
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

WILHELM VON WALDENFELS
Some remarks on Burkhardt’s model for pressure
broadening of spectral lines
Séminaire de probabilités (Strasbourg), tome 7 (1973), p. 301-317
<http://www.numdam.org/item?id=SPS_1973__7__301_0>

© Springer-Verlag, Berlin Heidelberg New York, 1973, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1973__7__301_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


SOME REMARKS ON BURKHARDT’S MODEL FOR

PRESSURE BROADENING OF SPECTRAL LINES

Wilhelm von Waldenfels

Abstract. In order to understand the connection between impact and
quasistatic approximation, Burkhardt treated a simple model:
At one moment at most one particle interacts with the radiator and
causes a constant line shift during its impact time. The subject of
this paper is to give an exact treatment of this model including
all the mixed terms neglected by Burkhardt. As in Burkhardt’s treat-
ment the line shape is a sum of two terms. For frequencies near the
unperturbated line the first one behaves like the impact approxi-
mation, whereas the second one can be neglected. For frequencies far
the unperturbated line (at least at one side of the spectre) the
first one can be neglected and the second one behaves but a factor
like the quasistatic approximation. The second term is the same as
in Burkhardt’s paper. The first term includes all the correlations
neglected by Burkhardt and gives the impact approximation in its
complete form.

§ 1. Introduction and review of Burkhardt’s treatment

The frequency distribution of a spectral line is given by a

probability measure J(0o )dj0 on the real line, where J(co 

indicates the fraction of the total energy radiated into the fre-

quency interval If the light is emitted by an atom or

ion placed in a gas the frequency distribution is no more a sharp

line J ( C~ ) - ~ ~~ - Wo ), but J ( W ) becomes a much broader profile.

This line broadening has several reasons. Here we consider only

pressure broadening, where the deformation of the line shape is due

to stochastic fields produced by the neighbors of the emitting atom.

For fixing our ideas let us assume van der Waals broadening, i.e.,

the frequency shift caused by a neighbor at distance r is C.r 6,
C > 0. For the resulting line profile there are two basic approxi-

mations.

The quasistatic approximation assumes all molecules fixed in

space. Let us assume that the broadening is caused only by the near-

est atom. If r is not too big the probability that the nearest



302

neighbor at distance between rand r + dr is equal to r2dr
where n is the mean density of perturbating particles. As 039403C9

the probability for a frequency shift between and 039403C9+d039403C9 is

equal to 

C/ /CJ

for 039403C9 large enough. So J(60) is given by

403C0 6 n (03C9-03C90)-3 2
for 03C9-03C90 > C? large enough and J(03C9) = 0 for 03C9  03C9.

The other approximation is the impact approximation. There the

movement of the particles is taken into account, but one assumes

that the particles interact only in the time of nearest approach

and then cause a sudden phase shift which is equal to the total

phase shift of the particle during all the time. So a particle pass-

ing at distance /0 of the radiator with a velocity v makes at

the time of its nearest approach the phase shift

~(03C1) = Cdt (03C12+03BD2t2)3 = 303C0 8 C 03BD03C15
The line profile resulting from this approximation is due to Lindholm

- j~ ~ _ 
~~~~ with 

A= ~03BD ~0 203C003C1d03C1 (1- ei~(03C1)).

The classical method of computation for the line profile is to

use impact approximations in the middle of the line, i.e., near ~~

and quasistatic approximations on the wings of the line. The problem

remained why this should be in good agreement with reality. In 1940

Burkhardt proposed a simple model for pressure broadening and derived

the range of validity of both approximations. The aim of this paper

is to give a more thorough mathematical treatment and to include

essential terms neglected by Burkhardt. This will be done by a me-

thod which is useful in much more general cases.



303

We review now Burkhardt’s treatment.

If iB-(t) is the distance of the k-th perturbator at time t,

the total frequency shift X(t) is given by

(1.1) X(t) = ~ (C > 0)
k

and the line profile by "
... ~=.p~"~~"~~

- oo

This formula is not correct, as the integral does not exist, but it

gives a good idea of the situation. It can be replaced by an exact

formula, as we shall see.

By shifting the frequency axis we shall assume that the fre-

quency of the unperturbated line is (~ == 0.

If the perturbators move on straight lines with constant velo-

cities v, X(t) becomes

(1.3) X(t) = 03A3C(03C12k + v(t - tk)2)-3
k

where /C). 1st the impact parameter, i.e., the closest distance of

the perturbator to the radiator, and t. the corresponding time of

closest approach. 0. and t-.. are random parameters given by the

gas conditions.

Burkhardt approximates the function

t ~ c(p 
2 

+ v t )
by a rectangular profile 

/ 03C9s for |t|  T/2
(1.4) t ~ 0 otherwise~ 0 otherwise

~
where 6J and ’C are determinated by

~ r’~~ r~’ ~ ~ - s ~(i~)~===~P ~-~L~-~~. .
One has

(1.5) 03C9s03C4 = ~(03C1) = Cdt (03C12+03BD2t2)3 
= 303C0 8 C 03BD03C15
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So the k-th perturbator acts only in the time interval 

and then causes a constant frequency shift 60 ~. On the assumption that

at a given time only one particle interacts and that the perturbations

do not overlap, (1.2) yields 
z

(1.6) J(03C9) = | ZI e +i(03C9sk-03C9)t dt + l e- i03C9tdt |2
~ ~ ~ -r~1~ -~

where 1~ are the perturbation intervals and

1~ ~ are the flight intervals D~-1~k-l4’ Burkhardt assumes

that the correlations of the different terms vanish and so J(03C9) splits

into 

(1.7) J(03C9) =  | e
ti(03C9sk-03C9)tdt|2 + |

e-i03C9t|2

There is still a little mistake in the transition from (1.2) to (1.6)
as any of the terms in (1.6) needs an additional factor of modulus 1,

but this one cancels by the transition to (1.7).

Interpreting the sums in the right way and taking average Burkhardt

finally gets

(1.8) J(03C9) = 1 03C0 c c2+03C92 + n03BD 203C0 203C003C1d03C1 
2(03C9-03C9s)03C4/2 (03C9-03C9s)2

where po is the maximal impact parameter taken into account, i.e.,

all perturbations with impact parameter > C~ are neglected, c is

the impact frequency

(1.9) c- 

and n is the mean density of perturbators. In formula (1.8) we ne-

glected the possibility that the perturbators may have different velo-

cities. We assume that all of them have velocity v, their directions,

however, may vary. and 7 are considered as functions of

by (1.4’).



305

The first term of (1.8) is Lorentz’s expression for the line

shape. The second term behaves like the quasistatic approximation, as

Burkhardt showed by numerical methods.

If one takes all correlations into account and neglects the terms
~

of order ~Po ~ ’ which is consistent to the assumption of non-

overlapping perturbations, instead of (1.8) one gets

- 

.,,. __?.&#x26;/_
’~~’~-~~(~"

+ 
nv 203C0 03C1.0203C003C1 d03C1 2(03C9-03C9s)03C4/2 (03C9-03C9s)2

where 

~ 
’" 0 

. ~’C ~
(1.11) a = nv 

( 203C003C1d03C1 (/- ~. 
i 03C9s T - I’ W 1:" 

/
o

The first term behaves for small frequencies ~~« ~ like the well-
- 

6.

known impact approximation in its complete form due to Lindholm

~’-~~~~~--~~~-~
The second term is the same as in (1.8). It behaves like

(1.12) ~ ~ ~- H C ~/2. ~) ~T.
for (~) -=) -t-oo . So it is superior to the impact term vanishing like 60 ".
The formula (1.12) is not quite correct, as the true behaviour is

(1.13) ~ 403C0 6 t) C1/2 03C9- 3/2

The factor is due to the deformation of the real interaction into a

rectangular pulse.

§ 2. Formulation of the mathematical problem

We replace (1.2) by 2014..

(2.1) J(03C9) = lim -L-r F f J e-i03C9t+itoX(t’)dt’ dt|2
-~ !
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E denotes the expectation operator taking the statistical average over

the different functions The normalization factor (27TT)
makes sure that J J = 1. The limit exists in the weak sense,

t
if the quantity E exp i ~ X is a function R(t-t’) of the difference

t’
t-t’ and if

t

(2.2) R(t) = E exp i ~ X
o

is continuous in t. The outcoming quantity J(6o) is in most of the

physically occurring cases a continuous function but in general

a probability measure on the real line. As is common in physical

papers measures will be denoted in the same way as functions.

R(t) is related to J(6u) by the formula

(2.3) = ) 
The connection between (2.1) and (2.3) is established by lemma 1,

which is a bit more general.

Lemma 1: Be t a real random variable, be T and T~, Tr,, ...

random variables of finite expectations such that

~ 7~ 2014~ + ~

20142014 0
C.~/

for N~~. Then(2.4) J(03C9) = him 1 203C0ETN 
E| e-i03C9t+itXt0 dt|2

in the weak sense.

Proof. By virtue of Lévy’s theorem it is sufficient to show that

- R~t) - 20142014 

for any t, calling the expression following the lim-sign. As

R(-t) = R(t) and = it is enough to prove the convergence

for t ~ 0.
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TN t
The integral f X)dt is the Fourier transform of

T° TN t

where ~INTo is defined by

1 for TO  t  TN

XTNTO (t) = {-1 for TN  
t  TO

0 otherwise,

Using

~TNTO " ~ETNO 
E Tn 

’ j 
TOO 

+ ~TNETN
one has

cP (~ - ~ ) I 

= 1 ETN E eiu-tX ~TNTO(u)~TNTO(u-t)du

- 
-L N(t),

The first term is equal to

- i- ~ ~ 
E ?’N 

(~- ~) ~ ~ (-~~
E TN o ~o ’

the second term may be estimated by 
~ r

~ E ~~M

~ ~ ( + ~ ~ TN - E ~ o
, 

~

by hypothesis.

Lemma 2 shows a simple case in which the condition for TN in

lemma 1 is fulfilled.

Lemma 2: Let U~, U2, ... be independent identically distributed

random variables with

~tt. = E Uk > > 0

E 



308

and put TN = U~ + ... + UN. Then

E-7~- A~
-. o

~ ~ 
IV

for 

Proof. By Schwarz * s inequality there is

with &#x26; ~t~Tr " /~ * This proves the lemma.

Recall Burkhardt’s model. We call t-,’ the moment of the beginning

of the k-th interaction and t~. the moment of its end, t" - t, == ?,,
during the interval the perturbator causes the frequency shift ~~
and we assume that during that interval no other interaction takes place.

We numerate the interactions in the way that 0  t.  tJ!  t~ .... The

differences u~ = ti*.~ - ’t~ k = 0, 1, ... are independent and they

are all distributed with respect to the same exponential distribution

(2.5) Prob{uk ~ u, u + du) = ce-cudu

where c is given by (1.9). The condition of non-overlapping is (cf. 1.4’)

(2.6) c E03C4 = n03C003C13o  1
and this quantity is the mean number of perturbators in a cylinder of

radius and height 03C1o.
We apply lemma 1 and put into (2.4) to = To = t. TN = t~. The

conditions of lemma 1 are fulfilled, as t. is again exponentially
distributed with parameter c and has a finite expectation and

+ ~ + C~ + ... + f~ ~ ~~N 1* As all these quantities

are independent and and u. are identically distributed,

we almost have the case treated in lemma 2.
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So we get 

(2.7) J(03C9) = lim E 1 203C0N(E03C4+Eu)|{-i03C9t+iX(t’-t’o)dt’}dt|2~-~~ o 
’

This expression is completely determined by the quantities u~, T~~ &#x26;)~
as

~~ - ~ = ~~~o~ .... + ~-~ ~~
03C9sk for 03C4o+uo +... + 03C4k-1+uR-1 q  t 

X(-t t’o) = {03C4o+uo+...
03C4k-1 + uR-1 + 03C4k

0 otherwise.

So (by slight modification of the meaning of the letters) we come

to the following mathematical problem: Given are two independent sequen-

ces of random quantities. The first one consists of the independent

random variables u.>0,k=0~1,2,..., which are all distributed

with respect to the same exponential distribution with parameter c:

Prob{uk (- U) u + du} = The second one is formed out of in-

dependent identically distributed random pairs ~k ~ ~/ 
Put

(2.8) T~ == ~o+~o~~+~~-~T~+~~~
and

03C9sk for Tk  t Tk + 03C4k
(2.9) X(t) = 

0 otherwise.

L 0 otherwise.

Then investiga.te the behaviour of 
£

(2.10) JN(03C9) = 1 203C0N(Eu+E03C4)E|exp{-i03C9t+itoX}dt |2
for N 2014~ oo a.nd calculate the limit if it exists.
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§ 3. Solution of the mathematical problem

According to the assumptions at the end of the last section we prove
the following theorem.

Theorem. Put 

+i03C9s03C4-i03C903C4o~) - E 
+i(~-(~)t , , h) .

(3.1) 03B2(03C9) = E e dt
(03C9) = E | 03C4oei (03C9s-03C9)t

dt|2
and assume

(3.2) ~(~)t I  OL  ~

for all 03C9. The functions JN(03C9) are continuous,  0 and 

They converge for N uniformly in 6u to a continuous function

J(03C9)  0 with = 1 and J(03C9) is given by the formula

(3.3) J(03C9) = 1 203C0 1 1+cE03C4(c + 1+c03B2)2 c+i03C9-c03B1 + (1+c03B2)2 c-i03C9-c03B1)
Proof: We arra.nge the proof in such a way that it holds in more

general situa.tions, too. 

Put Ck = e-i03C9t+iX dtk ~ t

D. - ~ 
-)~~+’ I’ 

~~ - 
Then the integral in (2.10) splits

= C. +T~ + .. ~ C~, ~~.
" ~= ~-’~~’~~

03B2k =  dt03C3k = e-i03C9uk
e = uko e -i03C9t dt
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Then

C k = r Gt¿--t o(~--B / 

. ~o ~o

Dk = 3 03BEk 03B1 k 03C3k-1 03B1k-1 . 03C3o 03B1o .

We ha.ve

CkCk = |03B2k|2

1)-k :D~ - t ~k to¿
C.~ ~J~ _ ~k elk Jk
Dk Ck = 03BEk 03B1k 03B2k

and for j > k

C~. Ck = ~i 6’j--1 o(J’-1 
. d~e+~ ~~e °~~e I’’~

C~. ’D-k = I’’ 6S-’" o(j-.t 
. d ,le +., °~ f~ +.~ ~.k ~.q~

:Ðd’ C-k -= 03BEj dj 65-,B 03B1j -1 
... 6w.+1B 03B1k+1 G-h cXk 

we set ~~ ~’~. ^ ~~ a~ ~’j-~ °(‘j-~ . _ . d’Et ~ie.
03B1 = E03B1k 03C3 = E03C3k

03B2 = E 03B2k 03BE = E 03BEk

03B2 = E 03B1k 03B2k 03BE = E 03C3k 03BEk
~ -== E f3~ ~~ ~ -== £ j-k ,

Using the assumptions on independence we get

_ 
2n N 1 Eu+ E-c) [ N + N +

+ {(N-1)03B203C303B2 +(N-2)03B203C303B103C3 +(N-3)03B203C303B103C303B103C303B2+...
+ (N-1)03B203BE +(N-2)03B203C303B103BE + (N-3)03B203B403B103B403B1 03BE+...
+ N 03BE03B2 T (N: d f 0( ¿ (J + (N-2)03BE03C303B103C303B2...
+ (N-1) 03BE03B103BE + (N-2)03BE03B103B403B1 + (N-3)03BE03B103B403B103B403B1+...}

+ ‘ ]
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By virtue of (3.2) this expression converges for N 2014~ co uniformly

in 03C9 to

"-’" ~ ’ LrTYTi~) j ~ ~ " ~~~~~ ~~~~
+ ~ ~~ ~ ~ ~"~~ ’

+ ~! ~~~ ’
+ ~ J + 
+ n ]

Now

03C3 = E e-i03C9u = c ~oe -i03C9 u - cudn = 

c c+i03C9
03BE =  = 1 c+103C9 = 03C3 c

 = 2 c2 + 03C92 1 C(1 c + i03C9 + 1 c - i03C9 + 1 c-i03C9) = 03B4 c2 + 03B4 c2= 2 c2 + 03C92 = 1 c(1 c + i03C9 + 1 c-i03C9 )= 03B4 c2 + 03B4 c2

So

- i ~ JL20142014- f~ {~t~)(~~~~~~..)(~~)~
and finally 

_ 

-t- t J J

-~~~~~~~~~~~~m
~

As ~ ~ ~ ~ , the formula stated in the theorem follows at once.

If in (’5.4) we had dropped all the terms in { {~ as Burkhardt

did, we should have come to

- . ~ c r ~ + 2014~1~ " T7T L /’ " C.~~ ~
and this es exactly Burkhardt*s formula.

The fact that J is  0 and continuous is obvious. We have still

to show that 1.
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We go back to the equation (3.4). By Parseval’s equality

1 203C0(03C9)d03C9 = 1 203C0 E |03B2(03C9)|2d03C9 = E |1[o,03C4]ei03C9st|2dt = E03C4

as 03B2(03C9) is the Fourier transform of 1[0,03C4](t)e
i03C9st 

and

~0 [o,T_](t) = 1 for t ~ [O~~] and = 0 for t outside that

interval. 
’

As 
_

~~’~-~ I
we still have to check that

( ( ) cl1J = 0

By using 

’~’ ~ ~ 
one immediately sees that j { } may be split up into single terms.

Each term, however, vanishes. This follows from the following remarks:

(i) 03B4 is the Fourier transform of the function (t), which

is in L1 ~ L2.
(ii) 03B1 is the Fourier transform of the integrable measure =Eei03C9s03C403B403C4,

~~,~ = 
The support of C is contained in ’~~- ~

(iii) 03B2 is the Fourier transform of the L2-function 03B2
~~)= I [~~~ ~.
The support of /§ (t) is contained 

(iv) By the convolution theorems the functions /~ ~/!.... occurring

in { } are Fourier transforms of continuous L1-functions with

support in )tB , hence of functions which vanish in the origin.
As the value at the origin of a function is equal to the integral

of its Fourier transform, there follows ~ /"/ ~ ~) ’-’ °
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§4. Discussion

We now want to discuss (3.3) in the case of van der Waals broaden-

ing. Then 03C9s and 03C4 are random quantities depending on the impact

parameter p by equation (1.4’). The distribution of .0 is given by

(4.1) = 

"r~ o c? 

.

(4.2) E03C4 = 1 03C003C120 03C10 0 303C1’ 203BD 
203C003C1’ 

d03C1’ = 03C1o/03BD.

Recall that the condition of non-overlapping perturbations is equivalent

(2.6) to cET = n03C003C130  1. As (by (3.1)) the quantity |03B2(03C9)| is

bounded by E r equation (3.3) may be simplified to

J(03C9) = 1 203C0(c + 1 c+i03C9-c03B1 + 1 c-i03C9-c03B1)
or

- 

i~, i .

(4.5) J~; - ~ ’ + 
TT (t,-c~~)~C’~-.’%.~

As t ~ ~) t ~ E ~ and for frequencies ~b ~ c the second term be-

haves like 1/c, the ratio between the first and the second term is

= so the first term can be neglected c. For these

freauencies = 
i°w c 

may be approximated by 
-~

and c(l-~) by
03

(4.4) A = nv(1-exp(303C0i 8 C 03BD03C15))203C003C1 d03C1,

replacing the upper limit po of the integral by + oo. So for small

frequencies of magnitude ~ C the impact approximation holds.

For large frequencies, 03C9=1 Ec , both terms of (4.3) are of

order c(E’c) , so the first term cannot be neglected. A detailed ..

discussion shows that T" /o behaves for 03C9~+~ like 03A03/2 4nC1/203C9-3/2 ,
so at least for 03C9 > 0 for large 03C9 the term 20142014 03B2 is larger than
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the second term in (4.~) which behaves like c/~) .
Proposition. one has

~, ~. I~c~-~.o~-~~
2y 4- ~ °

Proof: One has

~ ~ 6 ~ c ~ ~~ f" ~ ~~r~- ~~r/2~-" ~ ~ - ~ i ~~ 
with M~= ~ C ~" ~ C~O" ~ > ~~-T~’ Putting x= 0~0"~ one gets

(4.7) c 203C0 /f = nv 203C0 ~03C9o203C0 1 6 C12/6 -8/6d lim2[(03C9-x)3C1/6/40 1/6] (03C9-x)2
with ~o- C~ / -~~ ~ ’~(~x~

The key to the following proof is the observation that

(4.8) lim2 03B1x/2 2 ~ 203C003B1 J(x: ) >
X

So 

... c03B2 203C0 ~ nv 203C0 C12/6x-8/6dx3C11/6 6 03B4(x-03C9) 2vx1/6 = 03C0 2nC103C9-3/2
this is but a factor the true asymptotic behaviour as it ha.s been

pointed out in § 1. We proceed now to the actual proof. Assume

(4.10) 0 ~ ~-~
Then for ~U large enough the integral in (4.7) splits

(4.11) 
.~ 

-= ~ B ~ 

.~ 
. [ T yr ~T~~ ~ ~ ~ ~ ~ ~ L ~ ~ " -’ ’~ ~. ,

Now 

(4.12) |I f and 03C9-4/3 dx x2 -= O(03C9-4/3-03BB)
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and

~ ~ I./-/’l (x-~)’’~o/)T

= const 03C9
-10/3 1-03C92-103C9o/03C9 x-4/3 (1-x)2 dx

=const 03C9-10 3 10 3( 1/203C9o/03C9 1/203C9o/03C9 1-03C903BB-11/2)" ~.~ ~ ~
SO

(4.13) JF = 0 ~-~-~ ;
Put 3C’1/6/2v = C .Then

III = 03C9-4 3 03C9+03C903BB03C9-03C903BB lim2(03C4x-1 6(x-03C9)/2) (x-03C9)2d03C9 + O(03C9-8/3-203BB)
as 

|
03C9 + 03C903BB03C9-03C903BB 

lim
2

(cx -1 6(x-03C9)/2) (x-03C9)2 - W-4 3 )dx |
~’~-~" /r~o’~/~~ 

~-~~
Furthermore, 

A

o(x’ 20142014-20142014-___i___________i
 03C9+03C903BB03C9-03C903BBdx|1 6xwd03BE c03BE-7/6(x-w)lim(c03BE-1/6(x-w)) (x-03C9)2| ~-~~ ’ ’ ~ i~2014

= 0(~’-~)
and

~ 
" ~~ [’c~- ~ ~~/!] ~ , ~~-~ ~~

’~L.’ ~-~-~
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So finally ,

(4.14) III = 203C003C9-3/2 c + O(03C9203BB- 8/3) + O(03C9-4 3-03BB)
and c ombining (4.12) - (4.14) one obtains

(, ,,) ~ . i ~ C’ ~ ~/~ 27. ~-~
" 

.O~-~-~.Of~~
In order to obtain a minimum choose ?B = ’?’ Then (4.5) results.
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