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KAM THEORY FOR THE HAMILTONIAN
DERIVATIVE WAVE EQUATION

BY MassiMILIANO BERTI, Luca BIASCO AND MicHELA PROCESI

ABSTRACT. — We prove an infinite dimensional KAM theorem which implies the existence of Can-
tor families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative
wave equations.

RESUME. — Nous prouvons un théoréme KAM en dimension infinie, qui implique I’existence de
familles de Cantor de tores invariants de petite amplitude, réductibles, elliptiques et analytiques, pour
les équations des ondes hamiltoniennes avec dérivées.

1. Introduction

In the last years many progresses have been done concerning KAM theory for nonlinear
Hamiltonian PDEs. The first existence results were given by Kuksin [20] and Wayne [32] for
semilinear wave (NLW) and Schrodinger equations (NLS) in one space dimension (1d) under
Dirichlet boundary conditions, see [27]-[28] and [23] for further developments. The approach
of these papers consists in generating iteratively a sequence of symplectic changes of variables
which bring the Hamiltonian into a constant coefficients (=reducible) normal form with
an elliptic (=linearly stable) invariant torus at the origin. Such a torus is filled by quasi-
periodic solutions with zero Lyapunov exponents. This procedure requires to solve, at each
step, constant-coefficients linear “homological equations” by imposing the “second order
Melnikov” non-resonance conditions. Unfortunately these (infinitely many) conditions are
violated already for periodic boundary conditions.

In this case, existence of quasi-periodic solutions for semilinear 1d-NLW and NLS equa-
tions, was first proved by Bourgain [5] by extending the Newton approach introduced by
Craig-Wayne [ 1] for periodic solutions. Its main advantage is to require only the “first order
Melnikov” non-resonance conditions (the minimal assumptions) for solving the homologi-
cal equations. Actually, developing this perspective, Bourgain was also able to prove in [6],
[8] the existence of quasi-periodic solutions for NLW and NLS (with Fourier multipliers) in
higher space dimensions; see also the recent extensions in [4], [3], [31]. The main drawback

0012-9593/02/© 2013 Société Mathématique de France. Tous droits réservés
ANNALES SCIENTIFIQUES DE ’ECOLE NORMALE SUPERIEURE



302 M. BERTI, L. BIASCO AND M. PROCESI

of this approach is that the homological equations are linear PDEs with non-constant coef-
ficients. Translated in the KAM language this implies a non-reducible normal form around
the torus and then a lack of informations about the stability of the quasi-periodic solutions.

Later on, existence of reducible elliptic tori was proved by Chierchia-You [9] for semilinear
1d-NLW, and, more recently, by Eliasson-Kuksin [14] for NLS (with Fourier multipliers) in
any space dimension; see also Procesi-Xu [30], Geng-Xu-You [15].

An important problem concerns the study of PDEs where the nonlinearity involves deriva-
tives. A comprehension of this situation is of major importance since most of the models
coming from Physics are of this kind.

In this direction KAM theory has been extended to deal with KdV equations by Kuksin
[21]-[22], Kappeler-Poschel [19], and, for the 1d-derivative NLS (DNLS) and Benjiamin-
Ono equations, by Liu-Yuan [24]. The key idea of these results is again to provide only
a non-reducible normal form around the torus. However, in this case, the homological
equations with non-constant coefficients are only scalar (not an infinite system as in the
Craig-Wayne-Bourgain approach). We remark that the KAM proof is more delicate for
DNLS and Benjiamin-Ono, because these equations are less “dispersive” than KdV, i.e.,
the eigenvalues of the principal part of the differential operator grow only quadratically at
infinity, and not cubically as for KdV. As a consequence of this difficulty, the quasi-periodic
solutions in [21], [19] are analytic, in [24], only C*°. Actually, for the applicability of these
KAM schemes, the more dispersive the equation is, the more derivatives in the nonlinearity
can be supported. The limit case of the derivative nonlinear wave equation (DNLW)—which
is not dispersive at all—is excluded by these approaches.

In the paper [5] (which proves the existence of quasi-periodic solutions for semilinear
1d-NLS and NLW), Bourgain claims, in the last remark, that his analysis works also for the
Hamiltonian “derivation” wave equation

2 \1/2
- %) / F(a:,y);
see also [7], page 81. Unfortunately no details are given. However, Bourgain [7] provided a
detailed proof of the existence of periodic solutions for the non-Hamiltonian equation

Ytt — Yoo T g(x)y = <

ytt_yzm+my+yt2:0a m#o

These kinds of problems have been then reconsidered by Craig in [10] for more general
Hamiltonian derivative wave equations like

Yit — Yoz + 9(z)y + f(z,Dy) =0, =z€T,

where g(z) > 0 and D is the first order pseudo-differential operator D := /—0,, + g(x).
The perturbative analysis of Craig-Wayne [11] for the search of periodic solutions works
when # < 1. The main reason is that the wave equation vector field gains one derivative
and then the nonlinear term f(D?u) has a strictly weaker effect on the dynamics for 8 < 1.
The case 8 = 1 is left as an open problem. Actually, in this case, the small divisors problem
for periodic solutions has the same level of difficulty of quasi-periodic solutions with 2
frequencies.
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The goal of this paper is to extend KAM theory to deal with the Hamiltonian derivative
wave equation

(11) ytt_ymw+my+f(Dy):O7 m>0a D:: _azw+m7 1’€T,
with real analytic nonlinearities (see Remark 7.1)
(1.2) f(s)zas?’—f—kask, a#0.

k>5

We write Equation (1.1) as the infinite dimensional Hamiltonian system
Uy = —laﬂH, Uy = 18uH,

with Hamiltonian

u—+u s
(13) H’LL,’E ::/’U,DU—FF d;z,‘, F(s ;:/ f,
(wa) = | (%) ()= |
in the complex unknown
1 1
U= E(Dy‘i'iyt)a U= E(Dy—iyt), i=+v-1.

Settingu = 3 ez u;e' (similarly for ), we obtain the Hamiltonian in infinitely many
coordinates

(1.4) H=> \uju; + /

JEL T

1 s .
F(— Z(uje”w + ﬁjeﬂ”)> dz
\/5 JEZ
where

(1.5) A =+/72+m

are the eigenvalues of the diagonal operator D. Note that the nonlinearity in (1.1) is z-inde-
pendent implying, for (1.3), the conservation of the momentum —i fT w0y u dz. This symme-
try allows to simplify somehow the KAM proof (a similar idea was used by Geng-You [16]).

For every choice of the tangential sites T := {j1,...,jn} C Z,n > 2, the integrable
Hamiltonian )~ ., A\ju;@; has the invariant tori {u;u; = &;, forj € T, u; = 4; = 0
for j ¢ 7} parametrized by the actions £ = (£;);ez € R”. The next KAM result states the
existence of nearby invariant tori for the complete Hamiltonian H in (1.4).

THEOREM 1.1. — The Equation (1.1)-(1.2) admits Cantor families of small-amplitude, ana-
Iytic, quasi-periodic solutions with zero Lyapunov exponents and whose linearized equation is
reducible to constant coefficients. Such Cantor families have asymptotically full measure at the
origin in the set of parameters.

The proof of Theorem 1.1 is based on the abstract infinite dimensional KAM Theo-
rem 4.1, which provides a reducible normal form (see (4.12)) around the elliptic invariant
torus, and on the measure estimates Theorem 4.2. The key point in proving Theorem 4.2
is the asymptotic bound (4.9) on the perturbed normal frequencies Q2°°(&) after the KAM
iteration. This allows to prove that the second order Melnikov non-resonance conditions
(4.11) are fulfilled for an asymptotically full measure set of parameters (see (4.16)). The esti-
mate (4.9), in turn, is achieved by exploiting the quasi-Téplitz property of the perturbation.
This notion has been introduced by Procesi-Xu [30] in the context of NLS in higher space
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dimensions and it is similar, in spirit, to the Toplitz-Lipschitz property in Eliasson-Kuksin
[14]. The precise formulation of quasi-Toplitz functions, adapted to the DNLW setting, is
given in Definition 3.4 below.

Let us roughly explain the main ideas and techniques for proving Theorems 4.1, 4.2. These
theorems concern, as usual, a parameter dependent family of analytic Hamiltonians of the
form

(1.6) H=w() y+Q&)- 22+ P2,y,2 %)
where (z,y) € T x R", 2, z are infinitely many variables, w(§) € R™, Q(£) € R* and
& € R™. The frequencies 2;(§) are close to the unperturbed frequencies A; in (1.5).

As is well known, the main difficulty of the KAM iteration which provides a reducible
KAM normal form like (4.12) is to fulfill, at each iterative step, the second order Melnikov
non-resonance conditions. Actually, following the formulation of the KAM theorem given
in [2], it is sufficient to verify

(1.7) W (&) -k +Q7(§) — Q)] =

Y
) >0 )
i+
only for the “final” frequencies w™ (£) and 2°°(§), see (4.11), and not along the inductive
iteration.
The application of the usual KAM theory (see e.g., [20], [27]-[28]), to the DNLW equation
provides only the asymptotic decay estimate

(1.8) Q€)= j+0(1) for j— +oo.

Such a bound is not enough: the set of parameters £ satisfying (1.7) could be empty. Note that
for the semilinear NLW equation (see e.g., [27]) the frequencies decay asymptotically faster,
namely like 25°(€) = j + O(1/j).

The key idea for verifying the second order Melnikov non-resonance conditions (1.7) for
DNLW is to prove the higher order asymptotic decay estimate (see (4.9), (4.2))

2/3

(1.9) Q) =j+ar(§)+ % + O(VT) for j>O0(y /%)

where a (§) is a constant independent of j (an analogous expansion holds for j — —oo with
a possibly different limit constant a_(£)). In this way infinitely many conditions in (1.7) are
verified by imposing only first order Melnikov conditions like [w™ () - k + h| > 2v%/3/|k|",
h € Z. Indeed, for i > j > O(|k|"y~1/3), we get

() -k 020 — AR (@)| = (9 b +i— i+ 2T 02

> 2922 |k| =7 — O(k|/5%) — O(*/ /) = */*|k| "

noting that ¢ — j is integer and |¢ — j| = O(|k|) (otherwise no small divisors occur). We refer
to Section 6 for the precise arguments, see in particular Lemma 6.2.

The asymptotic decay (4.9) for the perturbed frequencies Q2°°(¢) is achieved thanks to the
“quasi-Toplitz” property of the perturbation (Definition 3.4). Let us roughly explain this
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notion. The new normal frequencies after each KAM step are Qj = Q; + PJQ where the
corrections PJQ are the coefficients of the quadratic form

P2z .= Z PJszZj , PJQ = /T (8fj2j P)(z,0,0,0;¢) dz .
. n

We say that a quadratic form P° is quasi-Téplitz if it has the form
P°=T+R

where T' is a Toplitz matrix (i.e., constant on the diagonals) and R is a “small” remainder
satisfying R;; = O(1/j) (see Lemma 5.2). Then (1.9) follows with a := Tj; which is
independent of j. The rate of decay O(1/4) is the natural one for the application to the
DNLW equation, due to the asymptotic expansion \/j2 + m = j + m/(2j) + O(1/;3) as
j — 4oo,see (5.12). We expect that the class of quasi-Toplitz functions defined with a weaker
decay, say O(1/]4]%), 8 > 0, would still be closed under Poisson brackets; see below.

Since the quadratic perturbation P° along the KAM iteration does not depend only on the
quadratic perturbation at the previous steps, we need to extend the notion of quasi-Toplitz
to general (non-quadratic) analytic functions. The preservation of the quasi-Toplitz property
of the perturbations P at each KAM step (with just slightly modified parameters) holds in
view of the following key facts:

1. the Poisson bracket of two quasi-Toplitz functions is quasi-Toplitz (Proposition 3.1),
2. the hamiltonian flow generated by a quasi-T6plitz function preserves the quasi-Toplitz
property (Proposition 3.2),
3. the solution of the homological equation with a quasi-Toplitz perturbation is quasi-
Toplitz (Proposition 5.1).
We note that, in [14], the analogous property 1 (and therefore 2) for Toplitz-Lipschitz func-
tions is proved only when one of them is quadratic.

The definition of quasi-Toplitz functions heavily relies on properties of projections. How-
ever, for an analytic function in infinitely many variables, such projections may not be well
defined unless the Taylor-Fourier series (see (2.28)) is absolutely convergent. For such reason,
instead of the sup-norm, we use the majorant norm (see (2.12), (2.54)), for which the bounds
(2.14) and (2.55) on projections hold (see also Remark 2.4).

We underline that the majorant norm of a vector field introduced in (2.54) is very different
from the weighted norm introduced by Péschel in [26]-Appendix C, which works only in finite
dimension, see comments in [26] after Lemma C.2 and Remark 2.3. In Section 2 we show its
properties, in particular the key estimate of the majorant norm of the commutator of two
vector fields (see Lemma 2.15). A related majorant norm for functions and vector fields is
introduced in Bambusi-Grébert [1] in a context of Sobolev spaces (and with tame modulus
properties); see also [25].

Before concluding this introduction we also mention the recent KAM theorem of
Grébert-Thomann [18] for the quantum harmonic oscillator with semilinear nonlinear-
ity. Also here the eigenvalues grow to infinity only linearly. We quote the normal form
results of Delort-Szeftel [13], Delort [12], for quasi-linear wave equations, where only finitely
many steps of normal form can be performed. Finally we also mention the recent work by
Gérard-Grellier [17] on Birkhoff normal form for a degenerate “half-wave” equation.
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The paper is organized as follows:

— In Section 2 we define the majorant norm of formal power series of scalar functions

(Definition 2.2) and vector fields (Definition 2.6) and we investigate the relations with
the notion of analiticity, see Lemmata 2.1, 2.2, 2.3, 2.11 and Corollary 2.1. Then we
prove Lemma 2.15 on commutators.

In Section 3 we define the Toplitz (Definition 3.3) and Quasi-Toplitz functions (Defi-
nition 3.4). Then we prove that this class of functions is closed under Poisson brackets
(Proposition 3.1) and composition with the Hamiltonian flow (Proposition 3.2).

In Section 4 we state the abstract KAM Theorem 4.1. The first part of Theorem 4.1
follows by the KAM Theorem 5.1 in [2]. The main novelty is part I1, in particular the
asymptotic estimate (4.9) of the normal frequencies.

In Section 5 we prove the abstract KAM Theorem 4.1.

We first perform (as in Theorem 5.1 in [2]) a first normal form step, which makes
Theorem 4.1 suitable for the direct application to the wave equation.

In Proposition 5.1 we prove that the solution of the homological equation with a
quasi-Toplitz perturbation is quasi-Toplitz. Then the main results of the KAM step
concern the asymptotic estimates of the perturbed frequencies (Section 5.2.3) and the
Toplitz estimates of the new perturbation (Section 5.2.4).

In Section 6 we prove Theorem 4.2: the second order Melnikov non-resonance con-
ditions are fulfilled for a set of parameters with large measure, see (4.16). We use the
conservation of momentum to avoid the presence of double eigenvalues.

In Section 7 we finally apply the abstract KAM Theorem 4.1 to the DNLW Equa-
tion (1.1)-(1.2), proving Theorem 1.1. We first verify that the Hamiltonian (1.4) is
quasi-Toplitz (Lemma 7.1), as well as the Birkhoff normal form Hamiltonian (7.8)
of Proposition 7.1. The main technical difficulties concern the proof in Lemma 7.4
that the generating function (7.17) of the Birkhoff symplectic transformation is also
quasi-Toplitz (and the small divisors Lemma 7.2). In Section 7.2 we prove that the
perturbation, obtained after the introduction of the action-angle variables, is still
quasi-Toplitz (Proposition 7.2). Finally in Section 7.3 we prove Theorem 1.1 applying
Theorems 4.1 and 4.2.

2. Functional setting

Given a finite subset Z C Z (possibly empty), a > 0,p > 1/2, we define the Hilbert space

67 ={s={5henz, 5 €C : |22, = > |5Pe2i)? < oo}
JEZNT

When Z = & we denote %7 := ¢7P. We consider the direct product
2.1 E :=C" x C" x 37 x 437
where n is the cardinality of Z. We endow the space E with the (s, r)-weighted norm

_ |]oo

z z
(2.2) v=(z,9,2,2) € E, |v|g:=|vlgsr= . + @ + M + M

r2 r r
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where, 0 < s,7 < 1, and |z|oo := maxp=1, . |Zn|, |[yl1 := D h—1 |ys|- Note that, for all
s <s, <,
(2.3) [0l g, < max{s/s", (r/r")*}|v]| 55,1 -

We shall also use the notations

|
X

w

w

We identify a vector v € E with the sequence {v)} ;¢ 7 with indices in

{1,...,n} if j; =1,2 }

2.4 T =<7 =(h,72), 11 € {1,2,3,4}, jo €
(2.4) {J (J1,72), J1 €4 b, g2 {Z\I if Jy — 3.4

and components
oLd2) . zj, p(2d2) . Y, (1 <42 <n), p3d2) . Zjy s p&d2) . =z, (ja €Z\T),

more compactly
G I C D IRIC I I T B

We denote by {e; } jes the orthogonal basis of the Hilbert space E, where e; is the sequence
with all zeros, except the jo-th entry of its j;-th components, which is 1. Then every v € E
writes v = 3", 7 vWe;, vl € C. We also define the toroidal domain

(2.5) D(s,r):=T} xD(r) =T} x B2 x B, x B, CE
where D(r) := B2 X B, X By,
(2.6) T, = {a: eC": , max Imzp| < s} B2 = {y eC” : |yh < r2}

1,...,n

and B, C (7" is the open ball of radius r centered at zero. We think T™ as the n-dimensional
torus T" := 27R"/Z", namely f : D(s,r) — C means that f is 27-periodic in each
xp-variable, h = 1,...,n.

REMARK 2.1. = Ifn =0 then D(s,r) = B, X B, C {*P x {*P.

2.1. Majorant norm
2.1.1. Scalar functions. — We consider formal power series with infinitely many variables
2.7) fO)=fl@y,22) = Y, friapsey'7

(k,i,a,B)€l

with coefficients fi ; o35 € C and multi-indices in

(2.8) I:=7Z" x N* x NA\D » NZ\T)

where

(2.9 N@&D .— {oz = (o) jez\z € N” with |a == Z o < +oo}.
JEINT

In (2.7) we use the standard multi-indices notation z%z° := Hjezz 2, 25 z . We denote the
monomials

(210) Mg a8 (U) = mk,i,a,ﬁ(xy Y,z 2) = lk ryzzazﬂ
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REMARK 2.2. — Ifn = 0 the set I reduces to N* x N” and the formal series to f(z,z) =
> (apyer s 2%2°.
We define the “majorant” of f as
2.11) (Mf)(0) = (MF)(@,9,2,2) = 3 |frsasle™ 2228
(k,i,a,B8)€L

We now discuss the convergence of formal series.

DEFINITION 2.1. — A series

E Ck,i,a, B » Ck,i,a, 8 € (Cv
(kyi,0,8)€l

is absolutely convergent if the function 1 > (k,i, o, 8) = ¢k ia.p € Cisin L*(I, u) where p is
the counting measure of 1. Then we set

Z Chyi,a,B = /Ck,i,a,,@ dp.
I

(k,i,0,8)€l

By the properties of the Lebesgue integral, given any sequence {I; };>¢ of finite subsets
I; c I'with I; C I;11 and U;>ol; = [, the absolutely convergent series

Z Chyiya,B i= Z Chyia,8 = Hm E: Chyiya, -

— 00

kyi,o,8 (kyi,a,B)€l (kyi,o,B)€D

DEFINITION 2.2 (Majorant-norm: scalar functions). — The majorant-norm of a formal
power series (2.7) is

(2.12) fllsr = sup D7 |fuiaple™ly]]27]]27)
(y,2,2)€D(r) 1, 5 o 3

where |k| := |k|1 == k1| + - + |knl-

By (2.7) and (2.12) we clearly have || f||s,» = || M f]|s,r-
For every subset of indices I C I, we define the projection

(2.13) (M f)(z,y,2,2) := Z Triope®®yiz®zP
(k,i,0,8)€T

of the formal power series f in (2.7). Clearly

(2.14) 1Lz fllsr < N fllsr

and, for any I, I’ C T, it results that

(2.15) Iy = gnp = p ;.

Property (2.14) is one of the main advantages of the majorant-norm with respect to the usual
sup-norm

(2.16) [flsr:= sup [f(v)].

vED(s,r)

We now define useful projectors on the time Fourier indices.
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DEFINITION 2.3. — Given§ = (s1,...,$,) € {4+, —}" we define

(2.17) fo =T f =T xnenxnan f = Y foiaset "y'2%2"
kEZr 5,0,
where
kp >0 if =+
(2.18) Zr = {keZ” with { n=" 1 ¢ v1ghgn}.
kp<0 if ¢, =-—
Then any formal series f can be decomposed as
(2.19) f= Y Tf
ce{+,—}"

and (2.14) implies [|TL f{|s, < [|.fls,r-
We now investigate the relations between formal power series with finite majorant norm
and analytic functions. We recall that a function f : D(s,r) — Cis
— analytic, if f € CY(D(s,r),C), namely the Fréchet differential D(s,7) 3 v — df (v) €
L(E,C) is continuous,
— weakly analytic, if Vv € D(s,r), v’ € E\ {0}, there exists € > 0 such that the function
{€eC,|¢l<e} — flv+&')eC
is analytic in the usual sense of one complex variable.

A well known result (see e.g., Theorem 1, page 133 of [29]) states that a function f is

(2.20) analytic <=  weakly analytic and locally bounded .

LeEmMaA 2.1. — Suppose that the formal power series (2.7) is absolutely convergent for all
v € D(s,r). Then f(v) and M f(v), defined in (2.7) and (2.11), are well defined and weakly
analytic in D(s,r).
If, moreover, the sup-norm |fls, < oo, resp. |Mf|s, < oo, then f, resp. M f, is analytic
in D(s,r).

Proof. — Since the series (2.7) is absolutely convergent the functions f, M f, and, for all
¢ € {+,=", f. = II.f, Mf. (see (2.17)) are well defined (also the series in (2.17) is
absolutely convergent).

We now prove that each M f. is weakly analytic, namely Vv € D(s,r),v' € E \ {0},
(2.21) Mfw+e)= Y |friaslMiias(+E)

kEZ?,i,a,,@
is analytic in {|{| < e}, for ¢ small enough (recall the notation (2.10)). Since each
£ — my;qp(v + &) is entire, the analyticity of M f (v + &v') follows once we prove
that the series (2.21) is totally convergent, namely
(2.22) > kil sup [Meiap(v+ ') < 4oo.
kEZD i,a,B l€l<e
Let us prove (2.22). We claim that, for € small enough, there is v € D(s, r) such that

(2.23) SUp |Mp,i0,8(v + V)| < Mpjap(v), VkEZ i afB.
[€l<e
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Therefore (2.22) follows by
S friesl 5D Miia @+ < DY | friaslMeias (@)
kEZr i, B I€]<e kEZT i, B
=Mf(v*) < +00.
Let us construct v € D(s,r) satisfying (7._3) Since v = (z,y,2,2) € D(s,r) we have
x € T? and, since T? is open, there is 0 < s’ < s such that [Im(z)| < /,V1 < h < n.
Hence, for ¢ small enough,

(2.24) sup |Im(z + &x')p| < s’ <s, V1I<h<n.
|€l<e

The vector v¢ := (z°,y°, 2°, 2°) with components

Ty, = —icns’, Yy = |yh|+€|y2|7 1<h<mn,
(2.25) z5 = |zn| + €2y, z; = |zn| + €|2y,, heZ,
belongs to D(s,r) because [Imz;| = s’ < s5,V1 < h <n,andalso (y°,2°,2°) € D(r) fore
small enough, because (y,z,Z) € D(r) and D(r) is open. Moreover, Vk € Z7, by (2.24),
(2.18) and (2.29),

(2.26) sup |eik'(m+£96/)i < elkls’ — gikas
l¢l<e

By (2.10), (2.25), (2.26), we get (2.23). Hence each M f. is weakly analytic and, by the
decomposition (2.19), also f and M f are weakly analytic. The final statement follows by
(2.20). O

COROLLARY 2.1. — If'|| f|ls,r < 00 then f and M f are analytic and
(2.27) [flss IMFlsr < S llsr -

Proof. — Forallv = (x,y,2,2) € T? x D(r), we have |e“”| < el*ls and

F@1 IMF@I<S D | friasle™ly’ llzallzﬂl ||f||sr < +00
k,i,o,0
by assumption. Lemma 2.1 implies that f, M f are analytic. O

Now, we associate to any analytic function f : D(s,r) — C the formal Taylor-Fourier
power series

(2.28) f(v) := Z Triap elfzyiazh
(k,i,,8)€l
(as (2.7)) with Taylor-Fourier coefficients
1 : 1
22 i = —ik-x 1, a af
(2.29) fri0.8 G /ne i!a!ﬂ( 8205 f)(x,0,0,0) dz

where 8;8;* 85 f are the partial derivatives'!.

M For a multi-index o = Zl <j<k €ij> || = k, the partial derivative is

ak

2.30 0% f(x,y,2,2) i= ——————
( ) 2 (29,2 2) 87’1,..87'“7_:0

flx,y,z 4+ T1es, + -+ Thes, , 2) .
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What is the relation between f and its formal Taylor-Fourier series £?

LEMMA 2.2. — Let f : D(s,r) — C be analytic. If its associated Taylor-Fourier power
series (2.28)-(2.29) is absolutely convergent in D(s,r), and the sup-norm

2.31 i € Tyiz2Z0 < o0
( a8 €Y :
k,i,a,8 ST

then f = £,Yv € D(s,r).

Proof. — Since the Taylor-Fourier series (2.28)-(2.29) is absolutely convergent and (2.31)
holds, by Lemma 2.1 the function f : D(s,r) — C is analytic. The functions f = f are equal
if the Taylor-Fourier coefficients

(2.32) fria8 =Ehiap, Vki,a 08,

where the coefficients £ ; o g are defined from £ as in (2.29). Let us prove (2.32). Indeed, for
example,

R

@2m)" Jpn A€o ot on

1 d ik-x ¢em
= E (271-)77, /]I‘ d7£|§ Ofk,O,meh,Oe F 5 = f0,0,eh,O )
N " =

k€EZ™, me

-
(2.33) £0,0,en,0 = Jr,0,men,0€ ™

using that the above series totally converge for v’ < r, namely

SUp [ fr0.men0€ M < D | fr0menol ()™
N Z€R, [¢]<r

kEZr, me keZr, meN
< Z | Fresi,c0,8ME 0,8 (0, 0, 7€, 0)| < 00
ki, 0,8
recall (2.10). For the others &, ¢, , 8 in (2.32) are analogous. O

The above arguments also show the unicity of the Taylor-Fourier expansion.

LEMMA 2.3. — If an analytic function f : D(s,v) — C equals an absolutely convergent
Sormal series, i.e, f(v) = Y kiap friapet®yiz2 2P, then its Taylor-Fourier coefficients
(2.29) are friap = Friap:

The majorant norm of f is equivalent to the sup-norm of its majorant M f.

LEMMA 2.4. —

(2.34) IM fls,r < 1 flls.r <27 M flsr-

Proof. — The first inequality in (2.34) is (2.27). The second one follows by
(2.35) L fllsr < IMflsr, Vse€{+,—}",
where II_ f is defined in (2.17). Let us prove (2.35). Let

DT (r) := {(y,z,é) eD(r) : yp>0,V1<h<n, z,% EO,VZGZ\I}.
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For any 0 < o < s, we have

Mo = sup | D7 fesasle®™ Ty 2|
(z,y,2,2)€D(s,r) P~

> sup Z | fiopl€™ y 22"
z1=—i610,...,xn=—i6,0,(y,2,2) EDT (1) ki,a,8

(2.18) .

> sup > friasle® [y 1228
(y,z,Z)ED+ (r) keZ?)i,a’ﬁ

= swp Y feiasle® 2012 = [T fllor -

(y,2,2)€D(r) kEZr i a6
Then (2.35) follows since for every function g we have supy<, <, |90, = llglls,7 - O

DEFINITION 2.4 (Order relation: scalar functions). — Given _formal power series
om i o oow i o
f= 20 friape™ W', g= 37 griapety'sd,
k,i,o,8 k,i,o,8

with gk i a,p € RT, we say that

(236) .f = g if |fk‘,i,oz,ﬂ| § 9k,i,a,8 5 Vk? 7;7 «, ﬂ .
Note that, by the Definition (2.11) of majorant series,
(2.37) f<9g <= [f<Mf<yg.

Moreover, if ||g||s,» < 400, then f < g = £ llsr < llglls,r-
For any ¢ € {+, —}" define ¢, := (qgj))jej as

Gy._ J—si i j=(h), 1<h<n,
g’ =

(2.38) .
1 otherwise .

LEMMA 2.5. — Assume ||f||s,r, [|g]ls,r < +00. Then

(2.39) f+9g<Mf+ Mg, f-g=<Mf-Mg
and
(2.40) M(9;(IL.f)) = ¢V8;(M(ILf)), jeJT,

where 0; is short for 0, and qgj ) are defined in (2.38).

Proof. — Since the series which define f and g are absolutely convergent, the bounds
(2.39) follow by summing and multiplying the series term by term. Next (2.40) follows by
differentiating the series term by term. O

An immediate consequence of (2.39) is

(241) If + gllse < Iflls;r + Nlgllsr s Nf gllsr < NS llsrllglls,r -

The next lemma extends property (2.39) for infinite series.

LEMMA 2.6. — Assume that 9, gU) are formal power series satisfying
1. f(j) =< g(j), V] = \7}
2. Hg(j)”sw <oo,VjeJ,
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3. Yies 199 (v)| < 00, Vv € D(s,7),

4. g(v) =3 ;c7 99 (v) is bounded in D(s,r), namely |g|s» < oc.
Then the function g : D(s,r) — C is analytic, its Taylor-Fourier coefficients (defined as in
(2.29)) are
(242) 9ki,a,8 = Z gl(s:{l)',a,ﬁ Z 07 v (k7 ia a, /8) € H)

jeT

and ||g||s,» < co. Moreover

L Y ier |f)(v)| < 00, Vv € D(s,7),

2. f(v) =3 ;es fY(v) is analytic in D(s,r),
3. f=gand||fls; < lglls,r < o0

Proof. — For each monomial my,; o g(v) (see (2.10)) and v = (z,y,2,2) € D(s,r), we
have

(2.43) IMkisa,8(v)] = Meia,6(vt),
where vy := (ilmx, |yl, |2, |2|) € D(s,r) with |y| := (|y1],-- -, |y=|) and |z], |Z| are similarly
defined.
Since ||g)|s.» < oo (and fU) < g(j)) the series
(244) (]) Z gk i,a,0 k % a,,@(v) gl(cjz) o, Z 0
k0,0

is absolutely convergent. For all v € D(s,r) we prove that

; (2.44),(2.43) ;
SN 19w pmrias@]CTETT ST ST g miias(vs)

J€T ki, 8 J€JT ki,
(2.45) €20 N gD (uy) = glvg) < 00
jeg
by assumption 3. Therefore, by Fubini’s theorem, we exchange the order of the series
2460 o)=Y Y o miias@ = 3 (o) miias)
JET kyi,a,B ki, jET
proving that g is equal to an absolutely convergent series. Lemma 2.1 and the assumption
|gls,» < oo imply that g is analytic in D(s,r). Moreover (2.46) and Lemma 2.3 imply (2.42).
The g,5,,8 > 0 because g,(j) ap = 0,see (2.44). Therefore Mg = g, and, by (2.34) and the
assumption |g|s» < 0o, we deduce ||g||s,» < oo.
Concerning f we have

SOOI S 1 mrias®)] <3 D o) sl < oo

JjeET JET kyi,a,B JET kyi,a,B
and, arguing as for g, its Taylor-Fourier coeﬁicients are
sza,@_z k:zaﬂ’ kaiaawg)EH
jeET
Then
(2.42)

| friasl < 310 sl €300 05 = ghias -
jeET jeET
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Hence f < g and || f|s» < ||g]|s,» < co. Finally f is analytic by Lemma 2.1. O
LEMMA 2.7. — Let || f||s,r < 00. Then, Y0 < s’ <'s,0 <7’ < r, we have ||0; fl|s r < 00.

Proof. — It is enough to prove the lemma for each f. =II.f defined in (2.17). By
| flls,» < co and Corollary 2.1 the functions f., M f. are analytic and

@3 @.40) (.34
||8jf<||8’,r/ < 2 |M(ajf<)|3’,r’ =2 |8j(Mf§)|s/,r’§c|Mf§|s,r < C”chS,r

for a suitable ¢ := ¢(n, s, s, r,7’), having used the Cauchy estimate (in one variable). O
We conclude this subsection with a simple result on representation of differentials.

LEMMA 2.8. — Let f : D(s,r) — C be Fréchet differentiable at vy. Then

(2.47) df (vo)[o] = > 0;f(wo)v?, Yo => vV € E,
JjeJ €T
and
(2.48) > 105 £ (wo)o?| < Jldf (vo)l ey vl
jeT

Proof. — (2.47) follows by the continuity of the differential df (vo) € L(E,C). Next,
consider a vector = (5());c 7 € E such that |9;| = |v;| and
5995 ) (vo) = 1@ f)(wo)|, VjeJ.
Hence df (v0)[0] = 3" ;c7 99 (9;f)(v0) = 37 1(8; ) (vo)v¥)| which gives (2.48) because

18]l = [v]le- 0

2.1.2. Vector fields. — We now consider a formal vector field

2.49 X):=(XW(v

(2.49) )= (X))

where each component X () is a formal power series

(2.50) XD () = XD (2,y,2,2)= > XJ), setoyizozh
k,i,a,0

as in (2.7). We define its “majorant” vector field componentwise, namely

(2.51) MX(v) = ((MX)(j)(v)>j€j = (MX(j)(v))jEj.

We consider vector fields X : D(s,r) C E — E, see (2.1).

DEFINITION 2.5. — The vector field X is absolutely convergent at v if every component
X (v), j € J, is absolutely convergent (see Definition 2.1) and

H(X(j)(v) < +00.

)J' eJ HE
The properties of the space E in (2.1) (as target space), that we will use are:

1. E is a separable Hilbert space times a finite dimensional space,
2. the “monotonicity property” of the norm

(2.52) vo,v1 € E with | < o, Vied = |vole < |ville-
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For X : D(s,r) — E we define the sup-norm

(2.53) | X|s,r:= sup [ X(0)|Esr-

vED(s,r)

DEFINITION 2.6 (Majorant-norm: vector field). — The majorant norm of a formal vector
field X as in (2.49) is

1X e i= swp (32 1xEL ple el |
T eneDm) kgﬂ Fbef jegllB,s,

| X saple ol
E,s,r

ko,

(2.54) = sup
(y,2,2)€D(r)

where

Xiios = (X o) ey  amd [ Xeiasli= (X400

REMARK 2.3. — The stronger norm (see [27])

K= [|( sup ST Xl )

(yZZ)GD(T)kla HE,S,T

is not suited for infinite dimensional systems: for X = Id we have |X|; , = +o0.

By (2.54) and (2.51) we get || X ||s,» = ||M X||s,-. For a subset of indices I C I we define the
projection

(I, X)(z,y,2,2) := Z Xpiape® Ty 2228 .
(k,i,o,8) €T

LeEmMmaA 2.9 (Projection). — VI C 1,
(2.55) ML X s < ([ X s -

Proof. — See (2.54). O
REMARK 2.4. — The estimate (2.55) may fail for the sup-norm | |, , and suitable I.

Let us define the “ultraviolet” resp. infrared projections

(2.56) (k> X)(2,y,2,2) := Z Xkia8 eF oyl 258 Mg« i = Id—Tly > k-
|k|> K i,o,8

LeEMMA 2.10 (Smoothing). — V0 < s’ < s,

S _K(s—s'
(2.57) ML > ke X lsrr < 7€ K= X s -

Proof. — Recall (2.54) and use e/*1s" < elklse=K (=) y|k| > K. O
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We decompose each formal vector field
(2.58) X= ) ILX
se{+,—}n

applying (2.19) componentwise

o o ()
(2.59) X =X : (HCX )jej
recall (2.17). Clearly (2.55) implies
(2.60) 1 Xclls,r < 11X s -
In the next lemma we prove that, if X has finite majorant norm, then it is analytic.

LEMMA 2.11. — Assume
(2.61) 1X|ls,r < +o0.

Then the series in (2.49)-(2.50), resp. (2.51), absolutely converge to the analytic vector field
X (v), resp. M X (v), for every v € D(s,r). Moreover the sup-norm defined in (2.53) satisfies

(2.62) | X sy IMX s < | X]|s,r-

Proof. — By (2.61) and Definition 2.6, for each j € J, we have

sup Y X glelFlely]2]]2) < +oo
(y,2,2)€D(r) 1, 5 o 3

and Lemma 2.1 (and Corollary 2.1) implies that each coordinate function X ),
(MX)Y) : D(s,r) — Cis analytic. Moreover (2.62) follows applying (2.27) componentwise.
By (2.61) the maps

X,MX:D(s,r)— E
are bounded. Since E is a separable Hilbert space (times a finite dimensional space), Theo-
rem 3-Appendix A in [29], implies that X, M X : D(s,r) — E are analytic. O

Viceversa, we associate to an analytic vector field X : D(s,r) — E a formal Taylor-
Fourier vector field (2.49)-(2.50) developing each component X () as in (2.28)-(2.29).

DEeFINITION 2.7 (Order relation: vector fields). — Given formal vector fields X, Y, we say
that
X <Y

if each coordinate X9 < YU), j € J, according to Definition 2.4.
If |Y||s,r < 400 and
(2.63) X<Y = ||X||s,r < ||Y||s,r .

Applying Lemma 2.5 componentwise we get

LEMMA 2.12. — If || X||sr |V |lsr < 00 then X +Y < MX + MY and || X + Y5 <
1 X5, 4 1Y [l s,

LEMMA 2.13. —
(2.64) IMX|s, < || X|ls,r <2"|MX]|s.
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Proof. — As for Lemma 2.4 with f ~ X, [37 5| ~ > )iaplle and using
(2.52). O

We define the space of analytic vector fields
Vor = Vorp = {X : D(s,r) — E with norm || X||s, < +oo} .

By Lemma 2.11 if X €V,, then X is analytic, namely the Fréchet differential
D(s,r) > v — dX(v) € L(E,FE) is continuous. The next lemma bounds its operator
norm from (E, s,7) := (E, | ||g,sr) to (E,s',7), see (2.2).

LEMMA 2.14 (Cauchy estimate). — Let X € V, .. Then, for s/2 < s’ < s, r/2 <71 <,

(2.65) gl(lp )HdX(v)”C((E,s,r),(E‘,s’,r’)) < 457X,
veD(s'r!

where the sup-norm | X |s . is defined in (2.53) and
/ !/
(2.66) 5:=min{1—‘i,1—1}.
s r

Proof. — In the appendix. O
The commutator of two vector fields X,Y : D(s,r) — E'is
(2.67) [X,Y](v) :=dX(v)[Y(v)] —dY (v)[X(v)], Vv e D(sr).
The next lemma is the fundamental result of this section.
LEMMA 2.15 (Commutator). — Let X,Y € Vs .. Then, forr/2 <r' <r,s/2<s <s,
(2.68) 11X, Y llor i < 227267 HI X s [V ],
where § is defined in (2.60).

Proof. — The lemma follows by
(2.69) ”dX[Y]HS’,T’ < 4n+25_1||X”s,r||Y”s,r ’
the analogous estimate for dY[X] and (2.67).
We claim that, for each ¢ € {4+, —}", the vector field X, defined in (2.59) satisfies
(2.70) ||dX<[Y]||s/,r’ < 2n+2571”X§”sm”Y”3,r
which implies (2.69) because

(2.58) (2.70) _
||dX[Y]||S',T’ < Z ||dX<[Y]||S’,T’ < Z 2726 1||X<||8,T||Y||8,T

se{+,—}" se{+,—}"

(2.60)
< > 2PNX el e < 420X Y

ce{+,—}n

(2.60)
Let us prove (2.70). First note that, since | X¢||s, < [ X||s,r < +o0and ||Y||s,» < 400 by

assumption, Lemma 2.11 implies that the vector fields
2.71) X, MX.,Y,MY : D(s,r) » E, Yce{+,—}",
are analytic, as well as each component X!, M X v® MY® : D(s,r) - C,i € J.
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The key for proving the lemma is the following chain of inequalities:

i i)(2:47) i j
aX. Y] < M(ax )L M3 (@, x0)y )

JjeT
2.72) RS M@, x0) My O)
JjeET
Y a0, (Mx) My 2 (X O) [

Jj€T
where
2.73) Yy i= (V)jeq = (@PMY )5 € E.
Actually, since |q§j )| =1 (see (2.38)), then

. @.71)

(2.74) IY,(0)|lg = ||MY(@)|g < +4oo, Yve D(s,r).

In (2.72) above we applied Lemma 2.6 with
(2.75) s s rr ) fO s (9, XYW gD s M9, X)) MY

Let us verify that the hypotheses of Lemma 2.6 hold:

1. fO < ¢ follows by (2.39) and since ||f9 |y, [[gP|srr < +oo because
IXsr < 1 X lsir < 400, [Y D lsp < |Y]ls.r < +00, and Lemma 2.7

2. |gW||s < oo is proved above.

3. Wehave ) s |99 (v)] < oo, for allv € D(s',7"), because

; (2.75) i ; (2.40) ; i ;
D18V =" Y IM@XD)0)MY D @) T=" Y 100, (MX D) (0) MY D (v)]
Jjeg JjeJ JjeJ

2.38 i . (2.48) i
€27 310, (MXD) ) MY D (@) < [dMXD (0)||£0,0) | MY (0) | 5 < +00
jeT

by (2.71), (2.74). Actually we also proved that g/) = qéj)ﬁj (MXg(i))MY(j).
4. The function

o) i= Y 090) = 3 a0, (x)21v D L a(0x0) 7,
Jj€T Jj€ET

since M Xg(i) is differentiable (see (2.71)) and f/q € E (see (2.74)).
Moreover the bound |g|, ,» < oo follows by

|g|s’,r’ = |d(MX<(Z)) [YIqHS’,T’ < |d(MX<) [YqHS’,r’
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and
~ (2.53) ~
AMX) [Tl =7 s [dMX) @[T
veD(s’,r") E,s",r
< sup ”d MX.)(v H Y, (v ,8,T
veD(s',r') ( g)( ) C((E,sm),(E,s’,r’))” o(0)lle
(2.65) . -
< 45T MXc[s, sup [[Yg(0)llBs,r
veD(s’,r")
(2.62),274)
< AT Xllsy osup [[(MY)(0)]|Bys,r
veD(s’,r")
(2.53) . Qe
(2.76) < AT X ls MY s < 46T X5 [[Y s < o0

because ||Y |5, < 400 and || Xc||s» < [| X||s,» < +o0 by assumption.
Hence Lemma 2.6 implies
. 2.4 . . Lemma 2.6 . ~
dxOy] 2" 3@, xO)y D = p T g = a(MxD)[V], Vied,
J
namely, by (2.37) and Definition 2.7,

(2.77) dX [Y] < M(dX([Y]) < d(MX,)[Y,].
Hence (2.73) is fully justified. By (2.77) and (2.63) we get

- (2.64) -
JAX YNl < NA(MX) [Flllrr < 27| M (a(MX) [¥y))

(2.78) = 2"[d(MX,)[Y,] |
because d(MX.,) [f’q] coincides with its majorant by (2.77). Finally (2.70) follows by (2.78),
(2.76). O
2.2. Hamiltonian formalism
Given a function H : D(s,r) C E — C we define the associated Hamiltonian vector field
(2.79) Xy = (0yH,—0,H,—10:H,10,H)
where the partial derivatives are defined as in (2.30).
For a subset of indices I C I, the bound (2.55) implies
(2.80) X1t o < 1 Xatll o -
The Poisson brackets are defined by
{H,K}:={H,K}*Y +{H,K}**
= (0.H - 0,K — 0,K -0,H) +i(0.H - 0:K — 0:H - 0.K))
= 0,H -0yK — 0,K -0yH +10,+H - 0,-K —10,-H - 0,+ K
(2.81) = 0,H-0,K — 0, K -0,H+i Y 009 H O, - K

o==%,j€7\T
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where “ - denotes the standard pairing a - b := 3 a;b;. We recall the Jacobi identity

(2.82) {{K, G} H} +{{G, H}, K} + {{H,K},G} = 0.
Along this paper we shall use the Lie algebra notations
a >, adk
(2.83) adp :={,F}, er ‘:ZJT!F'
k=0

Given a set of indices
(2.84) Z:={j1,.-.,jn} CZ,
we define the momentum
n
Mi=Mz:=) Jip+ D> jz% = ZJZ?/Z + Y gita
=1 JEINT JEZ\T
We say that a function H satisfies momentum conservation if { H, M} = 0.

By (2.81), any monomial e'*?yi22 2P is an eigenvector of the operator ad o(, namely

(2.85) {e*yi22z8 M} = n(k, a, B)eF Tyl 22 2P
where
(2.86) m(k,a,B) : Zykﬁ >

JEZ\T

We refer to m(k, o, 3) as the momentum of the monomial e**y*z®2z°. A monomial satisfies
momentum conservation if and only if 7(k, o, 8) = 0. Moreover, a power series (2.7) with
| flls,r < oo satisfies momentum conservation if and only if all its monomials have zero
momentum.

Let O C R" be a subset of parameters, and
(2.87) f:D(s,r)xO0—C with Xf:D(s,r) xO—E.
For \ > 0, we consider

(2.88) |X412,.0 = |XsI2, : suple|sr+A|Xf|1‘p

X § - X n s,
= sup | Xs(§)]s,r + A sup X/ ()] .
¢co £nEO, €41 1€ —nl

Note that |-|} . is only a semi-norm on spaces of functions f because the Hamiltonian vector
field Xy = 0 when f is constant.

DEFINITION 2.8. — A function f as in (2.87) is called

— regular, if the sup-norm |X¢|s .0 = supp | X¢f|s,r < 00, see (2.53).
— Me-regular, if the majorant norm | Xy||s r 0 = supp || Xr||s,r < 00, see (2.54).
— A-regular, if the Lipschitz semi-norm | X f|§\,r,o < 00, see (2.88).
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We denote by Hs . the space of M-regular Hamiltonians and by ’H‘S‘:Jr“ its subspace of functions
satisfying momentum conservation.
When T = & (namely there are no (x,y)-variables) we denote the space of M-regular
Sfunctions simply by H.., similarly HE, and we drop s form the norms, i.e., | - |r, || - I+, | * |r0,
etc.

Note that, by (2.62) and (2.88), we have
(2.89) M —regular = regular <= A —regular.

If H, F satisfy momentum conservation, the same holds for {H, K'}. Indeed by the Jacobi
identity (2.82),

(2.90) {M,H}=0 and {M,K} =0 = {M,{H,K}}=0.
For H, K € H,, we have
(2.91) X xy = dXu[Xk]| — dXg[Xu] = [ Xz, XK]

and the commutator Lemma 2.15 implies the fundamental lemma below.

LEMMA 2.16. — Let H/ K € H, . Then, forallr/2 <t <r,s/2<s <s
(2.92) 1X e mcy s = WX e, Xicllsr o < 2277207 Xl | X iUl
where § is defined in (2.60).

Unlike the sup-norm, the majorant norm of a function is very sensitive to coordinate
transformations. For our purposes, we only need to consider close to identity canonical
transformations that are generated by an M-regular Hamiltonian flow. We show below that
the M-regular functions are closed under this group and we estimate the majorant norm of
the transformed Hamiltonian vector field.

LEmMA 2.17 (Hamiltonian flow). — Letr/2 <1’ <r,s/2 < s <s,and F € H,, with
(2.93) | XFllsr <ni=68/(22"5€)
with & defined in (2.66). Then the time 1-hamiltonian flow

@1 : D(s',7") — D(s,7)
is well defined, analytic, symplectic, and, VH € Hs. ., we have H o ®%, € Hy . and

||XH||S7‘
2.94 X S T Xl
(2.94) R e =T

Finally if F,H € H2%" then H o ®}, € H2"

5/7,,,/ .

Proof. — We estimate by Lie series the Hamiltonian vector field of

adbH S H® < X
295 H =Hodh=erH=Y *FL_S"2 e xp=) “H
k=0

! ! 1
k! - K - K

where H®) := ad’.(H) = adp(HV), HO) .= H.
For each k > 0, divide the intervals [s', s] and [/, r] into k equal segments and set

s— s r—r
S;:=8—1 , =T —1 ,
k k

i=0,....k.
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By (2.92) we have

(296) ||XH”) ||5i77'i = ”[XF?XH(FU]HSMW < 22n+351;_1||XH(i71)||Si7177'1‘71||XF||31'7177'1'71

where
. S; T 1)
2.97) d; ;== min y1 — , 11— > —.
Si—1 Ti—1 k
By (2.96)-(2.97) we deduce
||XH(i) SiyTi < 22n+3k671”XH(i_1) ||S¢—1,7"i—1 ||XF||S¢'—1,7"¢'—1 ) 1= ]-7 ceey k.

Iterating k-times, and using || Xp|ls, ;.. < 4[| XF|ls,» (see (2.3))
(2.98) X 0o llsr,rr < 2"k P | Xat s, | X R -

By (2.95), using k¥ < eFk! and recalling the definition of 7 in (2.93), we estimate

(29) ||XH(k)|| , (2.9 > (22"+5k5_1||XF|| ) )k
Xer Z 2 S X 3 T
k=0
[ee)
- (2.93) | XElls,r
< XH 1 XF k22 WA lsr
Xk ller > 0 IXElsr) 1= [ Xpllor

k=0
proving (2.94).

Finally, if F' and H satisfy momentum conservation then each ad'pr , k > 1, satisfies
momentum conservation. For & = 1 it is proved in (2.90) and, for & > 1, it follows by
induction and the Jacobi identity (2.82). By (2.95) we conclude that also H o &1, satisfies
momentum conservation. O

We conclude this section with two simple lemmata.

LEMMA 2.18. — Let P = Y 1<k a3 Priop€F 2yt 2228 and |Axiapl > v(k)7T,
V|k| < K,i,a, 3. Then

P,
F= Y A’“ ool gikayizazb satisfies || Xpllsr <7 UK Xp|sr -
X k0,8
|k|<K,i,o.3
Proof. — By Definition 2.6 and |Ag; o8| > YK~ 7 forall |k| < K. O

LEMMA 2.19. — Let P =37 ;cq\7 PjzjZ; with || Xp||» < co. Then |P;| < || Xpl|;.
Proof. — By (2.79) and Definition 2.6 we have

IXpl2=2 swp 3 (Rl et gy > e
Izlla.p <7 pezn 7

by evaluating at z( = §pe” 9l (5)Pr /V/2. O
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3. Quasi-Toplitz functions

Let No € N, 0, u € R be parameters such that

3.1 1<6,p<6, 12N 42kNE~1 <1, k:= max |,
0 0 e

(the j; are defined in (2.84)) where

(3.2) 0<b<L<1.

For N > Ny, we decompose

(3.3) 077 x 7P = 47P S UGE D LY
where

08P = (2P(N) := {w = (T, 27) €M X LB 27 =0, 0=+, V|j| > 6NL}
0GP = LUHEP(N) = {w =(z%,27) ey <47 1 2 =0, 0=+, unless 6NT < |j] < N}

5P = AUHP(N) = {wz(z+,z_)€€%’px€%’p 127 =0, az:I:,V|j|§N}.

Note that by (3.1)-(3.2) the subspaces £7”N¢%” = 0 and £%” # 0. Accordingly we decompose
any
w € LYP x *P as w=wr +wgr +wg

and we call wy, € ¢7" the “low momentum variables” and wy € ¢%” the “high momentum
variables”.

We split the Poisson brackets in (2.81) as
{'7 } = {'a .}z,y + {" '}L + {'a '}R + {'a }H
where

G4 HEV =i Y edsHO K.
o==,|j|>cN !

The other Poisson brackets {-, - }Z, {-, -} are defined analogously with respect to the splitting
(3.3).

LemMa 3.1. — Consider two monomials
. . 1./ -/ ’ ’
m = cp 0,06 "y 22 andw' = cfy ;0 o g€ Tyt 2 2

The momentum of mm/, {m,m’}, {m, m’'}®Y, {m,m’'}£, {m, wm'}E, {m,m'}*, equals the sum
of the momenta of each monomial m, m’.

Proof. — By (2.86), (2.81), and
m(k+k,a+d,+ ) =n(k,o,B) + (K, 5) = m(k,a —e;,8) + w(k', o/, ' — ¢;),
for any j € Z. O

We now define subspaces of H; . (recall Definition 2.8).
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DEFINITION 3.1. — Low-momentum A monomial €*®y*2% 2P is (N, u)-low momentum if
(3:5) > lileg +8;) <pN®, [k <N
JEZ\T
We denote by
ES,’I"(N7 ,U') - Hs,r

the subspace of functions

(3.6) 9= Griape" Y22 € H,,
whose monomials are (N, p)-low momentum. The corresponding projection
(37) Hk,u : Hs,r - £S,T(N7 ﬂ')

is defined as H]L\ml := I (see (2.13)) where I is the subset of 1 (see (2.8)) satisfying (3.5).
Finally, given h € 7Z, we denote by

Lsr(N,p,h) C Lsy (N, p)

the subspace of functions whose monomials satisfy
(3.8) w(k,a,8) +h=0.

By (3.5), (3.1)-(3.2), any function in £, (N, 1), 1 < g < 6, only depends on z,y, w, and
therefore
(39 g, €L (N,p) = gg, {9,9'}"Y, {g,9'}* donot depend on wy; .
Moreover, by (2.86), (3.1), (3.9), if
(3.10) |h| > uN* + kN* = L,,(N,u,h) =2.

DEFINITION 3.2 ((N, 6, u)-bilinear). — We denote by

Bop(N,0,1) C 1l

the subspace of the (N, 6, u)-bilinear functions defined as
3.1 f:= Z 0.0’ o (@, y,wL)zmzn with f2° 7 € Lsr(N,u,om+a'n)

|m|,|n|>6N,0,0'==%
and we denote the projection

HN,O,N : Hs,r - Bs,r(Ny 0, /J') .
Explicitely, for g € Hs , as in (3.6), the coefficients in (3.11) of f :=Iln g .9 are

.0 Ly ._ lk R e
(3.12) o (@, y,w™) = E fkm&mn iz 7P
(k,i,a,B) s.t. (3.5) holds
and w(k,a,8)=—om—o'n
where
= -1 +,- —
s aBmn = (2= 0mn) " Gkiatenten.s Triagmn = Iki,atem,B+en s
L = -1 —+ -
(3.13) fk’i@*ﬂvm’” T (2 o 67”") 9k.i o, ft+emten s kyi,0,8,m,n - 9kji,aten,B+em -

For parameters 1 < 0 < 6,6 > p > i/, we have
Bs,r(Ny 0/7 N/) - Bs,'r (Na g, :u) :
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REMARK 3.1. — The projection Iy g, can be written in the form I, see (2.13), for a
suitable I C 1. The representation in (3.11) is not unique. It becomes unique if we impose the

“symmetric” conditions
(3.14) o0’ _ go'o

m,n n,m

Note that the coefficients in (3.12)-(3.13) satisfy (3.14).

3.1. Toplitz functions

Let N > Np.

DEFINITION 3.3 (Toplitz). — A4 function f € B, ,.(N,0,p) is (N,8,pn)-Toplitz if the
coefficients in (3.11) have the form
(3.15) o' = f77 (s(m),om +o'n) forsome f7 (s,h) € Ly (N, p,h),
with s(m) := sign(m), ¢ = +, — and h € Z. We denote by

Ty i= Tn(N,0,1) C By (N, 0, )

the space of the (N, 0, u)-Toplitz functions.

For parameters N' > N, ¢’ > 0, p/ < p, v’ <r,s" < swe have
(3.16) Tor(N,6,1) € T (N, 6, 14).

LemMA 3.2. — Consider f,g € T, (N,0,p) andp € Lg (N, p1,0) withl < p,p1 < 6.
Forall0< s <s,0<r" <rand® >0,y < uone has

(3.17) o {f,0}", Onerw{f, 0} € Tor o (N, 0, 1) .
If moreover

(3.18) uNL 4+ kN® < (0 — )N

then

(3.19) Oy o w{f g} € To (N, 6, 1) .

Proof. — Write f € 7, (N, 6, 1) asin (3.11) where ,‘jl‘j{ satisfy (3.15) and (3.14), namely

(3.20) oo = f707 = [ (s(m),om + o'n) € Ly (N, p,om + o'n),

m,n

similarly for g.

Proof of (3.17). — Since the variables 22 zg/, |m|, |n| > 6N, are high momentum,

(nzmz oY = ¥ anay
and {f;;“;l' , p}¥ does not depend on wg by (3.9) (recall that f;’;;f’n', p € Lsr(N,p)). The

. ’o. .
coefficient of 28,28 in Iy g . {f, p}* is

/ (3.20) /
H&H,{ 7,7 p}L = HJL\,#,{fU’U (s(m),om + o'n), p}L € Ly (N,p,om+a'n)

m,n

using Lemma 3.1 (recall that p has zero momentum). The proof that Iy ¢/ . {f, p}*Y €
Ts (N, 0, 1) is analogous. O
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Proof of (3.19). — A direct computation, using (3.4), gives
H o0 o o'
|m|,|n|>0N, o,0'=+
with
(3.21) =2 > (S )
[II>0N, o1=+
By (3.9) the coefficient pgfrl does not depend on wg. Therefore
(3.22) Ty w{f g} = > Grnzmzn,  with % =TI .m0,
|m|,|n|>0’N,o,0'==%

(recall (3.7)). It results g,%, e Ly (N, 4, om+0'n) by (3.22),(3.21), and Lemma 3.1 since,
ie.,

gt € Lsr(Nyp,om +011)  and g_Ul’ € Ls(N,p,—0o1l+ 0'n).
Hence the (N, ¢, u')-bilinear function Iy g/, { f, g} in (3.22) is written in the form (3.11).
It remains to prove that itis (N, 8’, u')-T6plitz, namely that for all |m|, |n| > 'N, 0,0’ = =,

(3.23) qgfn =q7 (s(m),om + o'n)  for some P (s,h) € Ls,(N,u',h).
Let us consider in (3.21)-(3.22) the term (with m, n, o, ¢’, o7 fixed)
(3.24) DI e e

|l\>9N

(the other is analogous). Since f,g € 7, (N, 8, 1) we have
(3.25) In =177 (s(m),om + a1l) € L (N, p,om + 011)

(3.26) gl_sl’ =g (s(l),—o1l+0'n) € ES,T(N, w,—o1l +a'n).
By (3.10), (3.25), (3.20), if the coefficients f,7*, gl_il’ are not zero then
(3.27) lom + o1l|, | — o1l + o'n| < uN* 4+ kN®.
By (3.27), (3.1), we get cN > |om + o1l| = |oois(m)|m| + s(1)]!]|, which implies, since
|m| > 6’N > N (see (3.22)), that the sign
(3.28) s(l) = —oo1s(m).
Moreover
¢G27) L p G.18)

[l]| > |m|—|om+o1l] > 0N —uN"*—kN°> > 6N

This shows that the restriction |I| > N in the sum (3.24) is automatically met. Then

H%\Lul Z 0’0’1 —;;’1,0’ (? 26) HL N Zf0'70'1 (S(m)7a_m+O_ll)g—g-ho-’(s(l),_o_ll+0_/n)
|l|>6N leZ

= th‘, Z foor (s(m),j)g_‘”’gl (s(l),om +o'n — j)
JEL
(.28 H%#/ Z foo (s(m),j)g_‘”’”'( _ gois(m),om + o'n — ])
JEL

depends only on s(m) and om + ¢'n, i.e., (3.23). O
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3.2. Quasi-Toplitz functions
Given f € H,, and f € T, (N, 8, 1) we set

(3.29) fi=Nne.f—f).
All the functions f € H;, below possibly depend on parameters £ € O, see (2.87). For
simplicity we shall often omit this dependence and denote || ||sr,0 = || ||s,r-

DEFINITION 3.4 (Quasi-Toplitz). — A function f € H! is called (No,0, p)-quasi-
Toplitz if the quasi-Toplitz semi-norm

(3.30)

T I o= s [t e 1X s 1X £}
N>No " feT, - (N,0,u)

is finite. We define
O, = OF (No, 0, ) := { f € H  [IF1Z, o < 00}
In other words, a function [ is (No, 0, )-quasi-Téplitz with semi-norm || £||7.. if, for all
N > Ny, Ve > 0, there is f € T, ,.(N, 6, 1) such that
(B3 Tyeuf=Ff+N"f and [|X¢lor, 1Xfller, 1Xfller <IFIE +e.

We call f € Ts (N, 0, 1) a “Toplitz approximation” of f and f the “Toplitz-defect”. Note
that, by Definition 3.3 and (3.29)

Tyeuf=F, HN,G,uf =f.

By the Definition (3.30) we get
(3.32) 1X¢llsr < /1,
and we complete (2.89) noting that
(3.33) quasi-Toplitz ==  M-regular = regular <= A-regular.
Clearly, if f is (Ng, 0, p)-Toplitz then f is (N, 6, u)-quasi-Toplitz and
(3.34) 115 N0 0 = 1 X sl
Then we have the following inclusions

T, C QL. Bsr CHM' CH, .

Note that neither B, C Q7 nor B, 2 QT .

LEMMA 3.3. — For parameters Ny > No, 1 < p, 61 > 0,71 <r, 51 < s, we have

QZ:T(N()?ea/"‘) c Qzl,rl (Nla 017/’L1)

and

(3.35) WAL oy < max{s/sy, (r/r)* I FIE Ny -
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Proof. — By (3.31),forall N > Ny > Ngy (since 01 > 6, g < p)

HNﬁth = HN,917M1HN79,I’Lf = HN,91,H1f~+ N_1HN,91,H1.]E-
The function Tx g, ., f € Tz, .y (N, 61, p11) and

(2.80)
I fllsi,rs = fllsi,r1 sl,rl
X1y, 0, 7 < [1X4ll ||f||
(2.80) (3.31)
I fllsi,rr = fllsi,r1 = 51,71
X1y, 0, 71 < [1Xl < I,

Hence, VN > Ny,

it (max {1y Xl 17l }) < DAIT o+
F€Tsy,ry (N,01,11)

applying (2.3) we have (3.35), because € > 0 is arbitrary. O
For f € H, , we define its homogeneous component of degree [ € N,

(3.36) fO =1 = > Friap e Y22,
keZ™ , 2li|+|al+|B]=!

and the projections

(3.37)  frx =M<k f = Z Friap €™ 7y'2?2°, Togfi=f—g<xf.
|k|<K,i,o,8

We also set

(3.38) [ =My f=2,  f52= fO 4 f0 4 5@,

The above projectors IT(), Ik <k, sk have the form II;, see (2.13), for suitable subsets
IClL

LEMMA 3.4 (Projections). — Let f € QT (No, 0, ). Then, foralll e N, K € N,

(339) ||H l)f||ST'N()9[L = ||f||S'I‘N09}l,
(340) ||f<2||er0 O,u > Hf flf'Q”ero, O,up = ||f||51‘N09/.L
(341) ||H|k|§Kf||Z:r,No,0,,u < ”-fHZ,T,No,G,;L
(3.42) k=0T |0 = 51=1 11 FIIF ng 0,0 < TP FIT, o 0,0
and, V0 < s’ < s,
_ S

(3.43) I ke F15 0 00 < €77 SIS v N 0,

Proof. — We first note that by (2.15) (recall also Remark 3.1) we have
(344) H(l) HN,&,,ug = Hnguu H(l)g, Vg c HS’T .

Then, applying IV in (3.31), we deduce that, YN > Ny, Ve > 0, there is fe Ts.r(N,0, 1)
such that

(3.45) MOy g, f =Ty, A0 f =100 f + N~IO f
and, by (2.80), (3.31),
(3.46) IIXH(l)st T HX (l)st T HX (l)st r < ||f||s rte.
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We claim that TI®) f € T; (N, 0, u), Vi > 0. Hence (3.45)-(3.46) imply TI®) f € QT (No, 6, 1)
and ,

IO FIL, < If12, +e,
i.e., (3.39). Let us prove our claim. For I = 0,1 the projection II¥f = 0 because
f € T..(N,6,p) is bilinear. For I > 2, write f in the form (3.11) with coefficients 77
satisfying (3.15). Then also g := II¥) f has the form (3.11) with coefficients
[10-2) oo’

gmn

which satisfy (3.15) noting that IV L, ,.(N, u, h) C ES,T(N, u,h). Hence g € 7, (N, 0, u),
Vi > 0, proving the claim. The proof of (3.40), (3.41), (3.42), and (3.43) are similar (use also
(2.57)). O

LEmMA 3.5. — Assume that, VN > N,, we have the decomposition
(3.47) G=Gy+Gy with [Gyli, e < Ky NliXiy,,afllsr < Ko
Then | GI7, x. 5, < moxc{l| Xl o, Ko + Ko}

Proof. — By assumptlon VN > N,, we have |G|, v, , < Ki. Then, Ve > 0, there
exist Gy € T, (N, 8, 1), Gy, such that
(3.48) MnuGy =Gy + NGy and [ X Mlsrs 1 X llsr < K1 e
Therefore, VN > N,,
linp,G=Gn+N1Gy, Gn:=GCGy, Gn:=C\+ Nliy,,G%
where Gy € Tsr(N,0, 1) and

(3.48)
(3.49) Xy llor = 1Xg llor < Ki+e,

(3.48),(3.47)
(3.50) [Xgyllsr < 1 Xa llsr + Nl Xy o ey llsr < Kite+ Ko

Then G € QF, v 4, and
G N 00 < Sup max {[|Xgls,r, 1 X ls,rs [ Xy s }

(3.49),(3.50)
max{||XG||S,r, Kl + K2 + 5} .

Since € > 0 is arbitrary the lemma follows. O
The Poisson bracket of two quasi-Toplitz functions is quasi-Toplitz.

PrOPOSITION 3.1 (Poisson bracket). — Assume that fU, f* € QT (No,0,p) and
N1 > No, 1 <p, 01 >20,8/2<s1 <s,1/2<r; <7 satisfy

(3.51) K,NfiL < p—pr, uNlLfl—i—nN{’*l <60,-90, 2N16_Nfs_2s1 <1, b(s—sl)N{’ > 2.
Then

{r®, P} e QF | (N1,601, )
and

(352) ||{f(1 f(2)}||sl,r1,N1,91,p1 < ( ) 1||f(1 ||$TN09/.L||f(2 ||s*rN09;t
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where C(n) > 1 and
(3.53) § = mln{l—;,l——}.

The proof is based on the following splitting lemma for the Poisson brackets.

LEMMA 3.6 (Splitting lemma). — Let f0), f® € QT (No,0,u) and (3.51) hold. Then,
forall N > Ny,

(3.54) Ty g, {fV, F®Y =Tng, 1, ({HN,G,uf(l)vHN,e,uf(z)}H
4 {HNﬂ’”f(l)’H%@f(z)}L 4 {H%,Qﬂfu)’HNﬁ,#f(z)}L
i {HNﬂ’“f(l)’H%’#f(g)}xvy N {H]L\hﬂf(l)aﬂNﬁ,uf(Q)}z’y
+ {H|k|2Nbf(l)>f(2)} + {H|k|<Nbf(1)7H|k|2Nbf(2)}> .
Proof. — We have
355 {fD, 5P = {Wpyane FO, Mgyene £

+ Mo e £, F O} + (T v fY s an F )}

The last two terms correspond to the last line in (3.54). We now study the first term in the
right hand side of (3.55). We replace each f(¥), i = 1,2, with single monomials (with zero
momentum) and we analyze under which conditions the projection

ik, i (1) 1) _g(1)  p(2), i (2) 2) _g2)
HN791,H1 {elk zyz e Zﬂ ,elk zyz P zﬂ } , |]€(1)|, |k(2)| < Nb,

is not zero. By direct inspection, recalling the Definition 3.2 of Il ¢, ,,, and the expression
(2.81) of the Poisson brackets {, } = {, }*¥+{, }*%, one of the following situations (apart
from a trivial permutation of the indices 1, 2) must hold:

N (1) _3(1) @ _g@ ~(2) 52 1 _
2% 8 zfnzjl and 2@ 2P = &7 z8 z % 71 where

&M ZFM &® 5>

1. one has z=" 28
|m|,|n| > 61N, 0,01,0' = +, and 2 is of (N, p1)-low momentum.
We consider the Poisson bracket {, }*# (in the variables (zf, z; ) of the monomials.

2. one has 22"V 78" = z&(l)zé(l)zfnzg/zgl and 22”287 = za‘@)zﬁmzj_”1 where
Im|, |n| > 6N and 28 28 23 28 is of (N, i1 )-low momentum. We consider the
Poisson bracket { , }*.

a® 580 _ & 50

/ @ _g® _ 4@ _5@
2029 and 2* " 287 = 2% 287 where |m|,|n| > ;N

3. onchasz o 28

and 26" 28 26 28 is of (N, p1)-low momentum. We consider the Poisson bracket
{, }*?, i.e., in the variables (z, y).

Note that when we consider the {, }*¥ Poisson bracket, the case

1 _g S _3(1)
20 P = &R o

@ _g@ 5@ _3@) o
o 22 7P =8P 0

and n |’ITL|, |n| 2 01N,

and 28" 78 28 28® i5 of (N, p1)-low momentum, does not appear. Indeed, the momen-
tum conservation —om = (&, M kM), (2.86) and [V | < N?, give

0N < |m| < > [(Ia" ]+ 15V]) + 6NP < pa N* + 6N,
1€Z\T
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which contradicts (3.1).

Cask 1. The momentum conservation of each monomial gives

(3.56) o1j = —om — Tr(d(l), LN k(l)) =o'n+ w(d(z), B3, k(Z)) .

a® 5(1) (2)25(2)

Since z¢ is of (N, p1)-low momentum (Definition 3.1),

Sou@Ed + 30 + 67 +3P) < Nt = 3 1@” + 8Y) < N, i=1,2,
1eZ\T 1eZ\T
which implies, by (3.56), (2.86), |k | < N? |j| > 6,N—pu  NY —kN® > 0N by (3.51). Hence
Iml, |nl, 7] > ON. Then e -wyi™ 2™ 8™ b — 1 2 are (N, 0, p)-bilinear. Moreover the
(2;,%;) are high momentum variables, namely {, }*# = {, }#, see (3.4). As m,n run over
all Z \ Z with |m|, |n| > 61N, we obtain the first term in Formula (3.54).

CASE 2. The momentum conservation of the second monomial reads

(3.57) — 1) = —m(@®, F®, k@),

(1) _3(1) £ _3(2) .
Gz & 50

Then, using also (2.86), |k(?)| < N?, that z is of (N, u1)-low momentum,

. ~ ~ (3.57) - ~ - ~
g+ S0 @ + 80) U= @®, 5O k@) + S @ + 47)

1€Z\T I€Z\T

- = G.51)
< ST @M + 8 + 6 + BY) + kNY < puNE + kNP < N
I€Z\T
Then 26" 78" 27" is of (N, p1)-low momentum and the first monomial

itk .p ;D 41 _g) ikM.p ) 71 _31
elk :Eyl 2 Z’B — elk xyz P ﬂ Z;Iz?nzg

is (N, 0, u)-bilinear (11 < p). The second monomial

k(2. 42 42 _g©2) k2., 2 52 _3@2) _
elk xyz P Zﬁ _ elk xyz P Zﬁ Zj o1

is (IV, 2p)-low-momentum because, arguing as above,

\;-7) ~ = ~ s
|y|+2|1| 24 B2 2D (@, B kD) + 3 1@ + 4P)
l

(3.51)
< 2u NP+ kN < 2uNE.

The (24, z;) are low momentum variables, namely {, }** = {, }¥, and we obtain the second
and third contribution in Formula (3.54).

CASE 3. We have, for i = 1,2, that

ST @ + 57 < Z 1@ + 30 + 6 + 3y <y NF < uNE.
l

1) L@ _gM) 2)
2 ' ZP

Then eik" @y is (N0, p)-bilinear and e*®eyi® 20®z8% is (N, p)-low-
momentum. We obtain the fourth and fifth contribution in Formula (3.54). O
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Proof of Proposition 3.1. — Since f € QT (No,0,p),i = 1,2, foral N > N; > Np
there exist f) € 7 (N, 6, 1) and f) such that (see (3.31))

(3.58) Myg,fP =FfO 4+ N1FO j=12,
and
(3.59) X s lsirs 1X e llssrs 1X e llsr < 2015 @NE -

In order to show that {f(), f@} € QT  (Ny,61, 1) and prove (3.52) we have to provide
a decomposition

o (0, f@) = FO2 4+ NP YN > Ny
so that f12) € T, . (N, 61, 1) and
(3.60) X (s sy lsnrss 1Xfamllorms 1Xpam s < C@SHIFDNTNF L,
(for brevity we omit the indices Ny, 01, u1, No, 0, 1). By (2.92) we have (9 is defined in (3.53))
@ @y |s1,m < - @ ||s,r @ ||s,r -
1X¢rw,peyllsm < 22720 X oo [ls | X pe |

Considering (3.58) and (3.54), we define the candidate Toplitz approximation
- RN - N L oL
FOD = Ty, ({fu),f(z)} + {fu)’H]Lv’Qﬂf(z)} ¥ {Hﬁ,zuf(”’f@)}

~ T,y ~ T,y
(3.61) +{F0, k@) + ik, s, F@ )
and Toplitz-defect
(3.62) D = N (T gy {10, £ 2 = FO2).

Lemma 3.2 and (3.51) imply that f3? € T,  , (N6, u1). The estimate (3.60) for f(1:2
follows by (3.61), (2.92), (2.80), (3.59). Next

FOD = My, o ({70, f@)}H +{o, f(z)}H . N—l{fu),f@)}H
{0, 11k, 1OV 4 {11k, 0, 7
n {fu),n%)“f@)}”’y n {H%,uf(l)’ fm}”
+ N{ Mg e D, FO )+ N T f O, g e £ )

and the bound (3.60) follows again by (2.92), (2.80), (3.59), (2.57), (3.51). Let us consider only
the term N{Hlklz]\]b fO f@ L = g the last one being analogous. We first use Lemma 2.16

-1
withr’ ~» ry,r ~> 7, ¢ ~» 51 and s ~ s1 +0/2, where o := s — s;1. Since (1 — 3148—717/2> <
-1
2(1 - 7) < 25~ with the § in (3.53), by (2.92) we get

||Xg||sw“1 < C(n)5_1N||XH‘k|ZNbf<1>”81+G/2,T”Xf<2>||s7r

(2.57) B S bl
< C()oT'N_—e TR X | p | X [l
1

G.51)
< C(n)s* X llsr I X s s
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for every N > Nj. The proof of Proposition 3.1 is complete. O

The quasi-Toplitz character of a function is preserved under the flow generated by a quasi-
To6plitz Hamiltonian.

PROPOSITION 3.2 (Lie transform). — Let f,g € QI (No,0,p) and let s/2 < s' < s,
r/2 <1’ < r. Thereis c(n) > 0 such that, if

(363) ||f||er0, 0, S C(’I'L)(S,
with & defined in (2.66), then the hamiltonian flow of f at timet = 1, @} :D(s',r") — D(s,r)
is well defined, analytic and symplectic, and, for

(3.64) NéZmaX{No,N}, N:= exp(max{i Ll b’ 1_1 8})’

(recall (3.2)), u' < p, ¢’ > 0, satisfying
(3.65)
K(NDP " EIn Ny <p—p, (64 8)(N)E P InN, <0 =6, 2(N)) " In* N) < b(s — §'),

we have e*7g € QI . (Ng,0', u') and
(3.66) 1Y l15r v g0 < 2019150 N0 0,0 -

Moreover, for h =0,1,2, and coeﬁ‘icients 0<b; <1/4l,j €N,

(3.67) sz ad ()| < 2ACT 1L w00, 191 00

sI 'f" N/ 9/ ’
Note that (3.66) is (3.67) with h = 0, b; := 1/3!
Proof. — Let us prove (3.67). We define

GO i=g, GV :=adj(g):=ad;(GUY)={f,GV I}, j>1,
and we split, for h = 0,1, 2,

(3.68) GZh =3 b6V = Z bGP +3 b6V = G2 + Gy
j>h j=h i>J

Asin (2.98) we deduce

(3.69) 1Xaw s < (C()i6™ Y IX I Xglls,r s V520,

where ¢ is defined in (2.66). Let

(3.70) n:=C(n)ed || X¢llsr < 1/(2)

(namely take c(n) small in (3.63)). By 3.69, using 57b; < j7/j! < &7, we get

(3.71) 1Xas Mo < D 0 (C)FSHIX s llo,r) [ Koo < 207 1 Xgllsyr -
i>J

In particular, for J = h = 0, 1,2, we get

(3.72) [ Xz llsrr < 20" Xglls,r -
For any N > N{ we choose

(3.73) J:=J(N):=InN,
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and we set
V=G, =Gy, G eay sl
Then (3.67) follows by Lemma 3.5 (with N, ~» Nf,s ~> ;7 ~> v/, 0 ~» ¢, p ~ p/) and
(3.72), once we show that
1
(374) ||GN||S ' N0, ! < 277 ||g||s T N”XG;\',”S/J“' < §nh||g||’£r
with h = 0,1, 2 (for simplicity ||g||s = ||g||8 - No.6 7u)
For all N > N} > €® (recall (3.64)),

(3.71) 3
N||Xao, s < N207 | Xg|ls.r < 0" (N2n” h)llgllT

3.70) _
(3.75) < 2Tl Ne | g||T, < *Ilgllsr,

proving the second inequality in (3.74). Let us prove the first inequality in (3.74).
Cram:Vj=1,...,J —1, we have GU) ¢ QT, (N, 0", 1) and

(3.76) G w0 e < NglI5(C 30 IS, Y

(for simplicity || f|I1, == | 1%, ny.0,.)- This claim implies (using j7b; < e?)
-1 T 76 L ;0

(DL angn (@361, < Nl an< Sl
i=h T

for ¢ small enough in (3.63). Th1s proves the first inequality in (3.74).
Let us prove the claim. Fix 0 < j < J — 1. We define, Vi = 0, ..., 7,

/ _ o
G =it g o -0 T s e

=041 ,Tii=Tr—1d
and we prove inductively that, foralls =0,...,j,

(378) ”a’dl( ) 8iyTiyIN,0i, s — (C,](S_l”f”z ) ”g”sry

which, for ¢ = j, gives (3.76). For ¢ = 0, Formula (3.78) follows because g € er(No, 0, 1)
and Lemma 3.3.

Now assume that (3.78) holds for ¢ and prove it for i+ 1. We want to apply Proposition 3.1
to the functions f and adjc(g) with Ny ~ N, s ~> 84,81 ~ 8311, 0 ~ 0;,01 ~ 6,11, etc. We
have to verify conditions (3.51) that reads

(3.79) KNPE <y — pivr, wNETUH RN < 0,00 — 0,
(3.80) ONe M= <1, b(s; — sis1)NY > 2.
Since, by (3.77),
Wi — Mit1 = ,u—.u’v Oiy1—0; = 9_.0/, 8 — Sit1 = s_.S/
J J J

andj < J =1InN (see(3.73)),0 < b < L < 1 (recall (3.2)), u’ < u < 6, the above conditions
(3.79)-(3.80) are implied by

KN PInN <p—p', (64+6)NL'InN<@ -9,
(3.81) 2Ne N'(s=)/2IN 1 b5 )N > 2In N .
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The last two conditions (3.81) are implied by b(s — s')N® > 2In? N and since N > e!/1-?
(recall (3.64)). Recollecting we have to verify

(3.82) KN TInN<pu—u, 6+rNIInN <O -0, 2NIn® N <b(s — 5).

Since the function N — N~71n N is decreasing for N > e!/7, we have that (3.82) follows
by (3.64)-(3.65). Therefore Proposition 3.1 implies that adjfrl( ) € QTHA’TI+1 (N, 041, phiv1)
and, by (3.52), (3.35), we get

(3.83) lad™ (9|17,

< CSTHAIE Nlady (912,

Sig1,Ti+1, N, 01,0541 = 5i,7i,IN,0;, 144

where

) ) 5
(3.84) 8; = min {1 A ri} > -

S; T J
and ¢ is defined in (2.66). Then

(3.83),(3,84)
i+1 —1
”a‘dl (g) Sit1,Tit+1,IN,0i 41,1541 S ”f”s r,No,0 ,p”adf( ) 8iyTiy N0, 4
(3.78) )
- T T
< (CEHIFIE D) T gl

proving (3.78) by induction. O

4. An abstract KAM theorem

We consider a family of integrable Hamiltonians

4.1) N = N(z,y,2, %) = e(§) +w(§) -y + Q(E) - 22

defined on T? x C™ x £37 x ¢7*, where T is defined in (2.84), the tangential frequencies

w = (w1, ...,w,) and the normal frequencies €2 := (£;) jez\z depend on n-parameters
EeOCR™.

For each £ there is an invariant n-torus 7o = T™ x {0} x {0} x {0} with frequency w(¢).
In its normal space, the origin (z,Z) = 0 is an elliptic fixed point with proper frequencies
Q(&). The aim is to prove the persistence of a large portion of this family of linearly stable
tori under small analytic perturbations H = N + P.

— (A1) Parameter dependence. The map w : O — R™, £ — w(€), is Lipschitz continuous.
With in mind the application to NLW we assume

— (A2) Frequency asymptotics. We have
42) Q) = VP +m+a@) R, jeZ\T,
for some Lipschitz continuous functions a(£) € R.

By (Al) and (A2), the Lipschitz semi-norms of the frequency maps satisfy, for some
1< My < oo,

(43) Wl 0 < My

where the Lipschitz semi-norm is

(4.4) Q= o = sup SO =20l
’ £mEO,E4n 1€ —nl
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and |z|eo = supjez 7 |25|. Note that by the Kirszbraun theorem (see e.g., [23]) applied
componentwise we can extend w, Q on the whole R™ with the same bound (4.3).

— (A3) Regularity. The perturbation P : D(s,r) x @ — C is A-regular (see Defini-
tion 2.8).

In order to obtain the asymptotic expansion (4.9) for the perturbed frequencies we also
assume

— (A4) Quasi-Toplitz. The perturbation P (preserves momentum and) is quasi-Toplitz
(see Definition 3.4).

Thanks to the conservation of momentum we restrict to the set of indices

4.5) I:= { (k1) € Z" x 2, (k,1) # (0,0) , |I| < 2, where
orl=0,k-j=0,
orl=ce,,meZ\I, k-j+om=0,
orl=ocey+aode,,mneZ\Z,k-j +0m+0'n:0}.

Let

(4.6) P = Py(z) + P(z,y,2,Z) where P(z,0,0,0)=0.

THEOREM 4.1 (KAM theorem). — Suppose that H = N + P satisfies (A1)-(A4) with

s,r>0,1<0,u<6, N>O0.Letvy >0 beasmall parameter and set
4.7

e = max {7 Xpo s v X moller s 71X 7 NP o ) A= /Mo
If € is small enough, then there exist:

o (Frequencies) Lipschitz functions w™ : R® — R", Q% : R" — {, a3 : R™ — R, such that
(4.8) |w™® —w|+ Aw™® —w'P | 1Q% - Q| +AQ° - QP < Cre, [aT| < Cye,

C . _
4.9) sup 195°(€) — ©2,(&) — agy;) ()] <% g lzCa /3,
e n

o (KAM normal form) 4 Lipschitz family of analytic symplectic maps
(4.10) ®: D(s/4,7/4) X Oco 3 (Toos Yoo, Weo; &) > (2,4, w) € D(s,7)

close to the identity where

2
O = {g €O WwX(E) k+0°() 1| > 1+|7k|7 Y (k,1) € T defined in (4.5),
V23
W) k+pl=> 1 P VkeZ" p€eZ, (k,p)#(0,0), 7>1/bsee(3.2),
272/3 1
4.11 k> /()
@I () K 2 T YO < [k <7

such that, V¢ € O
(4.12) H*>(€):=Ho®(:;§) = w™(§) - Yoo + L7(§) - 200%00 + P has PZ5=0.
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Then, V¢ € Ou, the map o — P(2s,0,0;€) is a real analytic embedding of an elliptic,
n-dimensional torus with frequency w (§) for the system with Hamiltonian H.

The main novelty of Theorem 4.1 is the asymptotic decay (4.9) of the perturbed frequen-
cies. In order to prove (4.9) we use the quasi-Toplitz property (A4) of the perturbation. The
reason for introducing in (4.7) conditions for both the Lipschitz-sup and the Toplitz-norms
is the following. For the measure estimates, we need the usual Lipschitz dependence of the
perturbed frequencies with respect to the parameters, see (4.8). This is derived as in [27] and
[2]. On the other hand, we do not need (in Section 6) a Lipschitz estimate on a3 (that, in any
case, could be obtained). For this reason, we do not introduce the Lipschitz dependence in
the Toplitz norm.

In the next Theorem 4.2 we verify the second order Melnikov non-resonance conditions
thanks to

1. the asymptotic decay (4.9) of the perturbed frequencies,
2. the restriction to indices (k,!) € Iin (4.11) which follows by momentum conservation,
see (A4).

As in [2], the Cantor set of “good” parameters O, in (4.11), is expressed in terms of
the final frequencies w®(§), Q2°°(£) (and of the initial tangential frequencies w(£)) and not
inductively as, for example, in [27]. This simplifies the measure estimates.

THEOREM 4.2 (Measure estimate). — Let O := [p/2, p]™, p > 0. Suppose
(4.13) w()=w+ A¢, e R, AecMat(nxn), E)=+vji2+m+ad-¢, ack”
and assume the non-degeneracy condition:

4.14) A invertible and 2(A"Y)Ta¢ z™\ {0}.
Then, the Cantor like set Oy, defined in (4.11), with exponent

(4.15) 7 > max{2n + 1,1/b}

(bis fixed in (3.2) ), satisfies

(4.16) |0\ Ose| < C(7)p" 17?3

Theorem 4.2 is proved in Section 6. The asymptotic estimate (4.9) is used for the key inclusion
(6.12).

5. Proof of the KAM Theorem 4.1

In the following by a < b we mean that there exists ¢ > 0 depending only on n, m, x such
that a < cb.
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5.1. First step

We perform a preliminary change of variables to improve the smallness conditions. For
all £ in

~2/3

1+ k"’

(5.1 0.:={€e0 : | k= Y0 < [k <4710 )

we consider the solution

Pook i
(5.2) o)=Y Dk
O<|k|<'}’71/(7n) IW(f) . k?

of the homological equation
(5.3) —adp Foo + H‘k|<771/(7n)P00($) = <P00> .

Here Py is defined in (4.6) and (-) denotes the mean value on the angles. Note that for
any function Fyo(x) we have || Fool|Z, = [[X gy |ls,r» see Definition 3.4. We want to apply
Proposition 3.2 with s,r,s’,7" ~» 3s/4,3r/4,s/2,7/2. The condition (3.63) is verified
because

(5.2),(5.1),(2.55) B “.7)
||F00||§s/4,r = ||XF00||3S/4,7“ < C(n,s)y 2/3||XP00||S,T < C(n,s)e

and ¢ is sufficiently small. Hence the time—one flow
(5.4 Dgo 1= P, : D(so,m0) X Ox — D(s,r) with sg:=s/2, ro:=r/2,

is well defined, analytic, symplectic. Let pug < u, 69 > 6, Ng > N large enough, so that
(3.65) is satisfied with s, 7, No, 0, u,~ s,7,N,0,p and s', 7', N}, 0", ' ~ sg, 70, No, 0o, tio-
Note that here Ny is independent of . Hence (3.66) implies

(5.5) [[e*dr00 P||T <2[PIL, nop-

50,70,No0,00,0 =

Noting that 2300 Pyg = Py and e2#o0 N’ = N + ad g, NV the new Hamiltonian is
HO — eadFOOH — eadp00N+ eadFoo Py + eadFoop =N+ adF00N+ Pyo + eadFOOP
5.3 _
(5.6) w ((Poo) +N) + <H|k|zfl/(7n>Poo + 24700 P) =N+ Fp.

By (2.57) (and since Pyo(z) depends only on x)

T =1/ 1y @D e =1/ gy
<de™™ / [ X Py lls,r < 4y Be* Me < Ve,

5.7 HH am P,
( ) |k|>v—1/(Tn) £700 3s/4,r

for v small. By (5.7), (5.5) and (4.7) we get

(5.8) | Po < 3re.

T
”so,ro,Noﬂo,ﬂO

In the same way, since |Xr,l3, /4, < C(n, $)7~2/3 X py, |2 ., we also obtain the Lipschitz
estimate

(5.9) 1 X Py 5,00 < 37E-
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5.2. KAM step

We now consider the generic KAM step for an Hamiltonian
(5.10) H=N+P=N+Pg’+(P-Pg
where PI§2 are defined as in (3.38).

5.2.1. Homological equation. —

LEMMA 5.1. — Assume that

forsomeay,a_ € R. Let Ag i =w -k +Qp — Qn, Ak,m,n =w-k+|m|—|n|
If|m|, |n| > max{j., v/m} and s(m) = s(n), then

m—n 1 1 m? (1 1
(5.12) Ak — Abmn] < ||+7(| | ||) < +7>'

= 2 nflm] Im|* ~ |nf®

Proof. — For 0 < x < 1we have |[v/1+z —1—z/2| < 2?/2. Setting z := m/n? (which
is < 1) and using (5.11), we get

,7 2

=Tal T 2mp

‘Qn —|n| —

m
2/n| — Qs(n)
An analogous estimate holds for Q,,. Since |Ag ,.n — Ak’m)n| = |Qm — |m| — Q, + |n]| the
estimate (5.12) follows noting that ag(,,) = agn)- O

For a monomial my, ; o 5 := e*2y'22 27 we set
Mg.i,a,8 if k= 0, o = ﬂ
0 otherwise.

(513) [mk’iya’g] = {

The following key proposition proves that the solution of the homological equation with a
quasi-Toplitz datum is quasi-Toplitz.

ProrosiTION 5.1 (Homological equation). — Let K € N. For all £ € O such that

(5.14) w(&) k+QE) 1| > # , V(K1) € I (see (4.5)), |k| < K,

then VP(h) € H2ull = 0,1,2 (see (3.36), (3.37)), the homological equations

s,

(5.15) —ady FM + P(h) PP, h=0,1,2,
have a unique solution of the same form F Hn““ with [F( | =0and
(5.16) 1X g lls,r < 771K7||Xp<h>||s,m |XF(h)|s,'r' <’Y71KT+1|XPI<(M|?,T

where 2y\™1 > |w|P, |QIYP. In particular Fg =2, F(O) + F(l) FI(?) solves
(5.17) —ady F2 + PS2 = [P5?].
Assume now that Pl((h) € QT (No, 0, ) and Q&) satisfies (5.11) for all |j| > ON§ where

(5.18) N§ = max {NO, 67_1/3K7+1}
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for a constant ¢ := é(m, k) > 1. Then, V¢ € O such that

23
(5.19) () k4|2 T VI <K pe,
we have Fl((h) € er(Ng,G,u), h=0,1,2, and
h 12 plh
(520) ||F§{)||£T,Ng,9,u < 407 1K2 ||PI(()||Z—:T,N0,0,[,L .

Proof. — The solution of the homological Equation (5.15) is

. Piif ko i on
Feli=—i ) ﬁe’“ Y22, Apgas = w() k+QE) - (@ B).
. . 30,00,
A

The divisors Ag ;a8 # 0, V(k,i,a,8) # (0,4, o, «), because (k,i, @, 8) # (0,4, a, ) is
equivalent to (k,a — 3) € I, and the bounds (5.14) hold. Then the first estimates in (5.16)
follows by Lemma 2.18. The Lipsichtz estimate in (5.16) is standard, see e.g., Lemma 1 (and
the first comment after the statement) of [27]. We just note that the Melnikov condition used
in [27] follows by (5.14) and momentum consevation, e.g.,

CID g 2 ylm —n y Im — n|
(k)™ |3 - kl(k)T = " R(k)THL

|w -k 4+ Qe — Q]

For the Toplitz estimate notice that the cases h = 0, 1 are trivial since Iy g, Fxc = 0. When
h = 2 we first consider the subtlest case when P}({2 ) contains only the monomials with i = 0,

|a] = |B| = 1 (see (3.36)), namely

(5.21) P .= P? = Z Pk,mwneik'xzmin,
|[k|<K,m,n€Z\T

and, because of the conservation of momentum, the indices &k, m,n in (5.21) are restricted to

(5.22) j-k+m—n=0.
The unique solution Fl(f) of (5.15) with [FI(?)] =0is
(5.23)
P m,n ik- —
F=FD =~ > SR ik s Dmn = W(E) -k + Q) — ().

(k| <K, (k,m,n)#£(0,m,m) "

Note that by (5.14) and (5.22) we have A, 1, ., # 0 if and only if (k, m,n) # (0,m,m).
Let us prove (5.20). For all N > Nj§
. Pk,m,n ik-x =
(5.24) My, F = —i > e R
|k|<KE,|m]|,|n|>0N — ™

and note that e'*' is (N, u)-low momentum since k| < K < (Ng)® < N° by (5.18) and
T > 1/b. By assumption P € QST,,,, No.0. and so, recalling Formula (3.45), we may write,

0,u
VN > Nj > N,
(5.25)
Iy, P = P+ NP with P:= Z ]sk,m_neik'wzmin € T5.+(N,0, 1)

|K|<K [ml,[n|>6N
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and
(5.26) 1P ls,rs 15 s, 1 X515, < 201PII5 -
We now prove that

. Pimen .
(527)  F= > %e*k'zzma v Brmn i=w() - k+|m|—|n|,
k| <K,|m|,|n|>oN —km.n

. . o . 5.18)
is a Toplitz approximation of F. Since |m|,|n| > N > ON§ > N§ (’> kK > |j- k| by
3.1), we deduce by (5.22) that m, n have the same sign. Then

A =w() -k +|m| —|n| = w() -k +s(m)(m —n), s(m):=sign(m),

and F in (5.27) is (N, 6, u)-Toplitz (see (3.15)). Moreover, since |m| — |n| € Z, by (5.19), we
get

(5.28) |Akmon| > 7?3(k)"T, V| < K, m,n,
and Lemma 2.18 and (5.27) imply

(5.29) IX£llsr <72 PETIXp ] s -

The Toplitz defect is

(5.30)

N'F =Tlyg, F—F

(5.24),(5.27) Pemn  Prm—n\ gz -
= Z — € ZmZn

X i
k<K fmldnj>on  SFmn Bkmn

_ Pk,m,n Pk,m,n ) + (Pk,m,n - Pk,m—n)] eik.wzmzn

= l
k<K [mldnj>on — SRmn Bkmn

(5.25) Agmn — Dgm, -1 Pemn ] ik, -
2 DL [Pema (S ) 4 N [z
|k|<K,|m|,|n|>0N k,m,nBk,m,n k,m,n

By (5.12), |m|,|n| > 6N > N, and |m — n| < kK (see (5.22)) we get, taking ¢ large enough,
(5.31)

|Ak,m,n - Ak,m,n| <

2L <« il < i LA
TNt NTY) S MY ON O 9kr

mkK 2y m? é (K >(5.18) LB 4213
2N2 N N3 — 4N :

Hence

~ . (5.28),(5.31) ~2/3 2/3 2/3
(532 Akl 2 Bl = Bimn = Binn] =2 o= > T
” ” B o (k)™ 2K7 — 2(k)"
Therefore (5.31), (5.28), (5.32) imply
|Ak,m,n _~Ak,m,n| < 6'71/3 2<k>T <k>T < iKzr
|Ak,m,n||Ak,m,n| - 2N 72/3 72/3 - N’Y

and (5.30), (5.28), and Lemma 2.18, imply

(5.26)
(533) | Xgllsy <K Xp sy + 7 KT Xpllsr < 46y TIKT|P|E,.
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In conclusion (5.16), (5.29), (5.33) prove (5.20) for F.

Let us briefly discuss the case when h = 2 and Pg ) contains only the monomials with
1 =0, |a| =2,|6] = 0 or viceversa (see (3.36)). Denoting

(5.34) P=pPP = Y Pnnetam,
|k|<K,m,n€Z\T
we have
i Pimn g
HN’Q’#j: - Z — e T 2
|k|<K,|m]|,|n|>0N w-k+ Q4+ Q,

where [w - k + Q, + Q| > (|m| + |n|)/2 > 0N/2 since |m|, |n| > ON and |k| < K < N°.
In this case we may take as Toplitz approximation F = 0. O

5.2.2. The new Hamiltonian H*. — Let F = Fg? be the solution of the homological
Equation (5.17). If, for s/2 < sy < s,7/2 < r, < r, the condition

T s S+ "+
(5.35) IFll5,r Nz 00 < €(n)dy, 64 :=min {1 -l 7}

holds (see (3.63)), then Proposition 3.2 (with s’ ~» s, 7’ ~» r;, Ny ~» N defined in (5.18))
implies that the Hamiltonian flow ®%. : D(s;,ry) — D(s,r) is well defined, analytic and
symplectic. We transform the Hamiltonian H in (5.10), obtaining

2.8 1 j
H* =g “2) Bt adp(H) + Y ~ad}(H)
i>2 7
5. 1 /
CLON 4 P (P = PE) 4 ade 4 adeP 4 Y L a1
=27
I 1 ]
CSON PR+ P - P adpP 4 ) Sadi(H) = N 4 P

i>27
with new normal form
NT=N+N, N=[P|=é+0-y+Qz2-2
(5.36) A A )
@i 1= Oy, | y=0,2=2=0(P), 1 =1,...n, Q:=(Q)jenz, = [P]; := o;

ziZ; | y=0,z=2=0<

P)
(the () denotes the average with respect to the angles z) and new perturbation
1 .
(5.37) Pt =P - Pg’+adpP=* + adpP™* + ) —adj(H)
i=2

having decomposed P = P<2 + P23 with P23 := 3~ .4 P, see (3.36).
5.2.3. The new normal form N'*

LEMMA 5.2. — Let P € QT (No, 0, p) with1 < 0,11 < 6, Ng > 9. Then
(5.38) 1, 19s0 < 21PPNT, Ny 6,
and there exist 4+ € R satisfying

la| < 2||P(2)||£T,N0,9,;4
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such that

A 40 .
(5.39) 1) — ()| < mHP(”llir,No,a,w Vil > 6(No +1).

Moreover ||, |Q[EP < | X pea |U5.
Lemma 5.2 is based on the following elementary lemma, whose proof is postponed.

LEMMA 5.3. — Suppose that, VN > Ny > 9, j > 0N,
(5.40) Qj =an + wajNil with aN,bNJ eER, |aN| <eci, |bN,j| <c,

Jfor some ¢; > 0 (independent of j). Then there exists a € R, satisfying |a| < c1, such that
2001

(5.41) €2 —a| < Wa Vil = 6(No+1).

Proof of Lemma 5.2. — The estimate on & is trivial. Regarding € we set (recall (3.36),

(3.42))
Py? i= Mol g TP P = Y [Pl;2,%
J
since, by the momentum conservation (2.86), all the monomials in P0(2) have o = 8 = e;.
Note that [P]; is defined in (5.36). By Lemma 2.19

(3.30) 9 (3.42)
(542) 1P| < X pelle < 1B < IPPT,

We now prove (5.39) for j > 0 (the case j < 0 is similar). Since P0(2) € QT (N, 0, u), for all
N > Ny, we may write Iy g, P> = }50(,2]3, + N‘lpéizj with
5 (2 5 (2 A
P()(,sz = Z PijZjEZ«(N,e,/I,), P(E,sz = Z PijZj
Jj>O0N j>6N
and
(5.43) 1X po e 1 X e e s 1 X g e < 21BS2F < 2 PAT,
0,N 0,N
For |j| > 6N, since all the quadratic forms in (5.43) are diagonal, we have
Qj = [P]J = ]5j + N_lpj =an+ + N_le,j
where ay 4 = Pj is independent of j > 0 because 13(5,2]2, € 7,.(N, 0, u) (see (3.15)). Applying

Lemma 2.19 to Isé?lz, and Péi{,, we obtain

(5.43) @)T R (5.43) @)T
an el 1K lor < 2APPIL, . Jon sl = 1By < 1 Xpen < 2 PPE

Hence the assumptions of Lemma 5.3 are satisfied with ¢; = 2||P(?) |2, and (5.39) follows.

The final Lipschitz estimate is standard, see e.g., [2], [27]. O
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Proof of Lemma 5.3. — For all Ny > N > Ny, j > 0N we get, by (5.40),
(5.44) lan —an,| = by, ;N7 — by ;N7 <2, N7

Therefore ay is a Cauchy sequence. Let a := limy_, o an be its limit. Since |ay| < ¢
we have |a| < c¢;. Moreover, letting N; — oo in (5.44), we derive |a — ay| < 2¢; N1,
VN > Ny, and, using also (5.40),

(5.45) 1Q; —a| <|Qj —an| +|ay —a] <3ctN™', VN >Ny, j>6N.

For all j > 6(Ng + 1) let N := [j/6] (where [-] denotes the integer part). Since N > Np,
Jj = 6N,

(5.45) 361 361 1861 1 2001

< ; S < - 14— )< —
/6] = (3/6) =1~ ( No) J

forall j > 6(Ng + 1). O

1©2; — al

5.2.4. The new perturbation P*. — We introduce, for h = 0,1, 2,
2
(546)  e® =y max (PO y o Xpwl, b, Ei= D™,
h=0

_ A
0 =y max {|IPIT, vy 0> X1, }

(A defined in (4.7)) and the corresponding quantities for P+ with indices r, s1, No™, 04, .
The P denote the homogeneous components of P of degree h (see (3.36)).

PRrOPOSITION 5.2 (KAM step). — Suppose (s,r, No,0,11), (54,74, Ny, 04, uy) satisfy
s/2<sy <sr/2<rp<r,

(547) Ny >max{Ng, N} (recall (5.18), (3.64)), 2(Ny" ) °In®> Ny < b(s —s,),

(5.48) KNG FInNG <p—py, (64+8)(NG) ' InNG <6, —0.
Assume that

(5.49) EK76,' < csmallenough, © <1,

where T := 21 +n+ 1 and d 1 is defined in (5.35). Suppose also that (5.11) holds for |j| > ON.
Then, for all ¢ € O satisfying (5.14),(5.19), denoting by F = F§2 the solution of the

homological Equation (5.17), the Hamiltonian flow ®% : D(sy,ry) — D(s,r), and the
transformed Hamiltonian

H  :=Hod®L =e"H=N,+ P,

satisfies

gf) < 6;2};{27"6—2 4+ e@e—(s—s)K

egrl) < 6;2[{2?(5(0) +§2) +eMe=(s=sp)K
(5.50) e? < 672KV (6@ 46 4 22) 4 £@em (550K
(5.51) O <O(1+C5’K*e).
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We focus on the quasi-Toplitz estimates, the Lipschitz ones follow formally in the same
way. The proof splits in several lemmas where we analyze each term of P in (5.37). We note
first that

3.38),(5.46
NPT E e
Moreover, the solution F = F(©) 4+ F(1) 4 F®) of the homological Equation (5.17) (for
brevity F(" = FU and F = F£?) satisfies, by (5.20) (with Ng defined in (5.18)), (3.41),
(5.46),

(553) ”F h)||er*9;L<K7_—E(h) h=0 1 2 ||F”er*€,u<K‘Fg

Hence (5.49) and (5.53) imply condition (5.35) and therefore ®% : D(s4,74) — D(s,r) is
well defined. We now estimate the terms of the new perturbation P* in (5.37).

(552) ”PI?QHS No,0,up =

LEMMA 5.4, —

Had (P<2)||”

5

<0 2yK7TE.

sy N 04,

sy No 04

Proof. — We have
1 1 1 1
> ﬁadg(H) =Y ﬁad},(/\f—i- Py =% ﬁad; YadpN) + > ﬁad}(P)

j>27" j>27" j>27" j>2
.17 1 <2
g dJ —I—E —adj
]>2 ]>2

By (5.47), (5.48) and (5.35) we can apply Proposition 3.2 with Ng, N§,s',7/,60',4/,6 ~
Ng, NS sy, T4y 0+,p+,6+ We get (recall N§ > No)

H Z —ad%(p (2.07)%(3,)5) (

]>2 EEUR TN\

TUFIZ g 0) TP o

5.53),(5.46
(5.54) CE 522 0

and, similarly,

”Z* dJ 1 <2) _ HZ ;2) T

]>2 s+7r+’No 04514 S+7T+7NJ—79+7N+
(3.67) <5
< 1||F||STN*, ,}L”PK ||STN0,0,/_L
(5.53),(5.52) _
(5.55) T KT
Finally, by Proposition 3.1, applied with
(556) N(],Nl,81,’f’1,91 /'LlaéwNOaN )3+5T+79+a“+’5+7
we get
(3.52)
dp(P=? < §MF p=?
Ha F( ) s+,r+,N0 Ouois || ||s7'N 0,;1,” ||s7‘N0,6u
(5.53),(5.52) _
(5.57) < 6'KTyé
The bounds (5.54), (5.55), (5.57), and © < 1 (see (5.49)), prove the lemma. O
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LEMMA 5.5. — (5.51) holds.
Proof. — By Proposition 3.1 (applied with (5.56)) we have

[adr ez

ENUR SIS\t

< 1||F||s7'N 0,p||P>3||ero, 0,

(5.53),(3.40),(5.46)

(5.58) < 67 K™yE0,
and (5.51) follows by (5.37), (3.40), (3.35), (5.46) (5.58), Lemma 5.4 and £ < 30O (which
follows by (5.46) and (3.39)). O

We now consider Pfrh), h =0,1,2. The term ad» P=3 in (5.37) does not contribute to PJ(FO) .

On the contrary, its contribution to PJ(rl) is
(5.59) {FO pB}y
and to Pf) is
(5.60) {(FO pOY 4 (FO p@Y,
LEmMA 5.6. — |[{F©, PG}T <6.'7K7e©0 and

5474+, Ng 04 0t

H{F<1> P@} 4 (FO, p@y||" <07 K@ + M0

S5m0 N0 sty

Proof. — By (3.52) (applied with (5.50)), (5.53), (5.46) and (3.39). O

The contribution of P — Pg? in (5.37) to Pih), h=0,1,2,is Pg}z

_ 1™ —K(s=s54)ne(h)
LEMMA 5.7. ||P>K||8+ oNF O < 2e e
Proof. — By (3.43) and (5.406). O

PROOF OF PROPOSITION 5.2 COMPLETED. Finally, (5.50) follows by (5.37), Lemmata 5.4,
5.6 (and (5.59)-(5.60)), Lemma 5.7 and © < 1.

5.3. KAM iteration

LEmMMA 5.8. — Suppose thalz-: ),5( ) (2) >0,i=0,...,v, satisfy

(5.61) 53)1 < C,K & —2 +C.é! (0) —K*Q@
el <Ok (el +22) 4 Ol e K
e <Ok (EP e 1)+ CeP e T =0, v-1,

where &; = 550) (1) + 52 ,for some K,C,, K, > 1. Then there exist &, < 1,C, > 0,
X € (1,2), depending only onk,C,, K, (and not on v and satisfying 1 < C,e™ %+ ), such that,
if

(5.62) 80<E — &<C.geEX vi=0,... v
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Proof. — Tterating three times (5.61) we get

= criperj [ (0) (1) =2 = —K,2712
€j43 < c1CJP K™ (sj+2 +e5fo t &0 T Ejp2e

< 02Cf2K62j (z—:ﬁ)l + 5?+1 + 5;»“ + §j+1e_K*2j+1)
(5.63) < c3CeKesI (53 +&8+ s‘je_K*Qj) , VO<j<v-—3,
for suitable constants 1 < ¢; < ¢3 < c3.
We first claim that (5.62) holds with x := 6/5 for all ¢ = 35 < v. Setting a; := &3;, we
prove that there exist Cy large and &, small (as in the statement) such that if ag < &, then

9);, a;<cTae™X Vo< <u/3
for a suitable ¢; = c4(K, Cy, K,) > 1 large enough and ¥ < 2'/3, e.g., X := 5/4. We proceed
by induction. The statement (S), is trivial. Now suppose (S); holds true. Note thata; <1
taking &, < min;>oeX*%X” /cI*! Then (8),,, follows by

G.69 3esif 2, .8 K.28) St 3esj (.2 K, 2%
= C, C. — * C. C, - *
aj+1 = €343 < c3CPK™I (aj +a; + aje ) < 2¢3C8BK73I (aj +aje )

L 20,0 (6 e (g R) < g
since 4c3CeK3¢3 (I T qge KX )e=Ka2¥ < (%20~ KX taking ¢, large enough (use
X < 2)and

403C’§3K3C3j(cfrlaoe_K*’?j)2 < c£+2age_K*’~<3j+3
taking ap < &, small enough. We have proved inductively (S),;. Then (5.62) for ¢ = 3 follows
since 6/5 =: x < x := 5/4 and taking C, large enough. The casesi = 3j + 1 and i = 3j + 2
follow analogously noting that £;, &> can be made small by (5.61) taking &, small. O

For v € N, we define

(5.64) s,41:=8, — 502772\, %O, Tug1 =Ty — 1927772\, %0
D, :=D(s,,r,) K, = Ky4"
. 1 1
Ny = NOZVp Wlth N(] = é’y_l/BKg-i_l p = maX{Q(T‘Fl),m,ﬁ}
—v—2 Ho —v—2 00
Pyl = by — o2 N > 0,41 :=0, + 602 / 35.

We consider H? = Ny + Py : Dy x O, — C with Ny := eg+w@ (&) -y + QO (€) - 2z. We
suppose that w(® and Q©) are defined on the whole R" (using in case the Kirszbraun
extension theorem), that Q(® satisfies (4.2) and |w©@ [P, |QO|iP < Ay on R". Let
Op C {€ € 0. : By, (&) C O.} where O, is defined in (5.1) and B, (§) denotes
the open ball in R™ of center £ and radius r > 0.

LemMA 5.9 (Iterative lemma). — Let HC be as above and let &y, © be defined as in (5.46)
for Py. Then there are Ky > 0 large enough, ey > 0 small enough, such that, if

(5.65) €0,00 < €9,

then
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(S1), Y0 < i < v, there exist w®), Q) ai) defined for all ¢ € R"™, satisfying
(5.66)

|w(i) — w(0)| + )\|w(i) — w(0)|lip7 |Q(i) — Q(0)|oo + >\|Q(i) — Q(0)|Lig <C(1—2"%8
(5.67)

laP| < C(1 =27y, WP QO < (2 - 271 M.

There exists H' := N;+ P; : D; x O; — CwithN; := e; +w® (&) -y 4+ QW (€) - 2% in normal
Jform, where, for i > 0,

(5.68)
, ) 2
= (€€ 0 W@ k400 12 (-2 VR D €T, M < Kooy,
(i-1) . 272/3
|wl (§)k+p|2(1_2 1)1+|k|77v(k7p)#(0’0)7 |k|SKZ—1’pEZ}

Moreover, V1 < i < v, H® = H*"1 0 ® where ® : D; x O; — D;_1 is a (Lipschitz) family
(in & € O;) of close-to-the-identity analytic symplectic maps. Setting, for h = 0,1, 2,

2
h h _ h
(5:69) e i=y max {IPNT v X R} E= Do,
h=0

@ =7 lma’X{”P”s,,n,N“Q“uL | P; |sl,rb}7

Vi<i<vandV¢ eR"™
W@ (&) = w0, [2D() = QD (E)]o, [0l (€) = afTV(©)] < 29811,

i i—1 i— Ei—1
(570 107(6) = a5 (€) = A7) + ) (O < 407775 VI 2 6(Nia +1)
(82),¥0 < i < v —1, the ! W e satisfy (5.61) withK = 4271 7 .= 271 +n + 1,
C* = 4K§‘F, K* = 80K0/4‘
(S3), V0 < i < v, we have &; < C’*a_oe’K*Xi and ©; < 20q (recall that C,e 5+ > 1, see
Lemma 5.8).

Proof. — The statement (S1), follows by the hypotheses setting ai ( ) == 0,V € R™.
(S2), is empty. (S3),, is trivial. We then proceed by induction.

(S1),.;. We denote &*) := V (P, (€))|y=0,-=z=0 and (&) 1= 82 . | . ((Pu(E)),
see (5.30), forall{ € O, if v > 1and £ € O, (see (5.1)) if v = 0. By Lemma 5.2 and (5.69)
there exist constants 4 (”) (€) € R such that

(5.71)

B O], 10Ol (L) < 295, , 100 () — ), ()] < 4072, W]j| > 6(N, +1),

N
uniformly in £ € O, (resp. O, if v = 0), and

(5.72) jo®|liP QWP < g,
Let
(5.73) no:=A=v/My, mn,:= 7/(2”+3MOK;f11), v>1.
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We claim that, for v > 1, the 7, -neighborhood of O, 1,
(5.74) Oviii= | {ferm  E=c+é i<} c 0.
£€0, 41

Note that the definitions of Oy, O; in (5 68), and (5.73) imply O; C O,. Recalling (5.68), we
have to prove that for v > 1, forevery § = £ + &, € € Out1, |§| < n,, we have

(575 D@k + QD@ ]2 (1= 2) e MR €T, k< Ko

and the analogous estimate for |w® 1) (5 ) - k + pl|. By the expression (5.77) (at the previous
step) for w®), Q) and since x,,_; € [0, 1], we get

W@ k+ D@ U 2 W (@) -k + 0O
b a @I DE) -k + AU IE@)
S ) k4 () 1] - W@ ~ (@) -k + (A (E) ~ A -1
- Z’YE_U—l(KV—l + 2)

£€0,41,(5.68),(51), 9
> 11— T (K, +2)2Myn, — 2751 (Ky_y + 2)
1+ |kl
(5.73),(53),, %y
ST 1o
= pn k|7

taking ¢, small enough, and (5.75) follows. The estimate for |w®*~V(€) - k + p| follows
similarly.

We define a smooth cut-off function x, : R™ — [0, 1] which takes value 1 on O, 1 and
value 0 outside O, 1. Thanks to (5.74) and recalling (5.73) we can construct x,, v > 0, in
such a way that

(5.76) x| <y M2 K E
where K_; = 1. We extend &™), Q) a(V) to zero outside @, for v > 1 and, forv = 0
outside O,. Then we define on the whole R™
(5.77) Wt = w® 4y, QD = 00 43,00 (Y =6 4 yal
By (5.76),(5.72),(5.71), we get

w® ) — WP <y, BP0 |+ |x, |0 < CKTH Mg, + Ce, < 277 My

by (S3), and &, small enough. Similarly for [Q**1) — Q®)|liP_ Recalling also (5.71), we get
(5.66) and (5.67) with ¢ = v 4 1. Moreover (5.71)-(5.77) imply (5.70) for i = v 4+ 1 and
V|| > 6(N, +1).

We wish to apply the KAM step Proposition 5.2 with NV = N, ,P = P,,Ny = N,
0=0,...and NS = N,41,04 = 0,41,... Ourdefinitionsin (5.64) (and 7 > 1/b) imply that
the conditions® (5.47)-(5.48) are satisfied, for all v € N, taking K, large enough. Moreover,

@ For example the first inequality in (5.47) reads Ny, 1 > max{N,,éy~1/3K7 T N}.
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since

(578) 6 = 6,41 := min {1 _ Sel g ”—“} sothat 27""2 <, <271,

Sv Ty

and (S3), the condition (5.49) is satisfied, for £y < ¢; small enough, Vv € N. By (5.70),
the condition (5.11) holds for |j| > 6,N,, and (5.14) and (5.19) hold for all ¢ € O, (it
is the definition of O, 1, see (5.68)). Hence Proposition 5.2 applies. For all ¢ € O, the
Hamiltonian flow ®t1 := @}V :Dyy1 X O,11 — D, and we define

HY L .— Y o v — eadr, v :./\/VJrl +P,i1:Dy1 X0y — C.
(82),,,, follows by (5.50) and (5.64).
(S3)

By (52), we can apply Lemma 5.8 and (5.62) implies £,41 < Ci&pe —Kuox"t

(5.51) (5.78),(53)
Moreover, for ¢y small enough, ©,1 < ©OlIl_, (1 + C(SH_QIK” ) <

v+1-
20,. O

Proof of the KAM Theorem 4.1 completed. — We apply the iterative Lemma 5.9 to the
Hamiltonian H? in (5.6) where w(® = w and Q(©) = Q are defined in (4.1). We choose
2/3

— ) ) 2y
(5.79) Opi={¢€ 0 |w(©) k=5 ey

sothat Oy C {£ € O, : B, /p,(§) C O.}, see (5.1) and (4.3). The smallness assumption
(5.65) holds by (5.8)-(5.9) (use also Lemma 3.4) and ¢ small enough. Then the iterative
Lemma 5.9 applies. Let us define

VO < |k| < 7—1/(7’0}

w™ = Uli_)anQ w® Qe = Uli_}I{.lo QW) af = Vli_)nolo aij).
It could happen that O,, = @ for some vy. In such a case O, = @ and the iterative process
stops after finitely many steps. However, we can always set w®) = w®0) Q) = Qo)
a;") = ag;"’), Yv > 1y, and w™, 2%, a3 are always well defined.
The bounds (4.8) follow by (5.66) (with a different constant C). We now prove (4.9). We
consider the case j > 0. For all Vv > 0, j > 6(N, + 1), we have (recall that a(f) =0)

0o 0 oo i+1 i+1 i i
9 - —aFl < 310 -l -0 ol

0<i<y
i+1 i i+1 i
+ 371080 — ) 4 16T — 6]
i>v
(5.70) (s3),, g
< 40y Z —+4’yZ€l < OIY 7281'
O<z<u i>v i>v

Therefore, Vv > 0, 6(N, + 1) < j < 6(N,41 + 1),
z N, 5.64) &
0 — O — a30| < SO0 4 Tt §0 5 O EOT L T s rigeer) § g,
J i>v J J i>v
and (4.9) follows by (53),.
The symplectic transformation ® in (4.10) is defined by

P := lim PpgoPgoPio0---0P”

V—00

with ®(q defined in (5.4). We now verify that ® is defined on O, see (4.11).
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LEMMA 5.10. — O C M;O; (defined in (5.68)).

Proof. — We have O, C Op by (4.11) and (5.79). Fori > 1,if ¢ € O then, for all
k| < K, |l <2,

w®(€) -k + 00 () -1

> |we () k+ Q%) 1] — [k > ™€) —w™ (&) — 2 12TV (€) — QM (§)]s
n>i n>i

(4.11),(5.70)

2y
> — K;2 n—4 n>(1—27
- 1+|k|‘r ’YZE ’YZE 1+|k|‘r

n>i n>i

by the definition of K; in (5.64), (S3), and € small enough. The other estimate is analogous.
O

Finally PZ, = 0 (see (4.12)) follows by & — 0 as i — oo. This concludes the proof of
Theorem 4.1.

6. Measure estimates: proof of Theorem 4.2

We have to estimate the measure of

6.1)  O\Ou = U Rutv) U RO JO\0)
(k,1)EAQUALUAT UAS (k,p)ezZm+1\{0}
where
2
62 Rub)=RL0)={e€ 0 WO k+020) U < |
2/3 T (2/3 o[y . 292/
63 Rip0*?) =RE,07°) = {e€ 0 (@ k+al< )
and
(6.4) Ap = {(k,l) €1 (see (4.5)), I = h} L h=0,1,2, Ay=AJUA;,

A = {(k,l) €Ay, l=£(e; +ej)}, Ay = {(k,l) €Ay, l=e;— ej} .
We first consider the most difficult case A; . Setting Ry ;,j(7) := Rk,e,—e, (7) We show that
(6.5) | U RO =] U Reas)| <20

(k,1)eA; (ki,j)€T

where
6.6) I:= {(k,i,j) €Z" x (Z\T)? : (k,i,j) # (0,4,), j - k+i—7j= 0}.
Note that the indices in I satisfy
6.7) il = jll < x|kl and k#0.
Since the matrix A in (4.13) is invertible, the bound (4.8) implies, for € small enough, that

(6.8) w®: O — w®(0) is invertible and |(w™)7'[P < 2/|A7Y.
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LEmMA 6.1. — For (k,i,5) € I, n € (0,1), we have
np" !

(6.9) IRk (m| < TR

Proof. — By (4.8) and (4.13)

WO (E) ke + QF(E) — Q°(E) = w¥(€) -k + Vi +m — /52 +m+ri5(€)

where

(6.10) 7,5 (€)= O(e), [rii|"™ = Ofe) .

We introduce the final frequencies ¢ := w™ () as parameters (see (6.8)), and we consider
Frig(©) = C b+ V2 +m— /52 +m+7,()

where also 7; j := r; ; o (w™) ™! satisfies (6.10). In the direction ¢ = sk|k|™ + w, w -k = 0,
the function fr; ;(s) := fr,i;(sk|k|~" + w) satisfies

- . (6.10)
frii(s2) = frij(s1) = (s2—s1)(|k| = Ce) > (s2 — s1)kl/2.
Since |k| > 1 (recall (6.7)), by Fubini theorem,

n—1

[{cew™(0) + 1515001 < T | < Tl

By (6.8) the bound (6.9) follows. O

We split
6.11) I=TI. UI. where I := {(k,i,j) €1 : min{lil, |j]} > Cyy /31 + |k|T°)}

where Cy > C,in (4.9)and 79 :=n+ 1. Weset I :=TI\ I,.

LEMMA 6.2. — Forall (k,i,j) € Is we have

(6.12) R0

e (7)€ R, 50 (297%)

kyi0,50

(see (6.2)), ig,jo € Z \ T satisfy

(6.13) s(io) = s(i), s(jo) = (), liol — ljol = Iil -
and
(6.14) mind(iol, [jol} = |Cyy /(1 + k[™)]

Proof. — Since |j| > y~1/3C,, by (4.9) and (4.13) we have the frequency asymptotic
2 2/3
(6.15) Qf(§)=|j|+2r|nﬂ+&’-§+a;"(°j)(£)+0(|r;,l|3)+0(€7|j|).
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By (6.7) we have |[i| — [j]| = [lio] — ljoll < Clkl, [k] > 1.If€ € O\ R, J0(272/3), since
|i], 17| = wo := min{|io|, 70|} (recall (6.11) and (6.14)), we have
lw> (&) -k +Q5°(8) — Q7€) = [w™() -k + Q7% (§) — QF (8]
=72 (8) — QF (§) — 27°(8) + Q5% (6]
(6.15) 472/3

D A .
= TR IIé] = 2ol — 151 + 1ol
—lagly = aslio) — @505 + 35|
e om _mllil=lill _ m liol = lil
Ho po 2 il 2 [iol |Jol
(6.13) 472/3 2/3 |k| (6.14) 272/3
> _ _cx _ar
e T 2 T e
taking Cy in (6.14) large enough. Therefore § € O\ R}, (v 2/3) proving (6.12). O

As a corollary we deduce:
LEMMA 6.3. — ‘ Uk,ijer Rgm(fy)) < y23pn1,

Proof. — Since 0 < v < land 7 > 7 (see (4.15)), we have (see (6.2)) R, :(v) C
R7°. (y?/3). Then Lemma 6.2 and (6.9) imply that, for each k € Z", p € Z fixed

k,i,7
‘ U 2/3 n—
E,i,j(’Y)‘ W'
(k,i,5)€T>, |i|—|jl=p + [K
Therefore ; /
2/3 n—1 2/3 n—1
Y Y
’ U Rk 17]( )‘ Z To+1 <Z To
1+ |k 1+ |k
(k,i,5)€L> k,|p|<C|k| k
proving the lemma. O

Lewwa 6.4 — | Ui jer. Ri (0] <72/
Proof. — For all (k,1, j) € I such that Rj ; ;(v) # @ we have (see (6.6))
min{|i|, ||} < Cyy V31 4 |k|™), j—i=k-j = max{|i|, ||} < C'y V31 +|k|™).

Therefore, using also Lemma 6.1 and (6.7)

n—1 2/3 n—1
T P YUp
U ,R’k,l’] ‘ Z Z 1+ |k|7’+1 < 1+ |k.|7'—7'o+1
(k,i,5)EI< li]<Cl *1/3(1+|k\70> k
which, by (4.15), gives the lemma. O

Lemmata 6.3, 6.4 imply (6.5). This concludes the case (k,1) € A; . Let consider the other
cases. The analogue of Lemma 6.1 is

LEMMA 6.5. — For (k,1) € Ag UA; UAJ, n € (0,/m/2), we have

n—1

ne

6.16 R < —.
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Proof. — We consider only the case (k,l) € AJ,l=e; + e;. By (4.8) and (4.13)

Frii(8) 1= W (&) k+ () + QT (§) = w™ (&) -k + Vi + m+ /52 + m+23-E+74 (€
where |r; ;(€)| = O(e7), |ri;]"P = O(e). Changing variables ¢ := w (£) we find

(6.17) Frii(Q) i =C k+Vi2+m+ /2 +m+23- A7 — o) + 7 (0)
where also
(6.18) 7i,5(¢) = O(e7), |7:i,j|lip =0(e).

If ¥ = @ = 0 then the function in (6.17) is bigger than /m and Rg/(n) = &, for
0 < n < /m/2. Otherwise, by (4.14), the vector

(6.19) @:= ATk +23 = AT (k+2(A"")7d) satisfies |d| > ¢ = ¢(4,@) >0, Vk #0.

The function fk”(s) = fk,,-,j(sd|&|_1 + w), a - w = 0, satisfies fk’i’j(sz) — fk,i,j(sl) >
(s2 — s1)(|a] — Ce) > (s2 — s1)|al/2 by (6.18). Then (6.16) follows by (6.19) and Fubini

theorem. O

By Lemma 6.5, (6.2), (6.3), (5.79) and standard arguments (as above)

(6.20) ‘ U sz(v)‘@p”*l, ’ U Re(*®)], 10\0| <31
(k,1)EAQUALUAT (k,p)ezn+1\{0}
Finally (6.1), (6.5), (6.20) imply (4.16). 0

7. Application to DNLW

For 7= (j1,..-,4q) € 2%, & = (01,...,04) € {£} weset &-7:= 0151 + -+ 0ajas
and, given (uj,@;)jez = (uj,u; )jez, we define the monomial ug = uiluld (of

J1
degree d).

7.1. The partial Birkhoff normal form

We now consider the Hamiltonian (1.4) when F(s) = s*/4 since terms of order five or
more will not make any difference, see Remark 7.1.

After a rescaling of the variables (and of the Hamiltonian) it becomes

(7.1)

H:Z)\jujuj_—i— Z u‘;::N—i—G
JEZ Fezt,Fe{+}4,5-7=0
_ . 5 (o +18])r A
=D Ajut; + 2. Gapu'®, Capi="— g0 = 5
JEZ |a|+]8]|=4, 7(c,8)=0

where (u,u™) = (u,u) € £*P x £*P for some a > 0, p > 1/2, and the momentum is (see
(2.86))

m(e,8) = jla; = B;).
JET
Note that 0 < Gy g < 4! (recall ! = II;cza;!)
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LEmMA 7.1. — For all R > 0, Ny satisfying (3.1), the Hamiltonian G defined in (7.1)
belongs to Q%(No,3/2,4) and

(7.2) IGI % Ny 3724 = 1 Xcllr < R?.

Proof. — The Hamiltonian vector field X := (—i0;G, 10,,G) has components
iaaufG =io Z Glofﬁuaﬁﬂ, c==x,1l€Z,
la|+18]|=3,7(c,8)=—01
where
Gl = (@ +D)Gaters,  Gop=(Bi+1)GCapre -
Note that 0 < Glcfﬁ < 5! By Definitions 2.6, 2.8 and (2.2

1 o\ 1/2
wote=g o (e s aue))
lulla,psll@lla,p<R l€Z,o=+ la|+|8|=3 7 (a,B)=—0l

For each component

l, _
> Gorplu®lla’] < > g g gy
la|+]8]=3,7(c,8)=—0l o1j1+02j2+03j3=—0l
< ('& * U * ﬁ)_al
where @ := (4;)iez, ; := |u;j| + |G;|, and * denotes the convolution of sequences. Note that

ltllap < lllla,p + [|1@]|a,p- Since £*P is a Hilbert algebra, ||& * @ * @ 4,p < ||12||§7p, and

1/2
O3 Xaln <R sup (3 0P| ei e i) )
lullapsllallap<B ez o=t

<R sup @ * @ * iil|qp < R™* sup a3, < R*.
llulla,psllElla,p <R lulla,psll@lla,p<R

Moreover G € HE", namely G Poisson commutes with the momentum M := 3", ju;;,
because (see (2.81))

(7.4) {M,ul} = —ig - jug.

We now prove that, for all N > Nj, the projection Il 3/2 4G € Tr(N,3/2,4). Hence (7.2)
follows by (7.3) (see Definition 3.4). By Definition 3.2 (with g ~ G, no (z, y)-variables and
z = u, Z = u), in particular (3.12), (3.13), we get

! ’
My 3/24G = Z G0 (wr)ug, @3, with
m|,|n|>3N/2,0,0'==+
o0’ _ 0,0’ a3
G (wr) = Z G o bom Ul and
Y ez lileg+a<an,
w(a,f)=—om—oc’'n
1 1 4!
Gogn=7—>0G = =12=G,;
BT Y G T Ty S (L4 O] apmn
+,— _ _ _
Ga,ﬁ,m,n - Ga+€m,f3+€n =24= Ga,,@,m,n .

These coeflicients trivially satisfy (3.15) (with f ~ G), s0 Il 3/2.4G € Tr(N,3/2,4). O
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We now perform a Birkhoff semi-normal form on the tangential sites

(7.5) Z:={j1,--»jn} CZ, j1<-+-<jn,
recall (2.84). Let Z¢ := Z \ T.
Set
_ 1 _ L . B
(7.6) G:= 3 Z Gijuiu; ujuj , Gy =12(2-46;), G:= ug .
iorj€T jezt, Ge{+,-14,
§-7=0, 7€(Z¢)%

By (7.2) and noting that G, G are projections of G, for R > 0, Ny satisfying (3.1), we have
(7.7) ||§||£,N0,3/2,47 ||G||£,N0,3/2,4 <R?.

ProrosiTiON 7.1 (Birkhoff normal form). — For any T C 7Z and m > 0, there exist
Ry > 0 and a real analytic, symplectic change of variables

[':Brjo X Brja CL"P x£*P — Bpx Br CL*" x{*?, 0< R< Ry,

that takes the Hamiltonian H = N + G in (7.1) into

(7.8) Hpighot '= Hol=N+G+G+ K
where G, G are defined in (7.6) and
(7.9) K = > Kjsul
jez?d, se{+,-}24,
d>3,5-7=0
satisfies, for N} := N{(m,Z, L, b) large enough,
(7.10) ”K”£/2,N(’),2,3 <R*.

The rest of this subsection is devoted to the proof of Proposition 7.1. We start following
the strategy of [28]. By (2.81) the Poisson bracket

(7.11) {N,uf} = —id - \jug
where Ay := (Aj,,...,Aj,) and A := A;(m) := /5% + m.
The following lemma extends Lemma 4 of [28].

LeEMMA 7.2 (Small divisors). — Let 7€ Z*, & € {£}* be such that & - 7= 0 and (up to
permutation of the indices)

4
(7.12) 7=0,> 0;#0,

=1
(713) Orj:(0707Q7q)7q7é070-1:0'2a
(7.14) orj= (p,p,—p,—p), p# 0,01 =02,
(7.15) or7# (p,p,4,9) -

Then, there exists an absolute constant c, > 0, such that, for every m € (0, 00),

(7.16) |G- Am)] > —p

2w 0 where ng :=min{(j1), (j2), (j3), (ja)} -

Proof. — In the appendix. O
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The map I := &L, is obtained as the time-1 flow generated by the Hamiltonian

i a

(7.17) Fi=— §_: (7.12)—(715)&%%.
J-a=0,04>\]-;£0
and J¢(Z¢)4

WEe notice that the condition 7- & = 0, - Ay # 0 is equivalent to requiring that 7’ ¢ = 0 and
7, 0 satisfy (7.12)-(7.15). By Lemma 7.2 there is a constant ¢ > 0 (depending only on m and
7) such that

(7.18) 7:3=0,G-A\#0and J¢ (I9* = [F-M\>¢c>0.

We have proved that the moduli of the small divisors in (7.17) are uniformly bounded away
from zero. Hence F' is well defined and, arguing as in Lemma 7.1, we get

(7.19) IXFllr < R?.

Moreover F € HE! because in (7.17) the sum is restricted to & - 7= 0 (see also (7.4)).

LEmMMA 7.3. — Fin (7.17) solves the homological equation
(7.20) {N,F}+G=adp(N)+G=G+G
where G, G are defined in (7.6).

Proof. — We claim that the only 7 € Z*, @ € {£}* with 7- & = 0 which do not satisfy
(7.12)~(7.15) have the form

(7.21) Jj1 =142, j3 = ja, 01 = —09, 03 = —o4 (or permutations of the indices) .
Indeed:

If 7=0, >, 0, = 0: the ¢, are pairwise equal and (7.21) holds.

If 7= (0,0,¢,9), ¢ # 0,and 01 = —o2: by J- & = 0 we have also 03 = —o4 and (7.21)
holds.

If 7= (p,p, —p, —p),p # 0 and 01 = —o9: by 7- & = 0 we have also 03 = —o4 and (7.21)
holds.

If j1 = j2, 3 = Ja, J1,73 # 0, j1 # —J3:
Case 1. jy # j3. Then 0 = &- 7= (01 +02)j1 + (03 +04)j3 implies 01 = —02, 03 = —04.

CASE 2. j; = jzand s0 j; = jo = j3 = j4 # 0. Hence 0 = (01 + 02 + 03 + 04)j1 and
(7.21) follows.

By (7.17)and (7.11) all the monomials in { NV, F'} cancel the monomials of G in (7.1) except
for those in G (see (7.6)) and those of the form |u,|2|uy|?, p or ¢ € Z, which contribute to G.
The expression in (7.6) of G follows by counting the multiplicities. O

The Hamiltonian F € H%™ in (7.17) is quasi-Toplitz:

LEMMA 7.4. — Let R > 0. If Ny := No(m,Z, L, b) is large enough, then F definedin (7.17)
belongs to QL (No,3/2,4) and

(7.22) IF % g 3/2,4 < B
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Proof. — We have to show that F € H% verifies Definition 3.4. For all N > Np, we
compute, by (7.17) and Definition 3.2 (in particular (3.12)), the projection

E o0’ L\, o 0
(723) HN,3/2’4F: me‘ (w )umun
|n|,|lm|>CN/4,
o,0/=+ ,|Jom+o/n|<aNL

where

o
’ u: U,
(7.24) F2° (wL) = —12i Z i U
: m,n . ,
oiXi + 0N + oA, + /A
lil+lil<aNL, iorjex, e I m n
ojitojjtomto/n=0, i#jif m=n

’

(7.25) = > FJ5 ot u’
Do, 13l <aNL, BT (aj+6)>0,
omto/n=—mn(a,0), |la|+|8=2, a£fif m=n

and

24i 1

7.26 Foo = — Ao i= A — .
( ) a,B,m,n Oé'ﬁ' )\a,ﬁ+0)\m+0'l)\n ’ B ; h(Olh ﬁh)

Notice that in (7.24) the restriction ¢ # j if m = n is equivalent to requiring

{(ivja man)v (Uiaoj)aa 0/)} 75 {(ivi’mam)a (017 —04,0 )} )
see Formulas (7.17) and (7.21). Indeed if m = n, |i| + |7] < 4NL and |m| > CN/4 then,

by momentum conservation, we have a contribution to (7.24) only if ¢ = —o¢’ and hence
ol = 11

We define the Toplitz approximation
(127)  F=Y F3o(whugug  with 5o (wh) =Y F25

where the indices in the two sums have the same restrictions as in (7.23), (7.25), respectively,
and the coefficients are
241 1

7.28 ) AP —— Fo9 =0.
( ) a,B,m,n alBl Xag +olm| —oln|’ a,B,m,n

The coefficients in (7.28) are well defined for N > N, large enough, because

Aagtolml—oln|]l > |Aap+0Am —0An| = [Am = [m]| = [An = [n]]
(7.18),(7.30) m < 1 1 ) 2 m C
7.29 S P (e N P Sl St
(7.29) = T \|m T | 3N, ~ 2

(¢ defined in (7.18)) having used the elementary inequality

(7.30) [Vn24+m—|n|| <1/(2|n]).
Then (7.27), (7.28), (7.29) imply, arguing as in the proof of Lemma 7.1, that

(7.31) |Xplln < B2
To prove that F' € Tr(No, 3/2,4) we have to show (3.15) (with f ~~ F), namely
(7.32) Fa,,g,m N = F’g;/ (s(m),om + o'n)
with o4 )
[0, —0 o 1 0,0 _ _
F25%(s,h) = 7a!ﬂ!7)\a”@+sh’ Fo3(s,h)=0, s=+,hel.
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Recalling (7.28), this is obvious when ¢/ = 0. When ¢’ = —o we first note that s(m) = s(n).
Indeed the restriction on the first sum in (7.27) is (recall (7.23)) |m|,|n| > 3N/2,
|om — on| < 4NE, which implies s(m) = s(n) by (3.1). Then
olm| — o|n| = os(m)m — os(n)n = s(m)(om — on)
and (7.32) follows. We have proved that F € Tr(No,3/2,4).
The Toplitz defect, defined by (2 29), is

(7.33) F=Y F3%(w with 97 (wh) == 3" FOS uew’

where the indices in the two sums have the same restrictions as in (7.23)-(7.25), and
24i N

T34 G mn = = B s T o T o,
oo 24i ( 1 1 )
aBymin = alBl \Aq g +0Am — oA, - Aa,g +olm| —oln
24i No(Ap — [m| = A\ + |n])

(7.35) =

alBl Aag + 0Am — o) (Aa g + olm| —olnl)’
We now prove that the coefficients in (7.34)-(7.35) are bounded by a constant independent
of N.

The coefficients in (7.34) are bounded because

Pasl < 3 Mol + 18a1) < 3 Bl (o] + 18a]) + vin 3 (lan] + 84]) < 4AN* +2v/m
h h h

by (7.26)-(7.25) (note that Ay, < |h| + +/m) and
Ma.s + 0Am + 0An] > A+ An| = [Aagl > 3N — AN — 2¢/m > 3N/2
for N > Ny large enough.
The coefficients in (7.35) are bounded by (7.18), (7.29), and

(7.30) 1 1 2
N — || = A + 0| < NE<—+ )<—m
2\|m| "~ [m|/ ~ 3

Hence arguing as in the proof of Lemma 7.1 we get
(7.36) 1Xplln < R2.
In conclusion, (7.19), (7.31), (7.36) imply (7.22) (recall (3.30)). O

Proof of Proposition 7.1 completed. — We have

1 1
ad _ ad ad _ 7 [
eFH = e*FN+e FG_N+{N,F}+§>2 HadF(N)+G+_§>1 aadF(G)

(7§’)N+G+G+Z )ad’ i (adp(N)) +Z —adl(G)
i>1 !
= N+G+G+K
where, using again (7. 7())
(137) K= Z z—i—l PG+G-G) +; .ad WG =K1+ K. O
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Proof of (7.9). — We claim that in the expansion of K in (7.37) there are only monomials
u;f with 7 € 7?4, & € {+,-}??,d > 3. Indeed F,G,G, G contain only monomials of
degree four and, for any monomial m, ad »(m) contains only monomials of degree equal to
the deg(m) + 2. The restriction & - 7= 0 follows by the Jacobi identity (2.82), since F, G, G, G
preserve momentum, i.e., Poisson commutes with M. O

Proof of (7.10). — We apply Proposition 3.2 with (no (z,y) variables and)
f~F, QW{2+G_G ff(;i};: r~R, r~R/2, §~1/2,
0~3/2, 0 ~2, p~4a, p 3,
Ny defined in Lemma 7.4 and Nj > Nj satisfying (3.64) and
(7.38) k(N TInNj <1, 6+ r)(NHE 1 InNj < 1/2.

Note that (3.65) follows by (7.38). By (7.22), the assumption (3.63) is verified for every
0 < R < Ry, with Ry small enough. Then Proposition 3.2 applies and (7.10) follows by
(3.67) (with h ~~ 1), (7.2), (7.22) and (7.7). O

7.2. Action—angle variables

We introduce action-angle variables on the tangential sites Z := {j1,..., jn} (see (7.5))
via the analytic and symplectic map
(7.39) ®(z,y,2,%¢) == (u, 1)
defined by
(7.40)

Uy, = \/§l—|—ylem, Uy, = \/§l+yl6_i””,l: 1,...,m, uji=z;, 4 :=%;,j € Z\T.
Let

(7.41) Op::{feR":gg{lgp,lzl,...,n}.
LEmMA 7.5 (Domains). — Let r, R, p > 0 satisfy

(7.42) 16r> < p, p=C,R?> with C_!:=48nk*Pe2(sTor)

Then, for all § € O, U Oy, the map

(7.43) ®(-;€): D(s,2r) = D(R/2) := Brya X Brja C 4P x £*P

is well defined and analytic (D (s, 2r) is defined in (2.5) and k in (3.1)).
7.42)
Proof. — Note first that for (z,v, z, Z) € D(s,2r) we have (see (2.6)) that |y;| < 472 ( <
p/4 < &, V€ € O,UO,,. Then the map y; — /& + y; is well defined and analytic. Moreover,
for & < 2p, |ji| < K,z € T?, ||2||a,p < 2r, we get

n

_ (7.39) _— . ‘ ,

||u(gj,y7z’z;§)l|37p = Z(& +yl)|€21zl||3l|2pe2a|Jl‘ + Z |zj|2<j>2pe2a|ﬂ
=1 JEINT

(7.42)
< n(2p + 2)62%2”62“ +4r? < R2/4
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proving (7.43) (the bound for @ is the same). O

Given a function F' : D(R/2) — C, the previous lemma shows that the composite map
Fod : D(s,2r) — C. The main result of this section is Proposition 7.2: if F' is quasi-T6plitz
in the variables (u, @) then the composite F' o & is quasi-Toplitz in the variables (z, y, z, Z)
(see Definition 3.4).

We write
o 1) @ @)
(744) F=Y Fapiag, mag:= (D) @) w®)=® @)y
a,B
where

U= (u(l),u@)), u = {u;}jer, u? = {uj}jen\z, similarly fora,

and
(7.45)

(@,8) = (&P +a®, 80 + 8@ - (oW, W) = {ay, B;}jez, (@@,8P) = {ay,Bi}jenz -
We define

(7.46) HY, = {F €Hr: F= > Fa,ﬂuauﬂ}.
|0 483 |>d

PRrROPOSITION 7.2 (Quasi-Toplitz). — Let Ny, 0, u, p' satisfying (3.1) and

Nb
(7.47) (W —p)NE >N, Ne2= 2=t <1,
IfF € Q£/2(N0,9,,u’) N ’HdR/2 withd = 0,1, then f .= Fo® € QZ’T(N(),Q,,U,) and
(7.48) ||f||£r,Ng,9,;L,Op < (87”/R)d_2||F||£/2,No,e,w .

The rest of this section is devoted to the proof of Proposition 7.2. Introducing the action-
angle variables (7.40) in (7.44), and using the Taylor expansion

(7.49) (1+t)vzz<z)th7 (g) =1, <Z> 227(’)’—1)..};!(7—h+1),h21’

h>0

we get
(7.50) fi=Fo®= Z fkma@)’ﬁ@)eikvaiza<2>2[3@)
k’iwa(2)7ﬂ(2)

with Taylor—Fourier coefficients

n al(1)+ﬁl(1)—il Mg
(7.51) Fria@mpo = Y. Fagl[& ? i :

i
g = =1 !

We need an upper bound on the binomial coefficients.

LEMMA 7.6. — For |t| < 1/2 we have

k
(7.52) @Y |t|h‘ <}2L>‘ <2, Vk>0, (i)Y |t|h‘<

)‘ < 3k[t|, VE> 1.
h>0 h>1

IaRNTES
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Proof. — By (7.49) and the definition of majorant (see (2.11)) we have

059 |(£)r = ma+0s L by (z|()\th)m(zth)’“

h>0 h>0

(3)] <
)= E()
T )(,%)) 5 - <kltlZ|’fl \(%)\ < et

h>0 h>0

because

[t| < 1/2 the bound (7.53) implies (7.52)-(¢). Then

which implies (7.52)-(i%) for k > 1. O
LeEmMMA 7.7 (M-regularity). — If F € HR/2 then f .= F o ® € H; 9, and

(7.54) 1X¢ 115 2r.0,00,, < (87/R)* (| XF IR/

Moreover if F' preserves momentum then so does F o ®.

Proof. — We first bound the majorant norm (recall also (7.46))
(7.55)

(7.50),(7.46) e ® @
[flls,2r,0,00,, = sup sup S friae pole iz 1277
£€0,U0, (y,2,2)€D(2r) ki, |a®+62)|>d

Fix a®, 3. Since for all ¢ € O, U O, y € Bz,)2, we have |y;/&| < 1/2 by (7.42), we
have

(7.56) Ze‘klsz | fria g |yl
k i

3D 4150 o >+ﬂ< ) M
(7.57) < Z ) N T HZ ‘
a® g 1=14,>0 il
v W48 a@s® L0 @) s
I D S | Gt
) g -1
NCHTIPICH)
(7.59) < Z s(la® 4Dy |F |(2p)%2|a(1)|+|,@(1)|
), g
= Y (et 2p) VIR, o).
a(l)’ﬁ(l)

Then, substituting in (7.55),

(7.60) 1 flls,2r0,00,, < " S\luﬁ) G(z,2) where
zlla,psl|Z||a,p <27
_ s a® (€3] a®@ | _g@
(7.61) G(z,2):= Y (2e°/2p)™ HEIE, g]|2> 7|27

la®48@)|>d
By (7.42), for all || z||a.p || Z]la,p < 27, the vector (u*,@*) defined by

(7.62) uj = uj := 2¢* V20, jE€T, uj = (R/(87))|zl, a} == (R/(87))|z;], j € Z\T
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belongs to Br/s X Bgse. Then, by (7.61), recalling (2.11), Definition 2.2 (and since
R/(8r) > 1 by (7.42)),

G(z,2) < (8r/R)UMPF)(u*,a*) < (8r/R)Fllrs2, Vl2llagp: IZllap < 2r-
Hence by (7.60)
(7.63) 1£1ls.2r,0,004, < (8r/R)*|IFllr/2 -
This shows that f is M-regular. Similarly we get
(7.64) 0= flls,2r,0,00,, < ||8u(2>F||R/2(8r/R)d_1 , same for 05 .

Moreover, by the chain rule, and (7.63)

102, £lls.2,0,00., < (18,0 Fllrs2 + 10,00 F|lr/2)\/20 + p/4€®(87/R)*

€
8y, flls2r0,005, < (18, 0 Fllrje + 18- Fll g /2) ——eee 81/ R)*.
19y, £lls 210,005, < (10,0 Fllrj2 + 1850 Fll/2) p/?—p/4( /R)

Then (7.54) follows by (7.42) (recalling (2.2)). O

DEFINITION 7.1. — For a monomialme, 5 := (u®)>” (@®)8" (w22 @@)8” (45 in
(7.44)) we set

n

(7.65) p(mas) == (el + 81", (3) = max{L,|jl}.
1=1
For any F as in (7.44), K € N, we define the projection
(7.66) My>xFi= > Fapap, Mg =I-Tsk.
p(ma,ﬁ)zK

LemMMmA 7.8. — Let F € Hpo. Then

_ K
(7.67) 1 X1, Fyoalls.r0, <272 | Xposls 2,0, -

Proof. — For each monomial m,, g as in (7.44) with p(m g) > K we have
S R s
|a(1) " ﬁ(l)l (7.45) Z m (1) ! Z 1) 18 1)) (7.65) H_lp(ma,ﬁ) >kTIK

and then, V€ € O,, y € B, =,

(7.40) aW4pM (1) Wy, 4@ _g@
= ) 2 61((1 B )mza Zﬂ |

€+ y

_1aM M) a1 )+B 1) _ (1) @) a2
=2 2 |(2¢ + 2y) (@ =B ) T 26

< 27% |(mg,p 0 ®)(x, 2y, 2, 7 26) .

(7.68) |(ma,g0 @)(x,y,2,%¢)|

The bound (7.67) for the Hamiltonian vector field follows applying the above rescaling
argument to each component, and noting that the derivatives with respect to y in the vector
field decrease the degree in £ by one. O
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Let Ny, 0, u1, i1’ be as in Proposition 7.2. For N > Ny and F' € Hp o we set

(7.69) f* =Ty ((F =Ty F) 0 ®).

Note that Il v, is the projection on the bilinear functions in the variables u, @, and Iln g ,,
in the variables z, y, z, Z.

LeEMMA 7.9. — We have

_N®
(7.70) [ X s+ lls,m0, <272 | Xpoalls,2r,0s, -

Proof. — We first claim that if F = m,, g is a monomial as in (7.44) with p(m,,g) < N°®
then f* = 0.

CASE 1. mg gis (N, 6, p')-bilinear, see Definition 3.2. Then Iy g , My g = Mg g and f* = 0,
see (7.69).

CASE 2. m, g is not (N, 6, p')-bilinear. Then Iy g,y mq g = 0 and f* = Iy g u(Ma,g 0 ),
see (7.69). We claim that m,, go® isnot (IV, 8, p)-bilinear, and so f* =g ,(mg go®) = 0.
Indeed,

o)1)
(7.71) Mago®d = (E+y) 2 el@ 80 al 55

is (N, 0, u)-bilinear if and only if (see Definitions 3.2 and 3.1)
L@ 583 _ zdmzémz;’lz,‘;/ 7
(7.72) S I@EE + B7) < uNE, fmlfnl > 6N, Ja® — 0] < NP,
JEINT
We deduce the contradiction that

(u(l))a“) (ﬂ(l))ﬂ(l) (u(2))d(2’ (6(2))5(2)u” u’

mTn

My, =
is (N, 6, p/)-bilinear because (recall that we suppose p(m, 5) < N?)
L s ~ oy (7.65),(7.72) (7.47)
D13l +85 )+ D0 1EP+5) < p(ma ) +uN < NN < pNE
=1 FEINT

(N, 6, p')-bilinear, a contradiction. For the general case, we divide F' = I, . yo F' + 11,5y F.
By the above claim

f* = HN797H<((Id - HN,eaH')HPZNbF) o (I)) = HN,G,;L((HpZNb (Id — HN797;L/)F) o @) .

Finally, (7.70) follows by (2.80) and applying Lemma 7.8 to (HPZNb (Id—TIn,g,u )F) od. O

LeEMMA 7.10. — Let F' € Tg;5(N,0,u') with Mysxo ' = 0. Then F o ®(;§) €
Tsor(N,0, 1), VEE€ O, U0y, .
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Proof. — Recalling Definition 3.3 we have

F = Z F0'7o-’(s(m),o_m+ O'I’I’l)u
|m|,|n|>6N,0,0'=+

u?' with F7 (s,h) € Lr/a(N, ', h).

Composing with the map ® in (7.40), since m,n ¢ T, we get

’ ’
Fod= E F7% (s(m),om +o'n) o ® 27,27
o,0'=%,|m|,|n|>0N

Each coefficient F°°'(s(m),om + o’n) o ® depends on n,m,o,o’ only through s(m),
om + o'n,o,0’. Hence, in order to conclude that F' o & € 7, o,(N, 6, ') it remains only
to prove that F°' (s(m),om + o'n) o ® € L, o,(N, p', om + o'n), see Definition 3.1. Each
monomial m, g of F% (s(m),om + o'n) € Lr/2(N,p',om + o'n) satisfies

n

D ey, + Bl + Y (e +8)lil <wW/N*  and  p(map) < N°
1=1 FEZ\T

by the hypothesis IT,> y» F' = 0. Hence m, g o @ (see (7.71)) is (IV, p’)-low momentum, in
particular o) — V| < p(m, 5) < NP, O

Proof of Proposition 7.2. — Since F € ?E/Q(No, 0,u') (see Definition 3.4), for all
N > Ny, there is a Toplitz approximation F' € T /5(N, 0, i) of F', namely

(7.73) UnpwF = F+N7'F  with || Xpllrse, IXzlr/2 1 XpllRs2 < 2|\ F|I% /280,00 -

In order to prove that f := F o ® € QT (No,0,u) we define its candidate Toplitz
approximation
(7.74) f=Tnou(Mycno F) o @),

see (7.60). Lemma 7.10 applied to Hp<NbF € Tr/2(N,0,') implies  that
(Hp<NbF) o® e T,5.(N,0,p/) and then, applying the projection IIng, we get
f €T, 2.(N,6, 1) C T (N, 8, u). Moreover, by (7.74) and applying Lemma 7.7 to Hp<Nbﬁ‘
(note that IT,, o F is either zero or it is in HdR /2 with d > 2 because it is bilinear), we get

(2.80) (7.54) d2
1Xfloro, < WXqr _wmpomlsno, < @/R2Xy _pllay

(2.80),(7.73) _
(1.75) < (8r/R) 2 F I Ryo N0 -
Moreover the Toplitz defect is
A ~. R 4 ~
o= N@youf -5 "2 Ny, ((F - Doy F) o @)
= Nlygu((F—F)o®) + Ny, ((F — Oy ne F) 0 ®)

(7'73)5(7'66) HN’Q,H(PA‘ o @) + NHN’Q,H ((F — HN,Q’H/F) o (I)) + NHN,G,;L((szNbF) o (I))

7.69 - N ~
L) MNyou(Fo®) + Nf* + Nlyg,((Mysne F) o @).
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Using (2.80), Lemmata 7.8 and 7.9 imply that, since N2_12L:+1 <1,VN > Ny by (7.47),

_N®
||XA||s,r,Op < ||Xﬁ‘oq>||s,7‘,(9p + N27 2 +1(||XFO‘I>||872T702,: + ||XF~‘o<I>||S,2T,02p)
f

< ||Xﬁ'o<1>||8,2r,0p + ||XF0<I>||S,2T,Ozp + ||XF‘O(P||312T702;7
(7.54) d_o

< @Br/R)" (I Xpllrs2 + 1 XFllrs2 + 1 X7 llR/2)
(7

.73) _
(7.77) < Br/R)"2IF R 2.N0.0.0

(7.76)

(to get (7.76) we also note that F, F', F € H% /2 with d = 0, 1, unless they are zero).
The bound (7.48) follows by (7.54), (7.75), (7.77). O

We conclude this subsection with a lemma, similar to Lemma 7.7, used in Lemma 7.12
(see (7.91)).

LemMMmA 7.11. — Let F € Hgjp, f == F o ® and f(z,y) = f(z,y,0,0) — f(x,0,0,0).
Then, assuming (7.42),

(7.78) X #lls,2r,0,00., <1 XFllR/2-

Moreover if F' preserves momentum then so does f.

Proof. — We proceed as in Lemma 7.7. The main difference is that here there are no
(2, z)-variables and the sum in (7.56) runs over ¢ # 0. Then in the product in (7.57) (at least)
one of the sums is on 4; > 1. Therefore we can use the second estimate in (7.52) gaining a
factor® 8r2/p (since |y;|/|&| < 8r%/p by (7.41)). Continuing as in the proof of Lemma 7.7
we get (recall (7.54) with d = 0)

(7.42)
1X#lls.2r,0,00., < (r*/p)(r/R) | XFllrss < |
proving (7.78). O

RO

7.3. Proof of Theorem 1.1

We now introduce the action-angle variables (7.40) (via the map (7.39)) in the Birkhoff
normal form Hamiltonian (7.8). Hence we obtain the parameter dependent family of Hamil-
tonians

(779) H/ = HBirkhoff od = N + P

where (up to a constant), by (7.6),

(7.80) N :=w(&) -y+Q(&)zz, P:= %Ay -y+By- 22+ G(2,2) + K'(z,y, 2, %),

(781) UJ(&) =W+ Aé-v W= (/\J'lv . "7)‘jn) 3 Q(é) =0 + B€7 Q:= ()‘j)jEZ\Iv

(7.82)
A= (Ain)i<ih<ns Ain :=12(2—01), B = (Bji)jennzi<i<n, Bji =24, K' :=Ko®.

3 Actually we have the constant 3 instead of 2 in (7.58) and 3e® instead of 2e® in (7.60) and (7.62).
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The parameters ¢ stay in the set O, defined in (7.41) with p = C, R? asin (7.42). As in (4.6)
we decompose the perturbation

(783) P=.P00+15 where Poo(CL';g) = K/(l‘,0,0,0;E), P:ZP—POO.

LEmMA 7.12. — Let s,r > 0 as in (7.42) and N large enough (w.r.t. m,Z,L,b). Then

(7.84) X poolls,r < RE772, |P|L, yoo <r®+ Ror™!
and, for A > 0,
(7.85) [ Xpyla, <@+ Xp)R™2,  |Xp[}, <(1+Mp)(r* +R°rY),
for & belonging to
2 3
= e —p< &< = =1,... .
(7.86) Op):={¢eR" : Sp<a<ip, I=1,...nfCO,
Proof. — By the Definition (7.83) we have
(2.55) (z 782
1Xpuler < Xl < IE N g 2 K o <I>||”N22
(7.48)
(7.87) < (E) KNG vm2

(applying (7.48) with d ~> 0, Ny ~> N, 0 ~ 2, u ~ 2, i/ ~» 3) and taking N large enough
so that (7.47) holds. Take also N > N{ defined in Proposition 7.1. Then by (7.87) we get

(3.35) 1\ 2 T (7.10) 7\ ~2 4 R6
[ Xpoo lls,r < <E) 1K Rs2. Ny 22 < (E) R

proving the first estimate in (7.84). Let us prove the second bound. By (7.83) and (7.80) we
write

— 1 N
(7.88) P=Ay-y+By-22+G(z2) + Ki + Ky
where
Kl = Kl(xuy7z7z;£) - Kl(x7y7030;€)7 K2 = K/($7y70701€) - Kl($7070707€) .

Using (7.7) (note that » < R by (7.42)) for N > Ny large enough to fulfill (3.1), we have by
(3.35)

2
< .
H 2 s,m,N,2,2 "
By (7.48) (withd ~» 1, Ny ~» N, pi ~~ 2, ' ~~ 3), for N > Ny(m,Z, L, b) large enough, we

get

(7.89) Ay-y+ By -2z + G(z, z)

”
(7.90) ||K1||Z,r,N,2,2 < (R) R < o
Moreover, since K5 does not depend on (z, z), we have

(3.34) (7.78) (3.32) (7.10)
(7.91) |K2||er22 = | Xrullsyr < [ Xkllr2 < ||K||£/2,N6,2,3 <

In conclusion, (7.88), (7.89), (7.90), (7.91) imply the second estimate in (7.84):

R (74) R
||P||87‘N22<T + — +R4 2 —
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Let us prove the estimates (7.85) for the Lipschitz norm defined in (2.88) (which involves only
the sup-norm of the vector fields). First

"

(2.62) (7.84) _ @
|XP00|S,T < ||XP00||5y7' < RGT 27 |X15|S,7"

2179

.62) (332) _ (7.84) _
< [ Xpllsr < ||P||£T‘,N,2,2 < r’+ R

Next, since the vector fields Xp,,, Xp are analytic in the parameters {¢ € O,, Cauchy
estimates in the domain O(p) C O, (see (7.86)) imply

Xpnl™ oy < P~ X rwlsmo, < B2, |XpI™ o < 07 X ploro, <+ ROr™!

and (7.85) are proved. O

All the assumptions of Theorems 4.1-4.2 are fulfilled by H' in (7.79) with parameters
& € O(p) defined in (7.86). Note that the sets O = [p/2, p|™ defined in Theorem 4.2 and
O(p) defined in (7.806) are diffeomorphic through &; — (7p + 2¢;)/12. The hypotheses (A1)-
(A2) follow from (7.81), (7.82) with

a)=24 > &, and My=24+|A].
=1,...,n

Then (A3)-(A4) and the quantitative bound (4.7) follow by (7.84)~(7.85), choosing
(7.92)
s=1,r=R"i, p=C,R*asin(7.42), N asin Lemma 7.12, 0 =2, p =2, v = R3t5

and taking R small enough. Hence Theorem 4.1 applies.

Let us verify that also the assumptions of Theorem 4.2 are fulfilled. Indeed (4.13) follows
by (7.81), (7.82) with @ = 24(1,...,1) € R™. The matrix A defined in (7.82) is invertible and

_ _ 1 2
A7 = (A <in<n, A= ﬁ(2n — 51h) )

Finally the non-degeneracy assumption (4.14) is satisfied because A = AT and

24713 = 4
2n —1

1,...,1) ¢ Z"\ 0.

We deduce that the Cantor set of parameters O,, C O in (4.11) has asymptotically full
density because

[0\ Ol ¢

16) (7.92)
T < p1y%3 < RT2REIGHE) = R 0.

The proof of Theorem 1.1 is now completed.

REMARK 7.1. — The terms 3 5 frs® in (1.2) contribute to the Hamiltonian (7.1) with
monomials of order 6 or more and (_78) holds (with a possibly different K satisfying (7.10)).
On the contrary, the term fys* in (1.2) would add monomials of order 5 to the Hamiltonian in
(7.1). Hence (7.10) holds with R? instead of R*. This estimate is not sufficient. These 5-th order
terms should be removed by a Birkhoff normal form. For simplicity, we did not pursue this point.
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8. Appendix

Proof of Lemma 2.14. — We need some notation: we write E = &7_, Ej, By := (C", | |o0),

= (C™,| |1), B3 := E4 := £7" so that a vector v = (z,y,2,Z) € E can be expressed by

its four components v) € E;, v := 2, v®? := y, v := 2, 0® := 7, and the norm (2.2)
is

|U‘ E.;
G olleer =3P wheep=s, pp=r, py=pi=r.

We are now ready to prove (2.65). By definition

4 .
.1 |dX @ (v)[Y]|E,
JAX @)l smmsmnim s NAX@)Y][per ) sup 3 0N
IYllg,sr<1 IYlle,sr<1 i=1 Pi

Yl dyn XD ()Y )|,
w3 ,
HY”E57‘<11‘ 1 pi

< Z |dy X ¢ )(/ v)Y )|,
”Y”EarSlz] 1 pl

4

< sup Y IIdva V() le(e;, 50V,
”Y“E,srslzj 1
4 N
1 | XD (D)|g.
< sup sup Z 7/%”/(3)@
IYlle.s.r S19€D(s,r) ;521 Pi (pj — p5)

by the Cauchy estimates in Banach spaces Then
4
pi | XD (9)|&

1dX ()l c((,s,m)i(E,s 7)) < SUP = TR ( )
((E,s,m);(E,s',1")) = vE€D(s,r) 121 Pl Pi ||Y||E .. r<1 Z

|y(j)|E
— Pj

/

®.1) p; piy -1 } .
S ax = max (1 - —) sup || X(0)gsr <4677 X]sr
L4 p; 3=1,...,4 Pj BED(s,r)

by (2.53), (2.66). This proves (2.65). O
Proof of Lemma 7.2. — We first extend Lemma 4 of [28] proving that:

LEmMMA 8.1. — I[f0<i<j<k<lwithi+ j+ k== 0for SOME combination of plus
and minus signs and (i, j, k,1) # (p,p, q,q) for p,q € N, then, there exists an absolute constant
¢ > 0, such that

(8.2) | £ Ai(m) + \;(m) £ A (m) £ A\ (m)| > em (2 + m)~3/2
for ALL possible combinations of plus and minus signs.

Proof. — When i > 0 it is a reformulation of the statement of Lemma 4 of [28]. Let us
prove it also for ¢ = 0. Then j + k + [ = 0 for some combination of plus and minus signs.
Since (4, 4, k, 1) # (0,0, g, q), the only possibility is{ = 5+ k with j > 1 (otherwisei = j =0
and k = [). We have to study

0(m) := £Ao(m) £ A;(m) £ Ap(m) £ A\;(m)
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for all possible combinations of plus and minus signs. To this end, we distinguish them
according to their number of plus and minus signs. To shorten notation we let, for example,
O44—4 = Ao+ Aj — A + A, similarly for the other combinations. The only interesting cases
are when there are one or two minus signs. The case when there are no (or four) minus signs
is trivial. When there are 3 minus signs we reduce to the case with one minus sign by a global
sign change.

One minus sign. Since 04 4 — 4,04 _44,0_4 44 > d444_ := 6 we study only the last case. We
have
171 1 1 1 1 1
00)=5+k—-1=0, & =7(— — ———>>7=7,
0)=3+ A G W Wb Wil v iy Wl W

Therefore §(m) > /m > em(1 + m)~3/2 for an absolute constant ¢ > 0.

Two minus signs. Now we have d_ _,6__, > d,__ and all other cases reduce to these
ones by inverting signs. So we consider only 6 = §, __ . Since the function f(¢) := vt2 + m
is monotone increasing and convex for ¢ > 0, we have the estimate

(8.3) A=A 2 ANp—Ap—p, VO<p<k.

Hence A\; — A\ > Ajp1 —Arand Ajp1 — A; > Ao — A (using j = [ — k > 1). Therefore
§=X0— X = A+ X = Ao — A — AL+ i1 > Az — 2A1 + Ao > m(4 +m) 2.
The last inequality follows since f”(t) = m(t? + m)~3/2 is decreasing and Ay — 2X\; + \g =
£(2) = 2£(1) + £(0) = £"(€) > f"(2) for some € € (0,2). O
We complete the proof of Lemma 7.2. We first consider the trivial cases (7.12)-(7.14).

CASE (7.12). Since Y, 0; # 0 is even, (7.16) follows by

o Al =13 oidgl > 205 = 2v/m > m(1 +m) /2.

K3
Casg (7.13). By G- j= (03 +04)q = 0, ¢ # 0, we deduce 03 = —o4. Hence (7.16) follows by
lo - Al = (o1 + 02)A0| = 2y/m > m(1 + m)’3/2.

CASE (7.14). Since 7= (p,p, —p, —p) and o1 = o5 then & - 7= 0 implies o3 = 04 = 03 and

g -
lo - A = 4N, = 4 p>+m>m(p? +m) %2,

CAasE (7.15). Set |j1] =: i, |42 =: J, |js| =: &, |ja| =: 1. After reordering we can assume
0 <i < j <k <I Since, by assumption, ¢ - 7= 0, the following combination of plus and
minus signs gives s(j1)o1% + s(j2)027 + s(j3)o3k + s(ja)osl = 0. Hence Lemma 8.1 implies
(7.16) for every 7except when |j1| = |j2| and |j5| = |j4| (in this case ¢ = j and k = [ and
Lemma 8.1 does not apply). We now prove that (7.16) holds also in these cases. We have that
G- Ay = (014 02)Aj, + (03 + 04)Aj, where o, + 0, = 0,£2 so that (7.16) holds trivially
unless o1 + 02 = —(03 + 04). We consider this last case. If o1 + 02 = —(03 + 04) = 0 then
the equality & - 7= 01(j1 — j2) + 03(js — ja) = 0 implies that jq, ..., js4 are pairwise equal,
contrary to our hypothesis. If o1 + 0o = +2 and i := |j1| < k := |j3| then

(8.3) (k>1)
G- A > 22X, — 20, =20 — 2 > 2X;—2Xg > 20\ —2X >1/vVI+m
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giving (7.16). If |41| = |j2| = |43] = |j4] and o1 + 02 = —(03 + 04) = £2 then the relation
g -7=01(j1 + j2 — jzs — ja) = 0 implies that the jq, ..., j4 are pairwise equal, contrary to
the hypothesis. O
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