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Martingales on noncompact manifolds:
maximal inequalities and prescribed limits

R. W. R. DARLING

Mathematics Department, University of South Florida, Tampa, FL 33620-5700.

Ann. Inst. Henri Poincaré,

Vol. 32, nO 4, 1996, p. 431-454 Probabilités et Statistiques

ABSTRACT. - A version of the Burkholder-Davis-Gundy inequalities is

presented for r-martingales, with respect to an arbitrary connection F
on a Riemannian manifold (M, g). Under convexity assumptions on the
manifold, some limit results are derived for "HP r-martingales", i.e. those
whose total Riemannian quadratic variation is in LP~2. These are applied to
the extension to noncompact manifolds of Kendall’s theorem on existence
and uniqueness of r-martingales with a prescribed limit, which is related
to the Dirichlet problem for harmonic maps.

Key words: Brownian motion, martingale, manifold, gamma-martingale, connection,
harmonic map, convexity.

RESUME. - Une version des inegalites de Burkholder-Davis-Gundy est
presentee pour les r-martingales, ou F est une connexion quelconque sur
une variete riemannienne (M, g). Avec des hypotheses de convexite sur la
variété, quelques resultats sont derives pour les limites des r-martingales
dont la variation riemannienne quadratique apartient a LP /2 (« HP r-
martingales »). Ces resultats sont appliques a l’extension aux varietes

noncompactes du theoreme de Kendall au sujet de 1’existence et l’unicité
des r-martingales ayant une limite prescrite ; ce theoreme est relie au

probleme de Dirichlet pour les applications harmoniques.
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1. INTRODUCTION

A r-martingale is a kind of stochastic process with values in a

manifold M, with connection F, which generalizes the notion of
continuous local martingale on Euclidean space. For a general introduction
to r-martingales, giving some of the basic references, see Emery and
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433MARTINGALES ON NONCOMPACT MANIFOLDS

Meyer [7]. This class of processes has attracted increasing interest in recent
years because it offers the possibility of supplying probabilistic solutions to
significant problems in nonlinear analysis, particularly the construction of
a geometrically important class of mappings known as harmonic maps, in
the same way that the ordinary theory of Brownian motion and martingales
on Rn supplies a probabilistic construction of harmonic functions; for

a fuller discussion see Kendall [12], [13], Picard [21], and especially
Kendall [ 17] .

In order to carry out such a program, it is necessary to solve a certain

basic problem which, at the moment, still appears quite difficult. Given a
filtered probability space > 0 ~ ) and a random variable Z
in P; Rn), it is trivial to construct a martingale in Rn which
converges to Z a. s. as t 2014~ oo : simply condition Z on the sequence
of ~-fields {~,~>0}. Unfortunately this procedure is specific to the

Euclidean connection; for a general connection on Rn (or any manifold),
the geometric analogue of taking conditional expectations may not be
globally or unambiguously defined, and need not be associative when we
condition on Ft and then on Fs (although see Emery and Mokobodzki [8]
and Picard [22] for some ways around these difficulties). Thus a basic
problem is the following:

1.1. Problem: Convergence to a Prescribed Limit

Given a filtration ~Ft, t > 0~ (typically generated by a Wiener process,
for the sake of path continuity of local martingales), an F~-measurable
random variable Z on a manifold M, and a connection r on M, does there
exist a r-martingale ~Xt, Ft ~ on M with Xt - Z a.s. as t -~ oo? If so,
under what conditions is it unique ?
One application of the solution to this problem is that the non-random

Xo tells us the value of a certain harmonic mapping, when Z is suitably
defined; see Kendall [13], [18].

Uniqueness and other questions were considered by Emery [6]. Building
on Emery’s convexity ideas, Kendall [13] proved existence and uniqueness
when M is a small ball in a Riemannian manifold, and in fact more

generally when M is compact (with boundary) with "convex geometry"
(see below for a similar notion); here r is the Levi-Civita connection. The
case where there is a unique solution has been completely characterized
by Kendall [14], [16] in the compact case. Independently Picard [20],
[21], using Malliavin calculus and distance function estimates, proved
existence on small convex domains in the Riemannian case, and when the
Malliavin derivative process of the limit Z has a certain deterministic bound
related to curvature, and uniqueness under certain other conditions; he also

Vol. 32, n° 4-1996.



434 R. W. R. DARLING

gives examples of non-uniqueness and non-existence, even when M is
compact. Picard [22] gives results for more general "connectors", without
the use of Malliavin calculus or the restriction to the Wiener filtration.

Darling [5] gives a backwards SDE construction applicable to nonlinear
connections. A different but related problem, the construction of a r-

martingale whose limiting value has a given law, was considered by Emery
and Mokobodzki [8].

This paper presents a set of techniques for dealing with r-martingales
on noncompact manifolds. These include:

~ A version of the Burkholder-Davis-Gundy inequalities for martingales
on manifolds (Theorem 2.4), and application to Cartan-Hadamard manifolds
(Proposition 2.5);

. A method for constructing a r-martingale knowing only its terminal
value, if that terminal value is the limit of terminal values of known

r-martingales (Proposition 4.4);
~ Conditions under which a r-martingale must spend its whole lifetime

contained in the same convex set as its terminal value (Proposition 6.1).
These methods are applied to the extension of Kendall’s existence

and uniqueness results to the case of unbounded terminal values on a

noncompact manifold, under convexity assumptions (Theorem 5.2). It is

conjectured in 6.3 that, under suitable compactness assumptions, it may
be possible to construct a r-martingale with prescribed limit without any
convexity or curvature conditions on the connection. Finally we examine
some consequences for harmonic maps if this conjecture is true.
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2. HARDY SPACES OF GAMMA-MARTINGALES

We shall work with a triple (M, g, F), where (M, g) is either a complete,
connected, Riemannian manifold or else a compact, connected, manifold-
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with-boundary, and is equipped with a connection r which is not necessarily
the Levi-Civita connection for this metric, but is always torsion-free. For
basic information on differential forms and connections, see for example
Darling [4]. Let t . ~ ~ denote the norm on any tangent space, and d i s t ( . , . )
denote the distance function on M x M induced by the Riemannian metric g.
The topology of M is defined by this distance function.

2.1. Some Definitions

A filtered probability space ( SZ, F, P, ~ Ft , t > 0 ~ ) is given; all events

in Fo are assumed to have probability 0 or 1. Recall that a continuous

semimartingale X on (M, r) is called a F-martingale if, for every

f G C°° (M), the real semimartingale

belongs to the space of continuous local martingales. In that case, the
property just described extends to all f E C2 (M). For M = Rm with the
Euclidean connection, r-martingales are simply m-dimensional continuous
local martingales.
Given a Riemannian metric g on M (not necessarily related to r), we may

associate with any M-valued continuous semimartingale Y a Riemannian

quadratic variation process given in local coordinates by

(see Emery and Meyer [7]). Suppose 0  p  oo. A r-martingale X is
called an Hp r-martingale on (M, g), or is said to belong to the Hardy
space HP, if

Examples of HP r-martingales, when r is the Levi-Civita connection,
include:

~ bounded r-martingales on Cartan-Hadamard manifolds (see Propo-
sition 2.5);

. Brownian motion on (M, g), stopped at a stopping-time T E 
Obviously HP D HP’ if p  p’.

Vol. 32, n° 4-1996.
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2.2. Some Classes of Functions on a Manifold

The expression ~d03C6 > cg, for p E C2(M) and c E R, is an abbreviation
for ~d03C6(x)(03BE, 03BE) > for all x, and all 03BE E and similarly for

any other (0, 2)-tensor. Consider the following conditions on cp E C2(M):

A function cp E C~(M) is called convex with respect to r if Vdp > 0,
and strictly convex if (6) holds. We shall say that a function p E C2(M)
has bounded derivative if (4) holds, and bounded second covariant

derivative (with respect to g and F) if (7) holds. Note that (5) is equivalent
to saying that 03C61/2 has bounded derivative, or that ~grad 03C61/2~ is bounded.
On with the Euclidean metric and connection, cp (~) _ ~ satisfies (5),
(6), and (7). Lemma 2.6 gives more examples.
We shall now give a characterization of Hp r-martingales which is

applicable on any Riemannian manifold. For any real-valued process H,
denote : 0  t  u~ by Hu .

2.3. Characterization Lemma

A r-martingale X on (M, g) belongs to the Hardy space HP if and

only if, for every f E C2 (M) of bounded derivative, the continuous local
martingale f I (X ) defined in ( 1 ) satisfies:

Proof. - First, suppose X is an HP r-martingale. Since f has bounded
derivative, there exists c > 0 such that cg - df Q9 df is non-negative definite.

Consequently the quadratic variation process of f I (X ) satisfies:

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



437MARTINGALES ON NONCOMPACT MANIFOLDS

It follows from (3) that the continuous local martingale f I(X) satisfies

Now the fact that f I (X ) ~ E LP follows from one of the Burkholder-
Davis-Gundy inequalities (see for example Revuz and Yor [23]).

Conversely, suppose that for all f E C~(M) of bounded derivative,
f I ( X ) ~ E LP. From the other Burkholder-Davis-Gundy inequality, it

follows that (10) holds for all such f. By the Nash embedding theorem,
there exists an isometric embedding of (M, g) into the Euclidean space
RS for s sufficiently large. Define smooth on M to

be the coordinate functions on Rs composed with the embedding, so that
g = dfi Q9 df 1 + ... + dfs Q9 df s ; it follows that each of ~ f 1, ... , has

bounded derivative, and

Thus X belongs to the Hardy space HP. D

We are now going to prove a version of the Burkholder-Davis-Gundy
inequality. In the sequel, c, c’, c" will denote constants, usually depending
on p, a, etc., which may vary from line to line.

2.4. Theorem:

Burkholder-Davis-Gundy Inequality for Gamma-martingales

Suppose 0  p  ~, and 03C6 E C2 (M) satisfies dcp ® dcp  and
= 0.

(i) If furthermore  then there exists a constant

c - c(p, {3, -y) such that, for every 0393-martingale X on (M, g) with Xo = x0,

(ii) If on the other hand > ag for some a > 0, then there exists
a constant c’ - c’(p, a, -y) such that, for every 0393-martingale X on (M, g)
with Xo = xo,

Remark. - There exist Riemannian manifolds on which there exists no

cp E C2 (M) such Vdw and oo as x - oo; see

Vol. 32, nO 4-1996.
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Counterexample 2.9. On a manifold with a closed geodesic, such as the
sphere, no such cp as in part (ii) exists. Indeed for Brownian motion on a
sphere, the left side of (12) is always infinite, while the right side is finite
for every continuous cp. These estimates are not optimal for estimating
passage time probabilities: see Darling [3].

Proof. - (i) Let N E Mcloc be the process cP I(X) as in (1). Using (5),
we have

For any positive integer n, let T(n) z inf{t > 0 : > n~. By the
usual Burkholder-Davis-Gundy inequality,

Take

and 03BD ~ E[{ (0,03C4(n)|dX|dx>}p] . . Cauchy-Schwarz gives

On the other hand if A - (1/2) f Vdcp(dX,dX), (1) implies that

with cp(Xo) = 0 by (8), and (7) implies that

Since lu + + (13), (14), and (15) imply that

Either v = oo, in which case (11) holds vacuously, or else 
0 with u  nP/2, which implies u is bounded above by the positive root
of the quadratic u2 - c’uv - c’v2 = 0, which is of the form cv, where

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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c = c(p, ~3, q); now let n - oo and use monotone convergence to obtain
(11) (this argument is taken from Revuz and Yor [23]).

(ii) Redefine T(n) as inf t > 0 : > n . By (14), At =
Nt, and so (6) gives

Now (13) shows that v2  + where c" - c" (p, a, -y), and as
in the previous part of the proof, y  thus (12) follows on
letting n -~ oo . D

It is important to give examples of non-Euclidean manifolds on which
the conditions of Theorem 2.4 can occur. Recall that a Cartan-Hadamard
manifold (M, g) is one which is diffeomorphic to some R’n, and all of
whose sectional curvatures are non-positive. Take a pole o E M, and a polar
coordinate system (r, 81, ... , 9"2-1) on M - ~o~; thus r(x) _ dist(x, o),
and the metric tensor g can be expressed as dr 0 dr plus a metric on
the sphere 

2.5. Proposition:
Maximal Inequalities on a Cartan-Hadamard Manifold

In the following, r will be the Levi-Civita connection, and 0  p  oo.

(i) There is a universal constant c(p) such that for every Cartan-Hadamard
manifold (M, g) with pole o E M, and every 0393-martingale X on M with
Xo = o,

(ii) There is a universal constant c(p, ~) such that for every Cartan-
Hadamard manifold (M, g) with pole o E M, with sectional curvatures
bounded below and every r-martingale X on M with Xo = o,

where

The proof follows immediately from Theorem 2.4 and the following
Lemma.

Vol. 32, nO 4-1996.
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2.6. Lemma: Properties of the Distance Function

(i) On any Cartan-Hadamard manifold, the function ~p - r2 is in C2 (M),
and satisfies dcp ® d03C6  ~d03C6 > 2g, and = 0.

(ii) On a Cartan-Hadamard manifold whose sectional curvatures are
bounded below by -~2, the function W given in (20) is in C2(M), and
satisfies d~ ® d~  (4~ ~ ~ n = 0, and 0   where
the constant depends on ~.

Proof. - (i) Smoothness of the squared distance function cp - r2 on
a Cartan-Hadamard manifold is well known. Clearly d(r2 ) ® d(r2 ) _
4r2dr~dr  4r2g. Let ro and rl denote the distance functions on Euclidean

and on the Cartan-Hadamard manifold of constant sectional curvature
-~2, respectively, with corresponding metrics go and gl. Recall from
Greene and Wu [10] that

- ,, ~, _

Now apply the Hessian Comparison Theorem of Greene and Wu [10] to
see that 2g  pd(r2). The proof of (i) is now complete.
Under the assumptions of (ii), the Hessian Comparison Theorem gives

The function W given in (20) is the composition with r2 of the C2 function

Note that = + h"(r2)d(r2) ~ d(r2);
hence on the set {r > 1~, where h’(r2) = r-l/2 and h"(r2) _ -r-3/4,
(22) gives

and therefore ~d03A8 ~ 03BA coth(03BA)g on {r > 1}. Obviously ~d03A8  
follows by compactness of {r  1 ~ . Likewise the inequality 2g  B7 d( r2)
gives

Finally = dr 0 dr on {r > 1 ~ , while on ~ r  1 ~ we have

which completes the proof that (ii) holds. D
Now we shall give some useful consequences of Theorem 2.4.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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2.7. Corollary:
Riemannian Quadratic Variation of Bounded Martingales

Suppose (M, g, r) is a manifold containing a compact set K such that, for
each y E K, there exists 03C6y E C2 (M) satisfying = 0, ~d03C6y > ag
and d03C6y ® g for some a > 0 and 03B3 > 0, uniformly in y. Then
there exists for every 0  p  oo a universal constant c(p, a , ~y, K) such that

for every r-martingale X on M such that P(Xt E K, Vt > 0) = 1.

Proof. - Given such a r-martingale, there exists y E K such that Xo = y
a.s. Apply Theorem 2.4 to ~p - py. D

The following simple fact will have several applications.

2.8. Corollary: Convex Functions and Submartingales

Suppose 03C6 E C2 (M) is a convex function such that 0  ~d03C6  and

d~p ® d~p  qg for some ,~, q. If X is an HP r-martingale on (M, g, r) for
some p > 2, then p e X is a uniformly integrable submartingale with

Proof. - Suppose 0  and dcp hold. As in (14),
we may write p(Xt) = + Nt + At, where the continuous local
martingale N - is actually a martingale, since  o0

by (9); moreover p(Xo) is a.s. nonrandom, and convexity of p ensures
that A is an increasing process with Aoo E LP/2 by (15). So X is a

submartingale satisfying (25), hence uniformly integrable. D

Emery and Meyer [7] give the following counterexample (attributed to
Prat) to show how finiteness of the Riemannian quadratic variation can fail
to imply that a r-martingale has an almost sure limit in M. Here we extend
it further to give a counterexample related to Theorem 2.4, showing how
(11) can break down without appropriate assumptions on the function p,
i.e. how the Riemannian quadratic variation can fail to control the distance
of the process for certain manifolds.

Vol. 32, n° 4-1996.
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2.9. Counterexample:
An Exploding Gamma-Martingale in Class H ( 2 )

There exists a metric on the cylinder M = R x ,S’1 such that (M, g) is

complete, and Brownian motion B on (M, g) is an H2 0393-martingale (with
respect to the Levi-Civita connection) such that Bt - oo a. s. as t tends
to an explosion time (.

Proof. - Take a metric on M = R x S’ 1 whose expression in cylindrical
coordinates (u, o) is

Emery and Meyer [7], Section 5.40, point out that such a manifold is

always complete, and that the radial part ç of Brownian motion B on
(M, g) is a diffusion satisfying the Ito stochastic differential equation
dçt = dWt + where W is a one-dimensional Wiener process.
From Exercise IX.2.15 of Revuz and Yor [23] we see that the explosion
time ( of ~ satisfies E~ ~~~  oo and P.~ ( ~  oo ) for all u E R provided
~(oo)  oo and ~(-oo)  oo, where

Thus Eu ~~~  oo for example if h( u) = u4 (convert the integral in (27)
to polar coordinates, change variables, and use properties of the Normal
distribution). B is well known to be a r-martingale with respect to the
Levi-Civita connection F, and in this case will be an H2 r-martingale
because

On the other hand, P u ((  oo) implies that B has a finite explosion time
almost surely, and so with probability one it converges to oo. D

3. CONVEX GEOMETRY

Recall that ( M, g ) is either a complete Riemannian manifold or else a
compact manifold-with-boundary. Recall from Emery and Meyer [7] that,
for any connection F on M, the product connection r(2) on M x M is the
one whose geodesics are precisely of the form t --~ (~y(t), b(t)) where ~y

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



443MARTINGALES ON NONCOMPACT MANIFOLDS

and 8 are arbitrary geodesics on (M,F). Generalizing to the non-compact
case a definition of Kendall [13], we shall say that the triple (M, g, r), has
w-convex geometry if there exists a C2 non-negative function

which is convex with respect to the product connection r~2>, also written
> 0, and which has the following three properties. Here g~2~ - 

denotes the product metric on M x M.

3.0.1. Bounded First Derivative .

There exists ci > 0 such that dW  

3.0.2. Bounded Second Covariant Derivative

There exists c2 > 0 such that 0   c2g(2) .

3.0.3. Distance Goes to Zero as 03A8 Goes to Zero

= 0 for all x, and given E > 0, there exists 8 > 0 such that
x’)  b ~ dist(x, x’)  E, or in other words

Note in particular that this implies that the E ~~
is precisely the set on which W is zero.

Since the notion of W-convex geometry will be assumed in most of our
studies of Hp r-martingales, it is important to know something about how
restrictive this condition is. Proposition (4.59) of Emery and Meyer [7]
demonstrates W-convex geometry in a sufficiently small neighborhood of
any point in (M, g, r). Kendall [13], [15] has demonstrated that geodesic
balls of radius less than x/2 in Riemannian manifolds with sectional
curvature bounded above by 1 have W-convex geometry for the Levi-Civita
connection (he allows W to be C° rather than C~); there of course M
is compact with boundary. For complete manifolds with the Levi-Civita
connection, the existence of W-convex geometry has severe topological
consequences.

3.1. Proposition: Topological Triviality

If ( M, g ) is a non-compact, complete, connected, m-dimensional
Riemannian manifold with Levi-Civita connection T, and if (M, g, r) has
W-convex geometry for some W, then M is diffeomorphic to R’n.

Vol. 32, n° 4-1996.
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Proof - Fix xo e M, and consider the convex function xo )
on M. Since the set on which p attains its minimum is ~xo ~, which has
empty interior, p must be "locally nonconstant" in the sense of Greene and
Shiohama [9], whose Proposition 2.1 shows that there exists a deformation
retract from M to ~ xo ~ . Since M is complete and noncompact, it must

be diffeomorphic to Rm . D

We shall now give a straightforward class of examples of Riemannian
manifolds with W-convex geometry, including of course the Euclidean case.

3.2. Proposition:
Cartan-Hadamard Manifolds with Convex Geometry

Suppose (M, g) is a Cartan-Hadamard manifold, i.e. complete, with non-
positive sectional curvatures, and diffeomorphic to with the Levi-Civita

connection F. If the sectional curvatures are bounded below by -~2 for
some ~, then (M, g, r) has ~-convex geometry, using the function

where p == dist(x, x’).

Proof - To show that W is convex, it suffices to recall the classical result
that for any Cartan-Hadamard manifold, the function (x, x’) --~ dist(x, x’)
is convex with respect to r(2) (a proof of a more general result is given in
Picard [21], Lemma 1.1.1). The boundedness of the first derivative follows
from the fact that x --~ W(x, y) y) have bounded derivative
by Lemma 2.6. As for the second covariant derivative, we may write

The boundedness of the first two terms on the right follows from Lemma 2.6,
and boundedness of the third term from Picard [21], Lemma 1.2.1;

property 3.0.3 is immediate from (31). D

4. ASYMPTOTICS FOR MARTINGALES

UNDER CONVEX GEOMETRY

Most of the results of this section are extensions to unbounded F-

martingales of propositions for bounded F-martingales found in Emery [6]
and Kendall [13].

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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4.1. Lemma: Convex Geometry Implies Martingale Limits Lie in M

Suppose (M, g, r) has W-convex geometry. If Y is an HP f -martingale
for some p > 0, then there exists a random variable Y~ E M such that
Yt ~ Y~ a. s . as t ~ oo .

Remark. - Actually we shall only use the fact that ( dY ~ d Y ~  oo

a.s.

Proof. - If M is compact with boundary, then the result follows from (3)
and Darling [2] (but see the proof in Emery and Meyer [7], where the
fact that f may be an arbitrary connection is apparent). When (M, g) is

complete and ~ oo as dist(x, xo) ~ oo for fixed
Xo E M. This holds because, for any geodesic ~ : (-00,00) -~ M with
q(0) = xo, f(t) - q(t)) is convex on (-oo, oo), nonnegative, and
zero only at t = 0; therefore f(t) Since the function

has bounded derivative and bounded second covariant

derivative, the result now follows from Proposition (5.37) of Emery and
Meyer [7]. D

4.2. Proposition: Cartesian Product of Two Martingales

Suppose X and Y are HP 0393-martingales on (M, g, T ). Then U - (X, Y)
is an HP 0393(2)-martingale on (M x M, g ® g). Moreover if (M, g, r)
has W-convex geometry, and if p > 2, then W(X, Y) is a non-negative
submartingale such that

Proof - The Riemannian quadratic variation process of U is

so it is clear from the definition (3) that, if X and Y are HP r-martingales,
then so is !7 = ( X , Y ) . The remainder of the proof follows immediately
from Corollary 2.8 and properties 3.0.1 and 3.0.2 of BII. D

The following result uses an idea due to Emery [6].
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4.3. Corollary:
Uniqueness of Martingales with Prescribed Limit

Suppose p > 2 and (M, g, F) has W-convex geometry. If X and Y are HP
r-martingales on (M, g, r) with a.s. limits and Y~ (which must lie in M
by Lemma 4.1) such that = = l, then P(Xt = x, Vt > 0) = 1.
In other words, an H2 f -martingale on a manifold with W-convex geometry
is uniquely determined by its limiting value.

Proof - By (32), the non-negative random variables t > 0~
are dominated by an integrable random variable, using the fact that p > 2;
moreover these random variables converge to zero a.s. as t ~ ~, using
property 3.0.3 of W and the assumption that lim = 0 a.s.;

hence by dominated convergence, 
t-o

The submartingale property implies that these expectations are non-

decreasing in t, and so = 0 for all t. Since the processes X

and Y are continuous, it follows from property (30) of 03A8 that

4.3.1. Counterexample for General Gamma-Martingales

If we drop the requirement that X and Y are in H2, it is possible for
different r-martingales to have the same terminal value. A trivial example
is to take F to be the Euclidean connection on M = R, X to be identically
1, and Y to be Brownian motion started at 0 and stopped at T ( 1 ), the first
passage time to 1. These have the same limit because T(1)  oo a.s., but

= 7(1) which is not integrable.
The next result plays a central role in this paper; it is in some ways

an extension of Theorem (4.43) of Emery and Meyer [7], and follows the
pattern of Theorem 5.5 of Kendall [13].

4.4. Proposition:
a Sequence of Martingales Converges to a Limit Martingale

Suppose (M, g, r) has W-convex geometry, and ~Y~n> ~ is a sequence of
HP 0393-martingales on M, where p > 2, having the following properties:

(i) The sequence of limiting values (which exist a.s. in M by
Lemma 4.1 ) converges in probability to some random variable V in M as
n -~ 00.
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Then there exists a unique (up to indistinguishability) f -martingale Y such
that x - V a.s. as t ~ ~, and such that Yt) : 0  t  ~}
converges in probability to 0 as n - oo.

Proof - For fixed n and n’, Proposition 4.2 shows 
is a non-negative submartingale such that

Given E > 0, choose 6 > 0 as in 3.0.3. Applying Doob’s inequality (see
Revuz and Yor [23]), we see that

using the fact that converges a.s. to as t -~ oo. By (30) and
assumption (ii), we have

for all sufficiently large n and n’. Thus the sequence of 0393-martingales
is a Cauchy sequence with respect to the topology of uniform

convergence in probability on [0,oo]. There exists a subsequence which
is Cauchy with respect to uniform convergence a.s., and which therefore
has a unique continuous adapted process Y on [0, oo] as its limit; all such
subsequences have the same limit a.s. Necessarily we have, for all E > 0,

It follows from (34) that the a.s. limit of Yt as t -~ oo (which exists since
Y is continuous) must be the V specified in assumption (i). The crucial
fact that Y is a F-martingale follows from Theorem (4.43) of Emery and
Meyer [7]. D

5. CONSTRUCTING MARTINGALES WITH PRESCRIBED LIMIT

Theorem 5.2 below gives a general procedure for extending results
on existence and uniqueness of r-martingales with prescribed limit from
compact to noncompact manifolds. There are now half a dozen such results
for the compact case, under various geometric assumptions, and various
assumptions about the filtration ~Ft~, but it may be permissible to say that
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a definitive result has not yet been published. In anticipation of such a
result, let us make the following definition.

5.1. Definition: Gamma-Martingale Dirichlet Property
A compact submanifold-with-boundary K of (M, g, r) will be said to have

the 0393-martingale Dirichlet property with respect to the filtration {Ft} if,
for every F~-measurable random variable V with values in K, there exists
an ~ Ft ~ f -martingale X on M whose almost sure limit is V, and such that
Xt E K for all t, a.s.

When {Ft} is the Wiener filtration, Kendall [13] established the T-

martingale Dirichlet property for the Levi-Civita r on a geodesic ball with
convex geometry, and Picard [21 ] obtained a similar result under restrictions
on the size of K or on the limiting value V; an entirely different approach,
applicable to nonlinear connections, is given in Darling [5]. For results
for more general filtrations, with restrictions on the limiting value V, see
Picard [22].

Since the conditions of Theorem 5.2 seem somewhat abstruse, we present
a concrete example in Corollary 5.3.

5.2. Theorem:

Martingales with Prescribed Limit on Noncompact Manifolds

Suppose (M, g, F) has W-convex geometry, and furthermore that there
exist compact submanifolds-with-boundary Kl C K2 C ... whose union
is M, such that:

(i) Each Kn has the f -martingale Dirichlet property with respect to ~Ft ~.
(ii) For each n and for each y E Kn, there exists py E satisfying

cpy (g) _ 0, > ang and dpy C for some ~yn > 0,
an > 0, uniformly in y.

Then for every F~-measurable random variable V on M such that, for
some o E M,

there exists a 0393-martingale Y on M whose almost sure limit is V. For

p > 2, there is at most one HP 0393-martingale with this property.

Proof - Let be the F~-measurable random variable which equals
V when V E Kn, and takes the value o otherwise. By Definition 5.1, there
exists a 0393-martingale Y(n) with values in Kn, with = a.s. Take

~ - by compactness
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Using Corollary 2.7, valid since dcpy 0 dpy  03B3n |03C6y |g and ~d03C6y > ang,

and so is an HP r-martingale, for every 0  p  oo. Observe that

for n  n’,

- ~) : Y ~ ~n~ -~ o

as n, n’ -~ oo by 3.0.3, (35), and dominated convergence. Evidently Y~n~
converges in probability to V as n - oo. Now all the conditions are in
place to apply Proposition 4.4, which gives the existence of a limiting r-
martingale Y with Y~ = V a.s. The uniqueness assertion is a restatement
of Corollary 4.3. D

5.3. Corollary:
Martingales with Prescribed Limit on CH Manifolds

Let (M, g, r) be a Cartan-Hadamard manifold with sectional curvatures
bounded below by -r~2, where r is the Levi-Civita connection, and let

r(x) - dist(x, 0) for some pole o E M. If ~Ft~ is a Wiener filtration, then
for every F~-measurable random variable V on M such that

there exists a 0393-martingale Y on M whose almost sure limit is V. For

p > 2, there is at most -one HP r-martingale with this property.

Proof. - To apply Theorem 5.2, we take Kn to be the closed geodesic
ball in M of radius n, which is a compact submanifold-with-boundary for
each n, and take W to be the function described in Proposition 3.2. By
Kendall [13], each Kn has the r-martingale Dirichlet property with respect
to the Wiener filtration. On each Kn, the function dist(x, ~)2
plays the role of py, using Lemma 2.6. D

6. MARTINGALE CONTAINMENT AND A CONJECTURE

6.1. Proposition:
Martingales Are Constrained by their Terminal Values

Suppose G C2 (M) has bounded derivative and bounded second
covariant derivative, G - ~x E M :  0~, and the restriction of ~
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to the complement of C~ is convex. If Y is an H P 1 ’-martingale on (M , g,1’),where p > 2, whose a. s. limit Y~ E G a. s., then Yt E G for all t, with

probability one.

Remark. - This result is closely related to Theorem 2.1.3 of Picard [21 ] .
It can best be understood as a generalization to manifolds of the order-
preserving property associated with taking the conditional expectation of
real-valued random variables. In fact it is easy to show that ~ is convex

on the whole of M, and hence ~ x E M : ~ ( x )  0 ~ is ’totally convex’ in
the sense that it contains every geodesic segment whose endpoints lie in
Ga (see Bishop and O’Neill [1]). Thus a ’good’ f-martingale is confined
to the same totally convex set as its terminal value.

Proof. - Fix n > 1 and a time r > 0, and define a stopping-time a by

Observe that P(a  oo) = 1 and ~(Ya)  l/n because  0

a.s. It follows from Corollary 2.8 that the process {~(Yt~~) : t > r} is a

uniformly integrable submartingale, (when a = r the process is constant)
and therefore

Since (38) holds for all n, we see that P(Yr G G) = 1; but r was arbitrary,
so with probability one, Yt E G for every rational t, and hence for all t,
by path continuity. D

Here is a simple application.

6.2. Corollary: Flatness Outside a Compact Set

Suppose r is a connection on Euclidean ( R~ , ~ . , . ~ ) whose Christoffel
symbols vanish outside {x : |x - x0|  a}. If p > 2, and X is an HP

r-martingale with terminal value X~ E {x : |x - x0|  a} a.s., then

= 1.

Proof. - Let xo = 0, for brevity. All the conditions of the preceding
proposition are satisfied by ~(x) - Ix/al4 - +

8~~x/a) - and ~x) I  a ~  0. D

Let us assume now that 0  T  oo, and the filtration {Ft} is generated
by an i-dimensional Wiener process  T} (0 :S t  T if

T  oo). A connection r on Rm will be called compactly supported
if, in some coordinate system, all the Christoffel symbols {0393ijk} vanish
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outside a compact set. Take (.).) to be the Euclidean metric on in

this coordinate system.

6.3. Conjecture for Compactly Supported Connections

For every compactly supported Ci connection Y on and every
bounded FT-measurable random variable V on there exists an H2

r-martingale Y on ( R’~’2 , ~ . ( . ~ ) such that YT = V.
The one-dimensional case of the conjecture is true: take Yt -

where h is the invertible nonlinear transformation

and A is any function such that d03BB/dx = r ( x ) ; using Ito’ s formula,
it is possible to find an L2 martingale N such that dY = dN -

N]. This trick does not work in higher dimensions because
of curvature. We have stated the problem in a Euclidean setting in order to
emphasize its interpretation in terms of stochastic differential equations with
prescribed terminal value, such as are described in Pardoux and Peng [19].
Unfortunately the non-Lipschitz character of the following equation (40)
places it beyond the class of equations solved by these authors, although in
certain cases a solution to (40) can be obtained as the limit of solutions of
backwards SDE with Lipschitz coefficients (Darling [5]).

6.4. An Equivalent Conjecture for Pardoux-Peng S.D.E.

For r and V as above, there exists an adapted solution (Y, Z) to the
stochastic differential equation

such that Tr(Z. Z)ds E L1.

Notation. - Here Y(t) E R"’, Z(t) G R""‘~, (Z . Z) (t) E R"‘ is

given by (Z. Z)~~(t) - ~ Zq (t)Zq (t), and ~ (Z . is the i-th

component of f(Y) (Z . Z). The equation (40) says that

(note the sign change from (40)) with unknown initial value, but known
terminal value Y(T) = V.
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6.5. Implications of Conjecture 6.3

Suppose f is a connection on Rm, and K is a compact subset of R’n,
such that the pair (K, r) has the following property (*):

(* ) There exist a compactly supported connection r’ on and

~ E with

. K = {x E Rm : ~(~r)  ~};

e the restriction of 03A6 to the complement of K is f’ -convex, with bounded
derivative and bounded second covariant derivative (with respect to r’).
Notice that this function &#x26; depends on F only through its values and

derivatives on the boundary c~K - {x G ~(x) = 0~; thus we see that:
Knowing the values of T on any neighborhood of aK is sufficient to

determine whether (*) holds.
If Conjecture 6.3 is true, then for every FT-measurable random variable

V with values in K, there exists a 0393’-martingale Y with YT = V, and Y
is in HP for all 1  p  oo (with respect to the Euclidean metric). Now

Proposition 6.1 (martingale containment) implies that ~ E K for all t, with
probability one. However r’ = r on K, so Y is actually a r-martingale.
Thus Conjecture 6.3 implies that:

If 0393 is a connection on R’n, K c R’n is compact, and (K, T ) has property
(*), then for every FT-measurable random variable V with values in K, there
exists a 0393-martingale Y with YT = V ; the same holds for any connection
which agrees with r on some neighborhood of ~K.
Thus if Conjecture 6.3 is true, the r-martingale Dirichlet property holds
under much weaker hypotheses than those discussed after Definition 5.1.
For example the convexity and curvature properties of compact subsets
of the interior of K can be altered without affecting the existence of

r-martingales with prescribed limit.

6.6. Relevance to the Dirichlet Problem for Harmonic Maps

Suppose (N, g) is a Riemannian manifold-with-boundary, whose

boundary is denoted F is a connection on Rm, and the pair (K, r) has
property (* ). The Dirichlet problem for harmonic maps is as follows: given
~ : ~N --~ 0K (regularity conditions are omitted), construct a harmonic
map (~ : ( N, g ) --~ ( K, T ) which agrees with § on Kendall [13] offers
the following procedure: given x E N, run Brownian motion {Bxt, t > 0}
on ( N, g ) , with Bo = x, until the time T when it hits and then

construct a r-martingale Yx on K, adapted to the Wiener filtration, with

Y~ _ ~ ( BT ) ; then Yo , being Fo -measurable, is non-random, and is taken
to be the value of The resulting map (~ is "finely harmonic" in the
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sense that it sends Brownian motions to 0393-martingales; for a proof that it
is smooth, and therefore harmonic in the usual sense, see Kendall [ 18] .
The previous discussion now shows that, if Conjecture 6.3 is true:

If 0393 is a connection on K c R"2 is compact, and (K, F) has property
(*), then every suitably regular map 03C6 : ~N ~ ~K may be extended
to a finely harmonic map ~ : (N, g) -~ (K, r); the same holds for any
connection which agrees with r on some neighborhood of ~K.
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