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ABSTRACT. - It is well known that, starting with finite mass, the super-
Brownian motion dies out in finite time. The goal of this article is to show
that with some additional work, one can show finite time die-out for two

types of systems of stochastic differential equations on the lattice Z~.
For our first system, let 1/2 ~ y  1, and consider non-negative

solutions of

Here A is the discrete Laplacian and x E Zd} is a system of

independent Brownian motions. We assume that uo has finite support.
When y = 1 /2, the measure which puts mass u (t, x) at x is a super-
random walk and it is well-known that the process becomes extinct in

finite time a.s. Finite-time extinction is known to be a.s. false if y = 1.

For 1 /2  y  1, we show finite-time die-out by breaking up the solution
into pieces, and showing that each piece dies in finite time. Unlike the
superprocess case, these pieces will not in general evolve independently.
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an NSERC Collaborative Grant.

2 E-mail : perkins@heron.math.ubc.ca. Research supported in part by an NSERC
Research Grant and an NSERC Collaborative Grant.
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Our second example involves the mutually catalytic branching system
of stochastic differential equations on Zd, which was first studied in
Dawson and Perkins ( 1998).

By using a somewhat different argument, we show that, depending on
the initial conditions, finite time extinction of one type may occur with

probability 0, or with probability arbitrarily close to 1. @ 2000 Editions
scientifiques et medicales Elsevier SAS

Key words: Heat equation, White noise, Stochastic partial differential equations

RESUME. - 11 est bien connu que le super-mouvement Brownien
s’ eteint a un instant fini s’ il commence avec une masse totale finie. Dans

cet article nous montrons que cette propriete reste encore valide pour
deux autres systemes d’équations differentielles stochastiques dans Z~.
Le premier systeme est

ou 1/2 ~ y  1, u ) 0, A est le Laplacien discret, et {Bx: x E est

une famille de mouvements Browniens independants. Nous supposons
que {x: 0~ est fini. Si y = 1/2 la mesure qui donne la masse
u (t, x) au point x est une super-marche aleatoire et il est bien connu

que le processus s’ eteindra a un temps fini. Cette propriete est fausse si
y = 1. Si 1 / 2  y  1, nous montrons l’ extinction à un temps fini à I’ aide
d’une decomposition de la solution en solutions d’ equations auxiliaires.
A la difference du cas des superprocessus, ces solutions n’évoluent pas

independamment.
Le deuxieme exemple est un systeme d’ équations differentielles sto-

chastiques en Zd associe a un mecanisme de branchement mutuellement
catalytique :
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Ce systeme a ete etudie par Dawson and Perkins ( 1998). Nous demon-
trons que selon les conditions initiales, l’un des deux types s’éteint en
temps fini avec probabilite zero, ou inversement avec probabilite arbitrai-
rement proche de 1. @ 2000 Editions scientifiques et médicales Elsevier
SAS

1. INTRODUCTION

Recently, the Dawson-Watanabe process, or super-Brownian motion,
has attracted great interest, and many fascinating properties have come
to light. See Dawson [ 1 ] for a survey. These results often rely on
the multiplicative property of the process. This allows one to study
the process as an infinite system of noninteracting particles, each with
infinitesimal mass. However, it is often much more difficult to prove
similar results for systems with interactions.

In this article, we concentrate on the finite time extinction property.
Let Zt be the total mass of the Dawson-Watanabe process, and assume
that the initial mass Zo  oo. As is well known, Zt satisfies the Feller
equation

and with probability 1, Zt reaches 0 in finite time. See Theorem 4.3.6
of [6] for the exact extinction probabilities. Our goal is to study finite
time extinction for 2 types of systems of stochastic differential equations
(SDE), related to super-random walks, on the lattice Z~.

First, we consider non-negative solutions u (t, x), t > 0, x E Zd to the
following system of stochastic differential equations on the lattice Zd, for
1/2 ~/1.

Here and throughout the paper, A is the discrete Laplacian on Z~. In
other words, if N (x) is the set of 2d nearest neighbors of x e Zd, and if
f (x ) is a function on Zd, then (A/)(~) = Also,
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is a collection of independent motions on

some filtered probability space (03A9, 0, 0t , P) satisfying the usual right-
continuity and completion hypotheses, as will all our filtered probability
spaces in this work. We assume that uo (x) equals 0 except at a finite
number of points, F, in Zd. Pathwise existence and uniqueness holds for
solutions of (1.2) by the well-known method of Yamada and Watanabe
which we recall below (Lemma 2.1 ).

If y = 1, solutions to (1.2) can be represented in terms of the

Feynman-Kac formula. Let ~ (t) be a continuous time random walk on Zd
with infinitesimal generator A and semigroup Pt , which is independent
of the Brownian motions Bx. If Ex denotes the expectation with respect
to ~ , = x, then we have

Since exp[.] is always strictly positive, and since for each t > 0 there is
a positive probability that ~ (t) lies in the support of uo, it follows that
u (t, x) > 0 for all t > 0, x E Zd. Gartner and Molchanov [5] have found

many fascinating properties of solutions for the case y = 1. We also
mention in passing that a class of processes called "linear systems" has
been studied in the particle systems literature. Such systems are formally
similar to solutions of (1.2) with y = 1, and Liggett, [8] gives some
theorems about the asymptotic die-out of mass as t - oo.

Next, for y = 1 /2, the measure u (t, x) (where ~ is the counting
measure), is the super-Brownian motion with underlying spatial motion
~ (t) . Its total mass satisfies ( 1.1 ) and therefore, u (t, x) = 0 for all x and
large enough t.

In light of the above two results it is natural to consider the question
of finite time extinction for 1 /2  y  1. In this case one can view
solutions to (1.2) as interactive super-random walks in which there is
a density dependent branching rate of u(t, x)Y-1~2 at (t, x). Clearly, for
some Brownian motion B (t), the total mass Z (t) satisfies

Suppose that H (t) ) cZY (t), where H (t) is nonanticipating. It is known
that with probability 1, solutions to d Z = H d B die out in finite time. See,



305C. MUELLER, E. PERKINS / Ann. Inst. Henri Poincare 36 (2000) 301-338

for example, Lemma 3.4 of [9]. Unfortunately, if u (t, x ) is very thinly
spread, u2Y (t, x)]1~2 may be much smaller than ZY (t). Thus, the
coefficient of dB(t) which appears in ( 1.3) may be much smaller than
ZY (t). This is the main difficulty in proving Theorem 1.

THEOREM 1. - Suppose that 1 /2  y  1, d > 1, that u(t, x)
satisfies ( 1.2), and that uo (x) is equal to 0 except on a finite set F. Then,
with probability 1, u (t, x) dies out in finite time. That is, there exists an
almost surely finite random time t = t (w) such that u (t, x) = 0 for all
t  03C4 and x ~ Zd.

The strategy of our proof is to show that u (t, x) is not thinly spread,
and therefore Z (t) satisfies an equation like dZ = H d B, where

for some random number c. It is known that solutions to such equations
die out in finite time. Actually, u (t, x) shows a high degree of clumping
as x varies. Here, we were guided by known results for superprocesses.
Without the clumping, we would not be able to show an inequality such
as (1.4).

Finite-time extinction is often useful for establishing the compact
support property of solution to continuous parameter parabolic stochastic
PDE’s. The compact support property states that if the initial data has

compact support in R then the same is true of the solution at any

positive time. Often, the compact support property of solutions is proved
by showing that finite-time die-out occurs for the parts of the solution
corresponding to large values of x. For example, this is done in [9]
and [3]. In fact, Theorem 3.10 of [9] proves the continuous analogue
of Theorem 1 but we were unable to extend that approach to our lattice
systems. At a crucial step in the proof in [9], we used Jensen’s inequality.
To prove Theorem 1 we again use Jensen’s inequality, but we also need to
know that the mass of u (t, x) tends to cluster at a small number of sites.

Next, we introduce a system of SDE’s introduced in [4]. Let MF(Zd)
be the space of finite measures on Zd with the topology of weak
convergence. Consider
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Here, i-1,2 is a collection of independent Ft-Brownian
motions (~ are as above) and A is the discrete Laplacian on Z~ .

Such a pair of processes arise as the large population limit of two
interacting branching populations in which the branching rate of each
type at x E Zd is proportional to the amount of the other type at x. As
each type "catalyzes" the reproduction of the other type, it is called

the mutually catalytic branching process. One reason for interest in
this system is that it was an extremely simple example of interactive
branching for which uniqueness in law was not known. [10] and [4]
proved weak existence and uniqueness of solutions to ( 1.5) by means of a
self-duality argument proposed by Mytnik. Uniqueness in law for general
systems involving interactive branching rates remains unresolved even
for quite smooth rates. The original reason for interest in ( 1.5) was the
qualitative behaviour of its continuum analogues in 2 or more dimensions
(the one dimensional case is treated in [4]). The singularity of super-
Brownian motion (for d > 2) and the fact that each type solves the heat
equation in the absence of the other, suggests that the two types separate
and have densities away from their "interface". In [2] this description is
made precise, at least for d = 2.
The components U. , V are continuous MF(Zd)-valued processes a. s.,

so let PU0, V0 denote the law of the solution on C ([0, (0), MF(Zd)2). We
set (!7, ~) = for bounded ~ and U E MF (Zd ) . The long
time behavior of solutions to (1.5) was studied in [4]. It is easy to see

that ((U~ , 1), ( Vt , 1)) is a conformal martingale in the first quadrant and
hence converges a.s. as t ~ oo to ({!7oo, 1), (V 00’ 1)), say. [4] showed
that in the recurrent case (d  2), (Voo, 1)(Voo, 1 ) = 0 a.s., while in the
transient case (d ) 3), 1)(Voo, 1) > 0) > 0. The self-duality
then allowed one to use these results to study the long time behaviour
from infinite initial conditions. For finite initial conditions the above

results lead one to ask:

( 1 ) Is there finite-time extinction of one type if d  2?

(2) How large is 1 ) > 0) for d ) 3?
The next two results show that, depending on the initial conditions

and independent of the dimension, finite time extinction can occur with
probability zero or probability very close to one. In particular, this shows
that in the transient case, 1) > 0) may be arbitrarily
small, depending on (Vo, Vo).
Our first theorem about this system establishes conditions under which

finite time die-out does not occur. As usual _ ~ y x ) ,
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where pt (x , y) = P(03BEt = x|03BE0 = y). If x = (x1,.., Xd) E Zd, then Ixl ==
d !r!

THEOREM 2. - Assume that for t large enough (say t > to),

Then 1)~Vt, 1) > 0 Vt > 0) = 1.

In Proposition 4.1 we give a large class of initial conditions which
satisfy (1.6).
Our second result about this case says that under certain conditions,

finite time extinction can occur, at least for one of the species.
THEOREM 3. - Assume À1 ~ À2 > 0, Ào > 4À1 - 3À2, and for some

For any £ > 0 and tl > 0 31] > 0 such that if 1] then

Note the above conditions are satisfied in particular if Ào > Â1 = ~2.
We will see that to achieve smaller values of ~, we must take smaller

values of ~. Both of the above results will be stated and proved for more
general generators than A in Section 4.

If ( U, V) solves (1.5), then so does (c U, cV) (with a modified initial
condition). We can take c = in the above result to see that if Ài are
as above, M > 1, and then for any > 0 there is a

ci sufficiently large so that the conclusion of Theorem 3 holds whenever

Here is the plan of our article. We will first deal with (1.2). Section 2
contains some lemmas, including uniqueness for (1.2). In Section 3 we
prove Theorem 1. In Section 4 we turn to ( 1.5) and prove more general
versions of Theorems 2 and 3.

2. SOME LEMMAS

In this section, we prove some preliminary facts and lemmas. Our
first lemma gives uniqueness for (1.2). This result follows from the
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method of Yamada and Watanabe (see Theorem V.40.1 of Rogers and
Williams [ 11 ]). Almost the same proof is given below, but we include it
for completeness.
LEMMA 2.1. - Suppose that uo(x)  oo. Then pathwise

uniqueness holds for ( 1.2).

Proof - Suppose that u (t, x), v (t, x) are 2 solutions of ( 1.2). An easy
application of Fatou’s lemma shows that

and in fact with a bit more work one can show equality holds in the above.
Note sincey> 
Therefore, proceeding as in [1 1], Section V.40, we find that for each

Note that by the definition of A,

Taking expectations and summing over x E Zd in (2.2), and using (2.3),
we find that

Thus, (2.1 ) and Gronwall’s lemma imply that

and Lemma 2.1 follows. 0
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Standard arguments show weak existence of solutions to ( 1.2) (e.g., as
in Section 2 of [4]), and just as for finite-dimensional SDE (see V. 17. I of
[ 11 ] ), this and the above result imply pathwise existence for solutions of
( 1.2) and the uniqueness of its law on C([0, oo), MF(Zd)).

Let Y be a Poisson random variable with parameter À, and suppose that
H is a non-negative integer. Then, by Stirling’s formula,

The next lemma follows from an easy application of Itô’s lemma. See
Chapter 5 of [ 12] for the result in the more delicate continuum setting.

LEMMA 2.2. - ( 1 .2) is equivalent to the following system of integral
equations.

where G(t, x) is the fundamental solution of the discrete heat equation
on Zd .

A standard consequence of pathwise uniqueness is

LEMMA 2.3. - (1.2) has the strong Markov property with respect to
the a -fields 01 .

If x E Zd, let xi denote the i th component of the vector x. Fix an in-
teger N > 0, and let DN = {x E Zd : I xi ~ N for all i = 1,..., d ~ . Note
that DN has at most (3N)d sites. Let aDN be the boundary of DN. In
other words, let aDN be the set of points in which are nearest

neighbors of some point in DN. Recall that x, y E Zd are nearest neigh-
bors if the Euclidean distance between then is 1. For future use, we denote

DN = DN U aD N. We reserve the notation u (t, x) for the unique solution
of ( 1.2).
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LEMMA 2.4. - Let vo(x) be a non-negative function supported on
DN. Suppose that for t > 0 and x E Zd, vet, x) satisfies

with uo (x). For x E ZdBDN, let v (t, x) = 0. Then, with probabil-
ity 1, for all (t, x) E [0, oo) x Zd we have ~(~, jc) ~ u (t, x).

Proof - The lemma follows from standard comparison arguments.
See, for example, [7]. D

As in Lemma 2.2, the solution v to (2.6) will satisfy

where GN (t, x) is the fundamental solution of the discrete heat equation
on Zd with 0 boundary conditions on BDN.
We will at times use the following consequence of Jensen’s inequality.

Let M > 0, suppose that p > 1, and that ai , ... , aM are non-negative real
numbers. Then,

For the following lemma, let #S denote the cardinality of the set S.

LEMMA 2.5. - Suppose that v (t, x) satisfies (2.6), and let

Let ~-DN be the points in DN which are nearest neighbors to Then
there exists a Brownian motion B(t) and a predictable functional H (t) 

such that Vet) satisfies the following stochastic
differential equation:
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Proof - Summing over x E DN, combining the Brownian motions and
using (2.8) with p = 2y, we get the lemma. 0

The following lemma is a special case of Lemma 3.4 of [9].

Let t be the first time t that Z(t) = 0, and let t = 00 if Z(t) never
reaches 0. There is a constant C(y) depending only on y such that

Lemma 2.6 has the following simple corollary.

LEMMA 2.7. - Let Xt, t  T, be a continuous non-negative super-
martingal e with martingale part

for some Brownian motion Bt and for some predictable process Ht. If
L > 1 and A > 0, then

Proof - Let = du , where

and define r(s) = inf{t: > s}, if s  a(Tx); and t (s) = Tx,
if s > a(Tx). Then Zt = XT(t) is a right continuous non-negative
supermartingale with continuous martingale part given by AZS d BS
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for some Brownian motion B . Z may only have negative jumps. Let Yt
be the unique solution of

A well-known comparison theorem (Theorem V.43.1 of [ 11 ] is easily
modified to cover this case) shows that for all t ) 0 a.s. and so
it follows easily that X t C Ya(t) for all t > 0 a.s. Clearly

and T  Tx imply a(T)) T /L . Recalling that both X and Y will stick
at 0 after they first hit 0, we see that

and Lemma 2.6 completes the proof. D

LEMMA 2.8. - Suppose that f and g are non-negative functions on
Zd such that

Then

Proof - By Holder’s inequality,

Our final result shows that we can split up solutions at t = 0 in an
appropriate manner. First we observe that since 2 y > 1, if a, b > 0
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then

LEMMA 2.9. - Fix n > 0, and let uo : Zd -+ [0, oo). For each

1 ~ i ~ n, let Si be a finite subset of Zd, and let Wi,O(.) be a non-negative
function supported on Si . Assume that

Then on some filtered probability space, (D, P), we may define in-
dependent Ft-Brownian motions } Bi,x : 1 i n, x E Zd}, independent
Ft-Brownian motions f Bx : x E Zd} (the 2 collections will not be mu-
tually independent), and non-negative (Ft)-predictable continuous func-
tions u ( . , x) and wz (~, x), Hi ( . , x) (i ~ n, x E such that the following
holds. First, the wi (t, x) satisfy

and u (t, x ) satisfies ( 1.2). Secondly,

Finally, with probability 1, for all t ~ 0, x E Zd, we have

Proof - We give a brief outline of the proof, leaving the details to the
reader. Observe that if the continuous function hi : Rn  R+ is defined
by

then
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and

Let be a sequence of Lipschitz functions on Rn, which converge
to hi uniformly. More specifically, we define a function §m : R+ --~ R as
follows. Let agree with wY on [1/~, oo ) and at 0, and define

by linear interpolation on (0, 11m). Define as hi i but with
Wk) in the numerator. It follows that

converges to (~=1 uniformly on compacts. Let be the

unique solution of

Let x) be the unique solution of

where wi,o(x) are chosen such that

Then, standard comparison theorems show that with probability 1,

Furthermore, we can take a subsequence mk such that 
converges in distribution to (Wi(t, x), Zi(t, x)), where (wi )
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satisfy (2.10) with Hi (t, x) = hi (wl (t, x),..., wn (t, x)) and 2:7=1 1 zi (t, x)
satisfies ( 1.2). Clearly with probability 1,

This implies Lemma 2.9. D

3. PROOF OF THEOREM 1

Our proof depends heavily on the decomposition in Lemma 2.9. We
emphasize that this decomposition is a weak existence theorem, so we are
always dealing with a changing set of Brownian motions and solutions.

First, we set up some notation which we will use in the proof. Fix
8 > 0. Let lC be the event that for some T > 0, u ( T , x ) = 0 for all x E Z~.
For T ) 0, let /C(F) be the event that u ( T , x ) = 0 for all x E Zd. Note
that as T t oo, the events /C(T) increase to /C. In fact, we show that there
exists a time too such that

Then (3 .1 ) implies Theorem 1. From now on, we fix £ > 0 and

concentrate on proving (3.1 ).
Let E N be so large that

and then choose 0  8 small enough so that

We will specify an integer no > 0 later. Let

We define 0 = tno   ... inductively as follows. Let m be the
smallest integer m such that
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and let

If n > n o and if we are given tn, we let

Clearly, there exists a finite accumulation point

Fix K > 0 and let Ao = Ao(K) be the event that

Let jii = Note that the integrability in (2.1 ) easily gives
that jii is a continuous non-negative martingale. Let i = i (T, K) be the
first time t # T that t  K. If there is no such time, let i = T. Using
the optional sampling theorem and Markov’s inequality, we get

For n ) no, tn # t # tn+1, x E Zd, we will inductively define a

sequence of random functions u (t, x) as follows. Since the
definition of vn (t, x) for n > no is the simplest, we start with that case.
Suppose that we have defined vn_ 1 (t, x)  u (t, x) for tn_ 1  t  tn. Let

For tn  t  tn+1, let vn (t, x) satisfy Eq. (2.6) (of Lemma 2.4), with
N = Nn, so that vn (t, jc) ~ u (t, x) by Lemma 2.4.
Now we give the more complicated definition of vno (t, x) . For 1 ~

we call the time intervals [ (m - 1)(~), m(l)) stages, and we call
the subintervals [k, k + 1) c [(m - 1) (.~), m (.~)) substages. In order to
define vno (t, x), we first define a collection of functions wk,z (t, x) for
~ ~ ~ (k + 1)~, 0  k  iii, z E satisfying
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We let x + Dk denote the set {x + y : y E Dk } . Let

Assume that either k = 0 or that Wk-1,z has already been defined for
z E DNno and satisfies (3.6). Let

and let

Therefore (3.6) holds for t = In either case, using Lemma 2.9 with
Sz = z + z E DNno , we let wk,z (t, x) satisfy the following equation
for t ~ (k + 

where Hz(t, x) is as in Lemma 2.9, and are independent
Brownian motions. Lemma 2.9 now implies (3.6) and our inductive
construction is complete.

Finally, for 0 C t  we define vno (t, x) as follows. Let D§§ no be
the set of those points zED Nno such that

The reason for defining D0Nn0 is that we do not want to include any points
z for which has any support outside of DNno. If x  let

vno(t, x) = 0. If x E D0Nn0 and t  ml = choose 0  k such

that ~ ~ ~ (k ~ l)l and let

Extend vn, wk,z to be identically 0 outside their initial domains of

definition and let Ft be the right-continuous filtration generated by the
processes vn, wk,z, u, and Bz,x up to time t as n , k, z, x range through
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their respective domains. Now we label the mass that has "leaked out".
For n ) no, let

We will often work with the following sets.

DEFINITION 3.1. - For n ) no let be the event that

and let A2,n be the event that

Define to be the entire space for i = 1 or 2.

Our definitions imply that

The following lemma plays an essential role in the proof of Theorem 1.

LEMMA 3.1. - If no is large enough and n > no, then

and in particular, for no large enough,

Proof - To begin the proof of Lemma 3.1, we consider the case n > no.
The key to the proof is the observation that on the set we have

vn(tn, .) = u (tn , .) . This follows from the definitions of vn and the event

~4i~-i. Let $f be our original continuous time random walk, started from
x, and let T: be the first time t that ~t ~ DNn . The integral equations (2.5)
and (2.7) imply that on E 
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Now use (2.5) again to see that

Denote

Let St be the number of steps that has taken Of course, since

the steps are of size 1, we have that

Recall the definition of Mn . Also, from the definition of tno and tn, we see
that for 

Using (2.4), we conclude that

if n is large enough, and thus if no is large enough. Using Markov’s
inequality, we have

This proves Lemma 3.1 for n > no because 8  1.
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Next, we turn to the case n = no. Note that Mno consists of 2 kinds of
mass. Let Mno refer to the first kind of mass, which escapes from each
of the small cubes x + DN- . Let Mno refer to the second kind of mass,
which escapes from the large cube DNno or becomes part of the functions
wk,z (t, x), for those z E To be precise, let

and let

Clearly M~o = Mno ~-- Mno . 
First we deal with Let i be , the first time t  l that 03BEt ~ DNn0

where ~o = 0. If there is no such time, let t = .~ . Using the analogue of
(2.7) for the wk,Z, as in (3.8), we get

In the last line we have used (3.6) and the fact that at times k£, the
redistribution of the mass among the wk,z’s preserves the total mass of

Therefore
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The last term is at most K P(f  f). Now iterate the above m times,
noting that ~x u (0, jc) = ~ ~ wo,Z (o, x), and argue as in (3.9) using
(2.4) to get (for no large again)

if no is large enough. Again using Markov’s inequality, we have

Now we consider On the last interval [(m 2014 1)~, 

is a supermartingale and so
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Use (3.6) to bound the above by (no large enough)

# K sup P (~x exits DNn before time (m - 1)~)
~~F 0

Another application of (2.4) (as in (3.9)) shows that for no large enough
the above is at most 8-2n~ , and therefore, by Markov’s inequality,

Putting together (3.10) and (3.11 ), we obtain

This proves Lemma 3.1. D

Our next goal is to estimate the probability of Let

LEMMA 3.2. - Ifno > n (~, E), then for n > no,

Proof - Our argument uses Lemma 2.7. We need to bound

By Lemma 2.5, on the event ,,42, n _ 1, we can write
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where

Then, by Lemma 2.7, we have

This proves Lemma 3.2, if no is large enough. 0

Next, we treat the more complicated case of n = no.

LEMMA 3.3. - Ifno ) n (E, K), then

To prove this we will deal with the stages (of length l) and the
substages (of length 1 ) which we defined earlier. We first show that for at
least half of the stages, at the end of the l - 1 substages, there are only a
small number of sites Z E DNno such that Wk ’ Z is still alive. (Recall that we
say a function is alive if it is not identically 0.) To state this key lemma
precisely, for 0  k  iii, we let

and for as above, set

Then we have the following.

LEMMA 3.4. - If no ) y, 6~) then

Assume for the moment that Lemma 3.4 holds and let us give the

Proof of Lemma 3.3. - Note that, as in Lemma 2.5, Wk,z is a non-

negative supermartingale with martingale part Hk,z d B, where
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Lemma 2.5 also shows that Vno(t) = Wk,z(t) (for t 

(k + 1)~) is a continuous supermartingale with martingale part Ht d Bt ,
where by (3.12) and Jensen’s inequality, for k.~  t  (k + 1 )£

Therefore on ,r43, k (.~ -1 ) and for t E [k£ + ~ - 1, (k +1)~], we have (note
that c)

. 

~B-x -*’~(JB’~’ 
.

Thus we may apply Lemma 2.7 along with our choices of l and 03B4 (recall
(3.2) and (3.3)) to conclude that
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for no # nee, K). This together with Lemma 3.4 completes the proof of
Lemma 3.3. D

We now turn to the

Proof of Lemma 3.4. - Fix 0 ~ k  hi. For 0  j  .~ let =

By (3.12) we may use Lemma 2.7 to see that for 1  j  ~

Now note that on -1, K ) , we have Ez + j - 1) ~ K (by
(3.6)). We apply Lemma 2.8 with

to see that on A3, k ( j - 1 ) ,

Markov’s inequality implies for 1  j  ~,

the last by (3.3). Since there are at most 3d2nod sites z in DNno ,
P(A3,k(0)) = 1 and so from the above we have, 

°
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if no > ~, y). Allowing k to vary, let

and Mn = ~k-1 dk - n  ~c. Clearly (Mn, is a

martingale and so if no > K , y, E),

The probability we have to bound is no bigger than that on the left-hand
side of the above equation and so the proof is complete. 0

Now we can complete the

Proof of Theorem 1. - Recall that

Using (3.4), choose K so large that
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and then no large enough so that all of the above bounds are valid. Take
complements in the above inclusion and consider the first value of n so
that w E or A2,n to see that (recall 1 is the entire space)

Therefore Lemmas 3 .1, 3 . 2 and 3.3 and our choice of K imply

This proves (3.1 ), and finishes the proof of the theorem. D

4. PROOF OF THEOREMS 2 AND 3

We first introduce a setting for mutually catalytic branching models.
Let Q = (qxy) be the Q-matrix for a continuous time Zd-valued Markov
chain 03BE1 with semigroup Pt and transition functions

If Ixl = I(X1, ..., ] = ] (x E Zd), we assume the following
hypotheses introduced in [4] :

(HI) ~q~~ = supx|qxx|  00.
(H2) For each x, y E Zd, qxy = qyx and so y) = x).
(H3) There are increasing positive functions c ( T , À) and À’(À) such

that

These conditions are satisfied by a continuous time symmetric random
walk with subexponential tail (Lemma 2.1 of [4] ) and in particular by the
nearest neighbor random walk considered in the introduction for which
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qxy = 1(lx - y = 1) - 2dl(x = y). Our generalized mutually catalytic
system is then

Here, is a collection of independent Ft-Brownian mo-
tions on some filtered probability space. The weak existence and unique-
ness of solutions in C([0, oo) , MF(Zd)2) described in the introduction for
Q = A continues to hold and we let PUo, vo continue to denote the unique
law of the solution on this space of paths.
Theorem 2 continues to hold without change in this more general

setting as we now show.

Proof of Theorem 2. - By Theorem 2.2(b)(ii) of [4] Vt (x) has mean
Uo Pt (x ) and variance

By Chebychev’s inequality

By ( 1.6) if ~ > 0 and t > to, we may choose xo so that

and so
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Since (Ut, 1) is a non-negative martingale this shows that

The result follows by symmetry. D

It is easy to choose initial conditions satisfying (1.6) for simple
symmetric random walk in Zd.

PROPOSITION 4.1. - Assume Q = ð so that {~t} is simple symmetric
random walk on Zd with jump rate 2d. Suppose there are m > n in Z
such that

Then ( 1.6) holds and hence

We need an elementary estimate for simple random walk.

LEMMA 4.1. - Let {~t} be simple symmetric random walk on Then

where we recall that Ix I = ~d ~ xi I .
Proof. - Suppose d = 1 and ~t jumps with rate À > 0. Then for x ) 0,

(ç has n + x steps to the right up to time t)
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Clearly

Put this into (4.3) and use symmetry in x to get

Since = x) = 1 pt l~ (x~ ), the result follows. D

Proof of Proposition 4.1. - Choose v E Zd with v 1 > m such that
Vo(v) > 0. Then (4.2) shows that for t > 2, x = v2 , ... , vd) and
Xi > VI,

where = 03A3y2...yd U0(y1, y2, ..., yd) is the first marginal of Uo.
Setting k = m - Y1, we see that.

This, and a symmetrical argument for the reciprocal, establish ( 1.6) and
we are done. 0

Next, we turn to the main task of this section, proving Theorem 3 in
our more general Markov chain setting. In this case we need to add a pair
of hypotheses.
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THEOREM 4. - Assume

and

Under the hypotheses on Vo in Theorem 3, the conclusion of that result
holds.

Remark. - The hypotheses added above hold for any continuous time
random walk with subexponential jump distributions, as (4.6) is trivial
and (4.5) is proved in Lemma 2.1 of [4].

Notation. - ~~, (x) = for x E Zd .

LEMMA 4.2. - Assume the hypotheses of Theorem 4. Then VÀ > 0,
£ > 0, T > 0 there is a > 0 such that

Proof - For the lower bound, observe that

for all t  T by (4.6).
For the upper bound, note that (H2) implies

and so for t  T

This finishes the proof of Lemma 4.2. D

Proof of Theorem 4. - The hypotheses on {~,l } allow us to choose ,B
such that

and then a such that
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For now we fix 17 E (0,1] (recall Uo E 17/J-Ào) and will specify its value
later in the proof. It is easy to modify the derivation of Theorem 2.2(c) of
[4] to see that

where Mt (/J/3) is a continuous square integrable martingale such that

To see this note that f3  À2 shows that (Vo, ~,~ ~  oo, and that (4.5)
implies

so that

In addition we use the fact that

for ~ > 0 small enough because 2,B  2À2  03BB0+03BB2. (4.11) and the above
show that ,
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A similar argument (now use a  (Ào + ~.1)/2  Ào) shows that

Now fix 8 > 0. We claim there is a to > 0, independent of the choice of
q E (0,1], such that

If N(t, x) = V (t, x) - then Theorem 2.2(b) of [4] shows that if

o ~ t ~ u  1 then N(u, x) - N(t, x) = + where

and

Our hypotheses on {~t} imply that

We have for any 8 > 0,
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and, using similar reasoning,

Choose 8 > 0 small enough so that (see (4.8))

Let A~) = (n + 1)1~22-n~2(ixl + 1)1~2~-~(x), x E Zd, n E N. Then
for K, K1 > 0

where B is a one-dimensional Brownian motion and we have used the
Dubins-Schwarz Theorem in the last line. An elementary estimate on the
Gaussian tail and the fact that



335C. MUELLER, E. PERKINS / Ann. Inst. Henri Poincare 36 (2000) 301-338

shows that if we set L = and assume L > 1, then we have

where we have used (4.12) and (4.13) in the last line. First choose
Ki 1 and then K sufficiently large so that the above expression is less
than 8 and L ~ 1. Note that the choice of Ki and K may be made
independently of 17 E (0, 1 ] . Therefore off a set of Pvo, vo -measure at most
8 if 2-n~  t  21-no (no e N) and t = E~ jn2-n where jno = 1 and
jn E f 0, 1 } for n > no, then for all x in Zd

(by the lower bound in Lemma 4.2)

Hence we may choose to > 0 sufficiently small (independent of 17 E (0,1]
and co ) such that

This proves (4.14).
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Let

As for (4.9) we have

where a continuous square-integrable martingale such that for

In the last line we use Lemma 4.2 and the fact that a > Ål by (4.7) and
(4.8). Therefore

Let

and

Then for t  C(a)

where M (t) = is a continuous local martingale such that for
t  C(a)
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Hence by enlarging the probability space if necessary we may assume
there is a filtration (.~’t) and an motion, B(t), such that

Ut and i’(t)l(t  C(a)) are (t)-adapted, C(a) is an 

stopping time and

(4.19) implies that i’ (r)  c4_ i9 for r  C(a) and the analogue of (4.10)
now shows that for r  C(a),

Let !7~ be the pathwise unique solution of

A comparison theorem for stochastic differential equations (see Rogers
and Williams [ 11 ], V.43.1) shows that

and so

(4.19) shows that C(~) ~ c4.19t for and so if Px is the law of U
starting at x we have for 0 x to (here 8 > 0 is fixed and to is as in
(4.14))
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where we have used the multiplicative property of the superprocess li
and the choice of to. Now Pi (7 = 0) > 0 (in fact it is easy to get
an explicit expression for this probability, or alternatively one may use
Girsanov’s theorem and the fact that this probability is positive if 04 21 = 0
in (4.21 )). Therefore for ~ > 0 sufficiently small the above probability is
at least 120142~. This completes the proof of Theorem 4. D

REFERENCES

[1] Dawson D.A., Measure-valued Markov processes, in: Hennequin P.L. (Ed.), Ecole
d’Ete de Probabilites de Saint Flour XXI-1991, Lecture Notes in Math., Vol. 1541,

Springer, Berlin, 1993, pp. 1-260.
[2] Dawson D.A., Etheridge A., Fleischmann K., Mytnik L., Perkins E., Xiong J.,

Mutually catalytic super-Brownian motion in R2 (1999), in preparation.
[3] Dawson D.A., Perkins E., Historical processes, Mem. Amer. Math. Soc. 93 (1991).
[4] Dawson D.A., Perkins E., Long-time behavior and coexistence in a mutually

catalytic branching model, Ann. Probab. 26 (3) (1998) 1088-1138.
[5] Gärtner J., Molchanov S., Parabolic problems for the Anderson model, Comm.

Math. Phys. 132 (3) (1990) 613-655.
[6] Knight F., Essentials of Brownian Motion and Diffusion, Mathematical Surveys, 18,

American Mathematical Society, Providence, RI, 1981.
[7] Kotelenez P., Comparison methods for a class of function valued stochastic partial

differential equations, Probab. Theory Related Fields 93 (1) (1992) 1-29.
[8] Liggett T.M., Interacting Particle Systems, Springer, Berlin, 1985.
[9] Mueller C., Perkins E., The compact support property for solutions to the heat

equation with noise, Probab. Theory Related Fields 93 (1992) 325-358.
[10] Mytnik L., Uniqueness for a mutually catalytic branching model, Probab. Theory

Related Fields 112 (2) (1998) 245-254.
[11] Rogers L.C.G., Williams D., Diffusions, Markov Processes, and Martingales, Vol.

2: Ito Calculus, Wiley, Chichester, 1987.
[12] Walsh J.B., An introduction to stochastic partial differential equations, in: Hen-

nequin PL. (Ed.), Ecole d’Ete de Probabilites de Saint Flour XIV-1984, Lecture
Notes in Math., Vol. 1180, Springer, Berlin, 1986.


