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ABSTRACT. - For non markovian, piecewise monotonic maps of the
interval associated to a potential, we prove that the law of the entrance
time in a cylinder, when renormalized by the measure of the cylinder,
converges to an exponential law for almost all cylinders. Thanks to this
result, we prove that the fluctuations of Rn, first return time in a cylinder,
are lognormal. @ 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - Pour des applications non markoviennes, monotones par
morceaux de l’intervalle, associees a un potentiel, on prouve que la
loi du temps d’ entree dans un cylindre, renormalisee par la mesure de
ce cylindre, converge vers une loi exponentielle pour presque tous les
cylindres. Ce resultat permet ensuite de montrer que les fluctuations de
Rn, temps de premier retour dans un cylindre, suivent une loi lognormale.
@ 2000 Editions scientifiques et médicales Elsevier SAS

1 E-mail: fpaccaut@topolog.u-bourgogne.fr.
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1. INTRODUCTION

In this article, we study the asymptotic law of Rn, which is, for a
stationary stochastic process, the first time when the process repeats its
n first symbols. In the same way, for a piecewise monotonic map T
of the interval, Rn is the first return time in an interval of continuity
of T n . When the dynamical system is ergodic, Ornstein and Weiss [8]
have proved that log Rn = h, where the convergence is almost
sure and h is the entropy of the system. Results about fluctuations of
log Rn around n h are obtained for systems with the Gibbs property by
Collet, Galves and Schmitt [3]. Showing that the non-markov part of
the system can be disregarded, and proving something similar to the
Gibbs property defined in [ 1 ], (third part), we give the same results
for piecewise monotonic maps of the interval associated to a bounded
variation weight, that is to say: the law of Rn, correctly renormalized,
converges to a lognormal distribution. This convergence strongly uses the
fact that we can approximate the law of the entrance time in a cylinder by
an exponential law, which is proved in the fifth part.

Consider the following setting: T is a piecewise monotonic transfor-
mation (with b branches). T is piecewise C2, which means that there is
a subdivision of [0,1 ] such that T is monotonic and extends to a
C 2 map on each ] ai , Denote by sing(T) the set {ai, i = 0,..., b }
of the points where T is not continuous and let Ai =]ai , We call

n-cylinder a set as follows: = Ai n T-1 Ai2 n ... n Ain . Denote
by pn the set of n-cylinders. For all x in [0, 1] B Uo T-n(sing(T)) and
all n, there is a unique n-cylinder containing x, called 
We assume that the borelian a-field B is generated by the finite

partition ]ai, ai+1 ].
We are going to study the asymptotic law of Rn for a measure

/~ invariant by T, where cp is a measurable potential. The study of
dynamical systems associated to a potential (different from the inverse
of the j acobian of T ) arise from statistical mechanics, where the potential
figures the interaction between the particles (see [ 1 ]). Another motivation
is when the potential is equal to zero, the equilibrium states are then
measures which maximize the entropy.

Given a measurable potential define the associated transfer operator
(for f measurable) by
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We define the topological pressure of the system as follows:

is well defined because the sequence is

submultiplicative). 
DEFINITION 1.1. - A measurable function f on [0, 1 ] has bounded

variation (I E B V ( [0, 1 ] ) ) if var[0,1] f = var f  ~, where we define
the variation on a set A by

the supremum is taken over all finite partitions of A: 0 = xo  ...  xn =

Recall that a measure is ep(03C6)-03C6-conformal (in the sense of Denker
and Urbanski [4]) if for all measurable sets A such that T : A - T (A) is
invertible:

Assuming certain hypothesis on the potential (see the next section),
Liverani, Saussol and Vaienti [7] prove the existence of a conformal
measure v and the existence of a unique measure invariant by T, ~,
absolutely continuous with respect to v and satisfying exponential decay
of correlations. Under the same hypothesis on the weight, we can state
our main result:

Define the entrance time in a cylinder A by

In the same way, we define the return time in a cylinder:

Define, for f with bounded variation, the quantity that usually appears in
the central limit theorem, i.e., the asymptotic variance a ( f) (see [6]):
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a2(f) is well defined because Cn ( f) is the autocorrelation of f and so,
it decays exponentially fast.

Let h = be the entropy associated to the measure i.e.:

THEOREM 1.1. -Assume 0, then

is a sequence of well defined random variables on the probability space
( [0, 1 ~, B, and

where ~ is a convergence in law = 0 if and only if there exists
a measurable g such that ~p = g - g o T ).

2. PIECEWISE MONOTONIC MAPS OF THE INTERVAL

Recall that T is a piecewise monotonic map of the interval. For
x E [0, 1 ] , let

Let us make the following hypothesis on the potential and the system:
(HI) exp(ep) has bounded variation.
(H2) (distortion) supC~Pn varc ({J  oo.

(H3) (dilatation) sup ep  /?(~).
(H4) (covering) VI interval, N*, C(1) > 0, 

C(7).
(H2) is called a distortion hypothesis because it allows us to show the

distortion property (see Lemma 2.5).
(H3) is called a dilatation hypothesis because it really plays the same

role as the hypothesis inf > p > 1 when the potential is the logarithm
of the inverse of the derivative of T .
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(H4) is equivalent, when 03C6 is bounded from below (for example when
ep is the logarithm of the inverse of the derivative of T and T is strictly
expanding), to the following:

Lasota-Yorke inequality

THEOREM ’ 2.1. - Under the hypothesis (H 1 ), (H2), (H3), there exist
a  1 and ~ > 0 such that for all f E BV([O, 1 ] ), f > 0:

Proof. - The proof is deeply based on the Sub-lemma 4.1.1 of [7] :
SUB-LEMMA 4.1. 1. - For all integer m, there exists Bm  00 such

that, for all positive function f with bounded variation

By hypothesis: sup Sm  em sup03C6  A"’; let m such that 
1 /9 (recall that A = 

with am  1 and Bm  ~. It is then sufficient to consider the iterate Pm03C6
to get the desired inequality. D

Existence of conformal and invariant measures

THEOREM 2.2 (Liverani, Saussol and Vaienti [7]). - Under the hy-
pothesis (Hl), ... , (H4), there exists a non atomic ep(03C6)-03C6-conformal
measure v and there exists a unique invariant probability measure ~,c~
absolutely continuous with respect to v. v and are obtained in the

following way:
there exist ~, > 0 and h~ such that:

= hcp v, the density is positive, has bounded variation and ~, =
Moreover; > 0.



344 F. PACCAUT / Ann. Inst. Henri Poincare 36 (2000) 339-366

THEOREM 2.3 ([7]). - Under the same hypothesis, is the unique
equilibrium state for ~p, i. e. :

where hm(T) denotes the entropy of the measurable system (T, m) and
the supremum is taken over all the T-invariant measures m.

The main ingredient to show these theorems is the Lasota-Yorke

inequality. The covering hypothesis is needed to get a strictly positive
density h~.

Decay of correlations .

THEOREM 2.4 ([7]). -Assuming the same hypothesis as before, the
decay of correlation is exponential: there is y > 0 and a constant K such
that, if f has bounded variation and g is integrable:

In particular, if f = lA and g = 1~ with A interval and B measurable,
then var f = 2 and for all n

This kind of mixing, which is weaker than 03A6-mixing, is a key tool in
the following.
CENTRAL LIMIT THEOREM. - For functions with summable decay of

correlation (which is the case for ~po = - ~p since it has bounded
variation and then decays exponentially fast), the central limit theorem
is true (see [6]), i. e., recall that

and assume that a (~p) ~ 0, then we have
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which is equivalent to

(and a = 0 if and only if there exists a measurable function g such

Distortion property

LEMMA 2.5. - Assume (H2), then there is a constant c > 1 such that,
for all n, all A E all x and y in A

Proof -

x and y are in the same n -cylinder, therefore, for all k, T n -k (x ) and
T n-k (y) are in the same k-cylinder and

We get the other inequality by changing x and y. D

Remark 2.1. - In case when e~ is the inverse of the derivative of the

transformation, the bounded distortion property comes from the fact that
T is C2 and from the uniform dilatation hypothesis made for T (see [2]).

3. ESTIMATES OF THE MEASURE OF A CYLINDER

In the following, K and ~8 are generic positive constants independant
from n and A. It is proven in this section first that the measure of a n -

cylinder decays exponentially fast to zero, then that, for most n-cylinders,
we can give an equivalent for this measure.

LEMMA 3.1. - There exist () > 0 and a constant C such that, for all n
and all n -cylinder A
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Proof - Let A = A i 1 be a n -cylinder. For all n o  n we get:

Let us use the mixing inequality with the interval Ail and the measurable

if we call s = i = 0, ... , b - 1 } we have

and, by induction

Now, there is no such that s + 3 K which ends the proof. D

The following lemma gives an equivalent of the measure of almost all
n-cylinders (which are intervals). We cannot get the equivalent for all
cylinders because of the following remark:

Remark 3 .1. - Let A be a n -cylinder whose boundary does not contain
any singularity of T, then T (A) is a (n - I)-cylinder. (When the system is
markovian, the image of a n -cylinder is always a (n - 1 ) -cylinder, that is
why we get the equivalent for all cylinders.) Conversely, if the boundary
of A contains a singularity of T, T (A) can be much smaller than the
(n - 1 ) -cylinder it is included in.
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Proof of the remark. - If A is a n-cylinder, its boundary is contained
in If its boundary does not contain any singularity
of T then it is included in The boundary of T(A)
is then included in T-i (sing T) and T (A) is a union of (n - 1)-
cylinders. By an argument of connexity, as TIA is continuous, T(A) is
one n -cylinder.

Example

In this example, A is a 2-cylinder, the boundary of A contains a
singularity of T and T (A) is strictly included in the 1-cylinder B.

LEMMA 3.2. - Let ko > 0 and n > ko. Let A E pn such that, for all
k  n - ko, Tk(A) has no singularity of T in its boundary. Then, there
exists a constant c(ko) > 1 such that, for all x in A

Proof - Let A E ~n such that, for all k  n - ko, Tk(A) has no
singularity of T in its boundary and let x E A :

Fig. 1. Non markov map.
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Let us take z E [0,1] B (we can restrict to such z
without changing the integral because = 0), z is
in a ko-cylinder Cko(z). is constituted at most by 
n-cylinders and (z) by at most points. Each of them are in a
different n -cylinder.

If A is one of these n-cylinders then A n T -n+ko (z) = zA, if it’s not the
case then A n (z) = ø. Therefore we get:

Let x E A, we use the distortion property (since x and zA are in the same
n - ko-cylinder) in order to get:

Moreover, because of the previous remark, ko-cylinder and
the sum ( 1 ) is not zero when n A ~ ~ which occurs when

(A) = Ck° (z) hence:

Now we get

and is a ko -cylinder; now denoting c(ko) == (~ inflect v(A) xo

and Sn (x ) = But Sko is bounded and multiplying
by we get the result. 0
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LEMMA 3.3. - Let

There is K such that, for all ~ > 0, there exists and N~ such that,
for n > N£

Proof - Let p = À e- We use the hypothesis sup ~p  p to state

that p > 1 (recall that À = Let s > 0 and ko (s) such that

Let n > ko (s ), according to the previous lemma, if A E pn and if, for
all k  n - ko(s) , Tk(A) has no singularity of T in its boundary, then
A E B(n, D(~)); (with D(e) = c(ko(s))). We show that the measure of
this set is close to one by considering its complement:

Let

F (n, 6’) = {A E ~k  n - ko, Tk(A) has a singularity of T
in its boundary}.

Let A E F(n, s) and x in A : there exists k E [ko, n] such that Tn-k(A)
has one singularity s of T in its boundary; we get then:

But v is a h e-CP conformal measure so we get

hence II pk and:

i;({~}) = 0 and the conformal measure v is regular and has no atom,
therefore, there exists a union of intervals Vk such that each singularity
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s is a bound of an interval and v(Vk) = Since the density h~ is
bounded, we obtain: and, using the invariance by T
of 

- 4. RETURN TIMES AND ENTRANCE TIMES

In this part, we show that, in some sense, the asymptotic law of Rn can
be written as a sum of entrance times laws with fluctuating rates (these
rates are the mass of the cylinders).

DEFINITION 4.1. - A n -cylinder A is said k-recurrent (for n > k) if

Ek is the set of the k-recurrent cylinders and Ek the set of the cylinders
which recur before k.

PROPERTY 4.1. - If k  n :

Proof of the property. - If A = E Ek, there exists x in A such that
(x) is in A.

Hence Aik = Ail ,.... , Ain-k+l . For A we only have the choice for
Ai~ , ... , Aik-l and #(Ek) ~ Finally

LEMMA 4.1. - Let (tn) be a sequence such that limn~~ tnl n = 
then
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Proof - Recall the definition of Rn :

For all t > 0 we have

For all r with n  r  t we get:

Bound for the third term: using the inclusion

it comes:

so an upper bound for the third term is For the second one, the

mixing inequality (see Theorem 2.4) gives the following bound: 3 K 
As for the first one, we get the estimate

It remains to sum over all n-cylinders. For the third term, we get:
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For the second one, we get (since card(~) ~ bn ):

A good choice of r will give the convergence to zero. For the first term,
we must set apart the cylinders which recur too fast:

If A E E~k then n T-i+1 (A)}  and

Besides, if A E Vi  k: n = 0 and

And if ~ ~ the mixing property yields to:

Now we choose r = and k = (we only have
to change 8 to ensure k  n ) which gives us the convergence of all terms
to zero. 0

5. APPROXIMATION OF THE LAW OF THE ENTRANCE
TIME IN A CYLINDER BY AN EXPONENTIAL LAW

This rather technical part is devoted to the control of the law of the
entrance times in a cylinder. As it was pointed out in the previous part,
this control is needed to estimate the asymptotic law of the return times.

Here the following theorem is proved:
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THEOREM 5.1. - For all s > 0, there exists N£ such that, for all
n > N£ there exists Hn s C Pn with:

There exists two strictly positive constants 03B2 and K such that, for all n-
cylinder A E Hn,s :

In order to prove this theorem, we use the method of Galves and
Schmitt [5].

LEMMA 5.2. - For all t > 0, we have, if A is measurable:

The proof is in [5] (Lemma 2). For all k and m positive real numbers,
let:

We have: k} _ ( Xk § 1}.

LEMMA 5.3. - There exists yo such that, for all s, there exists N£ such
that, for all n > N£ there exists In,£ C ~‘~ such that, for all A E In,£

Moreover,

Proof. - Let X = Y[t 03C6(A)]. Using the Schwarz inequality, we get:

and E ( X ) 2 > t 2 . Moreover,
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The first term is + We bound the second for cylinders
which don’t recur too fast; for A E (where s is positive) we get:

The mixing property gives for this term:

We choose now s = B/(2log b) (where () is given by Lemma 3.1) so that,
for n big enough:

We take = D
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Independence property. We need to show that gA (t) is close to e-t;
for that, we show that this function satisfies some kind of independence
property. We will first show that gA (t ) is close to e-t when t is equal to
some power of then, given t > 0, we will divide it by this power
of 

Recall that we denote by K any constant independant of n and of the
cylinders..
LEMMA 5.4. - For n big enough and for all n-cylinder A :

Proof. - We must estimate + s ) - To begin with, we
dig a hole A between [0, 20142014] and -~]. This hole, thanks to
the mixing inequality, will enable us to express the probability of not
being in A during the time [0, ~] U [ ~ ~A~ , ~ ~A~ ] in terms of the
product of the probability of not being in A during each of the intervals
[o, t ] d 03C6(A) 

an 

Bounds for the first term:

because of the T-invariance. For the third term as well:

For the second term we use the mixing inequality and we denote:



356 F. PACCAUT / Ann. Inst. Henri Poincare 36 (2000) 339-366

Let us renormalize Pcp with

In (5), we have used the following property of the variation:

var(fg)  ~f~~ var(g) + ~g~~ var(f).
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Now, h ~ has bounded variation and > 0. This implies: has

bounded variation.

Moreover,

because LAC and f H flAc are operators with norm less than one.

Where we have used again:

[--1N]
We must estimate for that, we use the fact that /~ =

Since = we get:

A computation gives:

with

Assume that A is a n-cylinder with n > N and let k  N: A is completely
included in an interval where T n is monotone. Besides, T -k (A) is made
with at most bk intervals and each of them is included in an interval where
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T k is monotone. As a consequence, A n T -k (A) is either empty, or an
interval, or the union of two intervals (when two branches of 7~ with
opposite slope meet in a single point). Moreover, as k x N, T-k(AC)
either contains A or is disjoint from A. That is why Bi, j is either an
interval (empty or not) or the union of two intervals, therefore:

We shall estimate the variation of each term.
One the one hand, if A is an interval or the union of two intervals, we

apply the Lasota-Yorke inequality to the function 1Ah03C6 to get:

On the other hand, iterating the Lasota-Yorke inequality and using the
conformality of v gives: (for f with bounded variation)

Grouping (8) and (9), we have:

Since Bi, j is either an interval or the union of two intervals (and it is
included in A), we can apply ( 10) :

As a  1, we can write:

Let us now sum over r, i and j by using the relation =

A’(A~-1)/2~~ 
’ ’
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and according to the relation (7), we obtain, for N big enough:

Combining (3), (4) and (6), we get (with N = [2014~)D:

if is big enough. Now we choose the size of the hole A: the
only requirement is A  Take A = 1//~(A)~, ~ ~ 
and t = 

If n is big enough:

therefore

Define r = reA) = and 8 = B (A) _ - log gA (r).

LEMMA 5.5. - For n big enough and for all n-cylinder A :

Proof - See [5, Lemma 6]. D
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LEMMA 5.6. - There exists yl and y2 such that, for all s > 0, there
exists NE such that, for all n > N~, for all A E In, £ (where In, £ is given by
Lemma 5 . 3 ) :

Proof. - On the one hand, for 0 ~ u x 1 / 2, - log ( 1 - u + u 2 .
Now we get, by choosing n big enough and using Lemma 5.2:

since, by Lemma 3.1, On the other hand, by Lemma
5.3, if A e 

which concludes the proof. D

Proof of Theorem 5.1. - Let s > 0. We only consider cylinders A E
and n big enough so as to use the previous lemmas. Let t > 0,

t = kr (A) + v with k = [~] and 0  v  r(A):

In the rest of the proof, we use the Lemma 3.1 which says that the
measure of the n-cylinders decrease exponentially fast. First term, by
Lemmas 5.2 and 5.3:
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Second term: by Lemma 5.5

and, taking the inverse in the inequality ( 11 )

Fourth term:

Third term: a computation shows that

Lemma 5.6 ensures that

because u e-u and are bounded. This ends the proof. D

6. PROOF OF THE MAIN THEOREM 1.1.

The mass of the cylinders, on the one hand, and the laws of the entrance
times on the other hand, have a different influence on the sum (2). So, we
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have to determinate which of the two is the most important and will give
the behaviour of the law of Rn.
We have to prove the convergence in law which means the following:

Let ~ > 0. Let us cut this quantity in several parts so as to use the
Lemma 5.1 and the approximation of the law of entrance times:

Thanks to the Lemma 4.1, = 0.

By the Lemma 3.3, there exist N£ and D (s) such that for all n > A~,
for all A E B (n , D (~ ) ) and all x in A : (we use the notation B (n , D (~ ) ) =

G.,J

By the Theorem 5.1, there exists N; such that, for all n > N;, there exists
Hn,s E pn such that, for all A in this set:
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As for the term ( 14), by the Theorem 5.1, for all ~ > 0:

We now turn to the term (15), which we can write if we call F~g
the random variable:

Let 17 > 0, the Markov inequality will give us some information about
lim inf 

and by the Lemma 3.3, we have the two following inclusions:
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for n big enough. Consequently, we get the inequalities:

and peep) = 10gÀ = h + so

By applying the central-limit theorem to the system we

obtain, letting first n go to infinity, then 17 to zero:

For the lim sup, we use the inequality, for ~ > 0 (notice that 1 ):
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Using the other inequality in the Lemma 3.3, we get the following
inclusions:

for n big enough. Consequently, we get the inequalities:

Letting first n go to infinity, then 17 to zero:

Gathering all the results about the terms ( 12), ( 14), ( 15), ( 16):

This concludes the proof.
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