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Compact Symplectic Four Solvmanifolds
Without Polarizations

Luis A. CorpERO(), MARISA FERNANDEZ(?),
MANUEL DE LEON®) | MARTIN SARALEGUI®

RESUME. — On obtient une famille M (k) de variétés symplectiques com-
pactes de dimension 4. La variété M, (k) est I’éclatement d’une variété com-
pacte, résoluble et symplectique M* (k). La variété M* (k) ne posséde aucune
structure complexe (donc kahlerienne) mais elle a toutes les propriétés d’une
variété kahlerienne. Alors M *(k) ne posséde aucune polarisation totalement
complexe ni kahlerienne. En outre M) (k) ne posséde aucune polarisation
avec index différent de zero.

ABSTRACT.—In this paper a class of compact 4—dimensional symplectic
manifolds M) (k) is obtained by blowing up a certain compact symplectic
solvmanifold M*(k) at X distinct points. Although M*(k) has all the
topological properties of a Kahler manifold it has no complex (and hence no
Kahler) structures; therefore, M*(k) has no totally complex (and hence no
Kahler) polarizations. Moreover, we prove that M) (k) has no polarizations
with non-zero real index.

1. Introduction

In order to quantizate a symplectic manifold, three additional structures
are needed : a prequantization, a polarization, and a metaplectic frame
bundle. Thus, the existence of symplectic manifolds which do not admit
polarizations has significant implications for geometric quantization theory.
In fact, few examples of such manifolds are known. For instance, S? x S?
has no polarizations with non-zero real index, but it admits a Kahler
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polarization (see [9,11]). On the other hand, a symplectic manifold carries
totally complex (resp. Kahler) polarizations (that is, with zero real index)
if and only if it admits compatible complex (resp. IK&hler) structures.
Therefore, the manifolds E* of [3] (which are circle bundles over circle

bundles over a torus T?) with first Betti number 2 or 3 have no Kahler

polarizations and, moreover, if bj(E%) = 2, then they have no totally

complex polarizations. But all of these symplectic manifolds often have real
polarizations.

Recently, Gotay [6] described a class of symplectic 4-manifolds which
do not admit polarizations of any type whatever. These manifolds are
constructed by repeatedly blowing up E* with b,(E*) = 2. This construc-
tion has been extended by M. Ferndndez and M. de Leén [5] by considering
circle bundles over circle bundles over a Riemann surface of genus g > 1.

In this paper, following Gotay’s construction, a class of compact 4-
dimensional symplectic manifolds My (k) is obtained by blowing up a certain
manifold M*(k) at X\ distinct points. Here M*(k) is a compact symplectic
solvmanifold constructed in [4]. Although M*(k) has all the topological
properties of a Kahler manifold it has no complex (and hence no Kahler)
structures (see [4] for the details); therefore, M*(k) has no totally complex

(and hence no Kahler) polarizations. Moreover, we prove that Mx(k) has
no polarizations with non-zero real index.

We don’t know if M(k) admits or not totally complex polarizations; if
they do, this fact would be very interesting for the Kahlerian Geometry

realm because they would provide, using [8], new examples of compact
Kaéahler manifolds.

2. Geometric Quantization

First, let us recall some well-known facts about the theory of geometric
quantization (for more details, see [10,12,13]).

Let (X, w) be a 2n—dimensional symplectic manifold. The supplementary
structures on X needed for gcometric quantization are the following :

1) A prequantization of (X, w), that is, a complex line bundle L over X with
P

a connection V such that the connection form « satisfies the prequantization
condition

doa = —(h) tw,
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where h is Planck’s constant. Further on, we shall suppose that there also
exists a V—-invariant Hermitian structure < , > on L.

(2) A polarization of (X,w), that is, an involutive n—dimensional complex
distribution F' on X such that

wCirxr) =0
and dim (F NF) is constant, where F denotes the complex conjugate of F.

A polarization F' defines two complex distributions FNF and F + F on
X which are the complexifications of certain real distributions D and FE,
respectively :

FNF=DC and F+F = E°.

(Note that D is the w—orthogonal complement of E.) Since F is involutive
D is too, so that D defines a foliation on X. Let X/D be the space of leaves
of D and 7p : X — X /D the canonical projection.

A polarization F' is strongly admissible if E is involutive, the spaces
of leaves X/D and X/E are quotient manifolds of X and the canonical
projection mgp : X/D — X/E is a submersion. The dimension d of D is
called the real indez of F. When d = n, F = F and F is said to be a real
polarization. Then D = E =FNTX.

Now, let J be an almost complex structure on X determined by w (see
(12])). Then, there is a Lagrangian splitting TX = D ¢ JD so that (T'X, J)
may be identified with D€. As a consequence, it follows that the odd real
Chern classes of (T'X, J) vanish.

On the other hand, when d = 0, F is said to be a totally complez pola-
rization. Then FNF = 0, E = TX and F determines an almost complex
structure J on X, which is actually a complex structure because F' is
integrable (see [12]). Moreover, since w(Ju, Jv) = w(u,v) for all u,v € TX,
we can define an Hermitian metric < , > on X by < u,v >= w(u, Jv).
If <, > is positive definite then (X,J,< , >) is a Kéhler manifold and
F is said to be Kihler. Then a symplectic manifold (X,w) carries totally
complex (resp. K&hler) polarizations if only if it admits compatible complex
(resp. Kéhler) structures.

(3) A metaplectic structure on X, that is, a right principal Mp(n,R)-
bundle over X, where Mp(n, R) is the metaplectic group (the double co-
vering of the symplectic group Sp (n, R)). The metaplectic structure is used
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to dcfine the complex line bundle \/A"F', the bundle of half-forms relative
to F. This bundle has a canonically defined partial flat connection.

Then the elements of the quantum state space H corresponding to the
geometric quantization structures given above are sections of the complex
line bundle L ® VA®F which are covariantly constant along F. If F is
strongly admissible then the wave functions are represented by sections of
L ® VA™F which are covariantly constant along D and holomorphic along
the fibers of mgp. Such sections have supports contained in the subset S of
D which is the union of those leaves of D for which the holonomy group of
the induced flat connection in L ® vV A™F' is trivial. The set S is called the
Bohr-Sommerefeld variety, since it is locally determined by the generalized
Bohr-Sommerefeld conditions. Each leaf of D has a canonically defined
parallelization. When F is strongly admissible and complete (that is, the
leaves of D are complete manifolds) it is possible to decompose S as follows :

where S, is the union of all those leaves of D contained in S which are
affinely isomorphic to the cylinder T, x R4~%, Thus dim S, = 2n —a.

3. The manifolds M, (k)

First we recall some facts about the manifolds M*(k) of [4]. The space
M*(k) is the product manifold X (k) x S, where X (k) is the compact 3-
solvinanifold S;/D; considered in (1, p. 20]JAGH, S, being the 3-dimensional
solvable non-nilpotent Lie group of matrices of the form

ekz 0 0 =z
0 ek 0 y
0 0 1 =z
0 0 0 1

where z,y,z € R, and D; being a discrete subgroup of S; such that
the quotient space S;/D; is compact. The spaces M*(k) have symplectic

structures but can have no complex structures. The key for this is Yau's
Theorem 2 in [14].

Next, we prove that X (%) can be seen as the bundle space of a 2-torus
bundle over the circle S'. Let p : Z — Diff (T?) be the representation
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defined by p(m) = [A(m)], where [A(m)] represents the transformation of
T? covered by the linear transformation of R? corresponding to the matrix

Ay = (% )

Now, p induces a representation p' : Z — Diff (R x T?) as follows : Z
operates on R by covering transformations, and on T? by p. Then we have
a bundle structure for X (k) over S! with fibre T2, that is

X(k) 2R xz T2

Now, blow up M*(k) at X distinct points using the technique of Gromov
and McDuff (see [7]). The resulting manifolds My(k) are compact 4-
manifolds diffeomorphic to M 4(k)#)\@2, where CP~ denotes CP? with

the reversed orientation. Then My(k) has signature o(Mx(k)) = —X and
Betti numbers

bo(Ma(k))= ba(Mi(K))=1,
by (Ma(k))=bs(Ma(K))= 2,
by(Ma(k))=2+ X .

Thus, the Euler number of M (k) is x(Mx(k)) = A.
PROPOSITION 1..— The manifolds Mx(k) have symplectic structures.
Proof .— This is a direct consequence of [7, proposition 3.7]McD.
Finally, we prove the main result :

THEOREM 1..— The symplectic manifolds My(k) have no polarizations
of nonzero real indez d.

Proof . — We shall only consider two cases, depending upon the value of
the real index d, 1 < d < 2.

d=1: In this case D would define a field of line elements on My(k). But
this is impossible since x(Mx(k)) = A # 0.
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d =2 : In this case the first real Chern class of (T M) (k),J) must vanish.
But we have

HTMx(k), J) = 3o(Ma(k)) + 2x(Ma(K)) = =X £0.
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