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TAYLOR EXPANSION OF A POISSON MEASURE

Wilhelm von Waldenfels

Abstract. Denote by 4 03 the Poisson measure associated to a positive

adon measure on a’locally compact space countable at infinity.
If Q is bounded, (¢) can bve expressed as a power series in Q .
If becomes non-bounded this expansion keeps its sense at least for

some ?f( -integrable functions (Theorem). These functions can be ex-
plicitly éharacterized (Additional Remark).

A Poisson measure is a generalization of the Poisson process on
the real line to arbitrary locally compact spaces countable at infinity.
A Poisson process on a finite interval I < R is given by its jumping
points T, ... TN in I, where N 1is a random number. The proba-
bility that N = n is equal to c®M™ e ~°T/n!, where T is the length
of the interval and ¢ 1is the parameter describing the Poisson process,
i,e. the mean frequency of jumping points. Given that the number N of
jumping points is equal to n, the n jumping points are distributed
independently and uniformly on the interval I. Be &; (I) +the topo-

logical sum
o 4 2 3
FM=I°cI'sT o1
where 1° = {g@}, 1! = I, 12 = IxI, ..., and € is an arbitrary addi-
tional point. Be f'} O a function on &;(I), whose components

M
_‘)('h: -7 7R4_ are Lebesgue-measurable, then Ef (C},...) E'N ) can be

calculated and is equal to

SRS Z Bob{Nam] 2, §- 6.4, 4ot 42,
I"L

or

_cT

E$(Th.., )= ( {e) + 2: c I f{,,,(t,...,{,)dh...o&n)

2 l
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This formula can easily be extended to any compact space ¥  and
to any positive measure Q on¥ . Be f?O a function on f(%),
with the property that f'n : %‘M-a'm_‘.is ém ~-measurable, then the
application of the Poisson measure ’O(Q) on f is defined by

A I

M"=0 i

-p (%
o <pe,§y = e P

where ?wo= Je , the Dirac measure in e the unique point of x.o'
Now IF(:{) can be interpreted as the free monoid generated by%
with neutral element e, the product being defined by juxtaposition.
g(%‘) is locally compact containing % as a compact open subset.
The measure Q on X can be interpreted as a measure on (F(I') .
The product in 6—\-(%) induces a convolution for measures. The n-th
convolution power Q*mof Q is exactly Q@ﬂ carried by %MCJ-(Q)

So the probability measure p(Q) can be written
-(¥) 2 - m
Cp),§7-e > Lo N4y
MN=0

or -9 (X)

(2) P (9)= 2xp, al(p)

with

(21) ae)= p- 9@)d, = (o) (d,-d] .

as d\e is the unit element in the convolution algebra.

ks @ en (olx, ..., oAxm ) = @ (olx,)... @ (olxs)
is symmetric in Xy eeey X only the symmetric part of —S—.“ gives
a contribution to the integral. So we can switch as well to ‘Fc C%),

the free commutative monoid generated by % . P(P)can be defined
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by the same formula as a measure on J:(-_ (%), formulae (2) and (3)
hold as well, We denote by 353 the compact open subspace of vc., C'i)
formed by the monomials of degree k.

Let u«(%) be the space of all positive measures on % with
the vague topology and let Vac (%) be the subspace of positive count-
ing measures, i.e. the space of all }1 e VU(@) of the form

m
=
)(56%,’)’-'4)---)’" and variable n,Of course dac (E) is a sup-

monoid of the additive monoid va(x) . It can be proved that the appli-

cation

(Xay- ey x,,,)e)fc(f)_f) —> qu* --+J;(M e M (%)

is a topological isomorphism. So (P) can be interpreted,as well,
as a measure on J/(C(’f) denoted by AP (@) and /g (Q) is given

by

@ )ty = e;?(%) ( f(o)+
-) 4 j SQ(dn)--p(de)—f(cg*-~-+<5;M)

Mm=4
(5) ,;,o(@)= LxXpy, a(Q)

(5") (Q) = (d (49 —47‘
’ e IQ ) dx o)

There O is the zero-measure, ﬁd‘ signifies the Dirac measure

on UUCI.) in the point J;G.Va(%) ar):d 4?_0 the Dirac measure on
M(¥) in the voint o.

As J,(C () is a part of the dual of C(x) the space of all
continuous real-valued function on f , & Fourier transform for mea-
sures on ‘/uc(x)can be defined. Be P & C(({) , then the Fourier

transform of A‘.{P (P) in the point (@ is given by the »%V(P] -inte-
M (F s ¢ P>
gral of the function /O( = ¢ e



347

So

C<pm@)
(6) ?p(p)" (%) 7~

f@o(p)(o(,u) e
exp ~(P)* (@)

cep(
(6') MY () = gQ(o(x) (e © x’-/l).

|

i

If % becomes non-compact and §) a non-bounded measure on x ,
then formulae (1) - (5) fail, but formula (6) keeps its sense. Consider
the space vuc (%} of all positive counting measures on% , i.e. the
space of all measures of the form

eI o

where ()(t) is locally finite: only finitely many of the X'_

(el
are contained in a compact subset of I . We assume the vague topology
an Vac(‘%} Then Vac C%) can be considered as a part of the dual space
of Co(x) s the space of all continuous real-valued functions on %

with compact support. If ({ is countable at infinity and Q a posi-

tive measure on }f , then there exists a unique Radon measure A&P(Q)

on (,C(CCI) with the Fourier transform (Cf [l]’["&])
)
(7) z}p(Q)A(cP) = exp fg)(dx)(e (p(x_ )

Further investigation shows that formula (2) may keep its sense

as well. This can be seen by writing (2) in a more explicit way

@), § 5 = fle)+ [ (Fx)-fle))
”p (olx,) ploly,) (£Gx)= F(x)— F06,)+ Fle))

5
4 _g_ H(Q(dmy dy,) p (ox;) ({(xa,xz, 5) - F(x,x)
: SFOu )= 000+ F 0+ F6)+ S ()= 5]
+.
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In fact, the following theorem holds.

Theorem: Assume £ to be a locally compact space countable at
infinity and Q a positive Radon measure on x . Let f be a
function on JAC(GQ) with the property: The functions

(8) 9o (&) = f(0)
G(s,,(x) = f(cfx)’f(O)
3 (4 %) - $ (& +dy, ) - $(dx )= $dn) + f(0)

m \T!
%,,‘ (Xeper) X ) = Z jé(Z_J
X ic V}"Tv"‘} Lel
are ? -measurable on ’JE'" and
oo
A on
@ ) 5L, (gmly <o
M=0

Denote by /(/(K the restriction of /{A (4 Vuc (K) to a compact

subspace KC X and suppose that DC(/UK )— JC(/A)in /3(9) -mea-

sure for K1 % (that is the case if e.g. 3( is vaguely con-
tinuous). Then DC is /37(9) -integrable and

00
(10) {ge), §5 = Z -:T, e, g~.>
M=o '

In order to understand the theorem let us investigate the con-
nection between J(- and the function %,h)m—.- o)/l) 2}. ..

One finds

J;(O ) = E}o (Q
j((C[‘) % e)+% (x)
£ (i du,) = %o(e)+g4(x4)+3 (6)+ 9.0, 0)

JE(J+ ey )= Z Z 3&(" ,-h).

=0 << < in
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Taking into account that the functions <3k (Xay---y Xg ) are symmetric

in their arguments XA).”) Xk observe
L §i(x)= <pm9>

Z o) = 3 { uldulof) g, (6 f)
3 ~ 4 [ uef) g5

Lo Gt ge) = A g Jubth ) o) g6 5. 5)

\< < %

_iz ggﬂup/«ﬂ o&gt)as b, f)+ 4 f/‘“"‘f)ﬁﬁ 555),
fov pr = 4 Jx

This leads to the assumption that any such sum can be expressed by‘AL .
We begin with a well-known lemma from elementary algebra.

Lemma 1 (Newton). Let ?2 [)(4,---) X\‘) be the ring of polynomials
in n commutative indeterminates over the rational numbers. Then the
symmetric functions

Ok = Z K Xig
<< < Iy

can be expressed as polynomials with rational coefficients of the power

m
_Z,(.fa
j= !

These polynomials are independent of the number n of indeterminates

sums

and are given by the formal power series
A1 +é4§"' 62—.{2'*' 63}3"’"‘ = .Z)(}a [A4§"Azjcl/2"‘ AJY/I"'"].

Proof. We give the proof as it is very short and not very known.

omePas ()UK E) - Utk §) = A §+ 6§+ 5"

and A+ X f = exp 1»5 (4+ x;f)
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So

4*41f+(1.j1+”'
= ,Q)(P Z,':,‘ /Cog (/1+X(j)

B D el SO L M
= 2Xp Z&x -1k §kAa/¥z.

We recall the definition of VF" (%) = Z. % the free commutative
monoid generated by 3{, . If x is locally compact, CFQ, (f%)ls locally
compact, too. Any measure AL on I can be cnnsidered as a measure
on ‘Fc, (.%) . The convolution powers /u*m -'/O\m of//‘- are measures
Denote the restriction to GE,:-‘, of a function 3 on DC;, (%)

by %'h . then

</um) qy = f “(/A(o(xﬂ).../A(olx..) gm(xn..., X-)

u
Another measure on ‘tt (%) carried by % ¢ and related to/A- is

Do () 0 < Bonl), 95 = [alde) G 06 ).

Y
We define now a third measure /(/( on ‘Fc (%) carried by CEC

by the formal power series

/‘+M(A) f +/(A('H}+.‘. = X)(YJ# (A4(/A)§ - Az{/"‘)fz/z'f‘ﬂjs{/")jz/]; )

S48 x*
Lemma 2. If /u 4+ 0y, eand if g 1is a function on S

then (/.A % Z . %(Xl;‘)...) X‘-k).

A<\4<\ - Llyy €M

Proof. Let X,..., Xu € x . The application X d:(.
L
can be extended to a homomorphism from @[’(,«)n-, Xn} into the

convolutinn algebra of measures on {t (_%‘ The image of )(,\ o Xa
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is M and the image of Ah= le'.k is Z (Jx‘\‘)ﬁt A#., (/M)

TCTEIN ) = 20k = (g

| =A

. (
By lemma 1 the image of Z X,_' S X“k is A Y mhis
I1< L€ ¢ “1
proves lemma 2.

)

Lemma 3, If /LL is a counting measure, then A (& is a positive

measure on I

() ()
Proof. If %7, O of compact support, then </A N 3 )‘}AK R 8\}’

if K is compact and contains the support of (3 As /UK is a
finite counting measure, lemma 2 applies.

An immediate consequence of lemma 2 is

Lemma 4. On the assumptionsof the theorem if M is a finite

counting measure

FU = g @+ (u gy + G gd 4o

If Q@ is a bounded measure on ¥ , then /37(?) can be defined
as in (5) and (5'). If Kc ¥ is compact and At a positive measure
on £ , its restriction to K will be denoted by S . The méasure
can be considered as a bounded measure on % N

Lemma 5. For any compact Kec % the mapping A }——e/AK is
A}(P) -measurable and the image of /j’ (P) is equal to /?(PK ).

Proof. We show at first that the mapping is measurable. Let 'L{
be an open neighborhood of K and let /l}/ be a continuous function
%——5 EO, /1] with compact support in /U such that 4¥‘= A on N\,
Then A4 l—)/A"{/ is continuous and /(A/‘V/:—/MK if/u (ﬂ-— K)=0. But
(P {p:pm(U-K)=0T = 2xp(-p (U-K)).

So /(A |-—9/UK is continuous on the closed subset of all A with
/u(’u—\'() =0 , whose /jO(P) -measure approximates 1 if P (’U-K)

goes to zero.
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The Fourier transform of the image is

[ 4ptp) () e ¢ MY [o(p)ou) e P

f .
= £xp <p,e CPK—'4> = £LXp <PK) e”_’.4>

= glex) (e,

This proves the lemma.
Lemma 6. If g is a ?ﬁ, -integrable function on %c , then
(4
for /?{p) -almost every/u the functinn 9 is/a ) -integrable.

The functlon/a — </u ) 3\) is /?(F) -integrable and
(%)

*
}«5(9)(0%) M9y = f;. <pi9r.
Proof. Assume a continuous function CP7/ 0 on % whose support

is contained in K where K C &C compact. Then /(,( c VUC (Z)]——a
</(A (-C;)) (P> ist continuous and 7 O

AT S PRIVARPNE
_ _p(K) > 4 g_i_(P(d,Q)..p(olxn)Z ce(x.-“,.,xfﬁ)

My jh<lpcese ¥

'
(&)
- ]7({ <P >CP>

This formula extends to any continuous CP of compact support.

If /4 (@) is lower semi-continuous, there exists a net

P.e Co(®), @ Top.

R e O PN
(giortp) <™ gy + (gpre ™ o)
Lef ey 1 <pho)

(42)
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So M > </lA )(€> is lower semi-continuous, its /y(P) -integral
is 4/‘& (P )@y eand ¢ is u (%) -integrable /y(f) -a.e, if
<p¥ ey <oo
Assume now that q>7, O is a ? -null function. Then there exists

a sequence of lower semi-continuous functions Pm L CIF y/2 ¢ such that
<Pﬁ) CP”‘> Vo . /?(P) -almost every 4 the functions BB,

are/a (%) -integrable and </A (‘k), Pm > '8 </U (o) (F >

Therefore J(/j,((,) (Of/u) </u , (P». 7 v f/g(m (094) </4 M) ~ >

~

and (@ and ¢ are /u -null functions for a.e. A .
Assume finelly ¢e L’ (P *)
P, < Co(%),cf’,h—>Cp ?ﬁ - a.e. and |pulsc Y where Y is
lower semi-continuous and integrable. Then Cp,h converges to (p
/u,(k)a e. for almost all &4 . As ‘(PM(< Ay end Y is (k)
integrable a.e., the functlon (€2] is/(A('k) -integrable a.e. and
</A\h) 7 - </“ () (_f} Q.2.. The theorem of Lebesgue yields the

end of the proof.

. Then there exists a sequence

%
Proposition. Assume a sequence %‘k , »?z:(?,l) Z/.. of )O ~-integrable

functions on % e such that
oo

RAERIANINEIEE
Then the function

£ M) = ; ™S>

is /? IP) -almost everywhere deflned and

(11) flglp)(dﬂ) f(/M)c%Z (p ‘3%>

= VO

Proof. Immediate.
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Proof of the theorem. By the assumption of the theorem and the

fou =é ™9, >

is 1&(@) -integrable and its integral is given by (11). By lemma 4

proposition

one has for any compact Kc X

(M) = Fime)
If K7 X which can be done by a sequence as X is countable at
intinity, f(M)> $(#) 1. n. by sssumption ana Llmy )= £ [m)
/X |[p) -almost everywhere. Hence JC (/(A) = Q’Z(/‘*) /g/P/ -a.e.

This proves the theorem.

Additional remark to the theorem. The function :ﬁ(ﬁA) is QTG”-
a.e. equal to the function

= ()
fgo AL 7
and :F(/U\ K ) converges to yl(/"‘ ) /X '(’) -almost everywhere,
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