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Large and moderate deviations
for moving average processes (*)

H. DJELLOUT AND A. GUILLIN (1)

Annales de la Faculté des Sciences de Toulouse Vol. X, n° 1, 2001
pp. 23-31

Soit Xn = 1, le processus ~, moyenne

mobile, étant une suite de v.a.Li.d. reelles, et soit Sn = (X 1-~ ... +
Xn ). Dans ce papier, nous établissons un principe de grandes déviations
et de deviations moderees pour Sn /n, sous les conditions suivantes : wz
sont bomees pour tout i E Z et a~,  00.

ABSTRACT. - Let Xn 1, the moving average
process, i.i.d. real random values, and Sn = (Xi + ... + Xn). .
In this note, we prove large and moderate deviations principle for Sn /n,
under the boundedness of w; and oo.

1. Introduction.

Let {Wi, i E ~~ be a doubly infinite sequence of independent and iden-
tically distributed square integrable real random variables with = 0,
defined on some probability space (SZ, ~, P). Let ~an, n E ?Z~ be a doubly
infinite sequence of real numbers such that L a2  oo.

iE~

The moving average process Xk, k > 1, is defined by
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and let

Numerous works have been made on the problem of large and moderate
deviations of 8n/n under the strong condition [  oo. For exam-

ple, Burton and Dehling [BD90] have proved a large deviation principle for
~ rS’n /n; n > 1 } with speed ~n; n > 1 } and a good rate function depend-
ing only on the moment generating function. Their proof, like many of the
referenced papers, relies on the powerful Ellis Theorem. The moderate de-
viations of ~ ~S‘n /n; n > 1 } are obtained by Jiang and al. [JWR92] under the
condition of exponential integrability of wo . Jiang and al. [JWR95] proved
that the upper bound of large deviations for Sn in a Banach space B holds
if and only if the condition E  oo is fulfilled for some compact
K of B, where qK is the Minkowski functional of the set K. And the lower
bound of large deviations is obtained in [JWR95] without any condition,
with a rate function which may not have compact level sets, and which can
be different from the rate function of the upper bound. 

-

Remember also the famous work of Donsker and Varadhan [DV85], on
large deviations of level-3 for stationary Gaussian processes, under moving
average form, which has motivated our study.

In this note, we prove a large deviation principle and a moderate de-
viation principle for moving average processes, substituting the absolute
convergence condition by the continuity of g(0) = at 0, a well
known condition for the Central Limit Theorem of see ([HH80],
Corollary 5.2. pp 135). But we need the boundedness of w2 instead of the
exponential integrability in the works cited above.

2. A large deviation principle
for the moving average processes.

About the language of large deviations, see Dembo and Zeitouni [DZ93],
Deuschel and Stroock [DS89]. The main result of this paper is

THEOREM 2.1.2014 Let a family of IP-i.i.d. real valued random
variables. Suppose the following conditions



(H2) The function g given by |g(03B8) |2 := |03A3n anein03B8 I2 = f (B) (the 
tral density function of Xk ) is continuous at 0 belongs to

L~ ( [-x, x] , ). .

Then H’ C ‘S-~ E ~ I satisfies a large deviation princiPle with sPeed n andn, 
the good rate function I given by

where A* is the Fenchel-Legendre transform, of the logarithmic moment gen-
erating function A(A) := log IEe03BB03C90 of the common law of 03C9i, , i E Z.

Remark 2.i.-Except the boundedness of wa, the assumption (Hl) is
minimal to define Xk.

Remark 2. ii. - Condition (H2) is the usual condition for the Central
Limit Theorem for Sn, see [HH80]. Notice also that it is much weaker than
the condition f (B) E C((-~r, ~r~) used in the pioneering work of Donsker-
Varadhan [DV85] for the level-3 large deviations of stationary gaussian pro-
cesses.

To prove Theorem 2.1 we need the following concentration inequality for
Sn, which is a translation of the well known Hoeffding inequality [Hoe63] in
our context.

LEMMA 2.2.- Under condition (Hl) , we have

Proof of Lemma 2.2. - By Hoeffding inequality [Hoe63] (or more exactly
its proof), applied to

where X Z = 03A3nk=1ai+k03C9i, we have for all 03BB  0



Letting ~ 2014~ oo, -~ Sn in L2(p) and we get by Fatou’s lemma:

Then by Markov inequality, we have that for all t > 0

and optimizing in A, we obtain

We have obviously the same inequality for -Sn. Thus (2.2) follows.

Remark 2.iii.- Inequality (2.2) can be proved by means of logarithmic
Sobolev inequality for convex functions [Led96] (with less better constant),
in a way which is also valid for and thus give an alternate way to
establish Step 2 in the following proof.

Proof of Theorem 2.1 : we separate its proof into three steps.

n

Step 1. Let S~ = where we have for some fixed K in N
k=1

s~ B 
......

Then P ( 2014~- E ~ satisfies the large deviation principle with speed nB ~ /
and some good rate function by Sanov’s theorem and the contraction
principle, or using results of [BD90] which give I K with the same notations
as in Theorem 2.1:

Step 2. We show that for all 03B4 > 0



By our hypothesis, we can apply Hoeffding inequality for Sn - ~S’n , and
noting that E(Sn - S’n ) = 0 we get by lemma 2.2

We have now to control the right term of this inequality. Let fK denote the

spectral density of Xn i.e. = := (1 - W) 
Let introduce Fejer’s kernel FK

An obvious property is that FK(03B8)d03B8 = 1. Moreover, we have gK =
FK * g, where "*" denotes the usual convolution product. By the well known
theorem ([IL71], Theorem 18.2.1. pp322), we have

For any e > 0, let [-b, 8~ be such that Ig(8) - g(0)  ~ for ~B~  ~. For

~B~ ~ z

where C(K,8) = s (2~rKsin2(~/4))-1 -~ 0 as K -> oo.
We can now control the right hand side of (2.4)



We further conclude that

We then deduce (2.3). Applying the approximation lemma ([DZ93], Th.
4.2.16.), we obtain that Sn satisfies the large deviations principle with speed
n and the rate function

where B(x, b) is the ball of radius J centered at x.

Step 3. It remains to show that I (x) = I (~), where I is given by (2.1). We
will first prove that I (x). Assume that I(x)  oo (trivial otherwise).
This inequality is obvious for x = 0 (as IK(0) = 0). Now for x =1= 0, the
finiteness of I(x) implies that g(0) ~ 0. For each 6 ) 0, we have by the
convergence of gK(0) to g(0) that yg(0) E B(x, 6) implies ygK(0) E B(x, 2b)
for sufficiently large K, so that we have

which yields I(x).

We now have to prove the converse inequality. Assume at first ~(0) 7~ 0,
by the lower semi-continuity of I (inf-compact in reality), we have

Now assume g(0) = 0. (0)  1(0) (trivial). For x ~ 0,

So we have that I (x) = I (x), which ends the proof of theorem 2.1.

Remark. - Under the boundedness " ~ca2 ~  C" and the strong condition
oo, the level-3 large deviations principle for holds.



Indeed, assume without loss of generality that is the coordinates system
on the product space no = ~-C, equipped with the product measure
P = ~Z, where  is the common law of w;. Let 0k be the shift operator
acting on He, defined by t = , E ~, and let En be the
empirical process of the i.i.d. sequence, defined on the space of all

probability measures on no:

By the results of Donsker-Vardahan [DV85], En satisfies a level-3 large
deviation principle on equipped with the weak convergence topology,
with speed n and the good rate function given by the Donsker-Varadhan
level-3 entropy H(Q), see [DV85] for some details on H(Q). Let § be the
map given by

By the absolute summability continuous from no to
both equipped with product topology. Let be the space of all

probability measures on 1R~ equipped with the weak convergence topology.
Define on the empirical measure

We obviously have Rn = En o ~-1. By the contraction principle, we conclude
that Rn satisfies a level-3 large deviation principle with speed n
and the good rate function I (Q) = inf {~f(Q); Q = Q o ~-1 . .

3. Moderate deviations.

We are now studying moderate deviations for Sn in the same way as
we have proved large deviations in the preceding section, we keep the same
conditions on ai and w2 . To this purpose, let be a sequence of positive
numbers such that



THEOREM 3.1.- Under the conditions (Hl) and (H2),1P E .
satisfies a large deviation principle with the speed bn and the good rate func-
tion IM given by

Proof. - We separate its proof into two steps.

n

Step 1. Let Sn = as before.

Then, by [JWR92], 1P E . J satisfies a large deviation principle

with speed b2n and the good rate function IKM given by

Step 2. Since Sn - S~ satisfies assumptions of lemma 2.2, we apply the
concentration inequality (2.2) to W ~ 0,

But by the proof of Theorem 2.1 we have

where it follows

According to the approximation lemma ([DZ93], Th. 4.2.16.), we deduce
that Sn satisfies the moderate deviations principle with speed b2n and the
rate function
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The identification of the rate function is done like in Step3 of the proof of
theorem 2.1.
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