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ABSTRACT. — We establish Poincaré inequalities for the continuous time random walk on the
cube{—1,4+1}¢. A first method is based on the study of cylindrical functionals. A Poincaré
inequality is proved for these functionals and extended to arbitrary functionals. A second metho
is based on martingale representation formulas. A whole family of Clark—Ocone formulas is
then available, which leads to the corresponding family of Poincaré inequalities. These variou:
inequalities are compared through examples. We also show that the cylindrical method extenc
to some asymmetric continous time random walkg-ef, +1}¢. 0 2001 Editions scientifiques
et médicales Elsevier SAS

AMS classification60HO7, 60327

RESUME. — Nous établissons des inégalités de Poincaré pour la marche aléatoire a temg
continu sur le cubg—1, +1}¢. Une premiére méthode consiste a étudier en premier lieu les
fonctionnelles cylindriques. La seconde méthode exploite des formules de représentation p:
martingales, dites formules de Clark—Ocone. De telles formules sont mises en évidence ¢
conduisent a toute une famille d'inégalités de Poincaré. Nous comparons ces inégalités par d
exemples. Nous montrons par ailleurs que la méthode cylindrique s’applique a certaines march
aléatoires dissymétriques a temps continu sur le ¢ute+1}¢. 0 2001 Editions scientifiques
et médicales Elsevier SAS

1. Introduction

The main purpose of this work is to establish Clark—Ocone formulas and Poincaré
inequalities for the continuous time random wa(l,),~o on the discrete cube
{—1, +1}¢. To explain in this introduction some of the motivations and aspects of this
work, let us considet/ = 1 for simplicity and give a short description of the random
walk. The law of(B,),>o is given by its infinitesimal generatdr

L(H=(for=1),
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wheret (x) = —x. The process starts &, waits an exponential tim&, of parameter
1, then jumps to its neighbour By = By;, and so on, the waiting timed},, — 7,,_1),>1
being mutually independent. For a fixed timg 0, the law ofB, is just an asymmetric
Bernoulli measure with weightd + e %) /2.

Our first motivation to find a Clark—Ocone formula was Poincaré inequalities on the
path space. Given a cylindrical functiongl= f(B,), it is easy to see that

B(F?) ~E(F)* < 4 (- “)E(DF?), @)

where the discrete derivativ@ F is the cylindrical functional f o T — f)(B;). As was
shown in [1], there are several manners to extend this Poincaré inequality to generz
cylindrical functionals. One of them is the following. K(B) = f(B,, ..., B;,) with
O=1n<fp<---<t,,then

E(F?) — E(F)* < Ex(F)
2

= % Z(l — e_4(t"_[i71))E ( (Z e_z(tk_ti)BkF (e] Ti,kl) > , (2)
i=1

k=i

where the discrete derivatives Bfare defined by
(lAij o Ti,k—l) (B) = (ka) (Btl’ LR B[i—l’ TB[is cee TBtk,ls Btk’ R B[N)’ (3)

and

(ka)(xl,...,xN):xk(f(xl,...,rxk,...,xN) — f(x1, ., xn))
=(f(x1 ooy Xe—1, =L Xpg1, ooy XN)
—f(x, oo X, 1 X xN)).
At this stage, it is tempting to draw a parallel with the Ornstein—Uhlenbeck process

(X:):>0 OnRR, because in that case, for a cylindrical functioRa: f(X,,, ..., X,,) with
a smoothf onR", we have that

2

E(F?) —E(F)*’< ) (1—e2i-)E ( (Z e Y fF Xy xtn)> ) . @

i=1 k=i
Actually, this inequality is a particular case of the following theorem, which deals with
functionals of the whole path.

THEOREM 1.1. — Let (F;),>0 be the filtration associated to the Ornstein—-Uhlenbeck
process(X,);>o. LetT > 0 and F(X) be anF;-measurable andL? functional in the
domain of the Malliavin gradient operator, and IBXF be its Malliavin derivative. Then

2

T . T .
E(F)’ ~E(F)?<E / ((DAF)I - / e‘(‘*")(DAF)Sds> 2dt. ()
0 t
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A simple way to prove this theorem [3] is to use the Clark—Ocone formula

T
F —E(F)= / HA?2 dw,,
0

where H is the predictable projection @D F), — ftT e “=O(DF),ds. The coefficient
e =9 reflects here a constant strictly positive curvature, as do the coefficiefitsie
in (4). This representation formula is well known in general for diffusion processes on
Riemannian manifolds, and may be obtained from the Bismut integration by part formula
(see [6] for example).

If we come back to the case of the cube, we may wonder whether there exists or not
Poincaré inequality such as (5) on the cube, and for what class of functionals.

A first method is to start from inequality (2) with cylindrical functionals and to identify
the energyt«~(F) with an energy that may be defined for all functionals, under some
integrability conditions. It is shown in Section 3 that

T T 2
Eq(F)=E / (D,F - / 2e 267D (—NISD (D F o ej)ﬁ(ds)> dt, (6)
0 t

whereD; F is the gradient in Poisson spac@sthe Poisson point process of jumps, and
N the associated compound Poisson measure. Precise notations and definitions will |
given in Section 2. It then follows from the Poincaré inequality (2) and equality (6) that

E(F?) —E(F)* < Eu(F) 7

for all cylindrical functionalsF, thus allowing extensions to a wide class of functionals.

According to the comments following Theorem 1.1, another method to investigate
Poincaré inequalities on the cube is to look for a Clark—Ocone formula. The martingale
representation formula

T
F —E(F) =/H,N(dt), (8)
0

whereH is the predictable projection db F was proved by Picard in [9]. This identity

is a consequence of an isometry formula which plays the role of the integration by part:
formula for diffusions. However, the representation (8) seems to reflect a zero curvature
and therefore does not compare to the Ornstein—Uhlenbeck process, whose curvature
constant and equal to 1. In Section 4 we show that actually a whole family of formulas
such as (8) is available. Namely, we show that for evegyR and everyF;-measurable
functional F satisfying some integrability conditions,

T
F —E(F) :/H,“A?(dt), (9)
0
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were H is the predictable projection ab,F 4 « [ 2e726=0(—1)N0UsD . (D F o
eFYN(ds).

It turns out that the processds® are all equal. This behaviour differs from those
of diffusions, wherex stands for curvature. Our motivation for this work was actually
an attempt to understand Bismut formulas and curvature in the discrete setting. A
suggested by Remark 4.2 below, the Poincaré inequality (7) coming from the cylindrical
method would make us think of a constant curvature equal to 4, whereas the Clark-
Ocone formula of parameter makes it confused.

Introducing the parameter seems artificial, but its strength lies in the applications.
Indeed, we deduce from (9) that under some integrability conditions

E(F?) —E(F)? < &(F),

where the energy of parametelis given by

T T 2
EJF)=E / (D,F + o / 262D (—NUISD (D F o ef)ﬁ(ds)> dt.
0 ki

We recover here the Poincaré inequality (7) whea —1 sincef_1(F) = E«(F), and
whena = 0 the Poincaré inequality of [1].

In Section 5 we give examples and compare the enei€g) with fixed F and
varying«'s. It turns out that in some cases= 0 gives the lowest energy, and in other
casesr = —1 does. We also show that for amy € R («g # —1/2 for technical reasons),
there exists a functional for wich &, (F) is minimum.

In the last sections some of the preceding results are extended to asymmetric rando
walks, that spend “more” time on one point than on the other. More precisely, in Section
6 we extend the Poincaré inequality (2) for cylindrical functionals. Unfortunately, the
energy&e(F) itself is no more equal to the counterpartéf, (F). However, when we
let the mesh of the partitiofr,, . . ., #,) tend to 0, the energg%’ (F) converges towards
E_1(F). We then deduce the Poincaré inequality (7) for a large class a functionals. Unlike
the symmetric case, we miss the isometry formula giving the martingale representatiol
(8), which is false in the asymmetric case. This lack of Clark—Ocone formula prevents
us to get easily the corresponding Poincaré inequality as it is done in Section 4. |
rehabilitates then the “cylindrical method” based on the study of cylindrical functionals.

Finally, in Section 7 we give examples and compare the variance and the energies fc
some functionals. In particular, we examine the numeof jumps of the random walk
up to timeT. We show that its variance exceeds its energy of parameter 0

T
E(F)=E / (D, F)?dt
0

though N7 is a very “reasonable” functional. We show by this way that the Poincaré
inequality of parameter 0 is no more true if the random walk is not symmetric.
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2. Stochastic calculus on Poisson spaces

We recall in this section the tools that will be needed in the sequel. We start with the
description of the random walk.

2.1. Description of the random walk and of the associated point process

Our continous time random wall,),~0 on the discrete cubg-1, +1}¢ is given by
its infinitesimal generatdc

d

L(H)=> (for?—f),

j=1
wheretr /) acts on thejth coordinate of the cube: i € {—1, +1}¢, then
tPx) = (xP, ..., —xP, L x @),

In other words, the process startsRBy, waits an exponential tim&;, then jumps to a
neighbourBy, of By, and so on.

The path of the walk is characterized by the tinfgsand the directions of jumpg,.
Therefore the wallB may be modelized by a Poisson point proc¥ssnU = Rt x J =
R* x {1,...,d}, each poinit, j) corresponding to a jump of the random walk at time
and direction;.

More preciAser, we calf2 the set of atomic measureson U, and endowU with
the measureV (dr x {j}) = dt. Then, letN be the random measure @&hdefined by
N(w, A) =w(A) for w € £2, andP be the probability measure a2 under whichh is
a random Poisson measure of intensity (or compensatoyye also letN = N — N be
the compound Poisson measure.

If we order the atoms7,, j,).>1 of the measureV, thenT, are the jumping times
and j, the jumping directions of the random walk, that B = tY¥(By), and By, =
T(‘/")(BTn,l) —tUd o o T(-jl)(Bo).

2.2. Filtered space and predictable processes

Let (F,);>o0 be the filtrationo (N(A); A € B([0,7] x {1,...,d})), t > 0, and let
F = Feo- = V,>0F:- An F-measurable functiondl is F; (resp.F;-)-measurable if and
only if F(w) = F(wjj0.xs) (resp.F(w) = F(wjo.xs) ). Indeed, everyF,-measurable
functional F meets the conditio (w) = F(wj0,1xs) Since it holds for allFF = w(A),
A € B([0,¢] x J). To prove the converse, notice that for everg B(U) the functional
w0.1xs (A) is F;-measurable, so that the map

(82, F) — (82, F)
wrH—> CU|[0J]X‘]

is measurable. Therefore is F,-measurable i¥ = F(w)j0,jx,)-

Notice that the filtration ), >0 is right-continuous. Indeed, ¥ is F,+-measurable,
then F(w) = F(w)j0,+¢)xs) for eachw ande > 0. AS w|(0,+¢]xs = @|j0.11xs fOr & small
enough (depending an), F = F(wjj0,1xs), andF is F,-measurable. Thug;+ = F;.
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In what concerns predictable processes, we have a similar property. Recall first the
the predictabler-algebraP is generated by the adapted left-continuous processes, or
equivalently by processes of the forty, 1, F (w) whereF ranges over the boundef,-
measurable functionals, amd< v < oco. In our case, a process is predictable if and
only if Y;(w) = Y:(wj0,(xs)- In order to prove it is a necessary condition, notice that it
is satisfied by all processds, 1, F (w) whereF is a boundedF,-measurable functional.
Then apply a monotone class argument. Conversely, fot alB(R x J) the process
(w)j0.11x)(A) is adapted and left-continuous, hence predictable. It follows that the map

Rx £2,P)— (Rx £2,BR)®F)
(t, w) —> (t, W|[0,1[x )

is measurable. Therefore¥f = Y, (wj0.(x), the procesy is predictable.
Now we introduce the predictable projection of a bounded or non-negative proces:
W. Itis the unique predictable proced® which satisfies

PW, 2 E(W, Fr-) (10)

for any predictable time. (See [5, Chap. VI.2] for proofs and more details.Wfis
neither bounded nor negative, then its predictable projection is defingdVif takes
finite values only, and in that case

W= (P(Wy) = P(WL)).

The property (10) is still satisfied, and still characteriz@s. Finally, it will be useful to
consider’ W = (P(W,) —P(W_)) on the se{?|W| < oo} in the general case. We present
here several properties that will be useful in the next sections.

LEMMA 2.1.— Let W be a bounded or non-negative process. Then forjad
1,....d}
E/W,N(a’t, j)=E/PW,N(d¢, ).

Sincel\?(dt, j)=dtandEW, = EPW,, Lemma 2.1 is a direct consequence of Fubini’'s
theorem.
The following lemma gives a very useful expressiort uf.

LEMMA 2.2. — The predictable projectioAW of the procesdV is given by
PW@) = [ Wi, + Ot 4P @) = (EW) @), (A1)

whereP" denotes the law of a Poisson process[amo[ x J with intensityds on each
[z, oo[x{j}, and whereE’ denotes the expectation with respecPto

Proof. —Assume first that (11) is satisfied for all processes of the foWpiw) =
10, (t) F(w) Whereu >0, F = f(Ty,...,T,) and f is a smooth bounded function on
R™. Then, by a monotone class argument, (11) extends to all bounded processes (see
p. 114] for the use of the monotone class theorem) and then to all non-negative process
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(applying (11) toW A n). Finally, we consider an arbitrary proceBs Applying (11)
to |W| shows that' |W/|,(w) is finite if and only if W, (wjj0,/(xs + @|11.00[xs) IS iNtegrable
with respect t@' (). Therefore, using once more equality (11) with and W_ yields
(11) for W on the sef{”|W| < oo}.

Now let us consider the proces (o) = 10,((¢) F (w) whereF = f (T4, ..., T,,) and
f is a smooth bounded function ®'. Then?W is given gy

PWi (@) = Liou () M- ()

where M, is the cad-lag version of the martingdi& F'|F;). Therefore it is enough to
show thatM,- coincides with

H(w) = / F(@)0.11x7 + @ir.00(xs) AP (@),

which is equivalent to saying tha, 22 E(F|F,-) and that — H, (o) is left-continuous.
We first show thatH, £ E(F|F,-). To this end, letG be a bounded and, -
measurable functional. Thek(w) = G(w)0,xs) and

E(GH,) = / G (w)10,11x 1) F(@)0,41x 7 + O|f1,00[x.) dP(w) dP' (&)

= /(GF)(CUMOJ[xJ + O|[1,00[xs) AP (@) dP'(®).

Since (wjj0.xs + Ojr.0(xs) has exactly the law? underP(w) ® P'(@), we get that
E(GH,) = E(GF), and thusH, = E(F|F,-).

Then we show that?, is left-continuous. Fix > 0 and let(z,),>0 be an increasing
sequence towards Let alsos, = — 1,,. Forn large enoughd > no(w)), o ([t,, t[) =0,
and the number of jumps up to timeor ¢, is m; = N,(w). Let us denotel; =
Ty (@), ..., T, = Ty (@), and 1etT, = T (&r.00ixs) € [t, 00 be thekth jump of @.
Then, undeP, the sequence of jumggy, ..., Ty, ...) has the law of 71 +6,,, . .., T +
8,, ...) underP’. Therefore,

H, (0) = /F(wl[o,t,,[xj + @11, 00[xs) AP ()
= /f(Tls MR Tmls Tl’ cee Tm—ml)d]P)t” (5))
= [P T Tt 8 Ty 50 4P @)
ri;o/f(Tls MR Tmls Tl’ cee Tm—ml)dpt(d))
Since f is assumed to be smooth and bounded, we used the dominated convergen

theorem in the last-but-one line. Thik is left-continuous, and the proof of Lemma 2.2
is complete. O
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LEMmMA 2.3 (Jensen’s inequality). et W be a process that admits a predictable
projection. Then

("W)2 <P (W),

More generallyp(PW) < P (W) for any positive convex functianonR. If 7| W] is not
necesseraly finite, we still have that

("W)* L <oy <P (W2). (12)

Proof. —Assume first that admits a predictable projection. For every predictable
time t we have

@ ("Wr) = p(E(W:|F-)) <E(p(W)| Fo-) <Po(W),.

It follows thatp (P W) < Pe(W). If 7|W] is not necessarily finite, the expressior’of is
given by the previous lemma. W |, (w) = oo then obiousy” W, ()21 wi, (@) <co} =
0< P(W?), and on the set|W|,(w) < oo we have

("W (@))? = ((B'W,) (@040x))°
< E (W) (@0.1x7)
=7 (W?),(w).

The proof of Lemma 2.3 is thus complete
2.3. Derivative operator

In this part we introduce (following [8] and [9]) the derivative of a functioral
defined ons2, wich will play the role of the Malliavin derivative. Several operators have
already been defined on Poisson spaces. In [2,4] or [10] an operator is defined by shiftin
the atomsT,, of the point process. In this work we need a different operator obtained
by adding atoms, but which is no more a derivation. Let us now be more precise. The
derivative of a functionaF’ defined on2 is the proces®, F = Foe, — Foe, , where, if
u = (t, j), the transformatior; (resp.c, ) adds an atom at tlmeand dll’eCtIOI’lj if there
was none, and removes all other atom at tinfresp. removes the probably eX|st|ng atom
attimer), thatis:e; (w) = wy\ (s + 8, ande;, (w) = DU\ (1) Notice thats;" (w) =
for P x N-almost every(u, w) and thate, (w) = o P x N-almost everywhere. Let us
denote also by the measur® x (N + N) on 2 x (RT x J).

The following essential proposition is proved in [9, Théoreme 1].

PROPOSITION 2.4 (Isometry formula). -Let P be a Poisson point process on a space
V with intensityP. Let Z, be a positive]P x P or P x P-integrable process such that
D,Z,=0forallve V. Then

E(/ ZvdP(v)> :E(/ Zvdﬁ(v)>. (13)

14 Vv



C. ANE / Ann. Inst. H. Poincaré, Probab. Statist. 37 (2001) 101-137 109

We first use this isometry formula to show basic propertiestadnde~.

PrROPOSITION 2.5. — Let G be a functional ons2. Recall thatu is the measure
Px(N+N)onf2 x U.
(i) If G =0almostsurely, thewoe; =0andG oe, = 0for u-almost everyw, u).
It follows that the proces® F is well-defined in the sense thatAf= H almost-
surely, thenD F and D H coincideu-almost everywhere. R
(i) If G =0 almost surely, therG o ¢f o ¢* =0 for u x (N + N)-almost every
(w, u,v).

Proof of(i). — Sinces;" (w) = w P x N-almost everywhereg; o e;f =0 P x N-almost
everywhere. Applying Proposition 2.4 to the procgss ¢; | yields

E/]Goe;\dﬁ=E/yGoe;\dN=E<|G|/d1v> —o.

ThereforeG o ¢ also vanishe® x N almost everywhere. Similarly, applying Propo-
sition 2.4 to|G o ¢, | implies thatG o ¢, = 0 p-almost everywhere. The proof of (i) is
thus complete. O

Although (i) shows thaD F is definedu-a.e. for an almost surely defined functional
F, we must be very careful with the proceBs’, since F = H almost surely doesot
imply that DF and D H are indistinguishable processes. Take for instafiee 1,7, _1;.
ThenF £ 0, butP(3u; D, F #0} =P{3u; Foel #0} =P{T1 >1} > 0.

In order to prove (ii) we need the following corollary which extends the isometry
formula (13) to processes with several parameters. It is proved by iteration in [9].

COROLLARY 2.6.—LetZ,, u= (uq,...,u;) € U*, be a non-negativé parameters
measurable process such that = 0 as soon as two parameteis = (1, j;) and
up = (ty, jr) have equal timeg = #,. Assume that for alloes, ..., ) With orj € {+, —}
and allu= (u1,...,ux)

a1 [C7
Z,o0 €,,0 108, = Zy.

Define alsoN* = N and N~ = N. Then

E< [ zeansu - -ane (uk>)

does not depend on the sequenes ..., o).

Proof of (ii). —Assume thatG Z0.If u; = 1, Ji), ar, o € {+, =} and if 1, = 1,
we already know by (i) thaG o &;! o &;2 = G o g, = 0 for p-almost all(w, ug). In

order to show thatly,.,,,G o X o e =0 u x N* almost everywhere, take= 2 and

uq us

Zuyup = L) G 0 €71 0 g;2. By Corollary 2.6 we get that

E / G o it 0e2?| AN (u1) N2 (us)

Uup
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uq

—F / |G 0 % 0 62| AN (1) AN“2(u)

:}E(lGI / dN“l(ul)dN“Z(u2)> =0.

1112

ThusG o guil o guiz =0 for . x (N + N)-almost every(w, u1, uz), and the proof of part
(i) of Proposition 2.5 is complete. O

Before turning to the next paragraph, we give the expression of the derivative
when F is a cylindrical functional. First také" = f(B,). If there is no jump at time
s with s <1, then D, jF is just f(tY'B,) — f(B,) = DY) f(B,) where DV f is the
function f o ) — f on{—1, +1}¢. If the walk jumps in directiorj at times < ¢, then
D yFis f(B,) — f(tYB,) = —D"Y f(B,). Therefore

D(s,j)F — 1{X<t}(_1)1\7({(&./')})D(j)f(Bt)

w-almost everywhere. More generally, |[Bt= f(B,,, ..., B,). As before, adding an
atom at times moves up to time,, and

Dy F = ()N (r(B,,...,B,_,TB,,....,t9B,)— f(B, ..., B,))

ont_; < s < t; andu-almost everywhere.
2.4. Asymmetric random walks

One may skip this paragraph for the reading of the core of the paper (up to Section 5)
We shall meet the processes described here in Sections 6 and 7 only. In these sectiol
we let the process spend more time in one direction than in the other. More precisely, wi
wish to consider the generator

d
LA =>4 (for¥ = f)(x).

j=1

wherex; > 0 on{+1, —1}. If the random walk stands at then it will jump in direction
j with rate; (x/)). As it depends on"/) only, the process$B,), -, associated th. has

independent coordinates and ea(<B;f”),>0 is an asymmetric continous time random
walk on {+1, —1}, jumping from—1 to 41 with ratei ;(—1) and from+1 to —1 with
rate A ;(+1). Therefore, if we take for simplicity/ = 1 and lay down the superscript
(), the waiting timeT; has an exponential law of parametdiBy), and more generally
T,4+1 — T, is exponential of parameteBr,).

The invariant measure associated to our process is the product measute
®9_y s, With 1, (+1) = 1;(=1)/4; and p;, (1) = A;(+1)/A;, where A; =
2 (=) + 2 (+1).

In the previous paragraphs the case= 1 was considered. The random point process
associated to the jump8 = 3", -, 7, ;,) Was a random Poisson measure. This is no
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more the case here, since the law of the waiting tiffig.; — 7,,) depends on the past
of the process through its positionat time 7,.. Let P, be the law on(2 of this point
process. Thet®; is determined by its compensatdk, given by (see for example [7,
Theorem 1.33, p. 136])

Ny (dt, {j}) =1, (BY) dt.

The filtration (F;),>0 considered is the same as for the symmetric random walk.
Therefore it still holds that a functionak’ is F;-measurable if and only iff =
F(w)j0.1xs). Similarly, Y = (Y;(w)j0..1xs)):>0 Still characterizes the predictable pro-
cesses.

The predictable projection of a bounded or non-negative prodess defined as in
the symmetric case by

PW, E B, (W, | F,-) (14)

for any predictable time. Then Lemma 2.1 still holds. Indeed; (dt, J) is a predictable
measure (see [5, Chap. VI.2]), so that for alK d and all bounded or non-negative
processedv,

EA/ W,A?A(dr,j)=EA/"W[ﬁA<dr,j>.

Lemma 2.2 giving the expression 8 also holds forP;, replacing the lawf" of
the translated point process by the IHQ\/B” of a point process ofr, co[ x J starting at
x,- = B,- and with compensator; (x'”') ds on each, co[ x {j}. It yields

_ B~ , -
th(w):/Wt(wl[O,t[xJ +w|[t,oo[><1)dP; (@)

= (E\W,) (@10.:D)- (15)

We turn now to the derivative operator, which was already defined in the previous
paragraph. The definition of the transformatierfsdoes not involve any measure, so
that we may wonder if Proposition 2.5 is still true fBy. The stake is to be able to define
the procesD F if the functional F' is only almost surely defined. This is indeed the case.
To prove it, we need to compare the asymmetric random walk and the symmetric one. |
is shown in [7, Chap. IV.2 and IV.4] th&@, is locally equivalent td, which means that
for eachr > 0, the restrictions oP, and of P to 7, meetP; £, ~ IP\z,. More precisely,
the density procesg such thatP, r, (dw) = Z,(w)P £, (dw) is given in [7, Chap. III.5]
by

t

Z,(w)zexp</(1—k(xs))ds> I[ »Gz) >0

0 n; Ty <t

Therefore, the measures; = P, x (N, + N) and o are locally equivalent, and
Proposition 2.5 is easily extended as follows.

PROPOSITION 2.7. — Let T > 0 be finite and lelG be anF;-measurable functional
ong2.
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(i) If G =0P;-almost surely, their o ¢ =0and G o ¢, =0 for u;-almost every
(w, u). It follows that the proces® F is well-defined in the sense thatfifand H
coincideP, -almost-surely and areFr-measurable, theD F and D H coincide
uy.-almost everywhere.

(i) If G =0TMP;-almost surely, then an@ o e o X = 0for w; x (N + N,)-almost
every(w, u, v).

3. Gradient arising from Poincaré inequalities

In this section we deduce a Poincaré inequality from the study of cylindrical
functionals. In the first part we prove a Poincaré inequalityoB) = f(B,,, ..., B,,)
in which the energy involves the times ..., 7,. Then in the second part we express
this energy in terms of the gradiem, F. This expression is well defined, not only
for cylindrical functionals, but also for all bounded ones (for instance). The Poincaré
inequality may thus be extended to this class of functionals.

3.1. Poincaré inequalities for cylindrical functionals
In dimension 1 the law 0B, starting atBy = x is given by

1+ xye?

P*{B, =y} =pi(x,y) = 5

More generally,
P*{B, =y} =p{ (x,y) = Hp W y9)

Therefore one may tensorize the Poincare mequallty (1) to obtain, for all cylindrical
functionalsF = f(B;), and for all dimensiond € N*

E(F?) —E(F)*<

Al

(1- e—4f)E<2d:(D<-/’>F)2>, (16)

j=1

whereD) acts on thejth coordinate asD) F)(B) = (f o ) — £)(B,).

Now we extend (16) to all cylindrical functionals. In dimension 1 we recover
inequality (2) mentioned in the introduction. This Poincaré inequality was already
presented in [1].

PropPOSITION 3.1. = If F(B) = f(By, ..., B,,) withO=1y <t; <--- <t,, then

E(F?) —E(F)* < Ex(F)
2

_Zi 1—e 4(ti—t;— 1) ((Z 72(”( tl)D(/)FOT(]/‘) 1) >, (17)

jlll

where the discrete derivatives Bfare defined by
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(DY’Fot )(B)= (D f)(By, ..., By 1. T By, ..., 7By . By, ..., By,),
and
(Blg'j)f)(xl, e Xp) :x,ﬁ")(f(xl, o T2 X)) — f (X, . X))

Proof. —Since thel coordinates of the process are independent, (17) follows from the
one-dimensional case. Thus we assuime 1. The law of(B,,, ..., B,,) is the measure
on{—1, +1}" given by

d P (x1, x,) = Pi, (X0, X1) - Py, nt. Xa) dxa ...y,

wheredx denotes the counting measureferil, +1}. By induction on (16) we get that

F2=/f2dP< (/fdP) +Z e_% i /(Dﬁ V24P,

where f, = f and fi(x1, ..., x)) = [ fira(rn, - Xig)PE g (6, Xiga) - dxiga for i <
n — 1. Therefore it is enough to prove that

n
x;i D f; =/<Z e_z(tk_ti)kakaTi,k1>

P
X ptlm_ti (Xi, Xip1) - pg-n—tnfl(xn—l, Xn)dXiyy...dx, (18)

since by Jensen’s inequality it will follow that

(Diﬁ)2</<zez<tkti)kakaTi,k—l>

k=i

2

1 1
X Pgyyq—t; (Xis Xiga) -+ Pty g (Kn—1, X)) dXi1 .. d Xy

In casei = n, both sides of (18) are equal. Then (18) is easily proved by iteration, using
the caseé = 1 andn = 2. Thus we only show (18) in that case, that is:

x1D1 f1(x1) = /(Xlle(Xl, x2) + €722 Wy, Dy f (—x1, Xz))ptlz,tl(xl, X2) dx;.
Letu =1, —t1. Then
Dy f1(x1) = fi(tx1) — f1(x1)
=Py (f(tx1, ) — PR(f(x1, )
= (Pi" = Pi) (f (tx1,9)) + PR ((Daf (x1, ).
SincePyg = g + 3(1— e ) Dg for an arbitrary functiorg,
—2u

1_
(P —PY) () = (g(rx) — g(x)) + > ((g(t(zx)) — g(zx))

— (g(rx) — g(x))) =€ Dg(x).
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Applying this tog(x) = f(rx1,x) and using the fact thatDg(x) is constant, we get
that

x1 (P — P (f (tx1, ) = € *x2D f (X1, X2)
= / (€72x2Dy f (TX1, X2) ) PL(x1, X2) dx2.
The proof of Proposition 3.1 is thus completen

3.2. Extending the cylindrical Poincaré inequalities

The aim of this part is to give an expression&f(F) defined by (17) in terms of the
gradientD, F only, so that this expression is well defined for all bounded functionals
(for instance). The following proposition corresponds to (6) in the introduction when
dimensiond = 1.

PROPOSITION 3.2. — Let F be a cylindrical functionalF(B) = f (B, ..., B,,), and
T =t,. Then the energ¥..(F) defined by(17) satisfies

2 .5 .
Ecy|(F) =E / (D(t,j)F — W([’j)) dN(l, ]), (19)
[0,T]xJ
where

T
W) =/Ze_z(s_’)(—l)N(]t’s[x{j})(D(s,,j)F°€(+z,,/))ﬁ(ds,j)-
t

Remark 3.3. — This equality shows that V@) < £«(F) holds at least for bounded
Fr-measurable functionals. In the next section we will recover this inequality from a
more general statement.

Proof of Proposition 3.2. We may takel = 1 since the argument is the same for each
term of the sum ovey. Recall that

2

"1 — e AHi—tic) n -
Ea(F) =" fla > e ?TIDLF oty

i=1 k=i
with DyF o 7, 1= Dy f o T 4—1(By. ..., B,) and

kaori,k_l(xl,...,xn):xk(f(xl,...,—xi,...,—xk,...,x,,)
_f(xl""s_xi""s_xk—lsxks~~~sxn))‘
We prove (19) by induction on the numberof times. Fixn andF = f(B,, ..., B;,).
Fix also the process o ,,; Up to timet;, and consider the point proceds;, o ThenF

is now an(n — 1)-cylindrical functional ofw. Hence the induction assumption implies
that

T 2

. "1 — e M-ty [ 1 -
E (/ (D,F — W,)zdt|}',l> =F (Z — (Z e 2= D F o ri,k_l> ]}}1> .

1 i=2 k=i
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It remains to show that

11 2

/ (D,F — / 226D (—NUsD p F o ejﬁ(ds)> dt
0 16,71
l—e% (2 ~ ?
= T (Z e 21 D, F o Tl,kl) . (20)
k=1

To this end, fix a time < ]0, #1[ without jump, and notice that the quantity- 1)V x
D,F o &/ is constant on each;_1, #;[, namely

(—DVNID Foe =Ai(B,, ..., B,) ifselt1, 1l

whith A; = f(-B,,...,—B,,_,,B,....B,)— f(—=B,...,—B,). WeletalsoA, 1 =
0. Moreover, notice thab, F = —A; = —f(By,,...,B,)+ f(—B,,...,—B,,). Hence
the left-hand side of (20) amounts to

1

/ (- Ay — Ay / 2e 2670 (—NISD N (ds)

0 It.,11]
n 2
-> A / 2e—2<f—’>(—1)N<]f’s]>1\7(ds)> dt. (21)
=2
Fortunately, we have the exact formula, foradf T,
/ 2e72(s7t)(_1)N(]t,s])ﬁ(ds) =1+ (_1)N(]t,T])efz(T7t). (22)

16.T]

This identity is a particular case of the integration by parts formula, valid for any smooth
functiong onR:

/ g()(=DNUD2N (ds) + / g () (=DNUD gg = (—NITD o (T) — g(2).
1¢,T] 1¢,T]

Thanks to (22), we show that (21) is equal to

1

/ (_ Age 200 (_1)NtaD

0
2

n
+ Z Al,e_z(ti—l_t)(_1)N(][,[i—l])(1 _ e_z(ti_[i1)(_1)N(]ti1»ti]))> dt
i=2

2

1 n
— /8*4(11*t)dt (—Al(—l)er + ZAi(efz(ti—lftl)(_l)}vti,l _ ez(litl)(_l)/\’z,->>
0

i=2
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2
_1- e—“f1 d

Z T (DM (A — A))

2

_1- e*“’l é
(Z e “)B,,.(AM—A») :

The last equality follows from the fact that-1)" = BB, and B3 = 1. It just remains
now to identify B, (A; 11 — A;) with D; F o 71;_1 for i <n. This is immediate from the
definition of theA;’s. The proof of Proposition 3.2 is thus completex

4. Clark—Ocone formula

In this part we prove the Clark—Ocone formula (9) in dimension 1.

THEOREM 4.1 (Clark—Ocone formula). +eta = (a1, ..., ay) € RY. Let Ny be the
number of jumpV ([0, T'] x J) occuring before time T, and l&t be anFr-measurable
functional such thak(Ny|F|) < oo, which implies thatF € L1(£2). Recall that is the
measuréP x (N + N) on 2 x (R* x J).

() Define z{") = 1;,_j2e 20~ (—)NIUN(D(, Foel ). Define also the

processes

Wi = / ZED(N — N)(ds, j).

1,7]
Then the predictable projectioh|W/|,(w) is finite x-almost everywheréa.e),
and” W/ (w) = 0 u-almost everywhere.
(i) Consequently,

F—E(F) = / HEN (du), 23)
[0.77xJ

where H ;) = (E"(D¢ ) F + ajW/'))(w”o‘,[X,) is definedu-a.e. It is the pre-
dictable projection oD ;) F +a; W/ onthe se{”| D F|, < 0o, P|W/|, < co}.

Remark4.2. — It would be possible to replace the constants. ., o, by determinis-
tic functionsa (1), . . ., ay(¢) (bounded for example), or even by predictable processes. It
would also be possible to replace the factor?e” by ae~*“~" for example, because
as far as it remains deterministic (and reasonable), it doesn’t modify the proof. This las
choice would lead to the Clark—Ocone formula (23) were, in dimension 1 for instance,
the proces¢1® would be the predictable projection of

T
DF — / ae @6 (—NUSD(D F o g )N (dr).
0

It is this last formula that is very similar to the Clark—Ocone formula for a diffusion
with constant Ricci curvature equal ta2The Poincaré inequality coming from the
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cylindrical method would suggest that the “curvature” of the process is 4. However, the
latter formula indicates that this intuition might not be the right one.

As explained in the introduction, introducing the parameteseems artificial and
Theorem 4.1 seems to be odd since we just add zero to the already known martinga
representation. Actually the applications prove the contrary. That is why we start by the
following corollary. The proof of Theorem 4.1 will follow.

COROLLARY 4.3 (Poincaré inequality). Let F € L1(£2) be an Fr-measurable
functional such thalt (N7 |F|) < oo, and leta = (a1, ..., ay) € R?. Define the energy
of parameter by

T

d r
5a(F)=ZE< / (D(,,.,-)F+a‘,~ / 2e 2670 () NUrsbxtiD
j=1 0 t
2
X (D(s,./')FOg(t,j))N(ds,j)) dt)- (24)

Then
E(F?) —E(F)*< &,(F). (25)

Proof. —It follows by a by now standard method. As developed in [3,11] and [1],
representation formulas enable to deduce Poincaré inequalities, logarithmic Sobole
inequalities, or modified logarithmic Sobolev inequalities.

If & (F) = oo then (25) is trivial, and otherwise the martingde = E(F|F;) meets

2 S
(M), = / ("D F +a; W) i Fly<co.rwil,<oo) AN (2, ),
[0,2]1xJ

so that
E(M% — M&) =E(M);

. 2 ~ .
=K / ("(De.yF +a;W/),) 10D ;) Fli<co.r| Wil <oo) AN (1, )
[0,T]1xJ
, L
<E / "((De.pF +o;W/)7)dN(t, j)
[0,T]1xJ
=E / (DapF +o;W/)"dN (@, ).
[0,T]xJ
In the third line we used the Jensen’s inequality (12), and in the last one Lemma 2.1. A:
E(M2) =E(F?) andE(M3) = (EF)?, we get (25). O

Proof of Theorem 4.1. Fhe representation formula (23) is already known with O
[1]. Furthermore, it was shown there thgtD. ;) F|, is finite u-a.e. as soon ag is
integrable, so thak° is well defined. Thus we only show (i).
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This proof is divided into two parts. We first prove an integrability property,
corresponding somehow to the finitenes$|d¥ /|, and then we deduce thaw/ = 0.
Let V be the non-negative process

Vi= [ 1207/ + Nyds. ).
16.T]

We start by proving thatV/ is finite ;.-almost everywhere. Notice thEW,-’ | < V,-’ , SO
that it will give the finiteness of|[W/| u-almost everywhere. Recall that the predictable
projection ofV/ is given by

PV () = / V/ (@po.11x7 + @ corx) AP (@) = (E'V/ ) (@po0,11x0)
whereP" is the the law of a Poisson point processon [z, o[ xJ with intensity (or
compensator} P = ds on [t, oo[x{j’}, and whereE’ is the expectation with respect
to P'. Now, for fixedu = (z, j) andw € £2, using the isometry formula (13) twice for

this translated Poisson point processn ¢, oo[ x J and forZ, (o) = |Z§’J)|(w|[o,t[xj +
®[1.00[xs) (for which D, Z; = 0) yields that

T
pvtj(w”OJ[X-/)ZZE[/’Z;[‘dS

t

T
2! / 262 (|F ot oet | +|Foel , oen ) ds
/ 268N (|Foel ot |PWs, )+ |F ot oep | ds)

_ZEt/z e 250 (|Foel ;)| PWds, ) +|Foel ;| ds)

< 2B (260, T1 x {j}) + 1) |F o el ;)).

Since ]lfw([o,t[xj)gn}”v/ is exactly"V/ for largen, it is enough to show that for all
n € N, this quantity is finiteu-almost everywhere. To this end, we evaluate

T T
E(/ 1{w<[o,z[x1><n}pv/df> < Z/E(l{wqo,z[w)@}Et((2@(]% T1x{j})
0 0
+1)[Foef j[(@onxs + @ rixs))) dt

T
- / E(Loounen (2006, T1x {j1) + 1) |Foef|) dt

Using now the isometry formula (13) for the original point process, we deduce that



C. ANE / Ann. Inst. H. Poincaré, Probab. Statist. 37 (2001) 101-137 119

T
E (/ 1{w([0»1[><-/)<”}pvtjdt>
0

T
<28 [ Lugouenan @0, T x () +1)|F o e, INGr, )
0
T
_2E / o1y (20 (1, T x (j}) + D) FIN 1. j)
0

T
< 2E@N; + )| F| / Loq,, N1, )
0

< 2nE((2Nr + )| F|) < oo.

It follows that”V/ is finite P x dr-almost everywhere. Moreover, sindg,do /(x)<n)
PV (@y10.41xs) does not depend an({r} x J), we may apply the isometry formula (13)
once again to get that

T T
E(/ 1{w([o,z[xj)<n}pV,jdf> :E</1{w([0,t[><])<n}pV[jN(dt,j))s
0 0

which is thus finite. This completes the proof that/ is finite n-almost everywhere.
Now we fix (w, u), u = (¢, j), such that’' V/ (w) < co. Then? W/ (w) is well defined
by

PW/ (w) = / W/ (@j0,11x7 + @|i1,00(x1) AP (@) = (E'W/ ) (@y0,11x.1)-

The processZ, (@) = Z" (wjj0.1xs + @|1.00[xs) SAtisfiesD;Z; = 0. Moreover it is

P’ x P integrable since we exactly hav&’2/" | Z,(&)|ds = ?V/ (wjj0.1xs). Thenitis an

easy matter to apply the isometry formula (13) to the translated Poisson point process C
[¢, co[x J and to get’ W/ (w) = 0, which ends the proof of (i) and of Theorem 4.1

5. Examples

In this section we evaluate the eneigy(F') for variouse’s and functionals?.
As &,(F) is polynomial of degree 2 in, it is minimal fora = «™" given by

T T _1
o= - (E /(Du,./)F)Wi/ df) (E/ (Wi/)zdt> ,
0 0

whereW is defined in Theorem 4.1.
We are interested ia = «™", but also in the way,, (F) varies with 7. We will thus
be looking, as far as possible, for explicit expressions and bounflg Y.
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In the first paragraph we consider the number of jurAps Ny = N[O, T'] up to time
T. In that case the enerds(Nr) gives the best estimate of the varianceNVgf, since it
is equal to vafN7). More generally, we recover this behaviour for any functional of the
first chaos.

In the second paragraph we give examples wisergF') is the lowest energy. The
first example is provided by cylindrical functionals= f(B7), for which we exactly
have&_,(F) = var(F) while all other energie§, (F), « # —1, are much greater. Notice
that (—1)» = ByBr is such a functional. The second example of this paragraph is the
productF = (—1)"* N, of two functionals studied before.

Finally, the last paragraph deals with= a"7 and shows that for that functional
a™N = —1/2 + 1/(2a) for all T. Therefore for every® e R («® # —1/2), there is a
functional F for which «® minimizesé&, (F).

5.1. Examples for whicha = 0 gives the lowest energy

Such examples are produced by functionals of the first chaos (in what concerns Foc
spaces, see for example [8]). These functionals are of the fgryiiu) dN (u) for some
function f € L2(U,dN). This quantity is just the Stieljes integrdl f (u) dN (1) —

[ fw)dN(u) if f € LY0,T]x J. We assume here that € L%([0, T] x J) and we
let

Fe / fF@wdNw =Y f(T. j).

[0,T]xJ n T, <T

The choice off = 1 leads to the number of jum@= Ny .
Let us examine first the variance Bf We have that

d T
EF =E / f(u)dﬁ(u):Z/ (t, j)dt
[0,T]xJ i=19

and that

var(F):E(F—EF)2=E</f(u)d1\7(u)>:E / F2(u)dN (u).

[0,T]xJ

Hence

d T
var(F) = Z/ 2(¢, j) dt.
J=19

Now we turn to the energieS, (F). As D ;,F = f(t, j) and D, j F o e[ ;y = f(s, j)
we get that

d T
EP=EY. [(Ft.))+o;mi ) ar

J=179
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whereM ("), u > 1t, is the martingale

Mﬁ”=L/2@ﬂﬁ?ﬂa1x—DN“““mN0hx{ﬂ)

1t,u]

ThusE(M"") =0 andd (M), = 4e~4=1 £2(s, j))N(ds x {j}), so that
E(M{D?) = B(M®D) Dy = /4e—4(s—f>f2(s, j)ds.
Finally wheno = 0 we exactly get

d T
Eo(F) = Z/ f2(t, j)dt =var(F)
i=10

while
d
Eo(F)=E(F)+ Y af //4e As=0 £2(5. i) ds dt
=1 7
d T
=mm+2#/a &) f2(s, j)ds.
=1 Q9

Therefore, all the energieg, (F) are larger than or equal & (F), but still of the same
order, in the sense that

var(F) = Ey(F) < E,(F) < (1 + maXa )var(F)
Remark5.1. — If we consider now a functional of th¢h chaos

F= / f(usy ..., u)N(duz) ... N(duy,)
uiFuj

for a symmetricf in L1(R*)", it is not so easy to evaluate its energia$F) since its
derivative

D,F=n / Fur, ... tun_1,ON(dur) ... N(du,_1)
wiFu Ui F#t

is no more deterministic. However, it is known that

var(F) =EF?=n!|| {2y
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and we get immediately that
T
Eo(F) = / E((D,F)?)dt =n*(n = D f |2+ = nvar(F).
0

Unlessn = 1, & (F) is greater than the variance Bfand may not be the minimal energy.
5.2. Examples for whicha = —1 gives the lowest energy

5.2.1. One-cylindrical functionals

Let F = f(Br) be a one-cylindrical functional. We consider the cdse 1 to start
with. In our setting(—1)"" = BBy (or =[1¢_, By B’ in general) is a particular case
of such a functional. We first evaluate the derivativeFoflf there is no jump at time
t <T,then

D,F = f(tBr) — f(Br) = Df (Br)
and fort < s < T we have thaD, F oe;" = —(—1)"Y Df(By). Therefore the quantity
W, is

W, = —Df(Br) / 26 26-0 (NSO N (ds).
1.7]
Recall the exact formula (22)

/ 2872@7[)(—1)N<]t’s])j\7(d5) -1 + (_1)N(]I,T])efz(7"7t).
16,71]

The energy, (F) is now easy to evaluate. Namely,

T
E,(F)=E / (D, F + aW,)%dt
0

2

T
=E/(Df(BT))2<1—a / 2e2(")(—1)N(]"S])N(ds)> dt
0

10.T]

T
/E((Df(BT))2(1+ o — a(— NI 2T-0V?) gy
0

where we used (22). ASDf(B7))? is a constant antl((—1)VI7D) = 27D we get
that
1—e*
E (F) = (Df)z((l—i— o)°T —a(2+ a)T).
Whena = —1 it becomes obviously
1— —4T

€ 4(F) = = —(Df (B)’ =var(F),
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but wheno # —1 then&, (F) > £_1(F) and&,(F) ~ 4(1 + a)?E_1(F) T explodes as
time T tends to infinity.

Now, for arbitrary dimensionl > 1, &,(F) is still minimized ata = (-1, ..., —1),
and

T
E(F) = /E((D”)f(BT))Z(lJraj _ aj(_1)N(]t,T]x{j})efZ(T—t))2) dt.
=19

WhenT is large,

1— —AT d

Ecn(FB) == — Y E((DV £ (B))
j=1

tends to a constant, But if one @f # —1

d
EF(BD) ~ > A+ a)?E((DY f(B)*)T.

j=1

5.2.2. Mixing two previous examples

Now, we turn to the functionaF = (—1)"” N; in dimensiond = 1 (without loss of
generality). We have seen that the energy-ef)"" is lowest fora« = —1, whereas it is
lowest fora = 0 in case ofN;. We shall see that the behaviour @f1)"” is the most
important. More precisely, we show that asymptotically(¥gr~ T2 and&_1(F) ~ T?
whereast,, (F) ~ 4(1+ «)? T2 for o # —1.

Let us start with the variance @f. As N7 is Poissonian with parametétr, the mean
of (=1)N* Ny is —Te 2", and its variance is

T—o00

var(F) =T?(1—e*") + T <7712

Now we want to evaluate the energy of parametetf there is no jump at time we
have thatD, F = (—2N; — 1)(—=1)" and

DF o0& = (2(Ny + 1)(=)NED 4 1) (—1)M7.

Then we have that

T
W, = / 2e7 2670 (NSO D F o e N (ds)
't
T
=2(N7 + 1) (=D / 267260 (—NULSD N (ds)
t

T
+ (=D / 2672670 (—NUISD N (ds)
t

— Z(NT + 1)(_1)NT (—l+ (_1)N(]I,T])efz(7"7t)) + (—l)NTM(I),
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using (22) and the martingale"’ introduced above,
M©® = / 267260 (=N N (ds). (26)
t

It follows that

T
EJF)=E / (D,F + aW,)?dt
0

T
—E /(—ZNT —1—2a(Ny 4+ 1) + 20(N7 + D) (=D)NITDe2T=0 4 o pr®)2 ;.
0

Takinga = —1, we get that

T
E1(F)=E / (1= 2(Ny + (=N TDg2T=0 _ ppi0)2q;
0

. . : . 2
Developing the expression leads to the following estimdtgai2) ~ 72, }E(M}” )<1
as we have seen in Section 5EN7) ~ T, and finally

ENyMY| < E(N2)E(MD?) = OT).

Thus

T—o0

E(F) =712
Assume nowx # —1. New terms appearing in the expressior€gfF) are of order
O(T?), exceptE [ 4(1+a)?N2dr, which is of order 41 4 «)? T3. Hence

T—o0

EL(F) "7 41+ )°T3,
This indicates thaf, (F) is “much” greater thag_,(F) whenT is large.
5.3. Other examples
In this paragraph the case= a7, a € R, is treated. By convention, if = 0 we set
F =1 =0
PrRopPOSITION 5.2. —For all T and all «,

N (a—1)° (@2—1)T 2 2
Eula T)=me (2aa+a—1"+ (@+1))T

1— e72(a2+1)T

2 2
_((Zaoz—i-a—l) —(a—l)) 2@+ D)

(27)
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It follows thatae™" is exactly(1 — a)/(2a) for everyT, and that there is explosion in the
sense that, (a™7)/var(a™7) tends to infinity wher™ becomes large, whenever# 1
and (a, o) # (-1, —1). Indeed,

var(a"t) ~e“* V7 and &,(a"") ~ C(a,a)Te“ DT
for some constant(a, «) depending only oa and«.

Remark5.3. — As a by-product, this example shows that fordle R, o® # —1/2,
there exists a functional such thax® minimizes&, (F). More generally, this property
is still true in dimensiond for all «® € R such that eack # —1/2. The restriction
«® #£ —1/2 comes from the examples we have chosen, but there is no reason a priori fo
which —1/2 # ™" for any F.

Proof. —We first evaluate the derivative @f. If there is no jump at time < T then
D,F = (a — 1)F. If moreovers > t, thenD; F o &;" = (a — 1) F if the process jumps at
times, andD,F o &}t = (a — D)aF if it doesn't. It yields

T
W, = / 2e726=0(—NUsD D F o g N(ds)

=(@—-1F / 2672570 (—)NUSD (N (ds) — ads)

T
1 -
5 /2672(.8‘7[)(_1)N(]I»S])N(ds)

=(a—-DF
a+1

T
/ Ze—Z(S—t) (_l)N(]t,Y[)N(dS)

a—1 a+1 1

whereM " is the martingale introduced in (26). Therefore the energy becomes

T
E(F)=(a— 1)2/E{F2<1—aa ; 1
0

“Lpramgarn 4 2t er 1M<T’>> }dt. (28)

a
+ o

Now, we simply compute the various expectations involved in the expression (28),
that is to sayE(F2), E(F2(—1)N0-Thy E(F2MY), B(F2(—1)NI-TD p{0) | and finally
E(F2M{’).

The first ones are easy? = (¢ and F2(=1)NU-TD = (g2)NIOD (_g2)NALTD gg
that

E(Fz) _ e(all)r
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and
E(FZ(_l)N(]t,T])) — @@= Dig(=a®=1)(T—1) _ g(a*~DT g=2a*(T~1)

For the next expectations, we S& = aNSL so thatF = Fr. As d(F?) = (a® —
1)F2 N(ds) anddM{" = 2e72¢=0(~1)NUrsD N (ds) we have that
d(F?M®) = F2dM® + M"d(F?) + A(F?) A(M©)
= d(martingalg + (a® — 1) F2 M"ds
+ (a? — 1) F2 27260 (— )N U< g,
Taking expectation yields

d
TE(FMY) = (a® - YE(FM") + (a® = D2e T VR(FE (-)"D)
N

_ (a2 . 1)E(FYZMS(I)> + 2(a2 . 1) e(az—l)se—Z(a2+l)(s—t)‘
It follows that

2
20y _ 4 =1 2y 20+ 1)(T—1)
E(F MT)_02+1e (1—¢ ).

Notice that the latter is also equaliga?" (¢2)N 7D ML) = E(@?)E((a®)N T p{)

by independence. BUF2(—1)N-Thp{) = 42N (—g2)N(eTD 1) 50 that we deduce
from the preceding that

2
—ac—1 2 2
E(Fz(_l)N<]t,T])M¥)) — e<¢,271)z o 1e(7a 71)<sz)(1 _ g 2-a +1)(T7t))
—a

2

ac+1 > 2

— e(a —1)T(e—2a (T—=t) _ e—Z(T—t)).
a?-1

12
T

It remains to evaluat&(F?M;’"). Using the same method as before, we have that

2 2 2 2
d(FPMO%) = F2d(MD%) + MO d(F?) + A(FA) A(MD7)
. 2
=d(martingale + F2d(M") + (a* — 1) F2 M""N (ds)
+ (a® = 1) F2 (2MP2e726=D (=N Ursh 4 474D N (ds)
. 2 .
= d(martingalg + (a® — 1) F2 M"" ds + 4a’e *“ "V F2 ds
+ 4(02 _ 1)6_2(‘Y_I)F27 (—1)N(][’S[)M(t) ds
s s .
Taking expectation shows that

o200 = (¢~ E(EMO) + adPe b
S

2
act+1 o 2 '
+ 4(612 . 1)672(570 > 1 e(a —1)s (e72a (s—t) _ 872(570)
a2 —

= (a2 — l)JE(EYZMS(’)Z) _ 4e—4(s—t)e(a2—1)s

. 2 .
+ 4(a2 +1) g 2@+ 1) (s—n) gla*~Ds
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Therefore,
E(F2M¥)) e(aZfl)T(l_i_ —A(T—t) 2e’2("2+l)<77’)).

Provided with these expressions, computing the engigy) is rather long, but
absolutely standard. It is left to the readers

6. Poincaré inequalities for asymmetric random walks

The aim of this section is to generalize the Poincaré inequality (17) for cylindrical
functionals and its generalization (7) to an asymmetric process on the cube. Recall fror
Section 2.4 that we consider here the generator

Lf(x) = ZA XN (fot? = f)x),

where i; > 0 on {+1, -1}, and that the random walk has independent coordinates

(B{"),>0, €ach one beeing an asymmetric continous time random walk-4n—1},
jumping from—1 to +1 with ratex ; (—1) and from+1 to —1 with ratei ;(+1). Recall
thatA; = A;(+1) + A;(—1), and see Section 2.4 for more details.

In Section 2.4 we calle®®, the law of the point process of jumps=>"4, .. For
simplicity, we lay down the subscript in this section, so thaf will denoteP;, N will
denoteN,, and so on.

6.1. Poincaré inequalities for cylindrical functionals

In this section we extend the Poincaré inequality (17) to cylindrical functionals. We
first consider the case of a one-cylindrical functiofdl= f(B;) and we bound its
variance. Then we consider the general case.

PrROPOSITION 6.1. — If d = 1, let ¢(¢, xg) the Poincaré constant of the law &,
starting atxg. Then

_ oAt _ — At _ oAt
c(t,x) = A(x)(l j > (k( *) +/i\(x)e ) < A(x)lTe (29)
and for all functionalsF = f(B;)
E(F?) —E(F)*=c(t, x0))E((DF)?) (30)

with DF = Df(B,) = f(—B,) — f(B,). More generally, if ¢/’ denotesc(t, x)
associated ta. ;, then for all functionalF = f(B,)

d
E(F?) —E(F)?< > e (1, x5 E((DVF)?), (31)
j=1

with DY F = DY £(B,).
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Proof. —Since the coordinates'’’ are mutually independent, the |&® of B, starting

atx is the product measu@j?:1 PE"(j)’j), and Poincaré inequality (31) follows from the
one-dimensional case (30). Now we have to show that for any fungtion {+1, —1}

Py 2 — (PLf)? < ct, )PE((DS)?). (32)

To this end, notice thdt? = — AL, which implies that

and

— At 2

1— — At
P f?— (P f)*= <f2 + L (f2)> (= Lf)
1l —

-2 - (2

As (Df)? = (f(+1) — f(—=1))? is a constant, we have th&(Df)? = (Df)?, that
L(f?) —2fL f =Ax(Df)?and that(L £)? = A%(Df)?. Finally,

— At

P{f2 = (PLf)" = ct.x0)(Df)? = et x)P{ (DY),

which implies that the desired inequality (32) is actually an equality.

The Poincaré inequality (31) is extended to arbitrary cylindrical functionals in
Proposition 6.2 below.

PROPOSITION 6.2. — LetF = f(B,,..., B,) WithO=19 <t; < --- <t1,, then
d n
E<F2> —E(F)°< Eoi(F) = ZZE (C('/) (t — ti_1, Bt(,f/,)1>

j=1li=1
2

% (Z e_A(tk_ti)f),Ej)F o Ti(,'li)l> > i (33)

k=i
where(D{”F o 7" ,)(B) is defined by3).

Proof. —Here again, it is sufficient to consider the one-dimensional case. (33) is
proved by iteration, as it is done in the symmetric case, Section 3.1. We shall prove
the key point only, that is: for =2 and

hx) =Py (f (. ) = / F (1, x2) Pty (51, dx2),

then
Dh =Py, ,(D1f +€ 42Dy f o1y ,), (34)
that is to say
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x1Dh(x1) = /(xlle(xl, x2) + € 27 x) Dy f (—x1, X2)) Pry-ty (X1, dx2).
Letu =1, —t1. Then
Dh(x1) =h(—x1) — h(x1)
= PJXI(f(_xl’ )) - Pﬁl (f(xls ))
= (Py™ = P3) (f (=x1,-)) + PR(D1f (x1, ).

Now, for an arbitrary functiorz,

— Au

(Py* =Py () =(g(—x) —gx)) + T(/\(—X)(g(—X) —g())

—A(x)(g(—x) — g)))
1— e Au
=Dg(x) (1 — (A(x) + 1(—=x)) T)
=e MDg(x).

Applying this tog(x) = f(—x1, x) and using the fact thatDg(x) is a constant, we get
that

x1(Pg™ = P (f (=1, ) = € M Do f (=1, x2)
:/(efAHXZDZf(—Xl,Xz))pu(xl,dxz),
which gives (34). O
6.2. Energy arising from Poincaré inequalities

In this section we wish to identify the cylindrical enerdgy(F) with an energy
expressed in terms of the derivatiig F only, and to derive a Poincaré inequality valid
for a large class of functionals. Unfortunately, unlike the symmetric case, the energy
Ex(F) itself is not equal to the analogue 6f,(F). The reason is that for a fixed
functional F, the cylindrical energies associated to distinct partitigefs. . ., 1) and
(t2,...,t2) are no more equal. However, the following theorem shows that these energie:
converge when the mesh of the partition tends to zero.

Recall that the compensatdi is given by

N(dt, {j}) =»;(BY)dt.

THEOREM 6.3. — Let F be a cylindrical functional(B) = f(By,, ..., By,), and

T =s,. Consider a sequende”, ..., t,g”))n>p of partitions containing(s, ..., s,) and

such that!” < ... < 1 = T. Assume that the mesh= max, |1’ — 1"}| tends to

0 asn tends to infinity, and denote IS4 (F) the cylindrical energy of" associated to
the partition (s}, ..., ™). Then

n—oo

EW(F) =S £ 1(F), (35)
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where, ifd = 1,

T T 2
EF)=E / (D,F - / e A (—NISD(DF o) (2N (ds) — Ads)> dN(1).
0 t

Whend > 1,
2 .5 .
E1(F)=E / (D(,yj)F— W(t,j)) dN(l,])
[0, T]xJ
with
T

Wi ) = / g M= pNUsUD (D F o et y) (2N(ds, j) — Ajds).

t

COROLLARY 6.4 (Poincaré inequality). et 7 > 0 be finite and letF’ € L?(£2) be
an Fr-measurable functional such that the quantities

T, 2
E / (D, F)2du, E / ( / e A6 D, F ok ; [N (s, j)) di
[0, T]xJ 0 t

2

T T
and E/(/ e‘Af(s_”\D(s,hF085,,/)“‘75) dt (36)
0 t

are finite. Then
E(F?) —E(F)*< E_1(F). (37)

Proof of Theorem 6.3. ©nce more, we may assume tlbt 1 since the argument
is the same for each term of the sum. The proof is divided in two steps. In the first one
we rewrite both energie$$(F) and&_1(F) in Lemma 6.5, and in the second step we
show the convergence result.
LEMMA 6.5.-LetF = f(B,, ..., B,). Then
n li n 2
E(F)=E)_ ( / e 246=1)(B,) dt) (Z e A= DFor, jl> (38)
i=1 i1 Jj=i

and

n ti. n 2
Ex(F) :EZE( / e_ZA(’f_[)A(B,)dt‘jL',i1> (Z e AU~ DFo r,;.,-_1> . (39)
Jj=i

=1\

Proof. —To prove (39) it is enough to show that for d@ll> 0

T
c(T,By)=E / e 2AT=D)(B,) dt.
0
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It just follows from the equality
_aAr
E(A(B)) = (PtA)(Bo) = A(Bo) + T(Lk)(Bo)
A(Bo) _
= =7 (21~ Bo) — & " (A(~Bo) — A(B0)))
_ 2k(l)/\(—l) _ A(Bo) DA(Bo) oAt
A A
Actually, in the constant(z, x) only matters its ordeh ;(x)r ast tends to 0. More
precisely, any constamtof this order would lead to Theorem 6.3 (with a different proof
of course).
The expression (38) & _1(F) is obtained with exactly the same arguments as for the
symmetric process in Section 3.2. We just recall these arguments.
e For eachr €],_1, ;[ without jump ands > ¢ the quantity(—1)Y YD F o & is

constant on € J¢;_1,¢;[ and equal taA; ; (B, ..., B;,) on this interval, with
Ai,j(xi’""xn)=f(~xl""a-xi71’ _-xi""’_-xjfl’xj""’xn)
- f(xl’ R P . TR _-xn)-
MOfeOVGr,D[F == _Al,l == _f(Btl’ ceey B[n) + f(Btl’ ceey B[i—l’ _B[i’ ceey _Btn)'

e The following exact formula is still available:

/ e A= (—NAtsh (2N(ds) — Ads) = =1+ (—=1)NU-The A0,
1.7]
o Finally, (—_1)N<]f’TD = B/ Br s0 that the termﬁjF 0T j-1= B, (Aiji1— Aij)
appear as in the symmetric casex
Recall now thatF is the functional f(B,,. ..., B,,) and that(t{"”, ..., 1), is
a partition containing(sy, ..., s,). Let us denote by:; the index (depending on)
satisfyingz,, = s;. Let f, be the function on—1, +1}" defined by f,(x1, ..., x,) =
fXngsevvsXn,), SO that€$P (F) is the cylindrical energy of” associated tgf,,. Thanks
to Lemma 6.5 we may write

2

n L n
EG(F) =EZE< / e_ZA(‘k_”k(B,)dt‘.ﬁ“) (Z e M D F o thl) :
k=1 \, I=k

k=1

It is clear that the gradierfD,fn =0if lisnotann;. Fixi < p andk € ]n;_1,n;]. Then
we get easily

n
> e MTID, f 0t (X, - Xn)
1=k

P

_ —A(sj—11) 1)

= E e TYD fotij—1(Xny, -y Xn,)
j=i

— A(si _A j TS0
— (si lk)z (s; Y)Djfofi,jfl(xnl’---’xnp)-
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Let G; be the functional}>’_; e—/‘(sf—sf)ﬁjf ° 7 j-1(By,,---, B, ). We may now
simplify the expression of the cylindrical energy

p n; g
Sgﬁ)(F) —F Z Z E ( / e—ZA(tkft))\(Bt) dt ‘j_—tkl> efz/\(Si*Ik)Giz
i=1 k=n,-,1+l t1

P y
=E>_ ( / e 246 =0R (A (B,)
=1\,
wherek(¢) is the index (depending or) satisfyingt € [, t)+1[. Recall from Lemma
6.5 that the expression éf ,(F) is now very close

f;k(t))dt> Giz’

p 5
Ea(F)=E)_ ( / e2A<Sf’)A(B[)dt> G?.
i=1 N

Si-1

When the mesh of the partition tends to 0, the timg tends tor andE(A(B))|F,,)
tends almost everywhere tb(B;) asn goes to infinity. It then follows from the
dominated convergence theorem tHé&t(F) tends to_,(F), and the proof of Theorem
6.3 is complete. O

Proof of Corollary 6.4. 4n caseF is cylindrical, Corollary 6.4 is a direct consequence
of Theorem 6.3. We first extend (37) to a boundeg-measurable functionak'. Let
M > 0 such thai F| < M a.s. Then there exist cylindricdiz-measurable functionals
F,, bounded byM such that limF,, = F almost surely. Inequality (37) is true for each
F,, and the variance af,, tends to the variance df by dominated convergence, so that
it remains to prove thaf_,(F,) also tends t&_,(F).
Applying Proposition 2.7 wittG = 1 r<m) OFr G = 1, r) €tC., we get that
e |D,F|<2M,|D,F,| <2M and lim,_,., D, F, = D, F for u-almost every(w, u).
° |D(S’J')F o 8(—th)| < 2M, |D(S’J')Fn o 8(—th)| < 2M and lim,_ D(S"/')Fn o 8(+t,j) =
D jF ogf; ; for u x dr-almost everyw, (s, j). 1).
We are then able to deduce tifat, (F,) tends tof_,(F) by dominated convergence, so
that (37) is true forF .
Now for a general functionaF satisfying conditions (36) of Corollary 6.4, we set
F,=(F An) Vv (—n). As F, is bounded, it satisfies (37). Moreover,
e |F,| <|F|andF, — F almost surely,
e |D,F,|<|D,F|andD,F, — D,F p-almost everywhere,
o [DijFyoel )l <D yF oel ;| and D jyF, o ef ;) — D jF o g ;) for
u x dt-almost everyw, (s, j), t).
Conditions onF are equivalent to
n T r 2
EZ /<|D(t’j)F| + /e_Aj(‘Y_[)|D(s,j)F o 8:;,/-)|(2N(ds, J)+ Aj dS)) dt < o0,
j=1} ; '
so that as before§_1(F;,) tends to£_1(F) by dominated convergence, and it implies
B7)forF. O
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Remark6.6. — The existence of a representation formula for martingales is well
known [7, Theorem 4.37, p. 177]. Every local martingale has the form

M=Mo+/WdN—/Wdﬁ,

where W is a predictable process such ttfa{tW|d1\7 is locally integrable. It would

be interesting to knoww when M is the martingaléE(F|F;). It is shown in Section

2 that Lemmas 2.1 and 2.2 are still true for asymmetric random walks, and one may
wonder wetherW = ?DF, or not. The answer isiot Take FF = Ny. ThenDF =
10./(t) =" DF,but [ dN = Ny — N([0, T]) is no moreN; —EN; sinceN is no more
deterministic. IsW equal to somed® (defined in Theorem 4.1)? Regarding Poincaré
inequality (37),H ! seems to be a natural candidate.

7. Examples of functionals for asymmetric random walks

Only one Poincaré inequality has been shown for asymmetric random walks: the
Poincaré inequality of parameterl. Therefore we shall only compaée 1(F) with
the variance ofF for some functionalg”. However, as for the symmetric random walk
we may define

Eo(F)=E / (D FY2dN () € [0, oo,

and we shall also compare this quantity wéth, (F) and varF).

We assume in this section that= 1. In the first paragraph the example of cylindrical
functionalsF = f(B,) is treated. It turns out that_;(F) gives exactly varF'), whereas
Eo(F)/var(F) tends to infinity when is large and for fixedf. It is the same behaviour
than in the symmetric case.

Then we turn to the functionak’ = N7 in the second paragraph. On the opposite,
we have asymptotically thafy(F) < var(F) < £_1(F), each term being of ordek T
for some constantX. It means that the Poincaré inequality of parameter 0 does not
hold for N7, yet itis a nice functional with finite moments and bounded derivative. This
example shows that the Poincaré inequality ¥ar< Eq(F) is false, even for reasonable
functionalsF.

7.1. Cylindrical functionals

Assume thatF = f(By) is 1-cylindrical, and that/ = 1. ThenD,F = Df(By) if
there is no jump at time, and D, F o &} = —(—=1)" D Df (Br). Notice that(Df)? is a
constant. Then

T T

Eo(F) = (Df)?E ( /A(B»dr) — (Df? / (Pik) (Bo) d
0

0

whereas, by Lemma 6.5 and its proof p. 130
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T
E_1(F)=(Df)’E / e 24T =Dy (B, dt
0

T
— (Df)? / & 2AT=0(P) (By) di = o(T, Bo)(DSf)2.
0

Therefore it gives exactly

E1(F) = (T, Bo)(Df)*=var(F) < &(F)

A

and &(F) ~ T(Df)>?.

Recall thatc is the bounded constant arising in Proposition 6.1. We mentionned in
Section 6 that any constaant(z, x) having the same behaviour aswhen¢ is small
would lead to the same Poincaré inequality with enefgy(F). It is surprising here to
recover the best constatilr, x) through&_,(F).

7.2. Number of jumps

Recall Ny = N ([0, T]) is the number of jumps up to timE. We first estimate the
energies$y(Nr) andé_1(N7), and then the variance of;. We start withEo(N7).
As for the symmetric random walk in Section 5.2.1 we have that =1 fors < T,
so that
T. T
Eo(F) :E(/ A(B[)dt> = /(Ptx)(Bo) dt
0

t

TTLOO Z)M(l))\(_l) T
A

In order to estimaté_,(N7), notice that

1 1
100 = 5 (A0 + (=) + 5 (1) = A(=))
= A/2+xDA(=1)/2,

and thatB,- = B,(B;B,-) = B,(—1)NUsD for t < 5. Therefore the martingales.’
defined in the symmetric case by (26) and here by

My = [ 2640 1M (N (ds) — (B ) d)
1e.T]

satisfies

T

My = / e 40NV (2N (ds) — Ads) — B, Di(—1) / e 070

16.T] 1
—A(T—1)

_ / & 40—V (2N (ds) - Ads) - —————B,DA(~1).
16, T]
We have then
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2

T
EW(F)=E / (1— / e AT (—NISD (2N (ds) —Ads)> A(B,)dt

16.T]
2

_ e AT
:E/(l M — " B,Dk(—l)) A(B,)dt.
SinceE(M\|F,) =0 it yields

T A A(T—1\2
E_1(F)= / JE<<1+ %(D,\)2 + M}”z
0
1— e AT-D)
_ Z#DA(—l)BJk(B,))dt

Now we have thatE(r(B,)) = P{°x = 22020 4 ge4 and thatE(B,A(B,)) =
PtBO(-A(-)) = Ke ', whereK is a constant that may differ at each occurence. We have

also that

E(MY*0(B)) =E(M(B)E(M?|F))

T
=F (A(B[)E ( / 472460 (B,) ds
t
r
—E (A(B[) / 4e7246-0 (P L)) ds>
t

T
[t s (DD AEIDB) )y,

A A
Since

ADAC=D

E(X2(B,)D)(B,)) = P (A*DA) = — (DA + Ke™ ™,

it follows that

(D))? + Ke ' + Ke AT =0,

k(l)k(—l))z 4 A(Dr(=1)
3A2

2
E(MYA(B,)) = = <2
(M 2(B)) = 5 A A

Therefore,

Ea(F) =

A(DA(=1) (DA)? 2 / AMDA(=1)\?
<27A <1+ A2)+Z<27A )

4 A(DA(=1)
342 A
Simplifying, we get that

(m)2> T +0(1).

T—o0 2M(DA(=D)

£ a(p) R 2 (2+

2(D,\)2) -
342
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Now, we want to estimate the variancef. To start with, note tha, has mean

t
EN, =EN, = / (PBojyyds =
0

t

2)»(1)?»(—1)t _ A(Bo) DA(Bo) 4 KeA
AZ

Next we need to estimaté(—1)" and EN,(—1)" in order to evaIuatéENtz. Since
(_1)NT = BoB;

1-—e”  Di(Bo)

E(—1)N = P?(By.) =1 — 2A(B — Ke ',
=D . (Bo-) (Bo) P A +

Then we have that
dN,(—=D)M = N,-d(=D)" 4+ (=) dN, + A(=D)M AN,
= (=2N,- (=D + (=D —2(=1)"~)aN,
=d(martingalé — 2N,- + 1)(—=1)V~A(B,-) dt

= d(martingale — (2N~ + 1)(—=1)- (121 DMBO)( 1)Ni- )
which yields
d N
S ENGEDY)
= —AE(N,(-D)M) — %}E(—l)’v’ + DA(Bo)EN, + DA(Bo)/2

20 (DA(=1) (D)2

= —AE(N,(=1)™) + fm(z;o)z — A(BO)T + Ke A,
As a consequence,
a1 x -1 A(Bo) (D)2
+ %DA(BO)) + Kte M + Ke ™,

Finally, we have that
d(N,)?> =2N,-dN, + dN, = d(martingalé + (2N,- + 1)A(B,) dt,

so that
j—tENf <<2N,+1><£— DA(B")( 1)’“))

= AEN, — DA(BOE(N,(~D™) + 5 — k;BO)E(—l)Nf
L (20DA(=D\? | 2uDA(-D) (DA)?2 2).(Bo) DA(Bo)
= Zt( 7 ) + 1 (1 + z e )

+ Kre M + Ke M,
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Hence we conclude that

E(N;2) —E(N7)? = 2.Dr=D (1 (DA

< + 51 40w,

Since 1+ %’/@2 <1+ “3‘—*2)2 < 2, the energy€_,(Ny) gives a good estimation of the
variance ofNr. Indeed,

1
55—1(NT) <var(Ny) <&€_1(Nr)

asymptotically. On the opposite, as soon(@)? # 0, £&(N7) < var(Ny). In other

words, the Poincaré inequality of parameter 0 is no more true for asymmetric randon
walks.
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