
ANNALES DE L’I. H. P., SECTION B

E. EWEDA

O. MACCHI
Quadratic mean and almost-sure convergence of
unbounded stochastic approximation algorithms
with correlated observations
Annales de l’I. H. P., section B, tome 19, no 3 (1983), p. 235-255
<http://www.numdam.org/item?id=AIHPB_1983__19_3_235_0>

© Gauthier-Villars, 1983, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1983__19_3_235_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Quadratic mean and almost-sure convergence
of unbounded stochastic approximation algorithms

with correlated observations

E. EWEDA (*) and O. MACCHI (**)

Ann. Inst. Henri Poincaré,

Vol. XIX, n° 3-1983, p. 235-255.

Section B :

Calcul des Probabilites et Statistique.

RESUME. - Dans ce travail nous demontrons la convergence presque
sure et en moyenne quadratique d’un algorithme de gradient stochastique
avec des pas decroissants gouvernant un estimateur lineaire adaptatif.
Nous n’utilisons aucune hypothese irrealiste telle que l’indépendance des
observations successives ou la bornitude de l’algorithme comme dans la
litterature anterieure. Pour les observations corrélées, nous utilisons un
modele a memoire finie, ce qui correspond a une vaste classe d’application,
etant donné que des observations suffisamment separees dans le temps
peuvent generalement etre supposees independantes. Le modele a memoire
finie a l’avantage, par rapport a d’autres modeles ergodiques tels que les
modeles a covariance decroissante, de permettre une analyse relativement
simple de la convergence de l’algorithme du gradient. De plus, le modele
permet de démontrer la convergence en moyenne quadratique, ce qui
n’avait pas ete fait jusqu’ici pour aucun modele ergodique.

ABSTRACT. - In this paper we prove the almost-sure (a. s.) and qua-
dratic mean (q. m.) convergence of a stochatic gradient algorithm with
decreasing step size governing an adaptive linear estimator. We do not
use unrealistic assumptions such as the independence of successive obser-
vations or the boundedness of the algorithm, as has been previously done
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236 E. EWEDA AND O. MACCHI

in literature. The model we use for the correlated observations is a finite

memory model. This model agrees with a wide class of applications due
to the fact that sufficiently time separated observations can usually be
assumed independent. The finite memory model has the advantage, with
respect to other ergodic models such as models with decreasing covariance,
that it allows a relatively simple convergence analysis of the gradient
algorithm. Moreover, it permits the proof of the q. m. convergence which
has not yet been attained with any kind of ergodic models.

I. INTRODUCTION

In this paper we prove both the almost-sure (a. s.) and quadratic mean
(q. m.) convergence of the stochastic gradient algorithm

to the optimum vector h~ given by

where XT and X* denote respectively the transpose and complex conju-
gate of the vector X. The step size of the algorithm is a decreasing sequence
of positive numbers satisfying

The algorithm (1) is intended to calculate iteratively the vector h* that
minimizes the quadratic mean error 12) between the mes-
sage aj and its linear estimate based on the observation vector Xj.
It is assumed that the sequence (aj, X~) ; j = 1, 2, ... is stationary and that
the covariance matrix R in (2) is invertible.
The algorithm (1) has been used for many years in adaptive signal pro-

cessing. The experimental and simulation results have shown the conver-
gence of h j to h* . However, there is not yet a satisfactory mathematical
proof of that convergence under completely realistic assumptions. In

earlier analysis of similar algorithms e. g. in [1 ], one finds two major assump-
tions, usually not fulfilled in the applications encountered in the field of
signal processing. The first one is the independence of successive pairs
(a~, X~). Now in signal processing, X~ is often made of successive time
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237UNBOUNDED STOCHASTIC APPROXIMATION ALGORITHMS

samples of the same analog signal, in such a way that successive obser-
vation vectors share N - 1 components and are, therefore, strongly
correlated. The second unrealistic assumption often used in literature

is that the vector h j is bounded, which implies the use of a reflecting barrier
that brings h~ back into a compact set every time it leaves that set. Now
applications of the algorithm have shown that such a barrier is not neces-
sary for the convergence. Afterwards, the boundedness assumption has
been omitted in [2-6 ]. However, the independence assumption remains
in those papers. In a recent work [7] Kushner and Clark have overcome
the independence problem and proved a. s. convergence of algorithm ( 1 )
with correlated observations. Other papers have dealt with the correlated
case e. g. Ljung [8 ]. However, the boundedness assumption reappears in
these papers. Namely, it is assumed that hj will return indefinitely within a
(random) compact set. Moreover the proofs are extremely difficult to follow.

In the present paper, we overcome both barrier and independence
problems and for correlated observations we prove the a. s. and q. m.

convergence of h~ to h* . The assumption we use to attain this result is

that the pair (aJ, X~) has a finite memory and finite moments. The finite
memory assumption is plausible in a wide class of applications since

sufficiently time separated observations can usually be assumed inde-
pendent. Also the finite moments assumption is satisfied in a wide class of
applications. Two practical examples in which the finite memory and

finite moments assumptions are both satisfied are evoked in section III
of this paper. It should be mentioned that we do not assume a linear filtering
relationship between a~ and On the contrary, when applying Ljung’s
theorem [8 ] to the algorithm (1), one is found obliged to assume that aj
and X~ are related by linear filtering, up to some independent additive
noise. This is due to the fact that Ljung uses a state space model in his
theorem. In the present work we do not use a state space model and the
linear filtering relation is not needed; ak and Xk can be related through
any specific non-linearity.
The restrictive independence and boundedness assumptions have also

been recently suppressed by Farden [9] ] independently and at the same
time as by our own previous works [10-12 ]. In both works [9] and [10 ],
the convergence proof relies upon an assumption of rational decay of

the kind for the covariance of elements such as ) I akXk I and

other second order observed variables. Admittedly, the theorem presented
in this paper is on one hand more restrictive than those of [9] ] and [10 ],

Vol. XIX, n° 3-1983.



238 E. EWEDA AND O. MACCHI

because it uses a less general model for the observations (i. e. finite memory).
However, it is on the other hand more powerful because it reaches the

result of quadratic mean convergence in addition to almost-sure conver-
gence proved in [9 ] , [10 ]. Actually, the finite memory model derives its
interest from the fact that it is a model with dependence for which we
prove the q. m. convergence in addition to the a. s. convergence, the former

being itself based upon simple moment bounds. Similar bounds could
probably be derived for the decaying covariance model, but at the expense
of much more technical labor.

The convergence analysis presented in this paper concerns the real

version of the algorithm (1), i. e., we assume that a.b Xk and hk are real-valued.
However, without any additional difficulty, it can be extended to the complex
case. An example of the latter case in the context of data transmission is
the quadrature amplitude modulation in which the data signal ak modulates’ .
the amplitude and phase of a carrier wave that is demodulated at the receiver
by two carriers in quadrature to give the observation signal X~.

In the following we assume implicity that the sequence (ak, Xk) is strictly
stationary and that its correlation matrix R is invertible.

II. THEOREM

THEOREM. - If there exist a finite integer M’ &#x3E; 1, and a finite positive M
such that

are statistically independent,

then the vector h~ defined by the algorithm (1) tends to h~ in both the qua-
dratic mean and almost-sure senses as k tends to infinity.
The validity of the assumptions (A. 1)-(A. 3) in applications is emphasized

in section III. The assumption (A. 1) states that the sequence (ak, X~) has
a finite strong memory M’. As already mentioned, this assumption is a

realistic one since sufficiently time separated observations, can usually
in practice be assumed independent. On the other hand, from a theoretical
viewpoint this assumption is very convenient because it allows the compu-
tation of moments of hk, due to factorization properties. This leads naturally
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239UNBOUNDED STOCHASTIC APPROXIMATION ALGORITHMS

to a q. m. type convergence. Such a computation of moments is not easy
in a decaying covariance model, and therefore with the latter model the
ergodicity will rather be used to deal with individual samples and prove
a. s. convergence.

The boundedness assumption (A. 2) for the moments of observations
is satisfied in a wide class of practical applications. Notice that in signal
processing applications, where Xk represents a sliding time-window of
width N from a sampled signal, the memory M’ is at least equal to N.
Hence in assumptions (A. 2), (A. 3), the integer M can be set at the value M’
of the memory. Therefore we see that the greater the memory, the larger
the order of the Xk |-moments that are assumed bounded. Such a relations-
hip is not surprising. Neither is it isolated in the literature; e. g. in condi-
tion B. 6 of [9 ] if appears that the required order of bounded moments
increases as the rate of decay of covariance decreases, i. e., as the memory
increases. The order of moments of I that are assumed bounded is

greater than (but very near to) 4 and less than 5. The reason why the orders
of the moments assumed bounded are respectively 24 M for I and

4 1 + 1 for a is a technical one. It is made clear in the course
of the proof that follows.

III. PRACTICAL APPLICATIONS

In this section we give two important pratical applications of the theo-
rem in the field of data transmission. In the first example the algorithm ( 1 )
is the adaptation algorithm of a transversal equalizer. In such a case ak
is the data transmitted at time k, the observation vector X~ is made of N
successive time samples of the channel output, the vector hk is composed
of the equalizer tap coefficients at time k and h* is the optimum equaliza-
tion vector. Thus two successive observation vectors share N - 1 compo-
nents and are, therefore, strongly correlated. Now, ak is bounded because
it is a digital data. Thus (A. 3) is satisfied. The observation vector Xk results
from filtering the sequence of data by a stable filter ~ , corresponding to
the filtering effect of the transmission channel, to which is added a Gaussian
noise. Consequently, all moments of Xk are bounded. Thus, the assump-
tion (A. 2) of the theorem is satisfied. The data sequence is usually inde-
pendent and so also is the noise sequence. Hence, the memory M’ in the
assumption (A .1 ) depends on the memory of ~ which can be assumed

Vol. XIX, n° 3-1983.



240 E. EWEDA AND O. MACCHI

finite without loss of generality in practical applications. Consequently,
the theorem presented in this paper can be used to prove the a. s. and q. m.
convergence of the classical adaptive equalizer to the optimum one, a
proof which seems to have never been completed before.

In the second practical example, the algorithm (1) is the adaptation
algorithm of an echo canceller in full-duplex data transmission over
two-wire telephone channels. In such a case ak is a noisy copy of the echo
at time k. Thus, apart from the additive (Gaussian) noise, ak results from
the transmitted digital data Xk by a stable filtering ~’ corresponding
to the reflection properties of the channel. Hence, both ak and Xk are
bounded and thus the assumptions (A. 2, 3) are satisfied. Again the

memory M’ in (A .1) depends on the memory of!F’ which can be assumed
finite without loss of generality in practical applications.

IV. PROOF OF THE THEOREM

IV. 1. Notations

The following notations are used in this work

The norm of a matrix U is denoted by

In (4) vk is the shift between hk given by the algorithm ( 1 ) and the opti-
mum vector 

To prove the convergence of hk to h* we shall prove the convergence
of Vk to the zero vector. Equations (2) and (5) imply that zk is zero mean, i. e.,

From (1), (4) and (5) it follows that

Annales de l’Institut Henri Poincaré-Section B



241UNBOUNDED STOCHASTIC APPROXIMATION ALGORITHMS

Let us put (9) in the following form, used in the proof

where

IV. 2. Basic idea of the proof

The idea of the proof can be figured out by the following heuristic argu-
ments. To prove the algorithm convergence, it is sufficient to show that

both terms Wk and Hk tend to zero. In that case U 0 , k and all the terms
inside Hk will tend to zero. Except for the rather special case

where the variable z~ is identically zero, z~ as given by (5) is a stationary
non-zero random variable. Hence the product will tend to zero also.

For j in the vicinity of k, the product matrix U j,k’ (6), has very few factors
and is not small. This requires that ~ -~- 0 as j - oo, which is valid for
the sequence (3). Now for small values of j, ~u~ is not small ; thus the conver-
gence requires that « I or equivalently that

In this paper, an inequality similar to (13) is proved on the average.
In fact, we show in step 3 of the proof, that for a given positive m

with fixed positive C and f3; assume for simplicity that k = j + nP ; then
due to the specific product structure of the matrix U j,k

Now when j is large, i is small for i &#x3E; j, and it does not change signifi-
cantly over the range [ j + lP, j + (l + 1)P]. Thus the first order develop-
ment
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242 E. EWEDA AND O. MACCHI

is suitable, whence

A basic step of the proof (Lemma 1) is to show the « mixing » property
that 3P, 5o &#x3E; 0, such that

It is easily conceivable that taking the suitable expectation of (15) along
the lines (17) ( 18), will yield the property (14) which expresses the decrease
of U~,~ to zero.
The outline of the proof is thus
. to prove (18) for the finite memory model (A .1) - step 1;
. to deduce from ( 18) a bound for moments of certain order of ~

- step 2 ;
. then to prove that moments of certain order of II decrease to zero

when k - oo, j « k, - step 3 ;
. finally to use these results to prove the q. m. convergence of hk - step 4 ;

and lastly its a. s. convergence - step 5.

IV . 3. Proof of the theorem

As just mentioned the proof proceeds in five steps. Some of the steps
are stated as lemmas. We use the notation

Step 1 ( LEMMA 1). - Under the assumption (A . .1) of finite memory, the
condition (I8) is satisfied, provided |Xk| has finite moments of order greater,
then 2N :

As we have shown, the ergodic property (18) plays a crucial role in
the theorem. Therefore the proof of Lemma 1-is reported in Appendix I,
although already given by the authors in a work [11 ] that deals with the

. Annales de l’Institut Henri Poincaré-Section B



243UNBOUNDED STOCHASTIC APPROXIMATION ALGORITHMS

constant step-size algorithm. Notice that E ~ is a non-decreasing
function of P. Thus one can assume that P &#x3E; M’, which is useful hereafter.

Step 2. This step derives a bound to 11m), where the expo-
nent m is positive. It is based upon the following lemma.

LEMMA 2. a. - If, for a given positive even integer m the sequence Xk
satisfies the multivariate finite moments assumption (B) :

for all distinct indices i 1, ... , iK

then, VP, there exists a triple of positive numbers rm, Fm such that

The order 2m of the moments will be choosen hereafter according to
technical requirements. This lemma is completed by Lemma 2 . b :

LEMMA 2. b. - If the sequence Xk has finite memory M’ according to
(A.I), and finite univariante moments according to (A. 2)’ :

it satisfies assumption (B).
Lemma 2 . a is proved in appendix II. It uses the decreasing nature of

the sequence To prove Lemma 2. b, in the product P’ 1 .. : 
we form M’ interlaced groups, each one containing only factors Xi |p
whose indices i are exactly separated by multiples of M’. Then, using for
L = M’, the classical inequality

which is a direct consequence of the Holder’s inequality, one obtains an
upper bound for

which contains M’ factors such as

Due to assumption (A .1), the quantities (24) can be factorized. There-
fore (23) is finite, provided

In particular assumption (A. 2’) implies that (B) holds.

Vol. XIX, n° 3-1983.



244 E. EWEDA AND O. MACCHI

As a consequence of Lemmas 2 . a the moment bound (21)
is fulfilled under assumptions (A .1) and (A . 2)’. The combination of (21)
with the result (18) of Lemma 1 provides the desirable moment bound
namely

which was the purpose of step 2, subject to condition (20). Notice that (26)
can be rewritten equivalently (due to (3))

Step 3. - This step consists of the proof of the bound

for a given pair of positive numbers (C, (3). The result (14) is an expression
of the fact that II ~ 0 when t - oo with j « t, as was discussed
in the previous intuitive section. In order to prove (14), let us organize
the sequence of indices k within U, t] ] into three groups

where n is the integer part of (t - j)/2P. The groups Fi and I-’2 are inter-
laced, with an interval of P &#x3E; M’ indices. According to the multiplicative
property of the product matrix one gets

Annales de l’Institut Henri Poincaré-Section B



245UNBOUNDED STOCHASTIC APPROXIMATION ALGORITHMS

Using inequality (22) with L = 3, it comes

Thanks to the independence (A .1) and to the structure (28) of the sub-
sets r1 and r2 , each of the first two moments in (30) can be split into n
factors of the type E( II 11m) studied in Lemma 2 . a.
Consider first the case j &#x3E; rm for which (27) is valid. A bound to the

third factor in the RHS of’(30) involves a finite number of multivariate
moments of order less or equal to 2m, with respect to the variables 
Due to Lemma 2. b all these moments are finite. Moreover the step-sizes Jlk
that appears in are bounded by Hence this third factor is

uniformly bounded. Therefore inequality (30) implies

Using the fact that 1 - for all real u, the inequality (14) follows
from (31) after straightforward calculations.
For the case j  rm  t, we use the decomposition 

and apply a similar analysis to the factor which corresponds to an
increasing number of indices. The remaining factors correspond to a finite
number of indices and can be dealt with like in the previous case.
Finally, and for the same reason, in the case t - rm, the moments

are bounded. This achieves the proof of (14).

Step 4. - In this step we prove the q. m. convergence of ht to the opti-
mum vector h~ ; on the basis of (10), it follows from the bounds

Inequality (32) follows directly from (11) and the a. s. boundedness of the
initial vector v 1, provided m/3 &#x3E; 2.

Vol. XIX, n° 3-1983.
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The detailed proof of (33) is given in appendix III. It relies upon the

fact that

The inequality (22) with L = 4 is applied to individual terms in the sum
of the RHS of (34), and then (14) is used with m/3 = 4. When t is large,
most of the terms satisfy ! ~ 2014 7 ! # M’ and due to the independence (A. 1)
and to the zero-mean property of zk, they get very small. At this point,
the reason why the order 24 M of the bounded moments for f is at

least 24 M’ in the theorem, becomes apparent : q. m. convergence can

be proved with m = 12. Thus assumption (A . 2)’ of Lemma 2 . b implies
M &#x3E; M’ in assumption (A. 2) of the theorem.

Step 5. In this step, the a. s. convergence of ht is proved. It consists
of the proofs of the a. s. convergence of (i ) Wt to zero and (ii ) Ht to zero.
For that let us assume, which is possible, that f3 is less than one.

i ) a. s. convergence to 0
1

Let q be a finite integer greater than - and let tn, n = 1, 2, ... be a sub-

sequence such that tn = nq ; then (32) implies that

The equation (35) is sufficient for

Due to (3), - 0, as j - oo, which implies for large enough
indices j

Thanks to definition (11) and to (36), (37)

It follows from (38) that

Annales de l’Institut Henri Poincaré-Section B



247UNBOUNDED STOCHASTIC APPROXIMATION ALGORITHMS

ii ) a. s. convergence of Ht to 0.
~ , 

2
Let q 1 be a finite integer greater than - and let tn, n = 1,2, ... be a sub-

sequence such that ’

then (33) implies that

from which

From (12) one has

According to (3),

The inequalities (37) and (44) imply

The ergodicity of which results from the assumption (A.I), implies [14] ]
that

where the last equation in (46) results from (40) and the boundedness
(A. 2, 3) of E( ~ ). The equations (42) (45) and (46) imply that

and the convergence of ht to h* results from (39) and (47).
End of the proof
In the above proof, several steps make use of the finite memory model

(A .1 ). For instance in step 3, the moment

Vol. XIX, n" 3-1983.
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has been factorized. Although not proved here, it is presumable that the
same steps can be gained for more general models of ergodicity, e. g. for
the decaying covariance models.

V. CONCLUSION

The convergence analysis of the stochastic gradient algorithm with
decreasing step-size presented in this paper concernes both the q. m. and
a. s. convergence of the algorithm when it governs an adaptive linear esti-
mator. Unrealistic assumptions such as independence of successive obser-
vations and boundedness of the algorithm are avoided in this paper and
replaced by the two plausible assumptions of bounded moments and finite
memory for the observations. One of the contributions in this paper is

the q. m. convergence analysis of algorithms without barrier and with
correlated observations which is completely new in the literature. The
other contribution is the simplicity of the proof of the a. s. convergence
which does not appeal to elaborate technical arguments.
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APPENDIX I

(Proof of Lemma 1 )

The purpose of this lemma is to establish that

under the assumption (A .1) of finite memory and some suitable assumption on the finiteness
of the ) Xk [-moments which will turn out to be

Using the notation (19), one has

and due to stationarity, the average is solely a function of P, which is non-decreasing starting
from zero. Thus we are searching for an integer P at which this function departs from zero. 
To prove the lemma, we shall show that P = NM’ is suitable, i. e., that

Now due to definition (19)

N-1

Consider the determinant of the matrix (I X’+1 +iM,XJ+ 1 + iM’ and denote by xn the nrh
t=o

component of the vector X1. Due to the multi-linearity of the determinant with respect
to each column one gets

where d(U l’ ..., UN) denotes the determinant of the matrix U with columns U 1, ..., U~.
If the indices ii, ..., iN are not all distinct, the latter determinant is zero. Consequently
one has

Vol. XIX, n° 3-1983.



250 E. EWEDA AND O. MACCHI

where ~ is the set of all permutations of [0, 1, 2, ..., N - 1 ]. Using the assumption (A .1 )
we can show that each term on the R. H. S. of (I. 7) is det (R). Therefore

c 
- 

v

N-1

Denoting 1, a 2, ..., 03BBN the eigenvalues of 03A3Xr+ 1 +iM’XTr+ 1 +iM’, arranged in increasing
order, we get from (I . $) i = o

Obviously one has, Va E ]0, 1 [

It t follows from the Holder’s inequality that

Suppose in addition the validity of condition (1.2)-condition (20) in section IV. 3. Then
the obvious bound

1

together with assumptions (A. 1), will result into the inequality

Combining the inequalities (I .10), (1.11), (1.13) we obtain E(d-1) &#x3E; 0, i. e.,

Together with (1.5) this achieves the lemma proof.
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APPENDIX II

(Proof of Lemma 2 . a)

Remember that the sequence J.1i is decreasing and consider the development of j) Ur,r + P II I
according to 

~ , 
P - 1

Notice that 
-- 

when r + 1 ~ i x ; + P .

Thus (II.O) can be written 
~~

where 1  p  P and where i 1, ... , i p are distinct integers, with the agreement that the
product ... is 1 for p  2. Putting (ILl) to the power m and averaging, one gets

where 1 ~ k ~ m. Since

the bracketted average in the second term of (II.2) is bounded by a polynomial of the type

where 0  n  m - k. Hence each coefficient of this polynomial is a moment of the type

According to assumption (B), all these moments are finite. Since 1 is bounded, the
polynomial (II.4) itself is bounded. Hence, for some fixed positive constant 01

Let 03C9 and denote respectively an arbitrary point in the space Q of random events
and the probability measure on that space. Then

Vol. XIX, n° 3-1983.
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Because m is even, one has

Using assumption (B) again for the moments of Y;, as was done for (II . 3), one gets

for some positive constant D2. It follows from (II.7), (II.8) that

+ pi+ I [E( 11 Y’ ~~2) + 2mE( 11 Y~ ))’")] . (II. 10)

The combination of (II. 6) and (II. 10) brings the result (21) of Lemma 2. a.
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APPENDIX III

(A bound to E( ] 2))
From (12) we have

Using the fact that I Zj 1 ::s; I + I h* I 2 and the assumption (A. 2), we see
that a sufficient condition to achieve the inequality

is that

In turn, according to the Holder’s inequality and to (A. 2), (111.2) and thus (III .1) will
hold thanks to assumption (A. 3) on the moments of .

Then, applying the Schwarz inequality to individual terms in the first sum in the R. H. S.
of (111.0) and using (14) and the inequality f3  1, one obtains

for some finite positive constant G.
Now, consider the second term in the R. H. S. of (III. 0). We have

FIG. 1. - Illustration of the definitions in (III. 5).

Vol. XIX, n° 3-1983.
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where Si and S2 are defined by

The definitions of Si and S2 are illustrated by figure 1.

A bound to the first term in the R. H. S. of (111.4).

We have 

Let P~ be defined by

Because in Si, k &#x3E;_ j + M’, then assumption (A .1) and the fact that Zj in (5) is zero-mean,
both imply that

According to Lemma 2. b and to (3), there exists GZ &#x3E; 0 such that

Using (III. 8) and (22) with L = 4 one obtains

Since Zj and zk are independent then it follows from (III.1, 9, 10) that

Using (14), (III.11) and (3) one obtains

From (III . 12) there exists a positive constant G3 such that

4 bound to the second term in the R. H. S. of (III .4)

Using the inequality (22) with L = 4, then (14) and (III. 1 ), one gets
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255UNBOUNDED STOCHASTIC APPROXIMATION ALGORITHMS

Thus, there exists a positive constant G4 such that

From (III .4, 13, 15) we have

for some positive constant G 5. The result (33) follows immediately from (III .0, 3, 16).
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