maps2 to Y. We see thatk (y, ) is the image ofP w.r.t. this map and so a

probability measure which was to be showrn

DEFINITION 1.19 (cf. [3]). — Let K be a Markov kernel frong€2,, A1) to (222, Ay)
andE*(A;) (i = 1, 2) the set of4;-measurable functions with values[i co]. Thenk
defines a map fromt*(A,) to E*(A,) as follows

def

(Kf) () % / K (w1, doy) f(@2) (32)

Q22
for any f € E*(A2). The notation on the rhs ¢82) means thaff is integrated w.r.t. the
probabiltiy measure o2, that is described in Definitiod.17, MK2.

Example 1.20 f. [3]). — For the characteristic functiog,, of an.4,-measurable set
Ay we get

K xa,(01) = K (w1, A2). (33)
Now we consider a special case of Example 1.18.

Examplel1.21. — LetS:Y — Y be a continuous map ofY, oy) and let(2, A, P,
(X1):er) be a counting process with valuesNimandr e 1.
The map
S’ Y —>Y, (34)
y > SX@(y),
where $*(@ denotes theX, (w)th iterate ofS, is well-defined for allw € Q. Further,

S, (y) is measurable w.r.tiw, y). In fact, S, depends just orX,(w) and so we get a
countable, measurable partition @f

Q= Uum, (35)
neN
with U () 'w € Q: X, (w) =n). (36)

We define a Markov kernel by

K§(y, Y1) dZEfP({w: S!(y) € Y1})

= > PUMm)

n:S"(y)eyy

- / dP (@) x3, 0 S,(3) (37)
Q
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for y e Y andY; € By.
We see that this Markov kernel acts on a measurable fungtidh— [0, oco] by

(Ksf)(y) = ZP Um))f(S"(y). (38)

We prepare a generalization of Example 1.21 with a definition and a technical lemma

DEFINITION 1.22.— Let F be the set of finite subsets @f. Consider a fixed
A € F\ {4}. We define7 to be the union of a one-point sgt,.} and the set of finite
sequencesAg, ..., A,) of subsets ofA. Then7 is countable and we consider it as a
measurable space, equipped with the disceet@gebra.

Let (2, A, P, (X,);c;) be a continuous time counting process with valuel4nand
index-setl = [0, T') or [0, T]. We define a map

jQ—=>J (39)
o j(w).

If X.(w) is non-decreasing, has only finitely many jumps and at most jumps of size 1
then we defing(w) to be the(time-ordered sequence of jump sets of Otherwise we
setj (w) = j. We define folj € J:

U)o j(@) = j) (40)

LEMMA 1.23. —Let A € F\ {@} be fixed and2, A, P, (X,);c;) @ continuous time
counting process with index-set= [0, T') or I = [0, T'] and values iN* such that for
P-a.a. w the trajectory X .(w) is non-decreasing, has only finitely many jumps and at
most jumps of sizé. Then the mayp, as defined in Definitiod.22, is measurable.

Proof. —~We consider the casé = [0, T]. The casel = [0, T) is analogous. By
assumption\V' = U (j,) is measurable and has measure zero. We have to show that
U (j) is measurable for any = (A1, ..., A,). For anygi, g» € A andny, n, € N\ {0}
we defineA1(q1, n1, g2, n») to be the set of allb € 2 \ NV that have at least; jumps
atg, and at leask, jumps atg, and then th jump atg; happens at the same time as
then,th jump atg,. Similarly, A>(q1, n1, g2, n,) is the set of allw € 2\ N that have at
leastn; jumps at sitey; and thenith jump atg, occurs before tha,th jump atg, (if
there is amth jump atg, at all — if that is not the case then this second condition is
automatically satisfied). We only show the measurability of the 4gts. The proof of
the measurability of the set,; (-) uses similar arguments.

AZ (g1, 0) E{w e Q\N: 71, 0 X, (@) =11} (41)
is the set of allkw € 2\ NV that have at least; jumps at siteg; and then;th of these

jumps happens at the latest at time
Analogously,

A=(gana ) B{w e Q\N: 7,0 X, (@) < nz) (42)
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is the set of allw € 2 \ A with at mostn, — 1 jumps aig, in the time intervalO, ¢].
The setsA” (g1, n1,t) and A<(go, no, t) are measurable, and s04s (g1, n1, go, n2)
since

Az(q1,n1,q2,n2) = U (A% (g1, n1, 1) N A= (g2, n2, 1)). (43)
te[0, T1NQ
Now w belongs taU () if and only if, for all 1< k < n andgi, g2 € Ay andgz € A\ Ay
the following holds:
o If for exactly n; indices 1< i < k the pointg; belongs toA; and for exactlyn,
indices 1< j < k the pointg, belongs toA ; thenw € A1(q1, n1, g2, n2).
o If for exactlyn; indices 1< i < k the pointg; belongs toA; and for exactlyis — 1
indices 1< j < k the pointgs belongs toA ; thenw € Ax(g1, n1, g3, n3).
o If for exactly ! > 0 indices 1< n; <no < --- <n; <n apointg € A belongs to
Ay, thenw e {® € Q\N: 7,0 X7(d) =1}
We see thatU (j) is the intersection of finitely many measurable sets and hence
measurable. O

Example1.24. — We consider a generalization of Example 1.21. (Xepy) be a
measurable spacg) its Borel sigma-algebraj a non-empty finite set andz, A, P,
(X,),e7) @ counting process with values M that has finite expectation and with-
almost surely only jumps of size at most 1. LSt (Sa,),ca be afamily of continuous
maps onY*, such thatS,, changes at most tha;-coordinates, i.e. if/, € Y* and
g € A\ A1 we have for theyth coordinater, o Sa,(Ya) = yg-

Forr € I and P-a.a.w € Q with X, (w) € N* we have a finite sequence of jump-sets
j(w) =(Aq,..., A,), as defined in Definition 1.22, and it depends measurably,@as
was shown in Lemma 1.23. We define

D S (44)
Ya = S (Ya) E'Sa, 070 Sa,(Ya). (45)
We get a representation @f(y,, Y1), similar to the one in (37):
K5(Ya, Y1) = P({@: S,,(ya) € Y1})
= [ dP@y, o 5,0
Q

= Y  PUWY) (46)

JeJ: Sj(ya)en
foryy e Y* and¥i € @, V-

We have seen in Example 1.24 tisatdepends of(w) only.
As we are interested in spatially extended systems we need some definitions and fac
about infinite-dimensional systems.

DEFINITION 1.25.-S'is the one-dimensional sphere. We define it to be isometric as
Riemannian manifold t& /27 Z. This defines in particular a metrigs: on S* and also
the normalized Lebesgue measure on(ttwenpletedi Borel o -algebra.
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The diameter of? is
Cs d:adiamgsl (84 =n. (47)

(It seems a bit redundant to introduce the constagtinstead of usingr in the
following. But we indicate that the proofs in Sectidwork if S* is replaced by any
compact Riemannian manifold or more general by a bounded metric space with a Bore
probability measure. Further, we use the letter as notation for projectiong.

We set

M & (s (48)

and give it the product topology and product Lebesgue measure godhwpletedi Borel
o -algebra.

For A C Z% we denote byr, the projection on the\-coordinates.
Note that the product of the Borel-algebras is the same as the Barehlgebra for
the product spacéd is compact and metrizable in the following way:

DEFINITION 1.26.—Let(b(g)) ez« be a family of positive numbers such that

lim sup b(g) =0. (49)

R=>00 g >R

Then the metrig on M, associated t@h(q)) <z, is defined by

onx.y) & SUPb(9)0s: (¥ ¥q) (50)
qe!

forx,y e M.

Remark1.27. —

1. One can easily show thal,, as defined in Definition 1.26, is in fact a metric and
also compatible with the product topology.

2. A sequenceéx™),.y in M converges w.r.t. the product topology iff it converges
w.r.t. each coordinate, i.€x"),cn converges for every e Z?. The same holds
also for netgx*) pc .

3. The product topology does not distinguish any particular sites despite the fact tha
the weightsh(¢) depend ory. Spatial shifts, likex — X with x, = x,_, for some
r € Z¢, are homeomorphisms.

4. The spac€’(M, M) of continuous maps oM, o) is complete w.r.t. the metric
defined by

ocou. ([ &) déffulvgw (£, g(0)). (51)

We denote by3coy 4y the Borelo-algebra w.r.t. this metric.

LEMMA 1.28.— Let (2, .A) be a measurable space ang®),cr s be a net of
measurable maps
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A — oM, M), (52)

A
W= Jo

such that for allA; € F \ {#} and w € Q the net(my, o f2)a,caer CONvergesas
A — Z%in CO%(M, (S1)A1), say toma, o f,.

Then
fog®) € M 7,0 £(%) (53)
defines a measurable map
f:Q—COM, M), (54)
o+ fo,

whosegth coordinate function is given W$3).

Proof. —Fix w € @, x € M and a metrig,, like in Definition 1.26. We show thaf,
is continuous irx. For that lete > 0 and choos&, € N such that

csb(q) < ¢ (55)

for all ¢ with |g|| > Ro. We note that the;th coordinate function ofr,, o f, €
Co(M, (S1HA1) is the same as thgth coordinate functiory,, , of £.,.

By continuity 0f7TBR0<0) o f,, we can choose &> 0 such that for aly € B;(x) and all
g with ||g|| < Ro:

CSb(Q)QSl (fw,q(x)a fw,q (Y)) <Eé. (56)
From (55) and (56) we conclude that for glE Bs(x)
om (fa)(x)» fa)(y)) <é& (57)

which was to be shown. Finally depends measurably anbecause it is pointwise limit
of measurable functions with values in a metric space (cf. [22], p. 117, for exampule).

Remark1.29. —

1. Lemma 1.28 is in particular based on the compactnesafom.r.t. the product
toplology.
M is not compact w.r.t. the different metric, defined by

~ def
o (X, y) = supos(xy, ¥y)-
qgeA

In this case the conclusion from ‘local’ to ‘global’ does not hold.
2. As f in (54) is (A, Beo,my)-measurable, the mafw, x) — f,(X) is (A x
Bu, By)-measurable. We have proved this fact in Example 1.18.

2. Infinite-dimensional systems

In Example 1.24 we used a counting process with value‘in(for finite A) and
a family of updating-maps oii* to define Markov kernels on the product'. These
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kernels act on the product spac& Y ) of continuous functions (cf. Definition 1.19 and
Proposition 2.15). In view of spatially extended systems like coupled map lattices or
interacting particle systems we would like to define analogous operators for infinite-
dimensional systemsA(= Z¢). As counting process we take the Poisson process
(2, A, P, (X,);50) With parametes. > 0 and values il

Recall that the set;, defined in Definition 1.10, of alb €  such thatX (w) is not
nondecreasing, jumps at time 0, has simultaneous jumps or jumps of size greater the
one, hasP-measure zero. So we have to consider updatings only at single sites. The!
are given by a family of continuous magps, ),.z« such thatS, : M — M changes only
thegth coordinate (cf. Example 1.24 for a definition.)

A problem is obviously that the Poisson process, restricted to any finite inf€rval
of lengthz > 0 is not of finite expectation (cf. Definition 1.1 and Remark 1.9P-p.s.
there are infinitely many jumps and it is even impossible to define an order preserving
bijection between them ani. However, in Section 2.1 we will show for systems
with finite range interaction that foP-a.a.«w € , anyg € Z andt > 0 the siteq is
affected in[0, 7] (cf. Definition 2.1) by only finitely many sites, so that mapg © S’
from M to (S1)@ and then alsoS!’ from M to M can be defined in a natural way.
The proof is based on a percolation argument. Percolation techniques, but differen
from the ones presented here, were already used by Harris in [15] for proving the
existence of certain interacting particle systems of finite range. It follows in particular
thatm, o S : M — (SH? for finite A # @ is the limit (asA — Z¢) of maps that are
constructed by using the ‘cut offst, o S‘ b , corresponding to a finitd > A and
boundary conditiong. In fact, this limit also exists and is independent of the boundary
conditions for a huge class of infinite range interactions as we will show in Section 2.2.
It gives rise to a natural definition of the system. But we also note that for infinite range
interaction each site is with positive probability affected by infinitely many other sites.
So we cannot use the same definition as for finite range interaction.

In Section 2.3 we define Markov kernel§; for the infinite system§” and K ; for

the systemsf\ that fixes theA€-coordinates for a finite\ (Recall the notation for the
complement from Definition 1.11). We show thAt is the weak limit ong 5 (as

A — 74), i.e. the corresponding operators on continuous functions converge weakly.
2.1. Finiterangeinteraction

Now we are considering an interaction of range N\ {0}, i.e. 7, o S,(X) depends
only onxg,(,)- (Recall thatBg(¢) was defined in (23).)

DEFINITION 2.1.—GivenR as aboveg, g € Z4, T > 0, w € Q. We say thaf affects
g W.r.t. (R, t, w) if there is a causal path from to g of step size at mofR. (Recall that
we definedpathetc. in Definitionsl.13to 1.15) If ¥ # A C Z¢ we say thafj affectsA
w.r.t. (R, t, w) if g affects at least one point in w.r.t. (R, ¢, w).

We set

Aff (g 1) (A) d:ef{q e 7¢: g affectsA w.r.t. (R, 1, w)}, (58)
and Qp% {a) 3t > 0, g € Z* such thatlAff x ;.. (q)] = 0o}, (59)
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Aﬂ(l,T,m)(QO)
0+ o Y Y ° 0 T‘ °
to-
ts
ta+ +
i3+
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4
TL e ° ° ° ° ° °
q—2 q—1 o q1 q2 q3 q4

Fig. 1. The history ofpo.

where| - | denotes the cardinality.

Fig. 1 is a picture of Aff r..)(g0). We consider the finite time-interva0, 7'] and
nearest neighbour interaction and a particulaFor each jump we draw a cross at the
particular point(g, ). There are jumps aty, t), (qo, t5), (g_2, ta), (q1, t3), (go, t2) and
(g3, t1) The last jump aiyg is at timer,. We draw a thick horizontal line betweéd, 1)
and(q, 1) for all nearest neighboug of gg because the updating @5 depends also on
these sites. So we have to consider the ‘historiegp@ndits nearest neighboutsefore
time .. Note thatgs € Aff 1 7.,)(go) and it is updated at timg (and so affected by,
for example) but that updating has no influenceggifat timeT'). We also note that, for
example,g_; affectsqo (w.r.t. (1, T, w)) but not the other way around. So we have to
consider only the time- and space-ordered percolation.

PROPOSITION 2.2. —Qr has P-measure zero
P(Qr)=0. (60)

Proof. —Aff (¢ ;. (q) is increasing inr and so

Qr=J U {o: IAff(r1a(@)] =00} (61)

teN qEZd
So it is sufficient to show that for fixegle A andz > 0 the sef{w: |Aff (¢4 ()| = oo}
hasP-measure zero. If we set

def

Ay = {603 Aff (R (q) & BN(CI)} (62)

it is sufficient to show that
Nlim P(Ay)=0. (63)

If ¢ is affected by somé ¢ By (g) w.r.t. (R, t, ) then there is a maximal causal path of
step size at mosk from ¢ to g with at leastN, steps, wheréVy is the smallest integer
greater thariy..
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Consider any maximal causal path= (g0 =g, ..., g,) Of step size at mosk and
with n > Ny. Q is a maximal causal path w.rf, w) iff the trajectory ofw w.r.t. the
Poisson process induced y(cf. Definition 1.14) has exactly jumps. The probability
of this is p, (¢, n) (which was defined in (4).)

We set

car = Br(g)l. (64)

(Recall thatBg (¢) was defined in (23) ang | denotes the cardinality.)
Then

|Path(g, n, R)| =c} p (65)

because at each step in the path one can choose betwgéaitice-points.
So we have

Avc U |J {e! Qis maximal causal w.r.(R, 1, »)} (66)
n>=No QePathg,n,R)
and so
At)"
PANS . cZ’Re_M( ‘) (67)
n>=Ng n

(ca R—D)At No L
L eCrR=DM (e pa)No— (68)

’ No!

which converges to 0 a¥; — oo which was to show. For the last inequality we have
used the estimate for the Lagrange remainder in Taylor’s formuta.

DEFINITION 2.3.— Let a finite range interactiofi.e. a family of updatingsbe given
by (S,)gezi- Fixw € Q\ (QrUNY), B# A C A € F, £ € M andt > 0. Thenw has only
finitely many jumps ik x (0, 1), say at(q1, t1), ..., (gn, t) WithO <1, < --- <1, < 1.

We denote by; Vv £;c the point inM that has the sama-coordinates a and the
sameA€-coordinates ag.

We define
Sphet (S = (sH" (69)
Sq.ieX3) = 75 08,(Xz VEie),
and
Q\WN1UQg) 30 S[~ wECO(M,M), (70)
def
Asw(x) . Sq AECTTO qlAg(XA)VéAc-

The map§ ,, are continuous as composites of continuous maps. Furtherrﬂ?re
depends onIy owj; (i.e. onm; o X (w)) and(70) gives rise to a countable, measurable
partition of  \ (N1 U Qg): @ and® belong to the same set of this partition if they have
the same list of jump sit€g;, ..., g,) (ordered w.r.t. the jump timgs

Now letA > Aff ..., (A) andé € M and define
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a0 ST\ (N1UQg) — CO(M, (1Y), (71)
a0 8,(X) Emh 085, (Xz). (72)
The definition does not depend on the choica aff £ because the right-hand sidens)
of (72) depends, by definition, on tAdf  , ., (A)-coordinates ok only.
Further, the family(m, o S, (X))acr\g IS CONsistent in the sense that for afy~
A CAreF:
Tay (Tay 0 SH(x)) =7a, 0 S! (x), (73)
and so defines a map
SCM— M, (74)
(5,), E'm, 0 81, ).
Finally, we setS! =idy, forw € Qr UN.

PROPOSITION 2.4. — The maps,, defined in72) and(74)is continuous and depends
measurably om.

Proof. -The net(Sf\ ¢.o)Acr\ ) Salisfies the assumptions in Lemma 1.28 and so all
statements of Proposition 2.4 follow

2.2. Infiniterangeinteraction

We extend our notion ofS!’ to interactions that are not necessarily of finite range.

Consider a family(S,),cz« of mapsS,: M — M such thatS, does not change the
74\ {q}-coordinates and, o S, : M — S* is Lipschitz-continuous w.r.t. all coordinates
and the Lipschitz constants depend only on the relative positions of the sites, i.e
there are constants(r) for all r € Z¢ such that for ally, § € Z¢ andx,y € M with
Xza\ 13y = Yza\(5) (I.€.x andy differ at most in theiig-coordinates.)

051(74 0 Sg(X), 714 0 S (V) < w(G — os1(¥g, 2)- (75)

We further assume summability of the Lipschitz-constants, i.e.

dowl@=a (76)

qezZd

with a positive constant;.
We need the following technical lemma.

LEMMA 2.5.— If (w(g))4eze IS @ family of non-negative real numbers satisfying
(76) then there are familieswi(g)),ez« and (w2(q)), ez« Of non-negative and positive
numbers, respectively, such that

w(q) = wi(q)wa(q) forall g ez, (77)

> wilq) <21+ 1, (78)
qEZd

and Rlim a(R)=0, (79)
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where the positive functiom(-) is defined by

a(R)E sup  wa(ry) e walr). (80)

lrell+--+llrall=R

(The empty product is defined to be equal ip

Proof. —We can choosey =0 < r; < --- € N such that

> wlg) = -4 fori>1 (81)
llgll<ri
Then we have
Y w@<ea and Y w(@) <4 forix1 (82)
llgll<ry ri<lgll<ri1

We set fori > 1 andr;_1 < ||lg|| < r;:

wz(Q)d—efz_ (83)

wi(g) E2w(g). (84)
Then (77) is obviously satisfied. To prove (78) we use (82) and (84):

Z wi(g) = Z Z w1(q) < 2c¢1+ ZZ =214 1. (85)

qeZd i=0ri<llgll<ri+a i=1

Now we prove (79). We show by induction (w.ri}.that for everyi > 1 there is am;
such that

a(R) <27 forall R >n,. (86)

Fori = 1 the statement is true withy = 1 because(R) < % for everyR > 1 as there is

at least one factor on the right-hand-side in (80) and each such factor is a%.most
Now we assume that the statement holds fandr;. We set

Njy1 d=8f”i + 2n;. (87)

Then every pathqo, ..., q¢,) of length R > n;;1 has at least one step of size at
leastr; (i.e. there is an K I < n such that||ql — g1l = r;) or it can be divided
into two paths both of length at least (i.e. there is an K 1 < m — 1 such that
lgo—qill +---+ llg—1 +qll = n; andllgr11 — qill + - - - + Ign + gu—1ll = n;). So each
product on the right-hand side of (80) has at least one factor less than or equétto 2
or two factors less than or equal to'2As the other factors are smaller than 1 the product
is bounded by 20+9 as was to be shown.o

Now we fix (like in Lemma 2.5) a choice @tv1(q)),cz¢ and(w2(q)), ez« and so the
functiona.
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DEFINITION 2.6. — We fix the metrig,, on M by

ou(x,y) & supa(llrlhes: (x;, y,). (88)
reZ.

Remark2.7. — It follows from Remark 1.27.1 and (79) tha}, is a metric and
compatible with the product topology.

LEMMA 2.8. —The mapsS,: M — M are continuougw.r.t. the product topology on
M).

Proof. —According to Remark 1.27.2 and the uniform choice of the Lipschitz-
constants (cf. (75)) we only have to show that the mapsSo: M — S* are continuous.
If ¢ # 0 then theyth coordinate is not changed ISy and

a(llgiDes: (7 0 So(X), 74 0 So(y)) = a(llglDes (x4, ¥g) < om(X, Y). (89)
If ¢ =0 we estimate

a(0)gs1 (70 0 So(X), 0 0 So(Y)) <a(0) Y w(r)es:(x,, y,)

rezd

<a0) > w(

= (|| D
<a(0)(2e1 + Dow (%, Y), (90)

QM(Xv y)

where we have used (75) for the first, the definitio gffor the second and (77) for the
third inequality. Sor, o Sp is continuous for aly € Z4. O

In the following we estimate the distance (w.r.t. the uniform norm) betwgers’, . ,
andnooS’ , for different boundary conditiongs, c andé,c (that might even depend on
the time) at thef\c -sites. Conditions (75) and (76) allow us to apply standard estimates
for the ‘error-growth’ for composites of maps. Using the linear nature of the ‘Lipschitz-
condition’ (75), we write the products of sums (over all coordinates, like in (75)) as sums
(over paths) of products (corresponding to the particular paths).

We fix t > 0, A € F andw € Q \ N1. By definition of N7 (cf. (21)) @ has no
jumps at 0, no simultaneous jumps and only finitely many jumpﬂilst 0,1), say
at (g1, t1), ..., (gn, In)_ with 0 <y <--- <ty <t. We setto "0 and fix arbitrary
£=(E(to),....E(tn)), E = E(t0), ..., E(ty)) € M¥ L andX,y € M.

We setx(0) C’ZEfo V Exc(0), y(0) dEfyA v £,¢(0) and define for K i < N recursively:

Xq(ti—1) forq e A\ {q:}, (91)

7y 0 8,(X(ti—1)) forg =g,
(&) =
£,(1;) for g € AC€.

We definey(;) analogously, using andé instead ofx andg, respectively.
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Two points in St can have distance at mos = diamgsl(Sl). For estimating the
distance between, (#;) andy, (;) we define

~ 0), v, (0 for A,
A,(0) dZequ(o) d:ef{gsgl(xq( ), y4(0)) forZiAC, 92)

and for 1<i < N

ZrEZd w(r —q)A(i — 1) for q=qi,
def

A ES A -1 forg e A\ {g:}, (93)
Cs for g € A€,
min{cs, Y, ez w(r —)A, (i = D} for g =g;,

Ai)ES A G- 1) forg € A\ {gi},
Cs for g € AC.

The functionsA, and A, depend orx, y and A but we do not refer to this in our
notation. We have introduced them for estimating the difference betwgen and
¥4(t:) (cf. (94)) and so the difference betweej(r) andy, (¢). This difference depends
also onw and so do the corresponding estimatesAgrand A,,. In Definition 2.11 we
will relate A, and Aq to families of random variablegY)scr\ (s and (?A)Aef\m},
respectively. ForA, we find a particularly nice expansion (cf. (95)). From this follows
the convergence of, to zero in expectation (ag — Z¢). We will show thatY,

is bounded byY, and decreasing and so convergesalmost surely to zero by the
Monotone Convergence Theorem (cf. Theorem 2.13).

PROPOSITION 2.9. — The following holds foD <i < N:
1.

051(xg (1), y4 (1)) < Aq(i) < AL3). (94)

A= > wlri—ro) - wry —r-1)A, (0). (95)

(ro=q,r1,....7n)
ePatle(t;,w,9,A)

3. Ifin particular x, =y, andg € A then

A, (N (@) < csa(dista (g, A€)) Z wy(ry—rg)----- w1(ry —Tn-1),

(ro=q.,r1,.-.,7n)
cPathe(r,0,g— AC)

(96)
whereN (w) is the number of jumps af in A x (0, 7).

Proof. —We prove (94) and (95) by induction w.rit.

i =0:(94) holds by definition oA, (0) and Aq (0) (cf. (92)). At time 0 no jump has
happened and the only summand on the right-hand-side in (95) corresponds to the emp
path at site; and so the equality in (95) holds.

i —1—i:(95) holds obviously fot andg # ¢; as there is no updating at sgeand

Patrt(tlv w,q, A) = Path:(ti—la w,q, A) (97)
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At site ¢; there is a jump at time and so we have

Ag ()= w(r—g)A G —1). (98)

rezd

Using the representation (95) fax, (i — 1) and the fact that evergy;,r1,...,r,) €
Patlt(;, w, g;, A) can be (uniquely) split intdg;, r1) and(rq, ..., r,) € Pathe(t;_1, ,
r1, A), we see that (95) holds feér

Next we show the first inequality in (94) far For g € A€ the distances between
x,(t) = &,(t;) and y,(t;) = éq(ti) is bounded bycg and forg € A \ {g;} we have
xq(t;) = x4(t;—1) andy, (t;) = y,(t;-1). So in both cases the first inequality in (94) holds.

Now we consider the sit¢ where a jump happens at time Using (75), assumption
(94), fori — 1, and (98), we get

Qs1 (xq(ti)v yq(fi)) < Z w(r —¢q;)ost (xr(ti—l)» )’r(fi—l))

rezd

<YWl =g =1 <Ay (D). (99)
rezd
So the first inequality in (94) is proved forThe second follows immediately from (94).
So statements 1 and 2 are proved.
Finally, (96) follows from (95):A,(0) = 0 for g € A. So we only have to sum over
paths(ro=gq, ..., r,) thatend inr, € A€.

. . def
In particular, if we seiR =, |, then

A, (0) =cs. (100)
distz (g, A€) <R, (101)
R< lry —rp—all+ -+ llra —roll, (102)
and so by the choice ab,, w, anda, made before Definition 2.6, we get
w(ry—ro) - w(ry —rn-1)
Swi(rp—rg) -+ w1 (ry — rp-1)a(R)
<wilri—rg) - w(ry — rp—1)a(distza (g, Ac)). (103)

Using (95), (100) and (103), we get (96) O

Remark2.10. — The summing over causal paths in Proposition 2.9 reflects that the
result of an updating depends only on what has happened before.

DEFINITION 2.11. —We define two familie§/'s) ac7\ 5 and (I?A)Aef\{@} of random
variables onQ \ NV;. LetA € F\ {#} andw € Q2 \ N1, say with exactlyV (o) jumps in
A x [0, t]. If we choosex,y € M with x, =y, the value ofAqg(N (w)) (as defined by
(92) and (94)) does not depend onor y. We defind’, (w) to be equal to this value

Ya (@) Z Ao(N () (104)

Y, is defined analogously, usingo(N (w)) instead ofAq(N (w)).
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Remark2.12. —

1. We remark thatY, depends measurably om. In fact there is a countable,
measurable partition a® \ A such thatw and® belong to the same set (of that
partition) if the sums for\o(#x () andAo(tns)) (cf. (95)) are over the same paths.

2. From (94) we see that

Yo < Y. (105)
Now we fix&, x € M and define the ma§ . , like in (70).
THEOREM 2.13. —
1. There is a setV, of P-measure zero such that

lim Y, =0 forweQ\ (NiUNAN). (106)

A—Zz4

2. The limit
¢ def |. t
mgo S, = All_r)r%d 700 Sk £ (107)
exists inCo(M, S*) for all w € Q\ (N1 UNY). It is measurable inv and does not

depend ort.
3. There is a setV' C  of P-measure zero such that we can define maps

t def . t
myo0S, = qelzlxnlzd Tq0 Skt (108)

forall g € Z? andw € Q \ V.
Further, we can define a mafj, € C°(M, M) by

(5,00), E'my 0 84,0 (109)
S! depends measurably @an
Proof. —First we show that

lim E(Y,)=0. (110)
A—74
We setR £'dist,. (0, AC). Using (96) we get

EUn< [dP@esa® Y wan—ro) s wi —
Q

(ro=0,r1,....7n)
ePatlt(1,0,0—-AC)

=csa(R) > wi(ri—ro)-- w1(ry — ru—1)
pePatho— AC)
x P({w: Q € Patly(r,w,0—~ AC)}) (1112)
A path Q = (g0 = 0,91,...,q,) With g, € A is causal w.rt.(r,w) (i.e. Q €

Pathe(t, w,0 — A©)) iff the Poisson process induced gy has at least jumps. So
we can estimate the probability
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. L, )"
P({w: 0 e Pathy(i, , 0— Ac)}> =Y et (112)
< (Ant!)n. (113)

For the last line we have used Taylor’s formula, as we did in (68). So we get, using (78),

( > wl(r)> (114)

rezd

< c2a(R) (115)

)"
!

E(Yp) Sesa(R) y —
n=1 :

with ¢, = cg€@1tD (Recall that we consider a fixedat the moment, s@, is a
constant.) By (79) we get

lim EY,) =0 (116)
A—zd
and, using (105),
lim E(Y,)=0. (117)
A—2Z4d

Yr(w)is decreasing for atb € Q\ NV1: For a fixedw and Oc A; C A, € F we consider
the (time-ordered) sequence of jum@g, 1), ..., (q.,t,) Of w at sitesqs,...,q2 €
A;. It is a subsequence of the sequence of jur@psti), ..., (¢,,.I») Of @ at sites
q1---»qm € N2. The jumpsg;, ;) in the first sequence correspond to juni@s;), 7))
in the second one. Thep =g, ands; =1, but the indices and j (i) are not the
same in general.

We defineAl (i) and A2(j) as in (92) and (94) for the sets; and A, respectively.
We show that

Ag) = AZ(j (). (118)

If g € A then (118) obviously holds becausé (i) = cs is an upper bound foA2 ().
Forg € A1 we show (118) by induction w.r.i.

If i =0 then (118) is true by (92). Now assume that (118) holds fog aind a
particulari < n. Forg € A1\ {g;11} we have

Aji+1D) =A%) > A2(j () =A2(j( + D) (119)

where the inequality holds by assumption and the equalities by (94). For tige=side, 1
we have by (94)

ALi+D = max{cs, > wr - q)A}(i)}
rezd
> max{cs, S wr—AX(ji+1 - 1)}
rezd

=A7(j(+1) (120)
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which was to be shown. Here we have used thii) > A2%(j (i + 1) — 1). This follows
for r € A§ from the definition ofA and A2 and forr € A; from assumption (118) and
the fact thatA?(j (i + 1) — 1) = A2(j (i)).

Using the definition off,, (w) and¥»,(w) (cf. Definition 2.11), we conclude

Ya, (@) > Ya,(w) (121)

which was to be shown.

We have proved (117) and théity) s« F\(# Is decreasing. So we conclude (106), by
using the Monotone Convergence Theorem.

Now we prove the second statement in Theorem 2.13, using the first one. First we
note that forw € Q \ (N1 UN>) the maij\’s’w is continuous since it is the composite of
finitely many continuous (cf. Lemma 2.8) updating maps.

For A c A we have

0com, 5 (00 Sy ¢4y 00 S5 ) < Va(w). (122)

So by (106) the netrg o S} , ,)acr\ IS @ Cauchy net with values i6°(M, s*) for
w e Q\ (M UMN>) and so converges. Furthermore, it is a pointwise limit, i.e. for each
particularw, and sargo S’ is measurable im. (The last conclusion uses the theorem that
the pointwise limit of measurable functions with values in a metric space is measurable
(cf. for example [22], p. 117)).

As mentioned in Remark 1.27.3 there is no distinction of the point 0 by the product
topology. So for ally € Z¢ we can definer, o S, for all w € @ \ V¥ whereP(N4) = 0.
In the same way we can define for eatle F \ {#} andw € Q\ N2 (with P(N) =0)
mapsr, oSt € CO(M, (S1H)*) that depend measurably enand such thas’ (x) depends
measurably orjw, X).

The set

£y M (123)
AeF\(7)
has P-measure zero. So by Lemma 1.28 the n§gps well-defined forw € Q \ NV and
the statements in 3. hold.O

Remark2.14. —
1. Itfollows from the proof of Theorem 2.13 that one can define a random dynamical
system (cf. [1]), given by the maj®), oo) x @ x M > (t,w, x) — S’ (x) and the

shiftso(r) on Q such thatX7, (6 (1) w) def X! 1, (0) — X! (w) whereX/ (w) denotes
the number of jumps ab at siteq in the time interval0, ¢].
One can further define foP-a.a.w € Q the linear operatorsoS’’, acting on
continuous functions and the corresponding transfer operafgys So one has
operator-valued random variables. However, in the following we consider only the
averaged (w.r.lw) operators.

2. We have defined map§ € C°(M, M) for finite range updating in (74) and a
special class of infinite range updatings in (109), using (107). Note that the seconc
class does not include the first. It might be interesting to find more general classe:
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of (single site) updating functions for which the limit in (107) exists, or examples
where it does not exist.

2.3. Markov kernels

In Section 1 we defined the Poisson procé&s A, P, (X;):cj0.71) With parameter
A and values inN“, the measure spacéM, By, ) and the measurable space
(CO(M, M), BCO(M,M))-

We have nets(S¥)acrg of maps SL:Q \ N — CO(M, M) with limit ST e
Co%(M, M), and the following statements hold:

1. S7 andS” are(A, Beogy ary)-measurable.

2. 87 is the pointwise limit of the netS} ) scz\ ;-

3. For fixedx € M the mapS,T\“(x) :Q — M is (A, By)-measurable.
More precisely, for finite range interaction (cf. Section 251)was defined in (74) and
$7 in (70). (Now we drop the fixed boundary conditiérand the *” in the notation for
convenience.) For infinite range interaction (cf. Section 2.2) we defjnim the same
way as for finite range interaction and the existence of the Ifhitis established in
(109). Note that these maps are a priori not defined on a s@tmkeasure zero. For
these exceptionab € 2 we defineS] andSj , to be equal to the identity oM.

Statement 3. follows from measurability w.r(w, x) of S,Tw(x) (Proposition 2.4
and Remark 1.29.2 for finite range interaction and statement 3. of Theorem 2.13 an
Remark 1.29.2 for infinite range interaction), the fact that one-point-sef¥ iare
measurable, and Fubini’s Theorem.

Like in Example 1.18 we set

K§ M x By — [0, 1], (124)
KIx, A) €' P({w: ST(x) € A)}).

The corresponding operator, applied tofg C°(M), is

(K f)(%) =/K5T(x, dy) £ (y) (125)
M

= / dP(w)f oS! (x). (126)
Q

(125) is the definition (cf. (32)), and (126) is a consequence of (124).
We define analogously the Markov kerna!st{ » and corresponding operators for the
Poisson process with valuesit.

PROPOSITION 2.15. — K{ and KgA are bounded linear operators atf(M).

Proof. —We give the proof forK{. The one fork{ , is analogous. Lew € Q,
f eCo(M) and(x™),cy a sequence iM with limit x. Then

lim S7 (x™) = S7 (x) (127)

n—oo

andso limfo ST(x™) = f o ST(x). (128)
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Further,

£ 080 ||oo <11 lloo- (129)
Using the Dominated Convergence Theorem, we conclude

(KLA)() = fim [ dP(@) £ oS} (x")
Q

i
= [dP@) f oS00
Q

= (K{ £)(X). (130)
SoK? f is continuous. Continuity of the operator follows from (126) and (129).
PROPOSITION 2.16. ~The net(K{ ) rcr\@ converges weakly t& ! (as A — Z9),
i.e. forall f e CO(M):
Aanqu K f=K;if. (131)

Proof. —We have

IKS S = KEas o< [aP@I oS —rost,|.. (132
Q

Because of condition 2 on p. 26 and (129) the rhs converges to® {asz¢). 0O

Remark2.17. — It follows from Remark 2.14.1 and the homogeneity of Poisson
processes w.r.t. time thék{),>o is a semigroup.

3. Transfer operators

In this section we define transfer operators for the Markov kernels for a special class o
updating functions that we have already studied in [13]. First we recall some definitions
and notations from [13].

Fors > 0 we denote by the annulus

As T zeC|-s<Iniz| <8) (133)

and byT its positively oriented boundary.
For@® # A C Z¢ the normalized Lebesgue measure(6h)” is denoted by.*. For
finite A itis given by

dz 1 def

_dz 1 dzp 1
ri)rlz

o’ @) = 2riz,
P

(134)

[1

PEA

We also use d* (z) as a shorthand notation for the right-hand side of (134 forA2.
In Assumption [see below) we will fix & > 0. ForA € F we denote by, the space
of continuous functions on the polyannuldg that are holomorphic on its interior and
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write || - || for the uniform norm orfH,. As a function onA2 is also a function on
AZ we can drop the index and mean the uniform norm on the infinite-dimensional
polyannulus.H is the vectorspace of all consistent familigs= (¢5)acr Of functions
¢ € Ha. Consistency means

def

(A, PA,)(ZA,) = dMAZ\Al(ZAz\Al) D (Za, V Za\Ay)

Sl)AZ\Al

= n, (135)

forall A1 C Ay e F andz,, € Ag‘l. (Note that we use the same symbal,' for
projections of functions and projections of coordinates, for example fvbto (S1)2.)
For 0< ¢ <1 and¢ € H we define

I$lly = sup?'™ i dalla, (136)
AeF
16 lvar & 1im / A | . (137)
A—74
(sHa
We set
Hy L'4p e H: [1plls < 00}, (138)
HY L (p e H: ¢ llvar < 00}, (139)
HEY L HY (. (140)

Then(Hy, || - |ls) is a Banach space. Fgre H?’ andy e C°(M) we define

Ya(z) / A (Zae) Y (2a v Za0), (141)
(SHA©
/ du v ' lim. / Qtn Yadi. (142)
M (Sl)A

Finally we recall the definition of a transfer operator: Lietbe a measure on the
(completed) Boreb -algebra of a metric spac& and S: M — M be a measurable
map that is non-singular w.r.iz, i.e. for all measurabled € M, u(A) =0 implies
w(S~1(A)) = 0. The Perron—Frobenius operatofor transfer operatoy £z, acting on

LY(M), is defined via the equation
/ dii o S¢p = / Ay Lo (143)
M M

that must hold for ally € L>(M) and¢ € L1(M).
The Markov kernels for our stochastic systems are analogous to the compositiol
operator 65’ (with deterministicS), acting on functions.
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DEFINITION 3.1. —We define transfer operator for a Markov kerri€élanalogously
to (143) by the equation

/ dii (Ky)p = / da v (L ). (144)
M M

Remark3.2. —
1. In the cases we consider, the Markov kerkiglis given by

(Ks¥)(x) = /dP(w) Yo S, (x), (145)
Q

where2 is a probability space,, depends measurably anand the map — Lg,
is well-defined and integrable. Then

/ i (K ) = / dii(x) / dP(@) ¥ 0 Sy ()b (x)

M M Q

- / dii(x) / dP () ¥ (x)(Ls,d) (x)
= Q

M

- / diz () ¥ (x) / dP (o) (L5, 8)(x). (146)
MV Q
So Lk, is given by

(L) (x) = / dP(w) (Ls,P)(x). (147)
Q

2. The operator for the infinite dimensional system that we are going to consider ac
on elements of{, that do not in general correspond to elements&f\/). Recalll
(see [13)) thafo;" can be identified with a subset afa(M) (or, in other words, a
subset of the Borel measures). So for example in Theorem 3.25 we will show that
the equation analogous to (144) holds fore C°(M) (rather thanL>(M)) and
¢ eHY.
Now we consider a special class of interactions (cf. [13]), namely a fa(8jy,cr
of maps onM that can be written as
SAiM—> M, (148)
Sa(Z2) = FpoTp(2) V Z)c,
where
Fpi(SH* = (sH™, (149)
) = (Zq)qEA = (fq(zq))qu»

and
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Ta:M — (SH™, (150)

(TA (), e, exp <271i8 qu,k(z)> forg e A (151)
k=1

and f, andg, , satisfy the following assumptions:

Assumption .I- F(2) = (f;(zy)),ez¢ Where f,:S* — S are real analytic and
expanding (i.e.f; > Ao > 1) maps that extend for somg holomorphically to the
interior of an annulusA,, . In Proposition 3.1 and 3.2 of [13] we have shown that the
holomorphic extension to a sufficiently thin annulusis expanding in the sense that the
preimage ofA; w.r.t. f, lies in the interior ofd;. We fix such &;. Then for every; € Z¢
the Perron—Frobenius operatdr; , acting on*,,, has a simple largest eigenvalue 1
with eigenvector,, such thatry(h,) = 1 and the restriction of, to St is positive and
it splits into

L, =9+ Ry, (152)

where Q, is a projection onto spah,). We assume that there are positive constants
n <1, ¢, andc, such that the following two estimates hold for ale Z¢:

” Qq ”{q} < Ch, (153)
”RZ ”{q} < Cr nn s (154)

where|| - ||} denotes both the uniform norm G, (for this we might have to také
even smaller) and the induced operator-norm. We note that this holds in particgjar if
does not depend an

We further have

Q,R,=R,Q,=0. (155)

Assumption ll-For allg € Z? andk > 1 each mayg, , extends to a holomorphic

mapg, i : As? — C (recall definition (23) ofB;(¢)) and its sup-norm (of modulus) is
exponentially bounded by

lgg &l o < €3 exp(—c k) (156)
1

with ¢3 > 0 and ‘large’c, > 0. (In several statements in Section 3 and 4 a lower bound
for ¢, will come out of our computations. The idea is always that our estimates work,
providedc, is bigger than a certain constant.)

For A € F\ {#} we denote by, the function

ha@a) E T hyzo), (157)

qeN

wherenh, is as in Assumption |. We sé; = 1 and

Byt B (ha) ner € H. (158)
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We further define for a fixe§ e M and A € F \ {#} and A; C A theupdating at the
Aq-sites with fixed boundary conditioggc outsideA (or cut-off of Su,):

Sapat (81" = (sH", (159)
Za > TTA 0 Sp,(Za V EpC).

And for z, 5, € (SH*\*1 we define

T[A;LOSA;L,A('\/ZA\A;L): (Sl)Al—> (Sl)Al, (160)

Iy, > TTp, O SAl,A(ZAl V ZA\Al)-

Remark3.3. —

1. The map defined in (160) is the cut-off 8fw.r.t. A; and boundary conditions
Zaa, Vv Ex. SO We can use the special representation in terms of integral kernels
for its transfer operator, restricted &6, ,, for the proposition below.

2. The family(S,),<z, defined by (148), satisfies conditions (75) and (76) as one can
see from [13]: The partial derivatives are estimated in the proof of Proposition 3.1

there.

LEMMA 3.4.-Let A € F \ {#} be the disjoint union ofA; and A,. The transfer
operator, restricted td,, of the mapS,, A : (SHA — (SHA, defined in(159) has the
following representation in terms of integral kerrels

(L a®)(Wa; V Way) (161)
H (Sap,a(Za, VWAL
(Sap,A(Za, VWAL g — Wy

= dMAl(ZA1)¢(ZA1 v WAz)
Aq geh

r
for¢p e Ha.

Proof. —Let ¥ e C((SYH)*). We use the notatiopy,, for the functionw,,
¢(WA1 \% WA2)'

/ i (W) ¥ 0 Sap 4 (Wa)p (W)

(sHa
= / du2(Wy,) / A (Wa ) Yw,, © T4, © Sapa(Wa; V Way)dw,, (Wa,)
(Sl)AZ (Sl)Al
= / dlLAz (WAz) / dlLAl(WAl) wWAZ (WAl)(‘CJTAlOSAl,A(-VWAZ)¢WA2)(WA]_)
(Sl)Az (Sl)Al
= [ At ) YW Ly g B, W) (162)
(sHa

Using the representation of the transfer operator #Qr o Sx, A (- V Wy,) that we
established in Proposition 3.3 of [13], we obtain the rhs of (162).
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Remark3.5. —

1. We see in particular thatIiSAlvA ‘acts on theA;-coordinates’ only. There is no
integration w.r.t. theh,-coordinates.
Forg € A1 we can split the factor

(Sana(Zay VWaL)g
(Sap,a(Za, VWi, — wy

= hq(wqa Zq) + rq(wq, Zq) + Z IBq,k(wq» Zp, V Wy, V %—Ac) (163)
k=1
as in [13]. The integral kernels, andr, correspond to the operato@®, andR,,,
introduced in (152) ang, « to B, «, say. In addition to (155) we have

Q,0B,r=0 (164)

for all .
For a detailed analysis on composites of opera@ysR,,, B, « that have value 0
we refer to Section 5 in [13].

2. We have established a representation of the transfer operator also for updating
at more than one point at one time. Such simultaneous updatings happen, fo
example, in certain discrete time processes with positive probability (cf. [12]).

As in the systems considered here simultaneous updafirgsost never happen,
we can restrict ourself in the following to the case of updatings at single sites, i.e.

A1={q}.

DEFINITION 3.6.— We define for fixed\ € F \ {#}, £ € M and a finite sequence
J=1(q1,...,q,) € J of points inA the map

Siat(SHY = (sHA, (165)
Sin &S, Ao oS
Here S, 4 is the map for the updating at site Recall that in Definitiorl..22we defined
the mapg. For all w € Q2 there is a finite sequengéw) = (g1, . .., g,) and so

def
[’Sj(m),A =Ls

()
qn. A

“‘OLS

A (166)
is well-defined.

Before establishing particular representations of the transfer opetd{@sdr o L
we consider some special examples. For these we need the following definition.

DEFINITION 3.7.—We define

o0 k
R Zery gt (167)
k=0 :
= exp(—iz(id — R)). (168)

Then we have, using@.54),
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R(11)R(12) = R(t1 + 12), (169)
IR < c e EPH, (170)

Example3.8. — Consider a single site system, say at gitef a lattice, with an
updating mapf : S* — S? that satisfiesAssumption. We have for fixed timel’ > 0
and jump rate. > 0 a Markov kerneIK}, acting on functionsy e C°(s?) as in (38).
Using thatL’; ist the transfer operator of” (this is a special case of (166)), we get a

transfer operato£?’, acting onH,,, (this space is defined on p. 28):

VY B L.
L§=§e =L
00 Ty
zze—AT ()»n') (Q+R)" (171)
n=0 :
= (1—-e*T)Q+R(T) (172)

with R(¢) as in Definition 3.7. Note that we think of the summand'&, corresponding
ton =0, as € RO, By (155) we have for > 1 that(Q + R)" = Q + R", and so we
get (172).

We represent the two summands in (172) diagrammatically in Fig. 2. The operator
(1—e*")Q is represented by a thin vertical link-6trip) andR(T') as a thick vertical
line (r-strip). Note that the operat@ (7') is a sum of operators, each corresponding to
an exponent & n < co. So ther-strip corresponds to that sum of operators rather than
to a particular producte’ %R” An analogous statement holds for thestrip.

Example 3.9. — Now we consider a small perturbatigh of the single site system
fo= f of Example 3.8, that depends on fixed boundary conditions. For simplicity we
split the transfer operator for the single updating iftp = Q + R + B whereB is the
difference between the operators for the perturbed and the unperturbed system. We nc
that3 corresponds to the sul,” , B, « of operators defined in Remark 3.5.1. It follows
from (164) that

QoB=0. (173)

h-strip r-strip

oLl 1 N

Fig. 2. Single site, unperturbed case: There are only two gum configurations.
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For a given numbeN of updatings we distribute

LY =(Q+R+B)", (174)
using (155) and (173). L&k denote the number of factofs no the number of factors,

either all Q or all R, before the first factoBB andn; the number of factor® after the
ith B. So the total number of factors 6 =ng+--- +nx + K.

We get
00 N
T _ o ATy
Ly _szjoe Ll (175)
= DY
:Ze‘” Z R'®oBo---oBoR"oBo(Q+R)"® (176)
N=0 n ng >0 N'!
0seees K=z
no+-+ng+K=N
0 AT no+-+ng+K
:Z e’ G R'( oBo---oBoR"oBoQ (177)
K=0 ng>1 (n0++nK+K)‘
ny,...ng >0

- ar W Tyrottnetk
e R'®oBo---oBoR"oBoR"
+Z Z ot T nx LK) oBo---0Bo oBo

K=0no,...,ng >0
T T T

:Z/)»dtl/)»dtz---/)»dtK(l—e_Ml)R(tK)oBo---oBoR(tl)oBoQ
k=09 5 tx
o T T T
+Z/Adtl/kdtz---/kdtKR(tn)oBo---oR(to). (178)
k=09 5 K

For the step from (177) to (178) we have used Lemma 3.10 (s. below). We interpref
(178) in the following way. We write the operatﬁr”rg as a sum of operatoide, 7. For

the time being we think of, as a diagram like, for example, in Fig. 3. The vertical axis
from top to bottom corresponds to the positively oriented time line. Along this axis we
draw K thick horizontal bars, denoted I8, that correspond to the operat@sBetween
consecutiveB’s or between the firsB and the top or the las® and the bottom or, in the
caseK = 0, between the top and the bottom we draw either a thiedtrip) or a thin -

strip) line, representing the choice of factdtsor Q in the product (174), respectively.
Note that below & there must be a thick vertical line. For a fixédand ak -tuple

t=(ty,...,tp)e{t: = T<ty<---<tg <0} (179)
we think of the top as being fixed at timeT', the bottom at 0 and th&gh symbol B
atr;. That also fixes the lengths of the particularandr-strips. We assign to the triple

(Cy, T, 1) an operatolle, 7t For example witlC,, T andt as in Fig. 3, we get

,chjyt = (1 — e‘“’l”))R(O —tg)oBo---oBoR(trp—t1)oBo Q. (180)
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T
h-strip
t1+ Bt )
r-stri
to+ B P
r
ts+ B
tel —B
oL _TIr°

Fig. 3. Single site, perturbed case: example for a gum configuration.

To get Ea we integrate (180) over the simplex given by (179) w.r.t. the scaled
Lebesgue measureX dt; - - - dtx. The simplex has dimensiok, so for eachB in C,

we get one integration. Heuristically, the measurds;’ corresponds to the probability
that a Poisson process with ratejumps in a small time interval. The approach of
approximating the continuous time system by discrete time systems is made precis
in [12]. We also note the special cake= 0 where the simplex degenerates to a single
point of measure 1.

Above we have used the following lemma.

LEMMA 3.10. —Let(n; ;) o<i<x be a family of non-negative integers ahdrl > 0.

1<j<KN
Then, with the notatlorb = —T Tki1 %fo.
e NAT (T yroat e <n°’1+ e +no,N) ----- (nk’l+ » +”K’N>
(no1+---+ngny+K)! noi,...,NoN ng1,..-s KN

0<i<K nij:
1N

0 0 0 -
— /)»dtl/kdtz--- / Adtg H (e—k(f1+1—fi)M>. (181)
=T i k-1

Proof. —We see that the rhs of (181) is equal to

e—N)LT)\’no,1+---+nK,N+K H

0<i<K ni ;!
1SN

/dfl / drx H (tipr — 1)y 0 (182)

—fe 1 0<i<K

and so (181) follows byX times applying the identity

n'm!

n n+m+1
/dt( 0" =) = ) (183)

which can be easily shown by iterated integration by parts.

Example 3.11. — Now we consider a system with nearest neighbour coupling where
only two adjacent sites (1 and 2) are updated and the states at the other sites are fixe
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T 1 2
T,1 T2
tl—— Bz
Ny Tiy2
to+ B,
Tl 2,2
0L

Fig. 4. Two sites, example for a gum configurations.

This time an expansion as in Example 3.9 gives rise to summing opeatofswhere
theC, correspond to diagrams like in Fig. 4.

We have to consider all finite ordered sequences of symboénd B,.

In the example of Fig. 4 we have the sequerg, B;). For eachB; we draw a
thick horizontal bar, centered in the column corresponding tétthsite and connecting
to all sites (columns) on which the operaty depends. We draw the sequence of
B;’s ‘downwards’. As we consider only nearest neighbour updatings herdi;thave
width 2.

Then we can choose at sites 1 and 2 betwkeeand r-strips. Note that in Fig. 4
at site 2 am:-strip follows anr-strip. This is possible because they are ‘separated’ by
B; and so the corresponding operator is not necessarily 0. (In Section 5.3 of [13] we
list combinations of operators that lead to value 0.) Now we consider the parti&ular
andT shown in Fig. 4. Leto; denote the number of jumps at site 1 before the jumps
that corresponds to id® B> etc. The definition of:; ; in general is analogous. So the
total number of jumps iV =ng1 + --- +n22 + 2. The first two factors in (184) give
the probability that a particular sequence of exadtljumps occurs. The first binomial
coefficient counts the combinations (different sequencesy ofumps at site 1 and »
jumps at site 2, the others are explained analogously.

We get the operator:

no1++np2+2
Lo = Z g 2T (AT)"1 22 (n0,1+n0,2> (n1,1+n1,2>
& (no1+---+n2+2)! \ no1,no02 n1,1,7M12

no,1,11,1,12,2>1
n9,2,11,2,12,120

(n21+n22
np1,N22

Aia)2t
_/)\dtl/)»dlé( —MQ&R:LKL)
I’lz’ll

np120

< 3 et ()»It2|)"22Q2) o By ® id,

nz221 n2.2!

o ( S e (A (2 — tl'))"l*1 Ql)

ny1>1 n1.1:

)Rn21®Q205’1®|d20 Q1 ® Ry 0id1 ® Boo Q1 ® R,
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|
0 nio.

)\' th—t ni2 n .
® ( Z e—k(tz—tl)u’]z;z) oid; ® B,
ni22

[¢]

e‘“’lmw@)

|
np,1>1 10,1

® Z e ) (At + T)"O’ZRgo,z
ng,220 no’z!

0 0
_ / A diy / adrp(1— el (1 — eH2) (1 - e * R (1) ® Qs
-T

n

0B1®Idr0 Q1@ Ro(tr — 1) 0id1 ® Bro Q1 @ Ro(t1 + T). (184)

Note that the operator®’ here has higher precedence thati, ‘so, for example,
A1 ® Aso0 A3 ® Ay is understood aéA; ® As) o (A3 ® Ay).

Remark3.12. — In these introductory examples we have seen that our transfer
operators can be represented as a sum of particular transfer opefatgreeach of
whose corresponds to a certain diagrdmand the timeT'. We will call such aC, a
gum configuratior(see Definition 3.16). Thd; correspond to particular sets of sites in
the lattice (The corresponding integral operafrtakes these sites into account) and
the sequenceé .., B,, By) reflects a fixed temporal order. Heuristically, we think of the
vertical (corresponding to the time coordinate) distances betweeB; thg as being not
yet fixed. The (verticalf- andr-strips of the gum configuration are flexible.

Further, eachC¢, 7 can be written as an operator-valued integral where the variable
t of integration is interpreted as time vector and the integrdpdr; corresponds to
a specific gum configuratiofsee Definition 3.19) that can be thought of as the gum
configurationC, whose vertical coordinates are specified/bgndt.

Now we establish in a formal way a diagrammatic representation of operators
A, © ﬁg’A andr,, o L.

For that we need some technical definitions and notation. Some of them are take
from [13]. Note that we also use some standard terminology from elementary grapt
theory here that we assume to be known to the reader.

T e ® [} [ ] [ ] 0,1,1,2)
ti+
0,1,3)
ta1-
0L e ® ® ® ®

(0)

Q1 q2 q3 q4 gs

Fig. 5. Specific gum configuration and its labelled tree.
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DEFINITION 3.13 (cf. [13]). — We define thelistancebetween two vertices; and
v of a connected graph to be the smallest numbesuch that there is a sequence
(wg =v1, w1, ..., w; = vp) Of vertices and for alll < i <[ the verticesw; and w;_1
have a common edge. Two vertices of distance 1 from each other are gaitgtours

A labelled treeis a tree graph whose vertices are labelled in the following way
(see also the rhs of Figb for an examplg The root has label0). If the root hasn
neighbours then these are labelled @ 1), ..., (0, n), respectively. In general, any
vertexv of distancd from the root has a labdl0, s4, ..., s;). If such av hasn neighbours
each of whose has distan¢er 1 from the root then these neighbours are labelled by
©,s1,...,8,D,...,(0,s1,...,s,n), respectively.

We call a vertex of distande> 1 from the root a leaf if it has no neighbour of distance
[ 4+ 1 from the root. All vertices that are not the root or a leaf are call@dnchings

For k > 1, we denote by &-branchinga branching, say of distanckto the root,

that has exactly (k) neighbours of distancke+ 1 to the root, where (k) d=Ef|Bk(0)| and

B, (0) is as defined ir§23). In this case we kalt thedegree of the branching
In the following we consider only labelled trees, each of whose branchings is of

degreek (for somek depending on the particular branchipgrhe number of branchings

of degreek is denoted byng . We collect these numbers in the parameﬂzgrdzef

(l’lﬁ’l, ngo2,.. )

A labelled tree that has exactly vertices of distancé from the root and exactly ;
k-branchings is called #abelled tree with parametefs andng.

(Below and also irf13] a on-to-one-correspondence between tHgranchings of a
configuration and thé-branchings of the corresponding labelled tree is specified. That
explains why we are only interested in labelled trees with those particular branchings.

The(non-reflexivg linear order<, on the set of labels, and so on the set of vertices
(of a labelled tree), is generated by the set of all relations of the f@my, ..., s) <y
(O,Sl,...,sl,i) or (O,Sl,...,sl,i,...) -<V(0,S1,...,S1,j,...) (fori <j)

We say that a linear ordeky, on the set of branchingef a labelled tregis compatible
with the labellingif for any two branchings the following implication holds

labelvy) = (0, 54, ..., s;) andlabekvy) = (0, s1,...,8,i) = Va=<pVi. (185)
Finally, we introduce dinear order< on Z¢:
(k1, ..., kg) < (ku, ..., kg) if ki <k; for the lowest index such thatk; # k;. (186)

DEFINITION 3.14.— Agum treer, with parametersig = (ng1,ng2,...) and A, €
F\ {#} is given by the following data
1. Alabelled treer with parameters:z and|A;| (as defined in Definitiod.13).
2. Alinear order<y on the set of branchings efthat is compatible with the labelling.
3. A mappin from the set of verticeexcept the rogtof r to Z¢ that satisfies the
following conditions
(&) The restriction ofpin to the set of vertices, that are labelled k§, 1), ...,
(0, |A2]) (We denote the restriction gfin to this set bypin,.), is an order-
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preserving bijection onta\», i.e. for any two such verticasandv
labelv) <y labelVv) = pin(v) < pin(V). (187)

(b) If v with labekv) = s = (s1, ..., s,) is a k-branching andpin(v) = ¢ € Z¢
then the restriction opin to the set of vertices with labe(s, 1), ..., (s, v(k))
(We denote the restriction @iin to this set bypin,.) is an order-preserving
bijection ontoBy(q) C Z“.

(c) If labekvy) = (0, i) then there is na-branchingvs such that bothv, <p v3
and pinvz) € B (pin(va)).

Similarly, if labekvy) = (0, s1,...,s,1) is a branching andlabekv;) =
(0, 51, ..., ) then there is n&-branchingvs such that bothv, <p v3 <y va
and pinvs) € B (pin(va)).

Remark3.15. —

1. Note that for each choice @f, C A; and a labelled tree with parameters and
|A2| the map pin is automatically fixed (by the first two conditions on pin in
Definition 3.14). Then it depends on the third condition (on pin) if the given set
A, gum treer and order<y, can be assigned to a (unique) gum configuration.

2. Condition 3(c) on the map pin will be justified in the proof of Proposition 3.23
where we assign to the product of operators a (unique by condition 3(c)) gum
configuration and hence a gum tree. Also note that in Definition 3.20 we wiill
define operators for a given gum configuration so we will use assignments betweel
operators and diagrammatic data in both directions.

DEFINITION 3.16. — A gum configurationC, on A ending in A is given by the
following data

1. A gum treer, with parameters:g and A, such thatA, C A;. The corresponding
tree has branchings/; <p --- <p Vn, say, with branching-degrees;, ..., b,,
respectively.
We denote the gum tree of a gum configuratinby ,(C,), the corresponding
tree byt (C,) and its branching parameter by (C,). So the number of branchings
is In(Co)l € Ti20np4(Co).

2. For eachl < i < n there are maps

u; : By, (pin(vi)) N A — {0, 1}, (188)
d; : By, (pin(vi)) N A — {0, 1} (189)

such that

(@) If g € By, (pin(vi)) N A and j is the smallest number greater tharsuch that
q € By, (pin(v))) (if such a; exists at all) ther/; (q) = u;(g).

(b) Foreveryl<i<n

d; (pin(vj)) = 1. (190)

(¢) If g € By, (pin(vi)) N (A \ Ap) and there is ng/ > i such thalg € B, (¢;) then
di(q;) =0.
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(We will see later that the maps define from a vertex upwards goinhgstrips {f
u; = 0) or r-strips {f u; = 1). Similarly, the mapg; determine downwards going
strips. For a strip between two vertices it should be well-defined if it ig-strip
or an r-strip. Hence we impose conditiga). Condition(b) says that a strip that
goes downwards from a branching must berastrip.)

3. Amaplongfrom A \ U"_; B, (pin(vi)) to {0, 1} such that

long(qg) =0 ifg ¢ A;. (191)

DEFINITION 3.17.—We define in analogy to Definitidn2in [13]

AC) E' By, (pin(vi), (192)
i=1

A C) E g e A\AC,): long(g) =1}, (193)

AC) E'AC,)UA,C,). (194)

We introduce the following notation
e In the situation o2(a) the pointg is the imaggw.r.t. pin) of the verticespin;il(q)
and pin;jl(q). We say that’, has anh-strip (--strip) from pin*(¢) to pin;jl(q) if

d;(¢) =0 (d;(¢) = 1). (We note that we do not distinguish the order of the vertices

in this notation A strip fromv to v is the same as a strip frofnto v.)

e If g € By, (pin(vi)) N A andv = pin;il(q) and there is noj > i such thatg €
By, (pin(vj)) and if di(¢) = 0 (di(q) = 1) we say thaiC, has an/-strip (r-strip)
from v to the bottom

e If g € By, (pin(vi)) N A andv = pin;il(q) and there is no humbef < i such that
q € By, (pin(vj)) and ifu; (q) = 0 (u;(q) = 1) we say that, has am-strip (--strip)
from v to the top

e In the situation o2(b) we call the corresponding-strip anapexr-strip.

o If g € A\ A(C,) andlong(g) = 0 (long(g) = 1) then we say thaf, has along /-
strip (longr-strip) atg. SoA,(C,) C A1 is the set off whereC, has longr-strips.

¢ If C, has anr-strip to the top or a long-strip we say that, reaches the top

We denote bZonfg(A, Ay) the set of all gum configurations ot ending inA;.

DEFINITION 3.18.-Let C, be a gum configuration om ending in A; with
branchingsv; <y ... <p vy Of branching-ordersby, ..., b,, respectively, and leT"
(0, o0]. Then we define

SimplexC,. T) &' { (1. ....t,): =T <t <--- <1, <O} (195)

SimplexC,, T) is an open subset &”" and so carries the induced Lebesgue measure.

For the special caseg(C,) = 0 we defineSimplexC,, T) to be a single point having
measurel.

DEFINITION 3.19. —For C, € Confg(A, A1), T € (0, oo] andt € SimplexC,, T) we
call the triple (C,, T, t) a specific gum configuration.
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Specific gum configurations can be viewed graphicdllye vertices are placed in
74 x [T, 0] and the strips are ‘spanned’ between vertices, the(top —7) and the
bottom(r = 0):

e We assign to each vertexin t(C,) a point inZ? x [T, 0] in the following way.

If vi is a branching of degree,, ¢ € By, (pin(vj)) andv = pin;il(q) thenv has
time-coordinate; . In particular v; has time-coordinate . As furtherpin(v) = g we
assignv to (g, t;).

Let for the following two verticesy and V be assigned tag,t) and (q, 1),
respectively.

e If C, has ani-strip (r-strip) fromv to v we say thatC,, T', t) has amaximalk-strip
(maximalr-"strip) from (g, t) to (¢, 7). We define its length to he— 7.

e If C, has ank-strip (r-strip) from v to the botton(this has time-coordinaté.) we
say that(C,, T, t) has amaximalh-strip (maximalr-strip) from (¢, 1) to (¢, 0). Its
length is|z|.

e If C, has anh-strip (r-strip) from v to the top(this has time-coordinate-7'.) we
say that(C,, T, t) has amaximalh-strip (maximalr-strip) from (¢, ¢) to (¢, —T).
Its length isT — |¢|. (Note that forT = oo this length iscc.)

e If C, has a longh-strip (long r-strip) at ¢ we say thatC,, T, t) has along A-strip
(longr-strip) atg. Its length isT . (LongA-strips(long r-strips) are also considered
as maximal strip3.

If (Cq, T, t) has a maximah-strip (r-strip) from (¢, 1) t0 (g, 7a) andfn, <, <3< 1y
then we say tha(C,, T, t) has anh-strip (r-strip) from (¢, 72) to (g, 73) (or from (g, 73)
to (qv ;2))

For a branchingv; and a ¢ € By, (pin(v;)) we call the maximal-strip (if any)
from (g, 1) to (¢q,t) with t; <t (; > t) a downwards going (upwards going)strip
associated to the branchin@Note that in our pictures the positively oriented time-axis
goes downwardy The notation for-strips is analogous.

(C,, T, 1) must have a downwards goimgstrip at the points(pin(v;), #;) because of
condition2(b). We call it an apex-strip.

An h-strip (r-strip) in (C,, T, 1) goes to the bottom (to the toff)the corresponding
h-strip (r-strip) in C, goes to the bottor(to the top).

We define

&(Cy, T, 1) E'T] (1 — exp(rlength 7)), (196)

H

where the product is over all maximaistrips H that do not end in(A \ Ay) x {0}.

We draw in the specific gum configuration in Fig. 5 thick horizontal lines for
branchings and thin or thick vertical lines farstrips orr-strips, respectively. There
are two branchings of degree 1,(a$, r1) and at(gs, t,). The specific gum configuration
has, for example, a lorgstrip at sitegs, anr-strip from (g, #1) to the top and ah-strip
from (g1, t1) to the bottom.

Note that the vertices in the labelled gum tree (except the root) are assigned to point
in Z4 (in this examplel = 1) by the map pin. For example gin) = ¢».
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DEFINITION 3.20. — We denote by, (¢) the operator as defined in Definitidh?,
acting on thegth coordinate. ForC, € Confg(A, A1) with |ng(C)| > 1 branchings at

V1 <p -+ <p Vp Of degreeby, ..., b,, respectively, we sef d=‘3f—T, tit1 %0 and define
OpG,Co. T.HE & 9 & Ryltia—1), (197)

qgehg(i, C ) qEAR(i,Cg)
Opz(l k) Bpm(vl) k ® idq, (198)

geA\{pin(vi)}
£l EEC,. T.H0P (1, Cy. T, 1) 0 Opy(n. by) 0 - (199)
0 0p (1, Cq, T, 1) 0 Opy(1, b1) 0 Opy(0,C,, T, 1),
and L} % / MO Ll (200)
SimplexC,,T)

where Ag(i, C,) is the set oy € A such that(C,, T,t) has anh-strip from (¢, #;) to
(q,ti+1) and AR (i, C,) is the set of € Z such that(C,, T, t) has anr-strip from(q, ;)
to (qa ti+1)'

If ng(Cy) =0 we simply set

o Q® 0 ® R, (201)
g:longq)=0 g long(g)=1
ch €l (202)
Finally we set
o LE E N oLl (203)

CgeConfyg(A, A1)

Remark3.21. -

1. If H is a maximalh-strip from timey; to time¢; with 1 <i < j <n + 1 then
length(H) = |; — t;| and so the factor & exp(—A[f; —¢;|) does not depend ofi.
However, inthe case=0, i.e.t; = —T, the factor 1- exp(—A(T — [¢;])) depends
onT.ForT = oo this is equal to 1.

2. From (196), (197), (198) and (199) we see that the mapm,, o L‘(ng’t, defined
on SimplexC,, T), is uniformly continuous (because all factors are uniformly
continuous w.r.tt), hence integrable i < oco. We will see in the next proposition
that the integral also exists in the case= co. So (200) is well-defined.

3. We see that ifC,, oo, t) has anr-strip going to the top theﬁg‘fqyt =0.

For the following proposition recall that the paramete@ndc, were introduced in
(151) and (156), respectively. The coupling of the interaction between different sites is
‘small’ if ¢ is ‘small’ and a ‘large’c, means ‘strong’ exponential decay of the interaction
(w.r.t. spatial distance).
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PROPOSITION 3.22. — There are constant® < ¢ < ¢ < 1 and ac, > 0 such that for
sufficiently smalk > O, largec,, all T >0, A1 C A € F\ {#} and¢ € Hy

3 A1 Ing(Ce)l T
s > A dt [|7ma, 0 L&, Pl < callplls- (204)
CgeConfe (A, A1) SimplexC,,T)

For sufficiently largeT" this also holds for suitably choseéh= .

Proof. —First we estimate for eaci, € Confg(A, A1) andt € SimplexC,, T) the
norm ||y, o [,(ng’tquHAl. For that we follow the proof of (57) and (58) in [13]. The
operatorL,, R, (t;+1—t;) andB, x in the representation (199) of the operataro E(T;g’t
as well as the projection operataty, can be represented by integral operators (see
comment after (163) and cf. [13].) Note that by (16R),(t;+1 — ;) is the sum of integral
operators.

Using the integral representation of the functiog o cgg,tm € H,, we proceed as
follows:

1. We perform the integration corresponding to all maximatrips of the specific
gum configuration(C,, T, 1). In the estimate (205) an-strip R gives rise to a
factorc, exp(—(1 — n)Alength(R)) (see (170).)

2. For each maximak-strip that does not end igA \ A;) x {0} we perform the
integration(1 — exp(Alength(H)))h, - 1, (i.e. integration w.r.t. they-coordinate
and multiplication by a scalar factor of,.) That leads to a factor,(1 —
exp(Alength(H))) (see (153).)

3. For all maximala-strips ending in(A \ A1) x {0} we perform the integration
corresponding to the projection,, which leads to a factor 1 in the estimate.

4. For each operatoB, ; we estimate the contribution of its integral kernel from
above byéze exp(—c k?). That estimate is derived from (156) in the same way as
(55) in [13] is proved. In particular, the constdtis a product of the constant
in (156) and constants depending on the geometry of the annulus defined in (133
and with parametet as fixed inAssumption.

5. The integral operatofr,, o E(ng’t acts on the functiorp, € H,. However, we
only have to estimate the norm @y, as ¢, is simply integrated w.r.t. the
(A \ A(Cy))-coordinates, i.e. at least w.r.t. these, possibly also w.r.t. others. To see
that, note that the application of the projection operatgror Q, mean integration
w.r.t. the(A \ A1)- or theg-coordinates, respectively.

By 7, we denote the number of maximatstrips that have spatial coordinate in
A(Cy) U Ay (for the otherh-strips there is simply an integration to do, giving rise to
a factor 1 in the estimates) and by the number of maximal-strips.

Then we get the estimates

o
770y © L8, Pall 5, < (c38)"! exp( —cg ) kd”ﬁk) ci'el
k=1

x [ [ exp(—(1 — malength(R))é(Cy. T, Hllpaccyllacy.  (205)
R
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where the product is over all maximaistripsR of (C,, T, t) andc(C,, T, 1) is as defined
in (196), and

Ay 3k
Iacyllacy <O 2@ g,

<o H 9=k . (206)
k=1
Now we consider a labelled tree with parametersiz; and K, a setA, C A; with
|Az| = K and the sefA(z, Ay) of all C, € Conf,(A, A1) whose labelled tree is and
whose gum tree has parametes. Note that there can be different linear orders on the
branchings ofr. We want to estimate

<A \nﬁ(C )] T
oty At |[ay o Lo, 1all (207)
Ce€A(T.A2) SimplexC,.T)

and consider this expression as integral over the union of all sets Si@ipléX.

We change the variables of integration: Let the branchingsdginote by, ..., Vj,).
A given C,; € A(t, Ap) has an ordered set of branchings <p - -+ <p Vjn,, SO that
Vi = Vi), Wherej is a permutation on the set of indices.

Further, for giver” > 0 andt € SimplexC,, T) the time-coordinatg corresponds to
the branching; whereas we denote by, ..., 7, the lengths of the apex-strips that
correspond to the branching, ..., Vj,,|, respectively. In particular, the are bounded
byT.

For eacht = (t1,..., 1, € cheA(,) SimplexC,, T) there is a uniqué = (7, .. .,
fns))- The images of the different simplices Simpl€x 7') w.r.t. this map are disjoint

subsets ofl0, T']". Further, the change of variables frommo t is linear and has a
determinant of modulus 1. We see that by doing the transformation in several steps
7;1 is given by a linear equation

lTj(]_) = Linl(tz, ) — 1 (208)

andz; ) by
fj(z)=Lin2(fj(1),t3,...,tn) — I (209)

etc. and the statement about the determinant follows. So we can estimate in (207) tt
term X e, car.az Jsimplexc,.r) At~ BY * Jig 7ymacon di..." and so in the estimate of (204)

we replace ¢, [simpiexc,.r) At - ’by > rae Jjoryne di. ..’ where the sum is over all
A> C Aq and labelled trees W|th parameter$A2| andn 8-

Next we want to estimate in the last sum the contribution corresponding to all labelled
trees with parametek (and arbitraryng): For a fixed O< K < |A4] there are exactly
("4) subsetsA, C Aq with |A,| = K. By Lemma 8.2.(2) of [13], for fixed\, andn
with |ng| > |A2|, the number of labelled trees with paramet&p| andng is bounded
from above by 82/ T[22, (exp(é k?))"#+, whereé, is a constant depending only on the
dimensiond of the lattice.
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Now we consider a given a sab, a labelled tree and a choice of. There is at most
one gum treer,, having treer, such that a specified gum configuration with parameter
A and gum tree, exists and the are the lengths of apexchains. (Then the order on
the branches is determined by the

If such a gum tree exists then the (specific) gum configuration is uniquely defined by
the choice of up- and downwards goihgandr-strips and long:- andr-strips.

For each choice of ah-strip or r-strip we get a factor;, (1 — exp(Alength(H))) or
¢, exp(—(1 — n)Arlength(R)), respectively, as mentioned at the beginning of this proof.
So for each branching we can estimate the contribution of constant fagtarglc, of
all possible choices from above by a factor @xpk?). This factor will be compensated
for by the factor exp—c,k?) that, as mentioned at the beginning of the proof, from the
estimate for the operatds, , corresponding to the branching. For that the constant
has to be sufficiently large.

There are not more tham ;| — |A,| sites for which we can choose between lding
strips and long--strips. A longr-strip gives rise to a factaf, exp(—(1 — n)AT), and a
long h-strip to a factor at most,.

Gum configurationg’, without branchings (i.enz(C,) = 0) can only have long r-
chains (that must end in;) or long h-chains. This case corresponds to the summand for
K =0in (211).

We remark that the sund™2 " in (211) also includes the estimate for this special
caseK = 0. Then the gum configurations have no branchings ang;se 0. The sum
‘>0 o should then be replaced by a factor 1 (to avoid confusion). However, this sum is
at least 1 and so the estimate is correct.

We estimate the left-hand side (lhs) of (204):

glal 3 W Cldt |[ma, 0 £F, (@all (210)

CgeConfyg(A, A1) SimplexC,.T)

[A1]

<y (VI‘;'> (e + 9 te, exp(—(L — maT)) "7 4K (211)
K=0
x Y (s/\ 3 exp(—ck?) exp((Eq + c12)k?) K9~k
n=K k=1
T n
X / dre, exp(—(1— n))»T)> ol
0

. l§ . [A1]
<en (M + e exp(~A—mAT) + m) Il

with lim,_,ge1 = 0. So there are & ¢ < ¥ such that for sufficiently sma

- 02 ~
Yo + 56 exp(—(1—nT) +de1 <1 (212)
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and so (204) holds uniformly in; andA. For sufficiently largel’ we can choosé = o
such that (212) holds. So (204) is proveda

PROPOSITION 3.23. - L{ , N L{ , is the transfer operator, restricted t 4,

o
for Kg i€

/ dM(KsT,A‘//A)¢A = / du ¥ra (ﬁg,A@\)- (213)
(sha (sha
For all v € CO((S1H*) and ¢, € H, the operatorr,, o LY , is the composite of 5,
andL{ , forany Ay C A.

Proof. —The first claim is a special case of the last statement. Noterthat L} , is a
priori the operator defined in (203). Now we prove that it is actually the compositg, of
and the transfer operator, restrictediq, for K ST A- The convergence of the following
expressions follows from Proposition 3.22.

We consider all ordered finite sequences of jump-sited.ilA particular sequence
(g1, ...,qy) occurs in a fixed time interva(—7,0) with probability €|A|”“NL?N
because this is the probability of having exadtljumps in total, divided by the number
|A|VN of different sequences of length(which have all the same probability).

The sequence corresponds to a mSgpo - - - o Sy, (cf. Definition 3.6) and so by (166),
to a transfer operator

nAlo,CSqN 0"‘°['Sql- (214)

So the composite of,, and the transfer operator féf{ , is equal to the following sum
over all (possibly empty) sequences:

Ciapr DY
Z e ‘AMTTT[A:LO[,S{]N O--'Oﬁsql (215)

because this is equal to the rhs of (147). The probability sgace partitioned into
countably many sets, each corresponding to a particular sequence of jump sites. So v
can write the integral here as a weighted sum.

The factors in (214) can be split

Ls, = <Qq +R,+ ZBqJ> ® ida\(g)- (216)

=1

Expanding the product in (214), we get a sum of operators. Recall the rules (155) ant
(164), and also that we have, wifly, denoting the integration w.r.t. the normalized
Lebesgue measuye?’ (as defined in (134)),

pg o Ry =0, (217)

Mg o By =0,

forallg e A andl > 1 (asQ, = h, - uy). SO some of the summands in the expansion
are zero, namely ifQ, is followed by R,, or R, or B, are followed byQ, or a
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projectionm,, with ¢ ¢ A1. ‘Following’ here means that there is in between By,
with ||g — ¢ || <. In the following we rule out these combinations. (Compare this to the
notion of non-zero configurations in [13].)

Now we represent each summand

JTAloANO--'OAl (218)

in the expansion of (214) which is the composite of operategs, B, ® ida\,
R, ®ida\g andQ, @ id 4y With variableg € A, by a gum configuration as follows:

We define the obvious order of the factors in (218) such shatomes befored, etc.

EachB, ; corresponds to &branching (which is assigned by the map pirj)aand the
order of the operator8, ; defines the linear order of the branchings. The other factors
Q, andR, determine thé:- andr-strips in the following way:

1. Strips between two verticeket v; <p v; be two branchings of degrée andb;,
respectively, ang € By, (pin(v;)) N By, (pin(v;)) N A such that there is no other
branchingvy, of degreeb,, say, withv; <, vy < Vv; andg € By, (pin(vy)). Then
C, has an-strip between pif)'(¢) and pir\l;l(q) if there is a factorQ, ® id )
in (218) between the two factors correspondingtandyv;. OtherwiseC, has an
r-strip there (even if there is no fact®, ® ida\;-)

2. Strips from a vertex and the topet v; be ab;-branching and; € By, (pin(v;)).
Assume there is né;-branchingv; with v; <y v; andg € B, (pin(v;)). ThenC,
has ani-strip from pinjjl(q) to the top if there is a facto@, ® id () in (218)
before the factor correspondinge. OtherwiseC, has anr-strip there.

3. Strips from a vertex and the bottofret v; be ab;-branching and € B, (pin(v;)).
Assume there is nb;-branchingv; with v; <, v; andg € By, (pin(v;)). ThenC,
has ar:-strip from pin,*(¢) to the bottom if there is a fact@®, ®id,\ ) in (218)
after the factor corresponding tg or if g € A \ A1. OtherwiseC, has arnv-strip
there.

4. Long strips: Let ¢ € A and assume that there is mp-branchingv; with ¢ €
By, (pin(v;)). ThenC, has a long:-strip at siteg if there is a factoiQ, ® ida ) I
(218) orifg € A \ A1. OtherwiseC, has a long -strip there.

The assignment of a summand in the sequence (218) of operators to a gum configuratic
is not injective, as we have already seen in the simple Example 3.8. Now we consider
fixed gum configuratioi@, on A ending inA 1 and all sequences corresponding to it. We
assumé, to have at least one branching. The case of no branching is treated in a simila
but easier way. To keep the notation simpler,Aet= {1, ..., |A[}. Any such sequence
has the factor®,, ;, (i =1, ..., K) that correspond % 1 and order preserving to the
branchings of’, as described above. Between two consecutive fagrsand,,, , ..,

there can be factor®, ® id\ (factorsR, ®ida.\ () if for any t € SimplexC,, T') the
specific gum configuratiolC,, T, t) has arm-strip (anr-strip) from(q, ;) to (g, t;1).
Similarly, the option of having such factors befdsg, ;, or after3,, ;. depends on the
h-strips andr-strips ofC, in the obvious way. Further, such factors belong to particular
maximalr-strips ork-strips in the obvous way.

Let us denote the number of factads ® id,\ (4 Or Ry ® id A\, beforeB,, ;, by ng,

and the number of such factors aftgy, ;, by n; ,.
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Note that for every maximal-strip, at siteg,say, that does not go to the bottom at a
site inA \ A1, there must be at least one fact@y ® id,(,; because of rules 1, 3 and 4
on p. 47. We denote this condition on the fantity ;) o<i<x 0f numbers bycondition A

geN

In total there are

K
N=>>ni,+K (219)
geA i=0
factors that correspond to a particular sequenc&/ giimp sites and such a sequence
occurs with probability e'A'”%. The ", ., no, factors before3,, ;, can occur in
any of the(”ﬁé::;ﬁj}'\?') different orders, that all have the same probability.
So if we sum over all (products of) operators that correspordyj toveighted with the
probability that the corresponding sequence of jumps (in the underlying Poisson proces:
occurs, we get

Z e AT TN <n0,1+ . +no,A> (”K,1+ e +HK,A> (220)
(e N! no,1, ---,710,A| NK 1, ---s 0K A
condiiiqonA

nK.1 K.,njp| . .
X AL ® - ® Ak x| 0 By ®idayigr) 00 By ® iday gy

o Aot ® - ® Aga|
AM—tg))EL
_ ¥ ./ AKm<€Mﬁm££_£D__Aéf>®.”

I’lK’]_!
ig)  SimplexC,.T)

condition A
iy A=) . .
® (e o ng |a)! AKI]K\; © Byy.ix ®1daygg) 0+ 0 Byyiy @ idayiqy)
s A T, e G T,
Mf1+T)(1— 0.1 Mn+T) 0,[Al
° (e no 1! AOVl) ® ® (e no \A\! A0’|A|>
A(—tg))" k1,
— / 5K dtH(l _ e—klengtf(H)) ( Z e‘“"K)( (n K)') AKff) o
SimplexC,,T) H ng 120 K1
A(—tg))"KIal
® ( Z e—)»(—tl()( ( K))' AKlfllj\\ll)
nK,|A|2O nK,lAl'

. . (14T ()‘(tl+ T))”Ql no,1
0 Byy.ix ®1dayigx) 0+ 0 By iy ®idayggy) 0 Z g no,1! Ao

no,120
Aty + T))"olar
R ---® ( e—)»(tl-i-T)((ln—)')Aof).I(\)
nO,\A\>O 0,\A\-
=L, (221)

In (220) each operatot, , stands for eithe@, or R,.
We have interchanged summation with integration and multiplication and applied the
following computations to each set of factors belonging to the same makistelp that



T. FISCHER/ Ann. |. H. Poincaré — PR 37 (2001) 421-479 469

does not end ifA \ A1) x {0}. For notational simplicity, let the maximatstrip under
consideration cover the time intervals, 1), ..., (t;_1, ;). So its length ig; — #5. And
let the operator®),, have exponentsy, ..., n;:

) n
5 H<e—x(z,'—t1_1) u Qq) (222)

ng,...,n; 20 i=1 i

no+...+n; =1
l o0 n; l
= H ( Z @ Ali—ti-1) (. _nt:_l)) Qq) _ H @ Ali—ti-1) Qq
i=1 \ n;=0 L =
=(1—e? )0, (223)

This explains the appearance of the factor (196) in (221). Recall that each opgrator
in (221) stands for eithe@, or R,. So we can replace

At —ti_)™ ni
3 e—x<t,-—tf,1>((n—'l))q -9, (224)
n,-4q20 Lq-

Mt —ti_ i n;,
T ghiy “’1—‘1)) RI — R (1 — 1) (225)
niq =0 bq-

and get (221).
So we have seen that (215) is equalriq o LQA, as defined in (203). O

For the representation of the transfer operator for the infinite dimensional system we
need the following definition.

DEFINITION 3.24.-LetA;, A, C A € F\ {#} andC, € Confg(A, Ay). We say that
C, liesin Ay if A(C,) U A1 € Ay. (Recall thatA(C,) was deflned |r(194) ) Let both

C, € Confg(A, Ay) andC € Confg(A Ay liein ANA.If further C, andC have the
same gum tree with the same linear order and if they have the sfﬂmps then we say
thatC, is equivalento C,. Then we have defined an equivalence relation and further, for
C, equivalent taC,, we have

SimplexC,, T) = SimplexC,, T) forall T € (0, o], (226)
A, © ﬁgg,t OTTA =TTp, O ﬁg OT% for all t € SimplexC,, T)  (227)
g

and JrAloL'ggonA:nAloﬁéTv omy. (228)
8

(227) and (228) say that the operators inL(H,,H,,) are the same. We define
by Confg(Zd, A1) the set of equivalence classes. Becaus€2@6) and (227) the
simplices and operators for each equivalent class can be defined as being equal to th
corresponding object for any representative.

We will write 75, o £ , instead ofma, o Lf o wa and s, o £{, instead of

Ay © Egg o, for the operators front, to H,, .
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THEOREM 3.25. —
1. There are0 < ¥ < ¥ < 1 such that for sufficiently small, large ¢, and every
T € [0, co] we can define an operatd? fromH, to H; by

a0 L = Y. waoLld. (229)

CyeConfy (Z4, A1)

There is alp > 0 such that forT > Ty the operatorC{ mapsH, into H,.
L‘,§ is the transfer operator, restricted ®%", for the kerneIKST, i.e.

[ dukip)o= [ duw(cio) (230)
M M

for all ¢ € CO(M) and¢ € HEY.
2. The family(LL)7>0 in L(Hy) converges exponentially fast £3°:

1£5 — ﬁgHL(H’?’Hé) < cse " (231)

for some positive constants, cg. For sufficiently largeT estimate(231) holds
also in the norm of.(Hy). So among the probability measures corresponding to
elements irH; there is a uniquek ! -invariant probability measure* on M, say
corresponding ta € Hy. The operatorCy° is a projection ontespary:

L3¢ = n(@). (232)

Proof. —The infinite sum on the rhs of (229) converges as the prove of estimate (204)
applies literally to the casa = Z?. Next we want to show that,, o £% is the limit
of mp, o z,gA (as A — Z%). The difference between these two operators is due to
configurationsC, in Confg(A, Ay) or in Conb(Zd, A1) with A(C,) ¢ A. For these
we can split in estimate (205) the factor that arises from the decay of interaction in the
following way (which is the same as the splitting (110) in [13]).

exp( —c denﬁ’k) < exp( — &, den/gyk> exp(—£dist(Ag, AS))  (233)

k=1 k=1

with a suitably choseg > 0 such that, = c, — & > 0. (Note that we can choogeso
small that the estimates, formerly done withwork with ¢, instead as well.) So we can
estimate

1M a0 £5 4 = a3 © L[|y 140,

< 2 Z 1§|Al‘||nA1oﬁggHL(Hz%HAl)

CoeConf(Z4, Ay),
ACgIZA

< crexp(—£dist(Ag, A€)). (234)

Next we show (230) for the special case thjatdepends only on theé ;-coordinates,
using (213):
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[du@(kIv) @@= lim [ du® @) (KL, 0) @aon(zn)
M M

= Ali_r)gd du’ (zy) ‘//(ZA)(ﬁg,A¢A)(ZA)
(sHa

= All_l;];d dMAl(ZA) 1pl(ZAl) (jTAl © E?‘bl\) (ZAl)
(shh1

- [@v@(Lip)@. (235)
M

We conclude (230) for generat € CO(M) by approximating it byy,, (cf. (141)),
depending only on the\;-coordinates and using continuity w.nf. of both sides of
(230). So 1. is proved.

Next we show (231). We note that far; = ¢ the lhs (236) in the following estimate
is equal to zero as both transfer operators preserve the Lebesgue integga (left
eigenvector’ with eigenvalue 1.) So we only have to consider the |eage> 1.

Pl |7ma, 0 LS —7p, 0 £§||L(H19,HA1) (236)
g 5\/\1‘ Z H]'[Aloﬁzz _ﬂAloEggHL(Hﬂ,HAl)
CyeConf(Z4, A1)
< ol 1Qa0ma, — (1— e_”)lAl‘ Qa0 jTAlHL(Hﬂ’HAl) (237)
+ oAl > leas 0 £, oty 10y (239

CyeConig(z4, A1),
C,reaches the top
+ Flaal Z A Col
CyeConfg(Z, Ay), SimplexC,, £)
cgdoes not

reach the top
Ing(Ce)1 21

X ||, 0 LE = Ta0 ﬁgg,tHL(Hﬁ,HAl) (239)

4§l 3 / Al €l dt
CeeConig(Z?. A1),  SimplexC,.o0)
Cgdoes not reach the 0P, SimplexC,, £)
Ing(Co)l>1 Pete

X H7TA1 ° Egz,t”L(Ho,HAl) (240)

1+ plal S / A€ol gt

CgeConig(Z?, A1), SimplexC,.T)
C,does not reach the toRsimplexc,. 8
Inp(Cy)1 21

X ||7ay 0 'ng,tHL(H,,,HAl)' (241)
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We have distinguished between the following classes of gum configurations. The
first summand (237) corresponds to the operat@[ o ng — TTp, © Eég where C,
is the gum configuration that has only lohgstrips (no branchings ar-strips). The
second summand (238) takes @ll into account that reach the top. So all specified
configurations(C,, 7, t) have anr-strip ending at time-T7. All (C,, oco,t) have an
infinitely long r-strip and so the corresponding operator is zero (cf. Remark 3.21.3) and
does not appear in (238). The last three summands, (239), (240) and (241), correspot
to C, that do not reach the top and do not consist onlg-strips. That implies that it has
at least one branching and the corresponding domains of integration, Sigplex)
and SimplexC,, T'), are not degenerated to a point. We divide them into Sim{ﬁj’,e%)
and the particular complements. The reason for this will become clear when we do the
estimates. In (239) we integrate the norm of the operator differepce L —ma, o,cgg
over SimplexC,, £) and in (240) and (241) we integrate the norms of the two operators
separately over the particular complement sets.

Now we estimate each summand: The first summand (237) is estimated by

[Aq]
5\A1|CLA1|(1_ (1- e_xr)lAl\) < Bep™ kzz:l (“}cll) (e—AT)k

<(Ber(1+e 7)) Me T <ot (242)

where the last inequality holds i is chosen sufficiently small.

For estimating the last summand (241) we note that tfer SimplexC,, T') \
SimplexC,, ) the sum of the lengths of all-strips of (C,, T, 1) is at least. (This
is becauseC,, T,t) has a branching, say at timewith |¢;| > % and there must be
a sequence of apexstrips whose lengths add up to at Ie%s) So if we split in the
estimate (170) for each maximaichain, of lengthr say, the rhs

1 1y
IR < e, 01 = ¢, e e 7 (243)

we can extract the second factor (a*é;—”kt). Their product is bounded from
above by exp—l;z”kg). We assume that the coupling parameterésmall) andc,
(large) are such that our analysis still holds with the (in the sum) remaining factors
exp(—%klengtr(R)) for each maximat-chainR.

We get

5141l 3 / A€l gt ||y,

CgeConig(Z?, A1),  SimplexC,.T)
C,does not reach the 1ORSimplexc,. L)
Inp(Co)l>1 ’
1-9nT
< Cg eXp(—)»TnE> . (244)

Similarly, we can estimate the second (238) and the fourth (240) summand:

° EggytHL(Hﬁ,HAl)

~ 1_
Y ol gy <o 25 0T). @9

CgeConfy(Z4, A1),
Cgreaches the top
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5l Z / k'””(cl*)‘dtH7TA1°['ZZ,t||L(H

CgeConfy(Z4, A1) SimplexC,,00)
\SimplexC,, )

9. Haq)

2 2

We estimate the third summand (239) we use Lemma 3.26 (see below). For that w
note that forC, € Confg(Zd A1) andt € SimplexC,, T) the operatorsr,, o Lig"t

and 7, o £{ , can both be written as a product of numbgts— e~'*"9"*)) and
operatorsQ, ®ida, 4, corresponding to maximak-strips,R, ® id,\ (4}, corresponding
to maximalr-strips, and3, ® id,, (4}, corresponding to branchlngs They have the same
structure in the sense that these factors are-fi-torrespondence and the quantitative
difference is only due ta-strips going to the top or long-strips inA; as we can see
from representation (199) fofz’ ; and LC + and also from Remark 3.21.1. So they
differ only in the constant&(cg, oo, 1) and ¢(C,, T, 1). More precisely, arh-strip in

C, that goes to the top and therefore corresponds té-atrip in (C,, 7', 1), say from
(q, t;)to (g, —T), and so gives rise to a factorlexp(—A(T — |t;])) (note thatr;| < %)
whilst the corresponding-strip in (C,, oo, t) ends at time—oo and gives rise to a
factor 1. Similarly a longi-strip of C, in A, gives rise to factors + exp(—AT) and

1, respectively. In both cases the difference between the scalar factors (for-eagh

to the top) is bounded by

<o exp(—ﬂx T) (246)

8% = exp(— % T) . (247)

The number of:-strips to the top is bounded By, 37ng k¢ and the number of long
h-strips at sites im\1 by |A1| — K (Whereng , andK are the parameters of the labelled
tree ofC,.)

So we estimate

<A ;
9! llH”Al °© ng,t‘»b —TTA 0 ['cg,t¢||A1

o0 o0
<8 JJ@+ )37k (14 8)/ M=K (cge) s eXp( —ce ) kdnm) a'e)”

k=1 k=1
x [T exp(— (1 — milength(R))&(Cy. T. Dl baccy) laccy)- (248)
R

The factor(1 + )34 and the factor ~@"1x that we get from the estimate (206)
of ll¢accyllac, are compensated for by expc k?ngy) ‘in the usual way'. Ife is
sufficiently small and, large we can estimate

5 1Al Ing(Co)l o T
02 Z / LZACEUNG ||7'[Al o ﬁcg,t A, © ﬁcgstHL(Hﬁ,HAl)
CgeConfy(Z4, A1), SimplexCy. 5)
Cgdoes not reach the top
Inp(Ce)121

<cppe il (249)
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From (242), (245), (249), (246), and (244) we conclude (231) w4tk 1%4’% andcs
sufficiently large.
For any¢ € H, and anyA € F we have

7TA0£§~O¢: Z JTAO,C2§¢
CgeConfy(z4, A),
C,does not reach the top

= > (a0 LERza).11(9). (250)
CgeConfg(z4, A),
C,does not reach the top

The sum in (250) is a priori over afl, € Conf,(Z, A) but, as we have seen before,
if C, reaches the top the corresponding operatpe L3 is zero. IfC, does not reach
the top there are onlg-strips going to the top{oo) andm, o L‘gj is a projection onto
sparthyq).

We setv, d:efer o L& hz« and this defines = (v5) Ac 7. Note that the transfer operator

LY preserves the Lepbesgue integral andyge= 1, i.e. v corresponds to a probability
measure. O

In the proof of Theorem 3.25 we have used the following lemma.

LEMMA 3.26.—LetAq,...,A,, A, ..., A, be operators on the same Banach space,
0<d <landay,...,a, positive numbers such that:

Al <a; forall 1<i<n (251)
and ||A; — A; || < 8%;. (252)
Then
|A1o---0A, —Ajo---0A,| <SA+8)"ay----- ay. (253)
Proof. —From (252) we get
1A < (14 6%)a;. (254)

So we get via ‘telescope expansion’:
|Ajo---0A, —Ajo---0A,|
<||Ajo---0A, —Aj0Az0---0 Ayl + -
+||Alo---oAn_1oAn—Alo---oAnH
<A+ (A+8) 4+ +(1+8)" Nag- - a,
=((1+8)" - Dag----- n

<8A+8"ay----- a, (255)
and the lemma is proved.O
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Remark 3.27. — Analogously to Proposition 6.1.3 in [13], one can also prove a
semigroup-like property of the familfC’), o, using Remark 2.17 and the diagrammatic
representation of the operators.

4. Decay of correlations

In the following theorem which is completely analogous to Theorem 7.1 in [13],
we state the mixing properties for the invariant probability meastine terms of the
weighted norms.

THEOREM 4.1. — For sufficiently smally, ¢, ¢ and bigc, there is ax € (0, 1) and
positive constants;», c13, c14 and c15 such that for all finite disjointA1, A, C Z¢ and
¥ € Ha, the following holds

||VA1UA2 - VA1VA2||A1UA2 < 0129_‘A1UA2‘KdiSt(Al’A2), (256)

177, (Y1) — V¥ (Y vy lla; < 130 A2 | i BSATAD) (257)

|78y 0 LE @) = v* (Y)va, ||, < crad MBI [y | A4 (258)
X exp(—c1sT)

for everyT > 0.

Proof. —For a gum configuratio@, we define in analogy to (109) in [13]

def

b(Cy) =D kngi(Cy). (259)

k=1

In the following we split gum configurations, € Conf(Z4, A1 U Ay) with b(C,) <
3dist(A1, Ap) into C, = Cf U C2 with C! € Conf(Z, A1), C2 € Conf(Z?, Az) and
ACHNACH=0.

We write, using (232) and the notation of (158):

T T
VAuA2 = Z (a0 £C§hzd) (a0 'Cc;hzd)
Cy=CIUCZeConfy(Z?, A1UA2),
b(Ce)< Sdist(A1, A)

T
+ > Taun, © L hza. (260)
CyeConig(Z4,A1UAy),
b(Cg)>3dist(A1, A7)

In estimating the norm of the second summand in (260) we can take out from the estimat
for ||y, o ﬁgzhzd | a factor

exp(—é%dist(Al, Az)> = distAnA2) (261)
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like in (233) such that we get

> TTA1UA © ﬁgghzd < cgpp MRl dStAL A2, (262)

Ce ECOH@(Z‘I,Alqu),
b(Cy)>1dist(A1,A)

We write the first summand in (260) as

Z (Tl’Al o ﬁgghzd) (7TA2 o ﬁgghzd) (263)
Cy=CluC2eConfy(Z4, A1UAY). ‘ ‘
b(Cq)< 3dist(A1,A2)

= VAVA, — Z (7TA1 O[,g;hzd)(ﬂl\z O[,gghzd)
CiConfy(Z4, A1),
C2eConig(Z4, Az),
b(CH+b(C?)> 3dist(A1. A7)

and estimate

H Z (7TA1 o ﬁa}hZ‘i) (T[AZ o ﬁgghzd) < 6170|A1UA2|KC|ISTKA17A2).

CiConfy(z?, A1),
CZeConfy(Z4, Az),
b(CH+b(C?)>3dist(A1. A7)

(264)
From (262), (263) and (264) we conclude (256). The proof of (257), using (256), is the
same as in [13].
To prove (258) we sep = v — v(¥)v. SO

a0 L =1a; 0 Lg(Yv) —v()va, (265)
and in particular
L2 =0, (266)
We estimate (265), analogously to (129) in [13], using the finer estimate
lbaccyllae) < cagd ™02 [ 071 O 2ica @ s AUALAD DL v (267)

that we get from (257). For each we get a ‘good’ factok 9istA1.42) that we can take

out of the sum (over gum configurations), and a ‘bad’ fagtor—c1*"#+  The latter is
compensated for in the usual way by the factor(exq "2, k%ng 1), provided that,
is sufficiently large.

Using (266) and (267), we get with the same argument as for the proof of (231):

D7, 0 L7 < 180 122! | | BISUALAD axry e T (268)

and (258) follows. O

For our last theorem we need some definitions.
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DEFINITION 4.2.— Every t = (14,...,1;) € Z¢ defines a shift on lattic&? by
(1, ...,00) + (T1,....T4) = (@1 + T1, ..., a4 + 74), and soa shift on (SHZ* by
(T(X))e ¥ x, .0 for x e (SHZ'. The sizen(r) of the shiftz is m(t) & 1| + ... + |zl

We further defina shift on functionsy € C((SHZ’) by (¥ o 7)(X) ' (7 (x)).

The family of mapgf,) ez, introduced in(149) is called translation-invariantf
these maps are all the same, ifg.= f for somef and allg € Z“.

The family (g;)4eze, introduced in (151) is called translation-invariant if
8,1(1(2) = g,_-x(2) for all ¢, v € Z4 andz e ((SHZ").

If (f;),eze @and also the familiegg, ),z are translation-invariant then we say that
the systemis translation-invariant

Remark4.3. —In case of a translation-invariant system we also have translation-
invariance of the action of Markov-kernels on functions! (v o t) = (KX (y)) o

for all v € C((SHZ") andt € Z¢.

We can state the mixing properties of w.r.t. spatio-temporal shifts in terms of
correlation functions for observables, v, € C°(M) like in Theorem 2.2 of [13] and,
using Theorem 4.1, prove them in exactly the same way.

THEOREM 4.4. —For sufficiently small?, ¢ and largec, there is ax € (0, 1) such

that for all nonemptyA, A, € F the following holds with the constanfA, Az, k) def

k~maxlip=gl:perr,a€A2) and some positive constants, coo:
1. If ¥ € C((SH21) andy, € C((SHA2) then

’ M/ A Yas — ( M/ dv*wl) ( M/ dv*w2>

< 199 TR [ || 1 | ok BSTALAD), (269)

2. If Yy € C((SHA1) and v, € H N C((SH™2) then

‘/dv*KST(l/MOT)W_ (/dv*¢10r> (/dv*xl&)
M M M

< c(A1, Az, K)o 2 [y oo W2l a k™ eXP(—co1T).  (270)

3. If the system is translation-invariant angh, v, € C(M) then

olim / A KT (Y 0 0y = ( / dv*wl) ( / dv*wz). 0 (271)
M M M
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