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ON MODIFYING CONSTRUCTED NORMAL NUMBERS

Bodo Volkmann (1)

Annales Faculté des Sciences Toulouse

Vol I,1979, P. 269 à 285

(1 ) Mathematisches Institut A, Universität Pfaffenwaldving 57, D 7000 Stuttgart 80 - Allemagne Fédérale.

Resume : Soient p~  ... des entiers positifs, ecrits en base g > 2, tels que le nombre reel a = p2 ...

soit normal. On démontre que c~* = p * ... , où p~ = p~ + j. , E IN*, log j~ = o(log p.), est aussi normal,
théorème qui résout un problème pose par T. SALAT. Parmi d’autres résultats, on donne une generalisation aux
mesures arbitraires de distribution g-adique, x, telles que x ( ~ 1 ~ ) = 0.

Summary : If p~  ... are natural numbers, written to base g > 2, such that the real number
Q g g . 1 1 2 ... IS normal, It IS proved t at Q g g . 1 2 Wit i 

= 

i i i ’ i i ’ og i i 
= 0 og pi), IS a so

normal. This theorem solves a problem proposed by T. SALAT. Among other results, a generalisation to arbitrary
g-adic distribution measures x with x ( ~ 1 ~ ) = 0 is given.

1. PROBLEM.

Let p2, ... be an unbounded sequence of natural numbers which diverges to infinity and let

B1 ~ B~, ... be the corresponding blocks of digits relative to a fixed (integral) base g > 2 ; furthermore, we suppo-
se that the real number (1 ) )

be normal. Mr T. SALAT has raised the question (2) whether the number a*, obtained in the same way but with
each pi being replaced by pi = pi + 1, is also normal.

(1 ) ) The pre-index g denotes a g-adic expansion.

(2) Communicated to the author by Mr F. SCHWEIGER.



This question appears to be well motivated inasmuch as the answer is affirmative in the «classical»

cases of normal numbers constructed in the form (1) :

a) For Champernowne’s normal number (cf. [1] ] ), defined with g =10 and pi 
= i, the modified num-

*

ber is a = 10 a -1, normality being obvious.

b) For the normal numbers constructed by the method of DAVENPORT and ERDOS [3] , where

p. = p(i) for any non-constant polynomial p which maps IN* into (1 ), the modified number a* satisfies the
same assumptions and is therefore normal.

c) Similary, normality of Q * follows immediately if a is constructed by the method of COPELAND

and ERDOS [2] which allows (p;) to be any sequence with more than n 1- E elements not exceeding n for every
E > 0 and all n > no(E ), inasmuch as again a* satisfies the same condition.

It is the main purpose of the present paper to show that the answer to the stated question, in aslight-

ly more general form, is always affirmative (Theorem 1). More generally, it will be shown for which distribution

measures x, assuming that a have the digit distribution x, the same is always true for a* (Theorem 4). Further-

more, we give some classes of counter-examples which show that in Theorem 1 normality cannot be replaced by

simple normality. In particular, Theorem 3 describes all possible pairs of digit frequency vectors which the pair

of numbers a, a may possess.

The work contained in this paper was done during the author’s stay at Bordeaux in the spring of

1978, and he wishes to express his thanks to the U.E.R. de Mathématiques et d’l nformatique for all the hospi-

tality and cooperation received.

2. NOTATION.

2.1. - With every integer m E fN we associate the block B = l3(m) of its g-adic digits, written in the cus-

tomary order. We consider the set Big of all g-adic blocks, including the empty block, to be denoted by F., as a
semi-group with respect to juxtaposition, thus regarding j3 as a mapping from IN into Bg.

Let Bog be the subset of obtained by omitting F03C6 and all blocks of lengths > 1 which begin
with the digit 0. If ~ g is replaced by ,~g, the mapping @ becomes bijective.

2.2. - For any block F we denote the length by II F II , defining II F~ II = 0.

2.3. - Blocks of the form F F ... F (n times) shall be denoted by F~n). If F is the single digit g-l, we
shall also write (g-1 )~n) = 

(1 ) We denote the set of natural number by (N*, letting (N* U ~ 0 ~ _ 



2.4. - If F ~ F~ we let p(F) and a (F), respectively, be the largest integers ~ 0 such that F can be
written in the form F = = F"(g-1 )(o ) (see 2.3) F, with F’, F" g (where evidently either F’ = F or
F" = F).

2.5. - For any block F ~ F03C6, and any real number x E (0,1] let AF(x,n) denote the num-
ber of copies of F occurring within the first n digits of the (non-terminating) g-adic expansion of x, with

AF ~ 
(x,n) = n. Similary, if let denote the number of copies of F which are embedded in B. Thus,

normality of a may be expressed by means of the equations :

The number a is called k-normal if (2) is satisfied for all F with 11 F II = k, and 1-normality is usually called simple

normality.

2.6. - Any block F E ~g determines the «basic interval» of numbers x E ( 0,1 ] whose g-adic expan-
sion begins with F. For the sake of simplicity we shall denote this interval by F also, letting F~=(0,1 ].

2.7. - For any set L c IN let L(n) denote the number of elements not exceeding n (n = 1,2,...).

3. MAIN RESULT.

We can now state our main result :

THEOREM 1. Let pi, Bi (i = 1,2,...) and a be defined as in (1), let Jl,l2,"’,~i E IN, be numbers such that

log j. = o(log p.), p. = P ; 
= Bi (i = 1,2,...). Then normality of a implies normality of the number

a) We define the numbers M B; !! = q;, !! !! = q~ s~ = q~ + ... + q;, s~= + ... + z~ 
= !! j~(j;) !!

and the sets S = ~ ,s~,... ~ S* = ~ s~ ,s~... ~, thus having

Consequently, since p. i -~ we obtain s. i+1 - s. i = 1 7 ~ and s* i+1 - s/- which implies that (1 )

~) See 2.7.



b) If i is sufficiently large such that qi > zi we rewrite Bi in the form

where II Bi3 II = z.. Furthermore, let ~ 1 ) k. = and rewrite B’. in the form B. = Bi2 with II Bi2 
Thus we have obtained a representation

where Bil is either empty or has a last digit different from g-1, and Bi2 is either empty or consist of (g-1 )’s only.

In this notation the transition from p~ to p~ + j~ changes the block B. into a block of the form

with the following properties: II B*i3 II = II Bi3 II ,

according as to whether or not the inequality

holds

g = 10, B; = 6089995301, j ~ i = 4711, k, = 3, z; = 4, 6090000012, B. i1 = 608, B.2 i = 999, B. i3 = 5301,
= 609, B~ i2 = 000, B.~ i3 = 0012.

c) If the n-th digit of a occurs within the block B;, i.e. if  n  si, then the «corresponding»

digit of a* has the index n’ for which s; - n’ = s; - n. In particular, we have n’ > n for all n, and the image set
of fN* under this mapping has density one, its complement being contained in the set s~ + 1, s2 + 1,....



d) The representation .

induces an obvious decomposition of the set flU* into three disjoint sets 11, I 2 and )~ where Ik consists of those
indices whose position is occupied by one of the blocks w (k -1,2,3). We need the following two
lemmas.

Proof. From the definitions of qi and ji we have :

Hence, if n is sufficiently large and  n  si, it follows that

where the relation (5) has been used.

c pProof. If e >0 is given, we choose an integer C >0 such that   c . I2 be the set of those n
~ , , , , , 

g p ~ 

which are associated with one of the last C digits in some block Then Ix2 consists of chains of lengths  C
of consecutive integers each of which lies strictly between two consecutive elements of S. Hence, for any n

and thus, by (5),

Let I2l = 12 1 ( 2 Q, then every m E is an index at which in the expansion (1 ) a copy of the block (1) G2 begins.
Therefore, it follows from (2) that

for all sufficiently large n.

(~) See 2.3.



The assertion is implied by (10) and (11 ) since

e) In order to establish normality of a* by means of the equations analogous to (2) it suffices to let n
tend to infinity through the elements of IN*’ (see step (c)). We consider a fixed block F ~= F~ and an index

*’ * *
n’ E and we subdivide the AF(a ,n’) copies of F among the first n’ digits of a into three subsets :

1) Let A1 (a*,n) be the number of copies occurring within, but not at the end of some block B.. By virtue
of (9), these copies correspond to copies of F in the blocks Bil. Hence

2) The number Ar-(o! ,n’) of copies of F which occur at the end of some block 8.1 (for these copies there
is no corresponding copy of F in the expansion (1)) is bounded by S* (n’) + 1, there being at most one such copy
in each block B.. Hence, by (5),

3) Each of the remaining copies of F overlaps with at least one of the blocks Bi2 or Bi3. Hence, their num-
ber is

and thus it follows from Lemmas 1 and 2 that

By combining (12), (13) and (14) we obtain

and therefore, by (2), we have

Adding these inequalities for all blocks F of the same length q and observing that

we find that equality must hold in (15) for every F. A simple argument shows now that the same equations are

valid for the lower limits, and thus the assertion follows.



4. REMARKS. 
,

4.1. - The assertion we have proved ceases to hold if normality is replaced by simple normality. For

example, let g > 2, B. _ (g-2)~~) (g-3)~~) ... 0~~) (g-1 )~~) (i = 1,2,...), j j~ = 1 for all .. i. Then the integers

~B~) i are uniquely determined, satisfying p 1  p 2  .... Inasmuch as every block B. contains i zeros, i

ones etc.., the number a = . B~ B~ ... is simply normal to base g. But the number a * = g . Bi B; ... involves the
blocks

A simple calculation shows that

Hence, the number a* fails to be simply normal.

4.2. - The example just given may be altered in such a way that the number a does not even possess
an asymptotic distribution, as we shall demonstrate in the case g = 2. Indeed, let

and define blocks Bi (i =1,2,...) as

Writing again p; = 0 (B.), the numbers p. are uniquely determined (as each block B. begins with the digit 1),
and they form a monotonic sequence since II Bl II  II B2 II  .... Hence, the number a = 2 . Bl B2 ... satisfies
the conditions of Theorem 1, except that instead of being normal, it is simply normal only.

For the modified number a~ . B* B;... one has

)
Now, let 03A3 k! = nj (j=1,2,...) and

k=1

These parameters satisfy the asymptotic equations



and

It will be convenient to rewrite the number ain the form

where

Each of the blocks f 1 f 2 ... f , in (16) ends with the sub-block 1 (2j) ; hence, the corresponding block in the ex-

pansion of a*, consisting of the first m2j digits, ends with a sub-block Q2j in which all the B~ satisfy the second
alternative of (17), thus having A~ = 2. 2~ i

Therefore,

and thus

Consequently, using (18) and (19), we obtain

On the other hand, a similar argument shows that

where the first alternative of (17) has been applied.

Therefore,

Since the opposite inequality is a trivial consequence of (17), we have

*

which shows that no limit frequencies for the digits of a* exists.



4.3. - Another modification of the example given in 4.1. demonstrates that the number a can be so

chosen that it remains simply normal to base 2 but a* has given lower and upper asymptotic digit frequencies,
subjet only to the condition

which is prompted by the fact that a is simply normal and the asymptotic frequency of zeros cannot be decreased

by the transition from a to a*. We restate this proposition as the following theorem.

THEOREM 2. Given real numbers r~ and ~’ satisfying

there exists a sequence pi 
-~ ~ of natural numbers such that the number a constructed to base 2 in the sense of

(l) is simply normal but, letting (1 ) j. i =1 for all i, the number a* satisfies the equations

Proof. We consider the same number 7 as defined in (16) but we change the definition of the blocks Bi as fol-
lows : for j =1,2,... we let

and if nj’ we define

Then the integers pi 
= ~3 (B.) are easily seen to satisfy the condition Pi i -~ ~ and the number a = . 2 B1 1 B~ ...

is simply normal since

The modified blocks are

(1) The theorem is also true for arbitrary sequences ji with log ji = 0 (log pi) but the proof would be more com-
pi icated.



A 0 (a ~m)
Using again the notation (20) we find by a straight-forward calculation that the lower limit lim is

~ m

obtained as m runs through the ending positions of the blocks Q2~ (j =1,2,...). These values of m correspond to

the end-points of long chains of blocks for which the first alternative of (21 ) is valid, and since

in this case, the result is

Similary, using the second alternative of (21 ) and the blocks thus having

one obtains

4.4. - The result just proved can be generalised to an arbitrary base g. Instead of doing this we shall

replace the condition that the number a be simply normal by requiring that a and a* have given digit frequencies.

THEOREM 3. Let g > 2 be an integer and let g-adic digit frequency vectors (1) 03BE = (03BEo,03BE1, , ..., 03BE _ ) ,

§ _ (03B6*o, 03B6*1 , ..., 03B6 g-1 ) be given. Then there exists a sequence p2  ... such that, letting ( ) j i ; =1 for

all i the numbers a and a* in the sense of Theorem 1 have digit frequencies ~’ and ~’ * if and only if (3)

COROLLARY. . The equations (23) imply the relation

Proof. a.l. Assume that numbers a and a* whith the stated properties exist. In order to compare 
with A (B.) (i = 1,2,...) we distinguish (in the notation of section 3) the following five cases (4) :

1 * g-l g-l(1 ) I.e. real numbers ~’k =1 .
k=0 k=0

(2) The theorem is also true for arbitrary sequences ji with log ji = 0 (log p;) but the proof would be more com-
plicated.

(3) It should be observed that, for g = 2, (24) is trivial and (23) is void.

(4) Observing that in case 3 one has a(B.) + p(Bil)  II Bi II , we find that this list of cases is complete and
non-overlapping. For g = 2, cases 1 and 4 do not occur.
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1) Q (Bi) = 0 , p (Bi) = 0 (example : 19805)

2) a (Bi) = 0 , p >0 (example : 19800)

3) Q(Bi) >0 , P (Bil ) > 0 (example : 900999 ; = 900)

4) II Bi II > a (Bi) > 0, =0 (example : 108999, Bi~ = 108)

5) II B~ II = a(Bi) (example : 99999).

Computing the blocks B = ~i(~i ~ (Bi) + 1 ) we obtain

Furthermore, we find

A simple argument, using the relation II B* i II = q.~ i -~ ~ (see (4)) to handle the terms -1 in case 2, now shows
that

Hence, condition (22) is necessary.

~y.2. - - To prove the necessity of (23) we may assume that g > 2. Let k be a fixed digit with

1  k  g-2. Then, considering again the five cases introduced in a.1), we find always that Ak (Bi) = 0
or ± 1, from which the equations (23) can be deduced.

b. Conversely, let us assume that vectors 03B6 and 03B6* with the stated properties be given. Then we
construct a pair of numbers a, a by modifying the construction of Theorem 2 as follows : we now introduce, for
j = 1,2,..., the functions



noting that, in view of (24),

If nj-1  i  nj , we define the block Bi as

letting again a = g . B~ B~ ..., B~= (B.) + 1), and

It is easy to show that the number a has the digit frequency vector § , using the relations II Bi II = j -~ oo,

i (h = 0,...,g-2) and Uj + ( ~’ g-1 * + ~ ~ - ~ 0 o)j = ~ - g 1 j, the last one being obtained by means
of (24).

Similary, inasmuch as

an obvious computation, using (27) and the relation

* *

proves that the number a has the given digit frequency vector t .

5. GENERALISATION

Theorem 1 may be interpreted as stating that if the number a has Lebesgue measure X as its g-adic
*

distribution, the same is true for a . Hence, one may ask whether there are distribution measures other than B

having the same invariance property. This question is answered by the following proposition.

THEOREM 4. Let x be a g-adic distribution measure. Then any number c~ constructed as in Theorem 1 and

having the g-adic distribution (1 ) x , , will yield a number a* with the same distribution if and only if (2)

x ( 1 ~ ) = 0, i.e. if the point 1 is not an atom of x .

(1 ) ) I.e., for every block F, lim = x (F) in the sense of 2.6.
o n 

n 
*

( ) It should be noted that this condition is violated by the examples discussed in section 4 whenever c~ and a

have different distributions.



Proof. a) Let x be a given g-adic distribution measure, i.e. a. Borel probability measure on [0,1 ] which is

invariant under the g-adic shift operator T g x = g x ~ , satisfying the assumption x ( ~ 1 ~ ) = 0.
Parts a), b), c) and d) of the proof of theorem 1 remain valid, except that in the proof of Lemma 2

the following change is now necessary. Since (~ ) the intersection of the basic intervals G Q is

the assumption x ( { 1 } ) = 0 is equivalent to

Hence, if e > 0 is given, there exists an Q such that x (GQ)  e . The remainder of the proof is unchanged, ex-

cept that the inequality (11 ) has to be replaced by

The fact that a* has distribution x is then established by the argument of part e) in the proof of Theorem 1,
1

with the term - in (15) being replaced by x (F).

b) Conversely, let x be a g-adic distribution measure with x ({ 1}) = ~ > 0. We shall show that
there exists a sequence pi with pi l’ oo such that, in the sense of the theorem, a has the distribution x but a*
does not.

b.l. - As the first step we consider a number a1 with the distribution x as constructed (2) ) by
J. VILLE [6], following the exposition of A.G. POSTNIKOV [5], Chapter III. Given any sequence

e 1 > e 2 >..., E k ~ 0, this construction defines recursively blocks Lo, ..., in such a way that, letting

and II Lo L~ ... Lk II = nk, any block F =~ F~, II F II  k, satisfies the inequalities

for all n > nk, The length II Lk II may, at each stage of the construction, be chosen arbitrarily large in relation

to the II !!. Hence, we may choose each nk+1 (k= 1,2,...) so large that, for all F with II F II  k,

(~) See 2.3 and 2.6.

(2) ) An elegant construction of such numbers, using graph theory, was recently given by H. KUHNLE [4] .



For the same reason we may furthermore assume that

Furthermore, we require that the first digit of Lo be different from 0.

6.2. - By (29) we have

Hence, an application of Dirichlet’s drawer principle shows that for each k there exists an arithmetic progression

{ rk’ rk +k, rk +2k, ...}, 1  k, which contains more than 1 k R(k) numbers n such that some copy of G
ends at the n-th digit of the block Lk+ 1.

Let be the block obtained from (k = 0,1,2,...) by a cyclic shift by k-rk places to the
right. I n view of (30) it is possible to rewrite each block (k = 1,2,...) in the form

where II 1 II = ... 
= II Y k h II = k and at least - R(k) of these blocks are equal to Gk, to be called relevantk k

copies.

Now, let a number a2 be defined as

It is easy to see that a2 also has the digit distribution x . Indeed, if ~denotes the set of places occupied in the

g-adic expansion of a~ by the first and the last digit of L~, the first two and the last two digits of L2,etc, then
it is evident that, if a block F with II F II = k > 0 is given, the transition from c~i to a2 can only create or destroy

copies of F to the right of the index nk if they begin or terminate at places belonging to Hence, we have, for

all n  nk,

and since, by (31 ), = o(n), it follows that

i.e. a2 has the distribution x .



b.3. - The blocks (k = 1,2,...) are changed as follows : we define blocks

thus replacing (33) by

and then letting a3 = g . L’2 L3 L4 .., .

The first digits of all blocks Yki determine a set V = ~ Vi, v2, ... ~ of indices for which vm = k whenever
the index vm occurs within the block Lk. Hence, by (31 ), V(m) = o(m) and thus a3 again has the digit distribu-
tion x . Furthermore, it follows from the definition of 1 that

(with (~k+1 ) - 1 2).

6.4. - - Finally, we renumber the blocks Yki (k = 1,2,... ; i=1,...,hk) without changing order, as

B1,B2,w, thus rewriting a3 as a = g . B~ B2 .... Then the number a satisfies the assumptions of the theorem
since : 1) it has the distribution x , 2) none of the blocks Bi begins with 0, hence the integers pi = 03B2-1 (Bi) are
uniquely determined, 3) Pi as II Bi II Furthermore, each relevant copy of a block Gk (k = 1,2,...)
forms one of the blocks Bi. We shall also use the fact that the assumption log ji = o(log p~) implies the relation

~ ~ ~

~.3. - For the corresponding number o; = . Bi B~ ... we also use the block de composition

where !s obtained from L. by subjecting each of its blocks B. to the * operation of Theorem 1. Each relevant
copy of a block G., which forms a block B, with k > z;, furnishes a block (see (6)) of the form
B*i = 1 0 

’ 
Bi3 , !! B.o !! = z., where Bi3 is defined as in the proof of Theorem 1. We shall show that 03B1* has

«much fewer» (g"1)’s than a. Indeed, letting we have, if B; is embedded in with 

Hence, applying (37) to each of the relevant copies of Gk and observing that they are contained in (and
therefore, in we have, for k =1,2,... ,



Since it follows from the definition of that

this implies

Letting k tend to infinity, observing that E k -~ 0, 0  r~ = lim x (Gk)  x (G1 ), k1 = k by (36),
- k-~~

k = o( II II ) by (31 ) and II II > II I) by definition, we obtain the relation

" 

II

 x _  
*

Therefore, lim 201420142014201420142014  ~(g-1) - r~  x (g-1 ), and thus a 
* 

does not have the distribution x .
noo 

n

Remark. Theorem 4 may be applied to show that, in the sense of Theorem 2, for any k > 1 there exists even
a k-normal number a such that a fails to be simply normal. It suffices to consider any g-adic distribution measu-
re x such that x (F) = for all F with II F II = k, but with x ({1 j) > 0, and to construct a pair
of numbers a, a by the method of Theorem 4. For example, if g = 2, k = 2, we can choose

where bx is the Dirac measure concentrated at x. It is easily seen that the measure x is invariant under the

binary shift operator T2, and that any corresponding number a is 2-normal but a* is not.
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