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ABSTRACT. — We consider a ferromagnetic spin system with unbounded spin spaces on the
d-dimensional integer latticel(> 1). We prove the equivalence of the log-Sobolev inequality,
Poincaré inequality, and the exponential decay of the spin—spin correlation, which was originally
obtained by D.W. Stroock and B. Zegarlinski [23,24] in the compact spin space settif1
Editions scientifiques et médicales Elsevier SAS

RESUME. — Nous considérons un systeme de spins ferromagnétique avec un espace de spi
non-borné, sur le réseatf (d > 1). Nous montrons I'équivalence entre I'inégalité Sobolev
logarithmique, I'inégalité de Poincaré et la décroissance exponentielle de la corrélation spin-
spin, qui fut montrée initialement par D.W. Stroock and B. Zegarlinski [23,24] dans le cas d’'un
espace de spins compact2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

For lattice spin systems with the compact spin space, remarkable progresses have be
made to understand the relation between the mixing properties of the Gibbs states and tl
speed at which the associated Glauber dynamics relaxes to equilibrium. In particular, th
results obtained by D.W. Stroock and B. Zegarlinski [23,24] are very impressive. They
state that a mixing property (the Dobrushin—Shlosman mixing condition) and the rapid
relaxation property of the Glauber dynamics are, if properly defined, not only related
to each other but in fact equivalent (see also works of F. Martinelli and E. Olivieri [20,
21]). The Dobrushin—Shlosman mixing condition referred to above is known to be true
for example when the underlying lattice is one dimensional, or when the interaction
potential is weak enough.

In this article, we consider a ferromagnetic lattice spin system with unbounded spin
space. We prove in Theorem 2.1 below that the mixing conditions for the finite volume
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Gibbs states as follows are equivalent (each statement being understood to be unifor
in the volume and the boundary condition); (i): the uniform log-Sobolev inequality
holds, (ii): the uniform Poincaré inequality holds, (iii): the spin—spin correlation decays
exponentially. This equivalence can be seen as an extension of the results in [23,24].
We begin by introducing the standard setup of the model.
The lattice We will work on thed-dimensional integer latticB? = {x = (x')%_;: x' €
Z} on which we consider the,-metric; d(x1, x2) = MaX<i<a |x) — X5| (x1, x2 € Z9).
ForasetA Cc Z4, diamA and|A| stand respectively for its diameter and the cardinality.
We write A € Z¢ when 1< |A| < co. The distance between two subsatsand A, of
Z? will be denoted byi(A1, Ay). For R > 1, the R-boundary of a seh is defined by

arA = {x ¢ A;d(x, A) < R). (1.1)

The value ofR will eventually be chosen as the ranB€J) of the interaction we consider
(see (1.7) below).
The configuration space$he configuration spaces are defined as follows:

RY={0 = (0x)ser; 0. €R}, A CZY,
Q=RZ%.

The functions of the configuratiofFunction space€ and C, (A C Z%) on the
configuration spac are introduced as follows:

C={f:Q— R| fsatisfies the properties (C1) and (C2) bejow (1.2)

(C1) ThereisA € Z? such thatf depends only ofio, )< and is ofC* with respect
to these variables.
(C2)

def.

HAINTE D VLSl < oo, (1.3)

xezd
where
0

00,

||f||=SU§|§)|f(0)|, Vif(o)=—f(0). 1.4)

For f € C, we denote by, the minimal set among those’s which satisfy the property
referred to in (C1) above. We define

Ca={fe€C;S;CA}, AcCZ’ (1.5)

The HamiltonianFor A € Z¢ andw € Q, we define a functiolH*“: Q — R, by

H**(0) = % Z Jyy(ox — oy)z + Z (U(ox) — Z Jx,yoxa)y>. (1.6)

x,yeA xeA YEA

Here, the coupling constanis= (J, , e R; x, y € Z4%) are such that
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RQ) % supld(x, y); J,., # 0} < oo, (1.7)

1311 € sup " [, y] < o0, (1.8)
oy

Jey=Jyx =20 ifx#y. (2.9)

For the functionU : R — R in (1.6), we consider the following conditions.
(UO) There existV, W € C*(R — R), m € (0, co) andC1 .15 € (0, 00) such that

U)=V(s)+W(s) forallseR, (1.10)
inf V' (s) > m, (1.11)
[Wloo + W oo < C112, (1.12)

where||W ||, =sup |W(s)|.
(U1) For anym > 0, there existV, W € C*°(R — R) andC11; € (0, o0) such that
(1.10)—(2.12) hold.
A typical example ofU which satisfies (U1) is given by the following polynomial

N
U(s) = Zazvsz" + azs, (1.13)
v=1

whereN > 2,a1,a2 € R, a4 >0, ..., axny-1) = 0 andayy > 0. Sincea, can be large
negative valuel in (1.13) may have arbitrarily deep double wells.

The finite volume Gibbs statéor A € Z¢ and a boundary condition € 2, we define
a Borel probability measurg?:“ onR* by

}{A(D
EMN(dgy) = P2 19) —— (@) I1 do-. (1.14)

xeA

where Z*-¢ is the normalizing constant. The measué¢ is called thefinite volume
Gibbs state

The Vassershtein distandé/e letP(R*) denote the set of Borel probability measures
onR”. For a finite setA andv, v € P(R*), we define

RA(v, D) =inf { > / w(do do)|o, — | € K(v, G)}, (1.15)
xeARAXRA
where
K, v)={neP(R*xR"); u(do x R*) =v, u(R* x dg) =v}. (1.16)

The function(v, v) — R* (v, v) is called the Vassershtein distance.

Expectation and covariancdn what follows, the following common notations for
the expectation and the covariance with respect to a probability measisrased; for
functions f andg,

m(f)=/m(d0)f(0), m(f;g)=m(fg) —m(f) -m(g). (1.17)
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2. Theresult

We are now ready to present main results of this paper. The first result suggests th:
“all happy families are alike” [11].

THEOREM 2.1. — Consider the following conditions.
(LS) There isC»1 € (0, c0) such that for allA € 24, f e C, andw € Q

£ (%10g EAf—zfz)> < cz.lEA’w(xezA Vs ). (2.1)

(SG) There isCy, € (0, 00) such that for allA € Z¢, f € Cx andw € Q

EMNO(f; f) < Cz.zEA’w<Z |vxf|2). 2.2)

XeEA

(DS1) There isC,3 € (0, 00) such that for allA € Z¢, w e Q and f, g € Cy,

[EM(f; 8)| < B2a(f, g) exp(—d(Sy, S;)/ C23), (2.3)

where the coefficienB, 3( f, g) depends only ofi| f1Il, [lIglll, |Ss] and|S,|.
(DS2) There isC,4 € (0, 00) such that for allA € Z%, f €Ch, y ¢ A andw, @ € Q
withw = w off y,

[EYO(f) — ENO(f)| < Boa(f)ldy — oyl exp(—d(Sy.y)/Caa).  (24)

where the coefficienB, 4( f) depends only ofi| f]|| and|S|.
(DS3) There isCy 5 € (0, 00) such that for allA € Z¢, w e Q andx, y € A

|EN(04; 0y)| < Cosexp(—d(x, y)/Cas). (2.5)

(DS4) There isCo¢ € (0, 00) such thatforallA € 24,z e A, y ¢ A andw, ® € Q with
w=woff y,

|EM?(0,) — EM?(0,)| < Ca6l@y — wy|€xp(—d(z, y)/ C2s), (2.6)

(CC) There existV € Z¢, K»7 € (0, 00) ande, 7 € (0, 1) such that
K27|0rV| <271V, 2.7)

RAﬂ(x+V) (EAﬂ(x+V),w, EAﬂ(x+V),w> < K2.7 Z |Cl)y _ &v)vl (28)
YEIR(AN(GX+V))

forall Aez¢ x e Z? andw, @ € Q.
The following hold
(a) Suppose that conditiofU0) is satisfied. Then conditions listed above are related
as
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(LS) = (SG) = (DS1) = (DS2 (2.9)
TR
(DS3 = (DS4 < (CC). (2.10)

(b) Suppose that conditiofyl) is satisfied. ThenDS4)implies(LS), and therefore,
conditions(LS), (SG), (DS1)—(DS4and (CC) are equivalent.

Remark2.1. — Equivalence of this kind was first proved in the compact spin setting
by D. Stroock and B. Zegarlinski [23,24]. The discrete spin case in which the single
spin space is a finite set was further investigated in several other papers, e.g., [19-21
For unbounded spin case, B. Zegarlinski claims in [29, Theorem 5.1] that (DS3) implies
(LS) for anyd > 1 and in a certain restricted sense. Unfortunately, the proof of this result
is not presented in [29]. After this paper was written, the author received an article [7]
by T. Bodineau and B. Helffer, which contains a version of “(S&)YDS1)” (whereA
is restricted to a class of fat boxes) shown by a different technique.

Remark2.2. — In the compact spin setting, R.L. Dobrushin and S. Shlosman [10,11]
introduced a mixing condition called “complete analyticity”. Conditions (DS2)—-(DS4)
in Theorem 2.1 can be understood as the transposition of the complete analyticity in th
unbounded spin setting: for example, condition (DS2) can be compared with condition
(Illc) in [11]. Condition (CC) is similar to the “constructive criteriorCy in [9]. Note
however that, unlike irCy, (2.8) is imposed forA N (x + V) with arbitrary A € Z4. It
is easy to verify by the argument in [3, pp.. 202-203] or [27, pp. 38-39] that (CC) is

satisfied if sup>_,. .., J.., is sufficiently small.

Remark2.3. — Sufficient conditions for the mixing conditions listed in Theorem 2.1

are studied in some recent papers:

e A direct application of the Bakry—Emery criterion [4] for (LS) is discussed in [2].
This is possible whel is a convex function.

e In d =1, B. Zegarlinski proved (LS) without imposing any other assumptions
than (U0) [29, Theorem 4.1]. In this case, the Bakry—Emery criterion is no longer
available in general. Instead, one takes advantage of a stronger version of (DS:
which comes from the dimensionality.

e High temperature (i.e., sup_,.,, J., is sufficiently small): Log-Sobolev in-
equality (LS) under this condition was studied first in [27] with the functidn
satisfying assumption (U1) plus another technical condition. Then, alternative ap-
proaches were proposed by T. Bodineau, B. Helffer and M. Ledoux [6,7,16], which
prove (LS) at high temperature under assumption (U0). An observation made at th
end of Remark 2.2 above proves (LS) at high temperature under condition (U1).
I. Gentil and C. Roberto [13] investigate spectral gap (SG) at high temperature with
functionsU which do not necessarily satisfy condition (U1).

Remark2.4. — Conditions in Theorem 2.1 are stated uniformly carA e z¢.
However, as is pointed out by F. Martinelli and E. Olivieri [20,21] in the finite spin
space setting, it is sometime reasonable to restrict one’s attention only to regular enoug
A’s such as fat enough boxes, in order to avoid some pathological phenomena cause
by A’s with irregular shapes. In our case, it is clear from the proofs that Theorem 2.1
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remains true if each “for al\ € Z?” is replaced by “for allA € B(ng)”, where B(ng) is
the set of generalized box with the minimal side-lenggldefined in [27].

3. Proof of Theorem 2.1
3.1. A lemma on integrability

We begin by preparing integrability properties which are needed later.

LEmMMA 3.1. — The following hold
(a) If condition (U0) is satisfied, then there aree (0, co) and C3; € (0, 0o0) such
that

EM explelo, — EM(0,)) < Caz (3.1)

forall ze A €Z? andw € Q.
(b) If condition (U1) is satisfied, then for any = 1,2, ..., there existsC32(n) =
C3,(U, J, n) € (0, 00) such that

Ao 2 f2 i Ao 2
£ (f2l0g it ) < CaalS DE <;|vxf|>. (3.2)

forAezZ¢, weQandfeC,.

Proof. —The proof of part (a), due to M. Sugiura [25], is presented in [28]. Part (b)
follows from the proof of [27, Lemmas 3.1 and 3.2]0

Remark3.1. — Itis known that (3.2) implies (3.1). See [1].
3.2. Proof of (SG) = (DS1)

We prove that (SG) implies (DS1) by the “semi-group method” which is standard in
the compact spin space setting, e.g., [17, Chapter |, Theorem 4.20] and [23, Lemmas 1
and 2.5 ]. Here, we follow the argument in [17]. We will also borrow technigues from
[23], especially in the proof of Lemma 3.2 below.

We introduce now for the model we are considering, a random time evolution which
is sometimes called the Glauber dynamics. Set

© = {0 = (6/,x)r>0,xez¢ | (0:x)r>0 € C([0, 00) — R) and (3-3)
6o =0forallx e 2},
P = the Wiener measure . (3.4)

The second of these amounts to saying that),~o (x € Z¢) are independent standard
Brownian motions under the probability measi®eFor a setA € Z¢ and w € €,
consider the following stochastic differential equation (SDE) for the unknown process
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A A .
0/ =(0/3")xezd:

0, = (3.5)

t
1 .
Ao Wy + 6, — > / ds VXHA"”(USA"”) if x € A,
0
Wy if x ¢ A.

The existence and the uniqueness of the solution to (3.5) is well-known evan=£at?
as well as forA € Z¢ (cf. [8]).

Our proof of (SG)= (DS1) is based on the “finite speed propagation property” of the
dynamics in the following form.

LEMMA 3.2.—For anye € (0, 00), there exist€36 € (0, co) such that

P(f(o):g(0”) <Cz6 Y IVyfIIV.gllexp(Caet — d(y,2)) (3.6)

y,zeZ4

forall AeZ¢, weQandf, geCh.
The proof of this lemma will be given in Section 3.3.

Remark3.2. — In the compact spin setting, (3.6) is well known, e.g., [17, Chapter I,
Proposition 4.18]. A different version of finite speed propagation property for the
unbounded spin setting can be found in [29, Section 1].

Proof of(SG)= (DS1). — The proof is based on the idea as follows. If we have (SG),
then, the distribution of the random variabié»w is close toE™® for large, but finite
time . Suppose on the other hand that the supp®ytandS, of functions f, g € C» are
disjoint. Then, (3.6) says that the correlation of random variaftes*) andg(c**)
at any finite timer are exponentially decaying in the distanceSgfands,.

We now transpose the idea above into estimates. fFarC,, set (o) = f(o) —
EA £ andP, f (o) = Pf (o2 @a), We then have that fof, g € Cy,

EM(fig) =0+ o+ I3, (3.7)

where

J1=E"“(fg) — EMP(f2),
Jo=E»*P,(fg) — EM*(P.f - P,g),
J3= EA’w(Ptf -P.g).

We see from Lemma 3.2 that
[ o] < Caglll f1II 111g]11exp(Caet — ed(Ss, S,)). (3.8)

By part (a) of Lemm 3.1LEX*(fAHY2 < EX(FHY4 |1 f1ll. We therefore have by
(SG) that
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|J1] S EM|EN(f3) — Pi(f)]
<exp—1/Ca) EM(|EM(F) — f2|)?
< exm_t/cz'z)(EA,w(JE2>1/2EA,w(§2) 1/2+ EA,w(f4>l/4EA,w(§4>1/4)
<2exp—t/C2)II f1Il 12l (3.9)
sl S EM(IPgl?) P ENe (1P g12) Y
<exp(—21/Co) EN(1F17) 2 EN (1312
<exp(—2/C2I £l gl (3.10)

Plugging (3.8), (3.9) and (3.10) into (3.7) and choosing ¢d(S¢, S,)/(2C36), We
obtain (DS1). O

1/2

3.3. Proof of Lemma 3.2

LEMMA 3.3.—For ¢ € (0, 00), define

I(s) = {a = (@ > 0)p ezt | llalle B Y o, exp(ed(0,x)) < oo}, (3.11)

xezd

I(—e) = {a = (0 2 0zt | e &S @, exp—ed (0, x) < oo}, (3.12)

xezd
axp= ( > ax_y/sy> , forael(e)andp el(—e). (3.13)
yeZ" XEZd
Then the following holdif « € I(¢), B € I(—¢) and f; € [(—¢), (t > 0) are such that
sup Y fiyexp—ed(x,y) < oo, (3.14)
0<s<t oy
yez
t
fin <ot [dstas £, (3.15)
0
forall t > 0andx € Z¢. Then,
fix <exptllelle) Y |8yl exp—ed(x, y) (3.16)

yezd

forall x € Z¢ andr > 0.
Proof. —We begin by proving that fox € [(¢), B € [(—¢) andx € Z¢
()" B) | < llecll? Z Byexp—ed(x,y), n=12..., (3.17)
yezd

where(ax)"8 = a x --- x ax . It is easy to prove that

n

[ Bl|_, < lelZlBll-es n=1,2,.... (3.18)
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We now introduce the shift transformation:
Tyt (o) vezd P> (Qugy)rezd, y€Z (3.19)

Then,o * (7y8) = 7y (a % B) and hence&ax)" (t,8) = 7, ((a*)" ). From this and (3.18),
we see that
()" B) | = (zc ()" B)|
< relan)B] .
= [|(en)"n: B _,
< el Iz Bll-es

which implies (3.17).
To prove (3.16), we iterate (3.1%) — 1)-times to obtain that

n—1 .m t -1 f
t
fin $ X o (@08), + [dns [ daee [ds(@ors),
m=0 """ 0 0 0
<expllals) > 1By exp—ed(x, y)
yezd
+ (" || /) sup > foyexp—ed(x,y), (3.20)
SR yEZ‘l

where we have used (3.17) to proceed to the second line. Since the second term on t
right-hand side of (3.20) vanishesas” oo, we obtain (3.16). O

Proof of Lemma 3.2. We fix A € Z¢ andw € R*° throughout this proof. Let us use
the following notations; forf € C*(R%),

Vx,yf = vayfs (3.21)
Acf =Voif =V HMV, f, (3.22)
Af =) A.f. (3.23)
xeA
Step 1.
%Ax(lvyf %) = VyALf Vi f > {5 Caz VoS VT ':;tﬁgﬁwylgf Ko @20

whereCz s = sup, , Jx.y + maxo, — inf, U”(s)}. In fact, it is easy to see that the LHS
of (3.24) is equal to

Ve [P+ Ve y HYV Y, f. (3.25)

SinceV, yH»* = —J, , + 8, ,U"(0,), (3.25) is bounded from below by the RHS of
(3.24).

Step 2. Takef € C(R"): the set of smooth functions dR* which vanish outside
a compact set and defir®g f (o) = Pf(oc72“a). Note thatP, f(c) has an integral
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kernelP, (o, T) which is smooth in, o, 7) € (0, 00) x R* x R* and solves. P, (-, 7) =
$AP,(-, 7). Therefore P, f (o) is smooth in(z, o) € (0, 00) x R* and solvesZP, f =
%AP,f. Let us prove thaV,P; f (o) is bounded irr for anyx € A. This can be seen as
follows. For a bounded smooth functidgh= (F,).cs : R* — R*, define

AF = (AFX -y Vx,yHA»wa) ,

yEA XEA

P,F(0) =P(M,F (0" ")),

where M, = (M,.. ,)x,yea IS @ matrix defined as the solution to the following integral
eguation:

t
1 ~
Mgy =8,y — > > / ds My, V. ,H> (aonone), (3.26)

YEA 0

We then have by standard arguments (see the proof of [26, Proposition 2.3] for example
that
° (|5[),>0 extends to a strongly continuous semigroup on the Hilbert space
412(12A,w) ® FQA’
e A extends to the generator of the semigroup,
o |M,E| < |E|exptCsa4/2), for all € € RA andt > 0, where| - | on each hand side
stands for the Euclidean norm &.
These imply that

9=  l--  1a -
_PtF = = P[F == _PIAF, (3.27)
ot 2 2

IP F (o) <P (|F[)(0) exp(tCz.24/2). (3.28)

On the other hand, it is easy to see that
VAf =AVf for feCP(R"), (3.29)
whereV f = (V, f).ea. It follows from (3.27), (3.28) and (3.29) that
VP, f (o) = P,V f(0)| < Pi(IV f)(0) eXPrC324/2),

which implies thatv, P, f (o) are bounded i for anyx € A.
Step 3. Defing; = (Fy;),cze by

b { IV.P Sl if x e A,
o 0 if x ¢ A.

Let us prove that for any € (0, 00), there isCs 30 € (0, 00) such that

F,, < Cz3 Z Fy 0exp(Cazot — 2ed(x,y)). (3.30)

yezd
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To prove (3.30) by applying Lemma 3.3, we will check that

sup Y Fy,exp—2ed(x,y) < oo, (3.31)
0<s<t '
t
Fx,t < Fx,O + / dS(Ol * Fx)x (332)
0

forall > 0andx € Z¢, wherea, = %C3.241{d(0,x)<m. (3.31) is obvious. To prove (3.32),
definep(s) = P,_,(|V,P; f1?), 0< s < t, for any fixeds. We then have by (3.24) that

, 1
¢'(s) = —EPHA(WXPJF) + 2P, (V.Ps fV 4P, f)

<Cszs Y, P (IViPfIIV,Pf1)

yid(x, )R

< C3.24 Z Fx,s Fy,s
Vid(x. <R

= 2(0[ * Fs)x Fx,ss

from which we conclude

t
F2, = ¢(t) < 9(0) +2 / (a % F,), Fyds
0

t
ngz,O—i_z/(a*Fs)xe,sds' (333)
0

By solving (3.33) as an integral inequality with respec¥1g, we obtain (3.32).
Step 4. Takef, g € C(R*) and defineG, , for t > 0 andx € Z¢ similarly asF, ;:

G, = { VPl Txen
70 if x ¢ A.

Let us prove that

Y FeuGri<Caza Y IVyfIIV-fllexp(Cazat — ed(y, 2)), (3.34)

xezd y,zezZd

whereC3 34 € (0, 00) is independent ofA andw. Sety, = exp(—2¢d (0, x)). It is easy
to see that for any e 729,

exp(ed(0, x))y, < lly * ¥l < Iyl (3.35)

Therefore, we have for any, z € Z¢ that

> Ve =y xy(y—2) <llylZexp(—ed(y,2)). (3.36)

xezd
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We now conclude (3.34) from (3.30) and (3.36) as follows:

D FriGry < C5308XP2Ca300) > Y IV FIIV:fllveyes

xezd xeZd y,zezd

< CiaollyIZexp2Cazot) Y IV fIIV-fllexp(—ed(y,2)).

y,zeZ4

Step 5. Conclusion of the proof. Fof,g € CP(R"), we define y(s) =
P,(P,_s fP;_sg), 0< s <1t for any fixeds. We then have that

) 1 1 1
1// (S) = PX(EA(PtfsfPtfsg) - EAPtfsfPtfsg - EptfszPtfsg)

=P(§jwasfwas@

xeA

< Fri—sGuiss.

xeA

and therefore that

P(f(o*); g(0?)) =P, (fg) — P:(f)P:(g)
=y () — ¥ (0)

t
< [ S FunsGuisds

0 xeA
t

= [ Y FisGyds. (3.37)

0 xeA

Plugging (3.34) into (3.37), we arrive at (3.6) ferg € C.(R*). (3.6) for f, g € C, can
be obtained by considering a suitable approximation.

3.4. Proof of (DS4) = (CC)

We will prove that

RMEM, EM) < Kazg Y oy — @, (3.38)

yeIrA

for all A € Z? and w, ® € Q, where K335 = Cop > .cza €Xp(—|z]/C26). Condition
(CC) follows from (3.38) by taking/ as a large enough cube and applying (3.38) to
A N (x + V) instead of A. The proof of (3.38) reduces to the case= @ off a site

y € dg A. The reduction is a simple argument which uses the triangle inequality for the
Vassershtein distance and an interpolating sequegpce. , w, (n = |0z A|) of boundary
conditions such thaby = w, w, =w andw,_1 = w; off asite indzA (j =1,...,n).
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We now assume thai = o off a sitey € dg A and thatw, > w, without loss. We then
have by the FKG inequality that

EA""(ﬂ{G: ox>rx}) EAw(ﬂ{U Oy 2 x}>

xeA xeA

for all (r,),ca € RA. From this and Strassen’s theorem on the existence of an order
preserving coupling [18, p. 129, (4.2)], there exists an meaBire® e K(EM, EA)
such that

EA“"”(ﬂ{(a F): oy = x}) =1 (3.39)

xeA

We have by (3.39) and (2.6) that
RA(EA,CU’ EA,Z;) < Z EA’w’Z;|O—Z _ 81'

ZEA
=Y (EM*(0.) — EM(02))
ZGA
< Coglwy — ) Zexp(—lz —y1/C26)

zZeA

< Kzzglwy — oy,

which proves (3.38). O
3.5. Proof of (CC) = (DS4)

We follow the the argument in [27, pp. 33—38] which originally is adapted from [10,
pp. 353—-356]. We begin with lemmas.

LEMMA 3.4. — Suppose thad € Z y ¢ A andw, » € Q are such thatr = o off y.
Then, there exists a measué- - ¢ K(EN@, EA@) such that if we defing*-* by

froo / EM®(do d5)|o. — 5., (3.40)
then

Z sz,w,a — RA (EA’(U, EA,Z) , (341)

zZeEA

A¢m5 ~

Supfz g C3.42|wy - a)yla (342)

zZeEA
S M<K Y N+ Kogloy — ayllyexyy,  (3.43)

ZEAN(X+V) Z€AN(x+IRV)

where the constant’s 4, depends only od, JandU.

Proof. —-We may assume, > w, without loss for all(z,),ca € R*. Therefore, there
exists an measur&”™~® ¢ K(E*, EM®) such that (3.39) holds. Therefore, if we
define £ by (3.40), we then have for anye A and anyu € K(E*, E*) that
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Z

frot = [ NS o do) o, - 5)
= EM(0,) — EM(0y)
= [ ndo do)o. - 3)

</u<dad&>|oz—6z|,

and hence that

ZfZAwag Z/,u(da d5)|az _81 ’

ZEA zZeA
which implies (3.41).
We prove (3.42) as follows. We repeat the argument in the proof of (BS{PS2)
to see that
fZA,w,a) — EA,a)(O_Z) _ EA,a)(O_Z)
< @y — wy)SUpY _ Ji yEN(02; o). (3.44)
g'EQXEA

This estimate proves (3.42), since we have (3.1). N
_We now turn to the proof of (3.43). We begin by taking a measurable §ap —
E*(-|£,&) from RY x RA to P(RANGHY) 5 RANGHV)y such that

RANG+Y) (EAﬂ(erV),E Em<x+v>,€)
= [Buodsied X lo.-al. (3.45)
zeAN(x+V)

for all (¢, £). The possibility of this measurable selection can be shown as an applicatior
of [22, Thorem 12.1.10]. (Use also Lemma 12.1.7 in that book to check that the set o

measures which attaiR A" +V) (EANCHV)E, E’W”V)E) is measurable as a set-valued
function of (¢, &).) B
We now define a measuiie"*® e P(R* x R*) by

EY““(A x B) = / EMNO°(dt dE) / E*(do d5 | §,8),
B

A

where A ¢ RM\GHY) 5 RMGHY) gnd B ¢ RANGHY) » RANGHY) |t follows from the
above definition that

E_vx,w,g c ]C(EA’w, EA,Z)’ (346)
Froo _ phoo  gnRA\GHY) o RAGHY) (3.47)

To see (3.43), it is sufficient to prove that

Yoo opheeg S free, (3.48)

zeAN(x+V) zeAN(x+V)
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Z f‘zx,w,w < Ko7 Z sz’w’w + K2.7|wy - a}'|1{}’ex+V}’ (349)

zeAN(x+V) zeAN(x+0dgV)

where

Z

fx,w,a — / E_vx,w,g(da d5)|0’z _ 51' (350)

The first inequality (3.48) can be seen as follows. Since (3.47) impliesfy?‘*n‘a.’tg =
freeforz ¢ W (x+ V), we have from this, (3.41) and (3.46) that

5 ) (i)

zeAN(x+V) zZEA

< Z sz,w,a _RA (EA,w, EA,Z)
zZeA

=0.
To prove the second inequality (3.49), we will use (3.45) and (2.8) as follows:

> fret= [EVeddgdd) [Bdods |68 Y o5

zeAN(x+V) zeAN(x+V)

< Ko7 / ErodggdE) Y jg &l

z€Ir(AN(x+V))

=Kz7 Z 20 + Koqloy — @yl Lyertvy-
ZAN(x+0RV)

This completes the proof of Lemma 3.40

LEMMA 3.5.—ForanyAC A, L > landw, w € Q with w = o off y,

3 fAe exp(—d(z, A)/Cas1)

zZeA

< Bssy Z fheovexp(—d(z, A)/Czs)
d(z,y)zéeLA+D3.51

+ Bzsiloy —@y| Y exp(—d(z, A)/Css1), (3.51)
z;d(z,y)>L
z+Vay

where fA-2 is defined by3.40) D3s; = diam(V UdgV), Basy = Basi(R, V, £27) and
C3s51=C351(R, V, &27).

Proof. —~We choos&C351 = C351(R, V, €27) so large that
def.
Cas2 = exp(—Das1/Cas1) — £276X( D351/ Cas1) > O. (3.52)

We set
ex =exp(—d(x, A)/Czs1), Czs3=exXp(D3s1/C3s51). (3.53)
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We then definel? = ., vo.ec, 2= Ko7dinispvssers =10 — 1} and r, =
> xx4vaz €. Letus first prove that

d(x,y)<L
Aw.o > ~
Z fz ’w’wlz < Z sz’w’wrz + K2.7|wy - C‘)y| Z €. (354)
zZeA ZeA x:d(x,y)=L
x+Voy

We have by (3.43) that

Z €x Z sz’w,g < K2.7 Z ey Z sz,w,w

x:d(x,y)>L zeAN(x+V) x:d(x,y)>L  zeAN(x+03grV)
+ Kogloy—ay| > e (3.55)

x:d(x,y)=>L

x+V>y
Since
Aw.w Aow,w _ Aw.w (70
Z €x Z I wwzzfz “ Z ex_zfz (I —r2),

x:d(x,y)>L zeAN(x+V) ZEA x:d(x,y)>L ZEA

x+Vsz

K27 Z ex Z sz’w@ < ZfZA,w,Z;lZl,

x:d(x,y)>L  zeAN(x+9drV) zZeA

it follows from (3.55) that

Z szwa(l? - rz) < Z szwalzl + K2~7|w)’ - CT))| Z €x>

ZEA ZeA x:d(x,y)>L
x+V>oy

which is equivalent to (3.54).
Let us next prove that

r; < C3.566zs (356)
r,=0 if d(z, y) > L + D35y, (357)
lz 2 C3.586zs (358)

whereCs s, C358 € (0, 00) depend only orR, V ande, 7. To verify (3.56) and (3.57),
note first that an easy to prove fact that

Cigs<ex/e; < Cass if d(x,2) < Dss1. (3.59)

We thus see that
r;<Cssse; », 1,

xx+Vaz
d(x,y)<L

which proves (3.56) and (3.57).
On the other hand, it follows from (3.59) and (2.7) that
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lz>ez{cgé3 > 1-Kp7Cass Y, 1}

x:x+V>z x:x+0grVaz
> e.{C3a5lV| — Casae27|V|}
=Czs2l Ve, (3.60)

which proves (3.58). By plugging (3.56), (3.57) and (3.58) into (3.54), we obtain
(3.51). O

3.6. Proof of (DH4) = (LS

To prove that (DS4) implies (LS), we will use the method of S.-L. Lu and H.-T. Yau
[19], in which (SG) and (LS) in compact spin settings are obtained from a certain mixing
condition. The following lemma plays a key role in carrying out the strategy of the above
mentioned paper in the unbounded spin setting. The proof we present here is base
mainly on that of [27, Lemma 3.4]. An idea in a recent paper [6] by T. Bodineau and
B. Helffer is also used.

LEMMA 3.6.— Suppose that conditionJ0) and (DS4) are satisfied. Then, the
following hold
() There exist€36;1 € (0, 00) such that

|EY(f;00)| < Capal Alexp(—d(x, A)/Ca6) EN(f5 £)Y2, (3.61)

wheneverf eC, A € Z¢, x e A and A C A are such thatS; N A C A C A.
(b) There existE34, € (0, 00) such that

[EN(f% 00
< Cagol Alexp(—d(x, A)/Cap)

Aol 2\ V2 mAw, p. 12 Ao £2 f2 12 3,62
x EM(f7) (E (f: N’ +E <f IogiEA,w(fZJ > (3.62)

wheneverf eC, A € Z¢, x e A and A C A are such thatS; N A C A C A.

Proof. —SetEA6E — EAE @ EAE ¢ P(RA x RM). We have that
1
ENe(fio) =5 [ EN°(do d&)(f(0) — f@))(0x —&2)
2
- % / ENo(dg dB) (£ (&) — £ 5) / EMYE (4o 45) (o, — 5,

1 ~ ~ ~
= E/EA’“’"”(dS d&)(f (&) = f(&)(EM*5 (o) — EMP¥(0), (3.63)

where the second equality can be verified by applying Markov properfy*t6(do)
andE*“(do) separatedly. Sincge= £ = w outsideA in (3.63), we see from (DS4) that

[EMAE(0,) — ENOE(0,)] < Cop Y IE, — &y exp(—d(x. A)/Cz6).  (3.64)

YEA
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Plugging this into (3.63), we see that

|EM(f; 00)| < Cagsexp(—d(x, A)/Cag) Y 11(f.2), (3.65)
ZEA
where
I(f.2) = / ENO9(do d5) | f (o) — £(&)]|o. — 5.|. (3.66)

We have by Schwarz inequality that
1/2

12,
n(f.2)< ( [ Ereeido do o) - f(&>|2) ( [ Ereedo dlo - &z|2>
=2EM(f1 HVPEN (021 02) Y2, (3.67)

Since it follows from (3.1) thatt*“(o.; 0.) is bounded from above by a constant
which is independent ok, @ andz, we obtain

D L(f.2) S2CAIENC(f; Y. (3.68)

zZeA

This, in conjunction with (3.65), implies (3.61).
The proof of (3.62) is similar. We see from (3.65) that

|EM(f% 00)] < Copexp(—d(x, A)/Cag) Y 11(f?2). (3.69)

ZEA

We have by Schwarz inequality that
L(f?2) SV2EN(f; PHYPL(f, Y2, (3.70)
where

L(f,2) = / EY(do d5)| f (o) + [ (&) *lo, — &, |°.

To estimatel,(z), we will use an inequalityab < expla) + blogb for a, b > 0 and the
following fact which follows from (3.1)

sup [ EA(do d) explelo, — &,]%) < . (3.71)

Ao,z
We see that
L(f.) <4 [ EN0do do) @), — 5.

2 f(U)z

=B [ BN o dolo~a P o

SAEM(f?) /EA"”"”(da do) exp(elo, — &%)
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Ao 2 f2
+@/eE (f 09 eEA"”(fz))

2
Ao 2 A,w 2 f
< C372E™C(f) + CaE (f log W), (3.72)
whereC3 7, € (0, 00) isindependent o\, w, z and f. Putting (3.70) and (3.72) together,
we obtain

Z[l(fz,Z)
ZEA
SV2EM(f; HYPY I(f,2)"?
ZEA
Nolok ANog . \12[ pAo 2112 Ao £2 2 e
SV2C37lAE®C(f5 f) EM(f9)""+E (f IOgEA,w(fZ))

2 1/2
<V2CTH Al (f2)Y? (EA""(f; V24 BN (f2 log r,f( fz)) / )
which, in conjunction with (3.69), implies (3.62).0
Proof of(DS4)= (LS). —The proof is divided into two steps:
(3.2) and (3.61)= (SG), (3.73)

(3.2), (3.62) and (SG> (LS). (3.74)
Each of above steps can be carried out in the same way as in [27, Sections 4 and 5].
the second step, (SG) is used to hanglfe®(f; f) on the RHS of (3.62). O
3.7. Completion of the proof of Theorem 2.1

(LS) = (SG); This is well known (cf. [12, Corollary 6.1.17]).

(SG)= (DS1); This has already been shown in Section 3.2.

(DS1)=> (DS2); Definer =¢(0) € R (0< 6 < 1) by, =0a, + (1—0)w, (x € Z9),
which interpolates two boundary conditionsandw. We then have that

1
~ ad
M) = M) = [ do BV (). (3.75)
0
On the other hand, we have by direct computations that
ad OHN
— EAS =—EA’§< . )
59 () VE %6
= (@y — wy) > Je yEN(f500). (3.76)
XeEA
We see from (3.76) and (DS1) that
a ~
—EA’g(f)’ < Carrloy — wy|exp(—d(Sy, y)/Ca3). (3.77)

a0
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Putting (3.75) and (3.77) together, we get (DS2).

(DS1)= (DS3); Trivial.

(DS2)= (DS4); Trivial.

(DS3) = (DS4); This can be done by puttinf(o) = o, in the proof of (DS1)=
(DS2).

(DS4) < (CC): This has already been shown in Sections 3.4, 3.5.

(DS4)= (LS): This has already been shown in Section 3.6.
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