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SECOND ORDER ELLIPTIC OPERATORS WITH
COMPLEX BOUNDED MEASURABLE COEFFICIENTS

IN Lp, SOBOLEV AND HARDY SPACES

 S HOFMANN, S MAYBORODA
 A MCINTOSH

A. – Let L be a second order divergence form elliptic operator with complex bounded
measurable coefficients. The operators arising in connection with L, such as the heat semigroup and
Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from
their counterparts built upon the Laplacian. The current paper aims at a thorough description of the
properties of such operators in Lp, Sobolev, and some new Hardy spaces naturally associated to L.

First, we show that the known ranges of boundedness in Lp for the heat semigroup and Riesz
transform of L, are sharp. In particular, the heat semigroup e−tL need not be bounded in Lp if
p 6∈ [2n/(n + 2), 2n/(n− 2)]. Then we provide a complete description of all Sobolev spaces in which
L admits a bounded functional calculus, in particular, where e−tL is bounded.

Secondly, we develop a comprehensive theory of Hardy and Lipschitz spaces associated to L, that
serves the range of p beyond [2n/(n + 2), 2n/(n− 2)]. It includes, in particular, characterizations by
the sharp maximal function and the Riesz transform (for certain ranges of p), as well as the molecular
decomposition and duality and interpolation theorems.

R. – Soit L un opérateur elliptique du second ordre de formes de divergence, à coefficients
complexes bornés et mesurables. Les opérateurs associés à L tels que le semi-groupe de la chaleur
ou la transformée de Riesz ne sont en général pas de type Calderón-Zygmund et présentent des
comportements différents de leurs analogues construits à partir du laplacien. Cet article a pour objectif
de décrire de manière exhaustive les propriétés de ces opérateurs dans Lp, dans les espaces de Sobolev
ainsi que dans certains nouveaux espaces de Hardy naturellement associés à L.

Tout d’abord, nous montrons que les plages de valeurs connues pour lesquelles ces opérateurs sont
bornés en norme Lp sont strictes. En particulier, le semi-groupe de la chaleur et la transformée de Riesz
ne sont pas obligatoirement bornés si p 6∈ [2n/(n + 2), 2n/(n − 2)]. Nous fournissons ensuite une
description complète de tous les espaces de Sobolev pour lesquels L admet un calcul fonctionnel borné,
en particulier, pour lesquels e−tL est borné.

Puis, nous développons une théorie extensive des espaces de Hardy et de Lipschitz associés à L,
pour les valeurs de p hors de [2n/(n + 2), 2n/(n − 2)]. Cette théorie comprend, en particulier, des
caractérisations par la fonction maximale « dièse » et par la transformée de Riesz (pour certaines plages
de p), ainsi que leur décomposition moléculaire, leur dualité et les théorèmes d’interpolation.
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724 S. HOFMANN, S. MAYBORODA AND A. MCINTOSH

1. Introduction

Let A be an n× n matrix with entries

(1.1) ajk : Rn −→ C, j = 1, . . . , n, k = 1, . . . , n,

satisfying the ellipticity condition

(1.2) λ|ξ|2 ≤ <eAξ · ξ̄ and |Aξ · ζ̄| ≤ Λ|ξ||ζ|, ∀ ξ, ζ ∈ Cn,

for some constants 0 < λ ≤ Λ < ∞. For such matrices A, our aim in this paper is to
present a detailed investigation of Hardy spaces and their duals associated to the second
order divergence form operator

(1.3) Lf := −div(A∇f),

which we interpret in the usual weak sense via a sesquilinear form.

In the case that A is the n × n identity matrix (i.e., so that L is the usual Laplacian
∆ := −div·∇), this theory reduces to the classical Hardy space theory of Stein-Weiss [55] and
Fefferman-Stein [32]. For more general operators L whose heat kernel satisfies a pointwise
Gaussian upper bound, an adapted Hardy space theory has been introduced by Auscher,
Duong and McIntosh [9], and by Duong and Yan, [27], [28]. In the absence of such pointwise
kernel bounds, the theory has been developed more recently in [11] by Auscher, McIntosh
and Russ (when L is the Hodge-Laplace operator on a manifold with doubling measure),
and in [40] by the first two authors of the present paper, for the complex divergence form
elliptic operators considered here. In [11, 40], the pointwise Gaussian bounds are replaced
by the weaker “Gaffney estimates” (cf. (2.21) and (2.24) below), whoseL2 version is a refined
parabolic “Caccioppoli” inequality which may also be proved via integration by parts using
only ellipticity and the divergence form structure of L. The present paper may be viewed in
part as a sequel to [40], in which we extend results for the case p = 1 given there, to the case
of general p (although we also obtain here some results, pertaining to the characterization
of adapted Hardy spaces via Riesz transforms, that are new even in the case p = 1). In
particular, it is in the nature of our present setting, in which pointwise kernel bounds may
fail, that the Hardy space theory for p > 1 becomes non-trivial (i.e., theL-adaptedHp spaces
may not coincide with Lp, even when p > 1). We shall return to this point momentarily. We
note also that general non-negative self-adjoint operators satisfying an L2 Gaffney estimate
have recently been treated in [38].

We now proceed to discuss some relevant history, and to present a more detailed overview
of the paper. In [10], the authors solved a long-standing conjecture, known as the Kato
problem, by identifying the domain of the square root of L. More precisely, they showed
that the domain of

√
L is the Sobolev space W 1,2(Rn) = {f ∈ L2 : ∇f ∈ L2} with

(1.4) ‖
√
Lf‖L2(Rn) ≈ ‖∇f‖L2(Rn).

In particular, the Riesz transform∇L−1/2 is bounded in L2(Rn).

Since then, substantial progress has been made in the development of the Lp theory of
elliptic operators of the type described above. Let us define

p−(L) := inf{p : ∇L−1/2 : Lp(Rn) −→ Lp(Rn)}.
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SECOND ORDER ELLIPTIC OPERATORS 725

It is now known that 1 ≤ p−(L) < 2n/(n+ 2) (with 1 < p−(L) for some L; we shall return
to the latter point momentarily), and that there exists ε(L) > 0 such that

(1.5) ∇L−1/2 : Lp(Rn) −→ Lp(Rn) ⇐⇒ p−(L) < p < 2 + ε(L),

(given (1.4) as a starting point, (1.5) with p−(L) < 2n/(n+2) is established by combining the
results and methods of [39] or [18] with those of [6]; see also [5], [13], Chapter 4 of [14], and
[17] for related theory). Moreover, again given (1.4) as a starting point, one has the reverse
inequality

(1.6) ‖
√
Lf‖Lp(Rn) . ‖∇f‖Lp(Rn), for (p−(L))∗ < p < (p−(L∗))′,

where in general p∗ := pn/(p + n) denotes the “lower” Sobolev exponent, and as usual
p′ := p/(p − 1) is the exponent dual to p. The case p < 2 of (1.6) is due to Auscher [6],
while the case p > 2 is simply dual to the adjoint version of (1.5). Combining (1.5) and (1.6),
we have that

(1.7) ‖
√
Lf‖Lp(Rn) ≈ ‖∇f‖Lp(Rn) ⇐⇒ p−(L) < p < 2 + ε.

One of the main goals of the present paper is to understand the sense in which (1.7) extends
to the range p ≤ p−(L). This extension may be viewed as solving the Kato problem below
the critical exponent p−(L). We discuss this question in more detail in Subsection 1.2 below;
the proofs are given in Section 5 (cf. Theorem 5.2).

Let us now discuss optimality of the range of p in (1.5) (hence also that in (1.7)), for the
entire class of L under consideration. Even in the case of real symmetric coefficients, the
upper bound cannot be improved, in general: for each p > 2, Kenig(1) has constructed an
operator L whose Riesz transform is not bounded in Lp. In addition, the counterexamples
in [50], [8], [25] showed that for some elliptic operator L satisfying (1.1)–(1.3) there is a
p ∈ (1, 2) such that the Riesz transform is not bounded in Lp; i.e., for such L, one has
p−(L) > 1. Moreover, the latter fact permeates all the Lp results in the theory: as shown
in [6], p−(L) is also the lower bound for the respective intervals of p for which the heat
semigroup and the L-adapted square function (cf. (1.10) below) are Lp bounded, and for
which the semigroup enjoys Lp → L2 off diagonal estimates. However, identification of the
sharp lower bound p−(L) remained an open problem (posed, along with related questions,
in [6], Conjecture 3.14, and in [4], Problem 1.4, Problem 1.5, Problem 1.13).

In Section 2 of the present paper, we observe that the example constructed by Frehse in [34]
may be used to resolve these remaining sharpness issues, i.e., to show that
p±(L) = 2n/(n ∓ 2) ± ε±(L), where (p−(L), p+(L)) is the interior of the interval of Lp

boundedness of the heat semigroup e−tL, t > 0. More precisely, we have

∀ p 6∈ [2n/(n+ 2), 2], ∃L with ∇L−1/2 : Lp(Rn) 6−→ Lp(Rn),(1.8)

∀ p 6∈ [2n/(n+ 2), 2n/(n− 2)], ∃L with e−tL : Lp(Rn) 6−→ Lp(Rn).(1.9)

It follows, in particular, that in dimensions n ≥ 3, the kernel of the heat semigroup may
fail to satisfy the pointwise Gaussian estimate

|Kt(x, y)| ≤ Ct−n/2 e−c|x−y|
2/t, t > 0 and x, y ∈ Rn.

(1) Kenig’s Example is described in [14], Section 4.2.2.
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726 S. HOFMANN, S. MAYBORODA AND A. MCINTOSH

This solves an open problem in [14], p. 33.

Thus, in dimensions n > 2, the Riesz transform may fail to be bounded in Lp for some
p ∈ (1, 2), as may the heat semigroup e−tL, t > 0, as well as the other natural operators asso-
ciated with such L (e.g., square function, non-tangential maximal function). Consequently,
in the case that the endpoint p−(L) > 1, the L-adapted Riesz transforms, semigroup and
square function cannot be bounded from the classical Hardy space H1 into L1, since inter-
polation with the known L2 bound would then produce a contradiction with (1.8), (1.9) (or
with the analogous statement for the square function). These operators therefore lie beyond
the scope of the Calderón-Zygmund theory and exhibit behavior different to their counter-
parts built upon the Laplacian.

By analogy to the classical theory then, this motivates the introduction of a family
of L-adapted Hardy spaces Hp

L for all 0 < p < ∞, not equal to Lp in the range p ≤ p−(L),
on which the L-adapted semigroup, Riesz transforms and square function are well behaved,
and which comprise a complex interpolation scale including Lp for p−(L) < p < p+(L).

We note that the endpoint p−(L) plays a similar role to the exponent p = 1 in the classical
theory.

In particular, in Section 5 we give a suitable Hardy space extension of (1.5) to the case
p ≤ p−(L) (the case p = 1 already appeared in [40]), and, in one of the main results of this
paper, we present an appropriate converse, thus obtaining a Riesz transform characterization
of L-adapted Hp spaces, for some range of p depending on n. As observed above, this
characterization may be viewed as a sharp extension of the Kato square root estimate (1.4),
and of its Lp version (1.7), to the endpoint p−(L) and below. In order to make these notions
precise, we should first define our adapted Hp

L spaces.

1.1. Definition of Hp
L

The first step in the development of an L-adapted Hardy space theory, in the case that
pointwise kernel bounds may fail(2), was taken in [40] (and independently in [11]), in which
the authors considered the model case of H1

L(Rn) and, on the dual side, the appropriate
analogue of the space BMO. The definition ofH1

L given in [40](3) (by means of an L-adapted
square function) can be extended immediately to 0 < p ≤ 2 and with some additional care
to 2 ≤ p < ∞ as well. To this end, consider the square function associated with the heat
semigroup generated by L

(1.10) Sf(x) =

Ç∫∫
Γ(x)

|t2Le−t
2Lf(y)|2 dydt

tn+1

å1/2

, x ∈ Rn,

where, as usual, Γ(x) = {(y, t) ∈ Rn × (0,∞) : |x − y| < t} is a non-tangential cone with
vertex at x ∈ Rn. Analogously to [40], we define the space Hp

L(Rn) for 0 < p ≤ 2 as the
completion of {f ∈ L2(Rn) : Sf ∈ Lp(Rn)} in the norm

(1.11) ‖f‖Hp
L

(Rn) := ‖Sf‖Lp(Rn).

(2) In the presence of pointwise Gaussian heat kernel bounds, an L-adapted H1 and BMO theory was previously
introduced by Duong and Yan [27], [28].
(3) And in [11] for Hp

L, p ≥ 1.
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For 2 < p <∞ we assign

(1.12) Hp
L(Rn) :=

Ä
Hp′

L∗(R
n)
ä∗
,

where 1/p + 1/p′ = 1 and L∗ is the adjoint operator to L. These spaces also have an
appropriate square function characterization as will be discussed in Section 4.

1.2. Riesz Transform characterization of Hp
L

We shall show in Section 5 that the Riesz transforms are bounded from Hp
L into Lp,

0 < p < 2 + ε(L), and even into classical Hp, n/(n + 1) < p ≤ 1. Conversely, for
some restricted range of p, we show that these estimates are reversible, thus obtaining a Riesz
transform characterization of the corresponding Hp

L. Let us describe these results in more
detail.

As preliminary steps, we establish two results that are also of independent interest: in
Section 3, we shall obtain a molecular decomposition of Hp

L spaces, 0 < p ≤ 1, analogous
to the classical atomic decompositions of Coifman [21] and Latter [47] and in Section 4, we
observe that the spaces Hp

L form a complex interpolation scale, including Lp in the range
p−(L) < p < p+(L) (see (1.15)). As in the classical case, we are then able to use these
fundamental properties of Hardy spaces to prove in Section 5 that

∇L−1/2 : Hp
L(Rn)→ Lp(Rn) , 0 < p < 2 + ε(L) ,(1.13)

∇L−1/2 : Hp
L(Rn)→ Hp(Rn) ,

n

n+ 1
< p ≤ 1 ,(1.14)

whereHp(Rn) denotes the classical Hardy space [32]. Observe that these results extend (1.5)
to the range of p below the endpoint p−(L) (the case p = 1 has already appeared in [40]).
TheHp

L spaces in (1.13)–(1.14) do not, in general, coincide with Lp or classicalHp (we recall
that Hp(Rn) = Lp(Rn) if 1 < p <∞). In fact, we can ascertain only that

Hp
L(Rn) = Lp(Rn) , p−(L) < p < p+(L) ,(1.15)

L2 ∩Hp
L ⊂ L

2 ∩Hp , n/(n+ 1) < p ≤ p−(L) ,(1.16)

Lp(Rn)/N p(L) ↪→ Hp
L(Rn) , p ≥ p+(L),(1.17)

where N p(L) is the null space of L in Lp(Rn) (cf. Section 9 for details). In addition, the
containments in (1.16)(4) (resp. (1.17)) are strict if p−(L) > 1 (resp. p+(L) <∞).

By contrast, when L = ∆, the space Hp
∆(Rn) is the usual Hardy space for 0 < p ≤ 1

and Lp for 1 < p < ∞. Hence, (1.13)–(1.14) recover the well-known mapping properties
of ∇∆−1/2 in Lp and Hp.

Moreover, we have that H1
L = H1, and Hp

L = Lp for 1 < p < ∞ whenever the
heat kernel of L satisfies a Gaussian upper bound and local Nash type Hölder conti-
nuity (as in (2.16)-(2.18)); indeed, in that case the square function (1.10) is a standard
Hilbert space valued Calderón-Zygmund operator, which therefore maps H1(Rn) into

(4) We note thatL2∩Hp
L is dense inHp

L(Rn), so by (1.16) there is a natural “embedding” ofHp
L(Rn) intoHp(Rn)

which extends the identity map on a dense subset. Intuitively then, one might expect that the stronger containment
Hp
L(Rn) ⊂ Hp(Rn) should hold in (1.16). In practice, however, matters appear to be more subtle, so we present a

more detailed discussion of this matter, along with proofs of (1.15) - (1.17), in an appendix, Section 9.
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728 S. HOFMANN, S. MAYBORODA AND A. MCINTOSH

L1(Rn); whence it follows readily that H1(Rn) embeds continuously into H1
L(Rn), and thus

H1(Rn) = H1
L(Rn), by (1.16). The case p > 1 is obtained by interpolation and duality.

The “Gaussian” property (2.16)-(2.18) holds always in dimensions n = 1, 2, and for real
coefficients, it holds in all dimensions. However, as we mentioned earlier, it may fail for
complex coefficients in dimensions n ≥ 3.

We turn now to the matter of characterizing Hp
L, for some range of p ≤ p−(L), via the

Riesz transform operator∇L−1/2. In the classical setting (i.e., L = ∆), the Riesz transform
provided the foundation for the development, beginning in [55] and [32], of the real variable
theory of Hp, and furnished also a link between that theory and PDEs, via sub-harmonic
functions. The classical Riesz transform characterization says that

(1.18) f ∈ Hp(Rn) if and only if f ∈ Lp(Rn) and ∇∆−1/2 ∈ Lp(Rn),

for all (n− 1)/n < p ≤ 1 (assuming some growth restriction at infinity when p < 1; see, e.g.
[54], p. 123). There are analogous, but more complicated results involving higher order Riesz
transforms when p ≤ (n−1)/n. Apparently, no such characterization has been obtained for
operators substantially different from the Laplacian (although we mention that some results
in this direction have been obtained for lower order perturbations of the Laplacian [30, 31]).

Upon attempting to generalize the Riesz transform characterization to Hp
L spaces, one

immediately encounters several difficulties. The original argument relied on the subhar-
monicity of small powers of the gradient of a harmonic function. No analogue of such a
property exists (or even makes sense) in our context. In addition, that (1.18) holds only for
the values of p close to 1 suggests that in our case, in which Hp

L(Rn) is strictly contained
in Lp(Rn) if p ≤ p−(L), the Riesz transform characterization should be proved for p close
to p−(L). In fact, in Section 5 of this paper we show that

(1.19) Hp
L(Rn) = Hp

L,Riesz(Rn) ,
p−(L)n

n+ p−(L)
< p < 2 + ε(L),

where for p in the stated range, Hp
L,Riesz(Rn) is defined as the completion of the set

{f ∈ L2(Rn) : ∇L−1/2f ∈ Hp(Rn)}, with respect to the norm

(1.20) ‖f‖Hp
L,Riesz

(Rn) := ‖∇L−1/2f‖Hp(Rn)

(bearing in mind that classical Hp(Rn) = Lp(Rn) if p > 1). Observe that the lower
bound p−(L)n

n+p−(L) > n−1
n (cf. (1.18)). The equivalence (1.19) amounts to proving that for(5)

f ∈ L2(Rn),

‖f‖Hp
L

(Rn) ≈ ‖∇L−1/2f‖Lp(Rn), max
¶

1, p−(L)n
n+p−(L)

©
< p < 2 + ε(L),(1.21)

‖f‖Hp
L

(Rn) ≈ ‖∇L−1/2f‖Hp(Rn),
p−(L)n
n+p−(L) < p ≤ 1.(1.22)

We note that (1.21) and (1.22) can be viewed as sharp extensions of the Kato square root
estimate (1.4) to the endpoint p−(L) and below.(6)

(5) By definition,Hp
L(Rn)∩L2(Rn) is dense inHp

L(Rn) when 0 < p ≤ 2; similarly forHp
L,Riesz(Rn) for p in (1.19).

Later on, we also show that L2 is dense in Hp
L for 2 < p <∞ (cf. Corollary 4.17). In the range 2 < p < 2 + ε(L)

one can also use (1.15).
(6) We remark also that the direction ‖f‖Hp

L
(Rn) . ‖∇L−1/2f‖Lp(Rn) of (1.21) is a sharp version of the bound

‖f‖Lp(Rn) . ‖∇L−1/2f‖Lp(Rn), proved in [6] for the same range of p. Indeed, as mentioned aboveHp
L(Rn) may
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Consequently, for this same range of p, (1.22) together with (1.18) imply that

(1.23) ‖f‖Hp
L

(Rn) ≈ ‖∆1/2L−1/2f‖Hp(Rn) ≈ ‖∇L−1/2f‖Lp(Rn) + ‖∆1/2L−1/2f‖Lp(Rn),

for suitable f . Indeed, since the classical Riesz transforms ∂xj∆
−1/2 = ∆−1/2∂xj are

bounded on classical Hp, we have that

‖∇L−1/2f‖Hp(Rn) = ‖∇∆−1/2∆1/2L−1/2f‖Hp(Rn) . ‖∆1/2L−1/2f‖Hp(Rn),

and by (1.18), that

‖∆1/2L−1/2f‖Hp(Rn) = ‖∆−1/2 div∇L−1/2f‖Hp(Rn) . ‖∇L−1/2f‖Hp(Rn).

This takes care of the equivalence between the first and the second expression in (1.23).
The equivalence between the second and the third one follows from (1.18).

As a consequence of (1.23), one obtains the following new characterization of the classical
Hardy spaces. Namely,

(1.24) f ∈ H1(Rn)

if and only if ∇L−1/2f ∈ L1(Rn) and ∆1/2L−1/2 ∈ L1(Rn),

for any operator L whose heat kernel satisfies Gaussian bounds.

Finally, we remark that in [49], the second named author has recently developed further
the circle of ideas related to the Riesz transform characterization of Hp

L(Rn) to establish
sharp Lp solvability results for the regularity problem for the equation utt − Lu = 0 in the
half-space Rn+1

+ .

1.3. The dual of Hp
L , 0 < p ≤ 1

Another important aspect of the theory is the identification of the duals of Hardy spaces,
and the elaboration of their properties. In the classical setting, the duality result for p = 1 is
the celebrated Theorem of Fefferman [32]; the case 0 < p < 1 was treated in one dimension
by Duren, Romberg and Shields [29], and in general by Fefferman and Stein [32]. Just as H1

provides a substitute for L1 in harmonic analysis, so too does the dual of H1, the space of
functions with bounded mean oscillation (BMO), substitute for L∞. Furthermore, the duals
of Hp for p < 1 are Lipschitz spaces, whose norms measure fractional order smoothness. In
our setting they can be introduced as follows.

Let α be a non-negative real number and M ∈ N be such that M > 1
2

(
α+ n

2

)
. For ε > 0

we define the space Mε,M
α,L as the collection of all µ ∈ L2(Rn) such that µ belongs to the range

of Lk in L2(Rn), k = 1, . . . ,M , and

‖µ‖Mε,M
α,L
≡ sup

j≥0
2j(n/2+α+ε)

M∑
k=0

‖L−kµ‖L2(Sj(Q0)) <∞,

be “strictly smaller” (in the sense of (1.16)) than Lp(Rn). We shall discuss this point in more detail in Sections 5
and 9.
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730 S. HOFMANN, S. MAYBORODA AND A. MCINTOSH

where Q0 is the unit cube centered at 0 and Sj(Q0), j ∈ N, are the corresponding dyadic
annuli (see (3.2)). We say that an element

(1.25) f ∈ ∩ε>0

Ä
Mε,M

α,L

ä∗
=: MM, ∗

α,L

belongs to the space ΛαL∗(Rn) if(7)

(1.26) ‖f‖Λα
L∗ (Rn) := sup

Q

1

|Q|α/n

Ç
1

|Q|

∫
Q

∣∣∣(I − e−l(Q)2L∗)Mf(x)
∣∣∣2 dxå1/2

<∞,

where the supremum runs over all cubesQ ⊂ Rn.Here and throughout the paper |Q| stands
for the Euclidean volume of the cube Q, and l(Q) denotes its side length. For α > 0 the
spaces ΛαL∗(Rn) are the analogues of the classical Lipschitz spaces,(8) while the case α = 0

corresponds to BMO. Accordingly, we denote BMOL∗(Rn) := Λ0
L∗(Rn). We refer the reader

to [40], where the authors also established some further properties of BMOL∗ such as a
Carleson measure characterization and an analogue of the John-Nirenberg inequality. In
addition, the authors showed in [40] that (H1

L)∗ = BMOL∗ . In Section 3 of the present paper,
we extend this duality as follows:

(1.27) (Hp
L(Rn))∗ = ΛαL∗(Rn), 0 < p ≤ 1, α = n(1/p− 1).

Moreover, the dual of ΛαL∗(Rn), in turn, provides an ambient space for Hp
L, for the

elements ofHp
L, p < 1, are not necessarily functions, they are linear functionals on ΛαL∗(Rn)

(recall that the elements of Hp are tempered distributions).

Finally, as we already mentioned, Hp
∆(Rn) = Hp(Rn) for all 0 < p < ∞, which reduces

to Lp(Rn) when p > 1. Then, by duality, BMO∆(Rn) = BMO(Rn) and Λα∆(Rn) = Λα(Rn),
the classical BMO and Lipschitz spaces. In general, one has only the proper inclusions (1.16)
and on the dual side BMO(Rn) ⊂ BMOL(Rn), Λα(Rn) ⊂ ΛαL(Rn) for 0 < α < 1.

1.4. The dual of Hp
L, 1 < p < 2

In the case 2 < p < ∞, the spaces Hp
L were originally defined by the duality relation-

ship (1.12). We shall give two intrinsic characterizations of these spaces: one, in Section 4
(cf. Corollary 4.17), in terms of square functions, analogous to (1.10)–(1.11), and another
one, in Section 6, in terms of a variant of the sharp maximal function. The former characteri-
zation is a consequence of tent space duality, and is similar to the analogous results presented
in [11]. The latter is new (although rooted in ideas of [32] and also [48]), and we discuss it in
a bit more detail at this point.

Following [32] and [48], consider the operator

(1.28) M]f(x) := sup
Q3 x

Ç
1

|Q|

∫
Q

∣∣∣(I − e−l(Q)2L)Mf(y)
∣∣∣2 dyå1/2

, x ∈ Rn,

(7) We note that in the presence of a pointwise Gaussian bound, similar spaces were previously introduced in the
work of Duong and Yan [26, 27, 28]. We shall discuss this point in more detail at the end of this section.
(8) Indeed, for α > 0, the norm in (1.26) is clearly modeled on the mean oscillation characterization, due to
N. Meyers [53], of the classical homogeneous “Lipα” space Λα(Rn). For 0 < α < 1, we define the latter to be the

space of continuous functions modulo constants, for which the norm ‖ϕ‖Λα(Rn) := supx 6=y
|ϕ(x)−ϕ(y)|
|x−y|α <∞.
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where M ∈ N and supQ3 x is the supremum over all cubes in Rn containing x. We shall

refer to M] as the sharp maximal operator and write M]
M to underline the dependence onM

whenever necessary. By definition, we have that f ∈MM, ∗
0,L∗ , M > n/4, belongs to the space

BMOL(Rn) if and only if M]f ∈ L∞(Rn). In the current paper we show that an analogous
characterization holds for all spaces in the Hardy-BMO scale when p > 2. That is, roughly
speaking, for 2 < p < ∞, we have f ∈ Hp

L(Rn) if and only if M]
Mf ∈ Lp(Rn), M > n/4,

and

(1.29) ‖f‖Hp
L

(Rn) ≈ ‖M
]
Mf‖Lp(Rn), M > n/4.

We shall prove a precise version of this statement in Section 6.

1.5. Sobolev spaces and fractional powers of L

The last topic that we shall treat, in Sections 7 and 8, concerns the adaptedHp
L spaces and

their relationship to the behavior of L in classical Sobolev spaces. In fact, we find a complete
range of all Sobolev spaces which naturally interact with the operators associated to L, and
one of the major ingredients in the argument is the Riesz transform characterization of Hp

L.
Let us describe these results in more detail.

We first prove in Section 7 that the fractional powers of L satisfy

(1.30) L−α : Hp
L(Rn) −→ Hr

L(Rn), α =
1

2

Å
n

p
− n

r

ã
, 0 < p < r <∞,

thereby extending the mapping properties of L−α in Lp (cf. [6], Proposition 5.3) to the range
of p beyond (p−(L), p+(L)).

In Section 8, we then consider the action of operators associated to L in the classical
Sobolev spaces. As is customary, we define the homogeneous Sobolev spaces Ẇ 1,p(Rn),
1 ≤ p <∞, to be the completion of C∞0 (Rn) in the seminorm

(1.31) ‖f‖Ẇ 1,p(Rn) = ‖∇f‖Lp(Rn).

More generally (except for the case p = 1), we let Ẇ s,p(Rn), 1 < p < ∞, denote the
completion of C∞0 (Rn) in the seminorm

(1.32) ‖f‖Ẇ s,p(Rn) = ‖∆s/2f‖Lp(Rn), s > 0,

and set Ẇ−s,p(Rn) = (Ẇ s,p′(Rn))∗, 1
p + 1

p′ = 1.

Consider first the case n ≥ 5. We prove that for any operator L defined in (1.1)–(1.3),
for every function ϕ holomorphic in a certain sector of a complex plane Σ0

µ (the exact
definitions will be given in the body of the paper), and for every f ∈ Ẇα,p(Rn),

(1.33) ‖ϕ(L)f‖Ẇβ,q(Rn) ≤ C
∥∥∥z β−α2 + 1

2 (np−
n
q )ϕ

∥∥∥
L∞(Σ0

µ)
‖f‖Ẇα,p(Rn),

provided that the function z 7→ z
β−α

2 + 1
2 (np−

n
q )ϕ(z) belongs to L∞(Σ0

µ) and the indices
α, β, p ≤ q are such that the points (β, 1/q) and (α, 1/p) belong to the closed region R1,
depicted on Figure 1.
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F 1. – The region R1.

In particular, for every t > 0

(1.34) e−tL : Ẇα,p(Rn) −→ Ẇα,p(Rn), if (α, 1/p) ∈ R1,

and

(1.35) L−s : Ẇα,p(Rn) −→ Ẇ β,q(Rn), if (β, 1/q) ∈ R1 and (α, 1/p) ∈ R1,

with s = β−α
2 + 1

2

Ä
n
p −

n
q

ä
, p ≤ q.

The region R1 is closed and is also sharp, in the sense that for every pair α, p such that
(α, 1/p) 6∈ R1 there is an operator L for which the property (1.34) is not satisfied and hence,
(1.33) is not generally satisfied.

Furthermore, all the results in (1.33)–(1.35) have analogues for n ≤ 4. In this case
2n
n+4 ≤ 1, and just as the classical Hardy spaces provide a natural extension ofLp to the range

p ≤ 1, so too do the Triebel-Lizorkin (or “Hp Sobolev”) spaces Ḟ p,2s extend Ẇ s,p in this
range; i.e., the spaces Ḟ p,2s coincide with Ẇ s,p when p > 1 and otherwise naturally extend
the Sobolev scale to small values of p. We prove that

(1.36) ‖ϕ(L)f‖Ḟ q,2
β

(Rn) ≤ C
∥∥∥z β−α2 + 1

2 (np−
n
q )ϕ

∥∥∥
L∞(Σ0

µ)
‖f‖Ḟp,2α (Rn), ∀f ∈ Ḟ p,2α (Rn),

provided that the function z 7→ z
β−α

2 + 1
2 (np−

n
q )ϕ(z) belongs to L∞(Σ0

µ) and the indices
α, β, p ≤ q are such that the points (β, 1/q) and (α, 1/p) belong to the region R2, depicted on
Figure 2. In particular, the analogues of (1.34)–(1.35) hold in this context as well. Moreover,
all the results are once again sharp, in the sense that for every point outside of the region R2

even the heat semigroup is not necessarily bounded in the corresponding Triebel-Lizorkin
space.
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F 2. – The region R2.

The study of the properties of the operators associated to L in Sobolev spaces stems
from the work of P. Auscher in [6] (Sections 5.3, 5.4). Our results extend the theorems in
[6] in several directions: to the range of p beyond the range of Lp-boundedness of the heat
semigroup (i.e. to the cases p < p−(L) < 2n/(n + 2) and p > p+(L) > 2n/(n − 2)), and
in particular to p ≤ 1, and are accompanied by the negative results which lead to sharpness
of the obtained range of indices. In particular, we resolve the conjecture posed at the end of
Section 5 in [6].

The results we describe in this paper generalize most of the important aspects of the
real variable Hardy space theory to a context in which the standard tools of the Calderón-
Zygmund theory are not applicable. Besides the aforementioned works [11] and [40], some
properties of the Hardy and BMO spaces associated with different operators were introduced
previously in [12], [27], [28], [59].

In particular, we note that the theory of L-adapted H1 and BMO spaces, including an
appropriate analogue of Fefferman’s duality theorem, originates in the work of Duong and
Yan [27], [28] who treated the case that the associated heat kernel satisfies a pointwise
Gaussian bound. Their BMO norm is the same as that in (1.26), with α = 0 and M = 1,
and they have also considered Morrey-Campanato type spaces corresponding to the case
α > 0 [26]. As we have observed above, the theory and techniques of the present paper,
which we develop in the absence of pointwise kernel bounds, assuming only decay estimates
of “Gaffney” type, are necessarily somewhat different.

We note also that, while this manuscript was in preparation, we learned that some of the
results presented here in the case 0 < p < 1 have been obtained independently by R. Jiang
and D. Yang [44] (molecular decomposition, duality, and some mapping properties of linear
and non-negative sublinear operators in spaces with integrability 0 < p < 1). As mentioned
above, the case p = 1 was already treated in [40] (and in [11], in a somewhat different context).
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Our main results in the case p > 1, as well as our Riesz transform characterization (1.19),
appear to be unique to this paper.(9)
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the duality result for 0 < p < 1 (cf. Step II of Theorem 3.52 below). Our original proof here
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2. The heat semigroup and functions of L in Lp

2.1. Definitions and L2 theory

Let L be a second order elliptic operator satisfying (1.1)–(1.3) viewed as an accretive
operator in L2(Rn). There exists some ω ∈ [0, π/2) such that the operator L is of type ω
on L2(Rn). In particular, −L generates a complex semigroup which extends to an analytic
semigroup {e−zL}z∈Σ0

π/2−ω
on L2(Rn). Here

Σ0
µ := {z ∈ C \ {0} : | arg z| < µ}, µ ∈ (0, π).(2.1)

Furthermore, L has bounded holomorphic functional calculus on L2(Rn) (see [51] and
[1]). To be more precise, let us define

H∞(Σ0
µ) := {ψ : Σ0

µ → C : ψ is analytic and ‖ψ‖L∞(Σ0
µ) <∞},(2.2)

Ψσ,τ (Σ0
µ) := {ψ : Σ0

µ → C : ψ is analytic and

|ψ(ξ)| ≤ C inf{|ξ|σ, |ξ|−τ} for every ξ ∈ Σ0
µ}.(2.3)

(9) Although as mentioned above, our tent space/square function definition of adaptedHp spaces with p > 1 follows
that given in [11].
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Alternatively, one can say that

(2.4) ψ ∈ Ψσ,τ (Σ0
µ) ⇐⇒ ψ ∈ H∞(Σ0

µ) and |ψ(ξ)| ≤ C |ξ|σ
1+|ξ|σ+τ , σ, τ > 0.

Whenever ψ ∈ H∞(Σ0
µ)

(2.5) ‖ψ(L)f‖L2(Rn) ≤ C‖ψ‖L∞(Σ0
µ)‖f‖L2(Rn) for every f ∈ L2(Rn).

Let Ψ(Σ0
µ) := ∪σ,τ>0Ψσ,τ (Σ0

µ). If ψ ∈ Ψ(Σ0
µ) then ψ(L) can be represented as

(2.6) ψ(L) =

∫
Γ+

e−zLη+(z) dz +

∫
Γ−

e−zLη−(z) dz,

where

(2.7) η±(z) =
1

2πi

∫
γ±

eξzψ(ξ) dξ, z ∈ Γ±,

and Γ± = R+e±i(π/2−θ), γ± = R+e±iν , ω < θ < ν < µ < π/2. In general, when
ψ ∈ H∞(Σ0

µ), ψ(L) can be defined using (2.6)–(2.7) and a limiting procedure (see [6],
Chapter 2, and references therein).

Finally, let us introduce

Ψ′σ,τ (Σ0
µ) = {ψ : Σ0

µ → C : ψ is analytic and there are some σ, τ, C > 0

such that |ψ(ξ)| ≤ C sup{|ξ|σ, |ξ|−τ} for every ξ ∈ Σ0
µ}.(2.8)

For every ψ ∈ Ψ′σ,τ one can define an unbounded operator ψ(L) on L2(Rn) following the
procedure in [51]. In particular, the fractional powers of L arise in this way.

2.2. Lp boundedness of the heat semigroup: sharp results

Following [6], let us denote by J (L) the maximal interval of exponents p ∈ [1,∞]

for which the heat semigroup {e−tL}t>0 is Lp-bounded and let us write int J (L) =

(p−(L), p+(L)). It was proved in [6] (Sections 3.2 and 4.1) that

(2.9) p−(L) < 2n
n+2 and p+(L) > 2n

n−2 ,

for L as in (1.1)–(1.3), and that p−(L) is also the lower bound for the interval of p for which
∇L−1/2 : Lp → Lp (hence this notation is consistent with that in Section 1). We shall show
that the bounds in (2.9) are sharp, in the following sense.

P 2.10. – Given any p̃− with 1 ≤ p̃− <
2n
n+2 there exists an operator L such

that the heat semigroup {e−tL}t>0 is not bounded in Lp̃− . And similarly, given any p̃+ with
2n
n−2 < p̃+ ≤ ∞, there exists an operator L such that the heat semigroup {e−tL}t>0 is not

bounded in Lp̃+ .

Proof. – We argue as in [14], Section 1.3, but using the example of [34] rather than that
of [50].
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Let n ≥ 3. By [34], for every q < n/2 and λ > 0, there is an n × n matrix A = A(q, λ)

satisfying (1.1)–(1.2) and such that

(2.11) u =
x1

|x|q
eiλ ln |x|

is a classical solution of the equation Lu = −div(A∇u) = 0 in Rn \ {0}, and is a weak
solution globally in Rn.

More precisely, A has a form

(2.12) A =

ß
(α+ i)δjk + β

xjxk
|x|2

™n
j,k=1

,

where α ∈ R and β ∈ C are some constants. For any fixed α ∈ R, λ 6= 0, q 6= 0 there
exists β = β(α, q, λ) (explicitly written in [34]) such that u in (2.11) solves the equation
−div(A∇u) = 0, and moreover, for q < n/2, λ > 0, α > 0 sufficiently small and
β = β(α, q, λ), the corresponding matrix A satisfies the ellipticity conditions.

Now let us return to the properties of the heat semigroup. First of all, take some
φ ∈ C∞0 (Rn), supported in the unit ball B1, such that φ = 1 in the ball of radius 1/2

centered at the origin. Then ∇φ ∈ C∞0 (B1) and ∇φ = 0 in a neighborhood of 0. Since the
only singularity of u (and of A) is at 0, we have

(2.13) L(uφ) = −div(A∇(uφ)) = −div(Au∇φ)−A∇u · ∇φ =: f ∈ C∞0 (B1),

where the second equality follows from the fact that Lu = 0.

Fix some p̃+ > 2n
n−2 and assume that the heat semigroup {e−tL}t>0 is bounded in Lp̃+

for an operator L. Then, according to [6], Proposition 5.3, we have

(2.14) L−1 : Lp(Rn) −→ Lr(Rn), n/p− n/r = 2,

provided r < p̃+ and p > p−(L). But since p−(L) is always smaller than 2n
n+2 , (2.14) is valid

for any 2n
n−2 ≤ r < p̃+.

The function f ∈ C∞0 (B1) in the right-hand side of (2.13) belongs, in particular, to all Lp

spaces, 1 ≤ p ≤ ∞, and therefore, by (2.14) the solution

(2.15) L−1f = uφ must belong to all Lr, 2n
n−2 ≤ r < p̃+.

However, uφ = u in a neighborhood of the origin and u given by (2.11) does not belong
toLr when r(1−q)+n < 0. We can take ε > 0 sufficiently small so that 2n/(n−2−2ε) < p̃+

and take q = n/2− ε. Then uφ 6∈ Lr for any r > 2n/(n− 2− 2ε) which contradicts (2.15).

Since p−(L) = (p+(L∗))′, this computation also shows that assuming boundedness
of {e−tL}t>0 in Lp̃− for all L will lead to a contradiction.

Let L be a divergence form elliptic operator with complex bounded coefficients given by
(1.1)–(1.3). LetKt(x, y), t > 0, x, y ∈ Rn, denote the Schwartz kernel of the heat semigroup
generated by L. We say that it satisfies the Gaussian property if for each t > 0 the kernel

4 e SÉRIE – TOME 44 – 2011 – No 5



SECOND ORDER ELLIPTIC OPERATORS 737

Kt(x, y) is Hölder continuous in x and y and there exist some constants C, c, α > 0 such
that for every x, y, h ∈ Rn

|Kt(x, y)| ≤ C

tn/2
e−
|x−y|2
ct ,(2.16)

|Kt(x, y)−Kt(x+ h, y)| ≤ C

tn/2

Å |h|
t1/2 + |x− y|

ãα
e−
|x−y|2
ct ,(2.17)

|Kt(x, y)−Kt(x, y + h)| ≤ C

tn/2

Å |h|
t1/2 + |x− y|

ãα
e−
|x−y|2
ct ,(2.18)

whenever 2|h| ≤ t1/2+|x−y|. For every elliptic operator defined in (1.1)–(1.3) the heat kernel
satisfies the Gaussian bounds in dimensions n = 1, 2, and for every elliptic operator with real
coefficients this property holds in all dimensions. It was known that in general the Gaussian
bounds may fail in dimensions n ≥ 5. Whether or not they necessarily hold when n = 3, 4

has been an open problem (see, e.g., [14], §1.2 and the remark on p. 33). The corollary below
answers this question to the negative.

C 2.19. – Let n ≥ 3. There exists an elliptic operator L given by (1.1) (1.3)
such that the kernel of the heat semigroup generated by L does not satisfy (2.16). In particular,
for such L the Gaussian property does not hold.

Proof. – The estimate (2.16) implies that the integral kernel G(x, y), x, y ∈ Rn, of the
operator L−1 =

∫∞
0
e−tL dt is controlled by C|x− y|2−n. Hence, (2.14) holds, which yields

as before a contradiction. An analogous argument was used in [14], §1.3.

Alternatively, one could check directly that (2.16) implies the Lp boundedness of the heat
semigroup for all 1 ≤ p ≤ ∞. Indeed, the boundedness in L1 follows applying the Fubini
Theorem to the L1 norm of e−tLf and integrating the upper bound of the kernel, given by
(2.16), in x. The boundedness in L∞ is also trivial, since bringing out the L∞ norm of f
in an integral expression for e−tLf , one just ends up with the integral of the right-hand
side of (2.16) in y. The range 1 < p < ∞ then follows by interpolation. However, the Lp

boundedness of the heat semigroup for all 1 ≤ p ≤ ∞ contradicts Proposition 2.10. We
thank the referee for pointing out this, perhaps simpler, route.

C 2.20. – For each p < 2n
n+2 and each p > 2 there exists L such that∇L−1/2 is

not bounded in Lp.

Proof. – The counterexample for p > 2 is due to C. Kenig (see [14], Section 4.2.2). The
case p < 2n

n+2 follows from Proposition 2.10 along with the fact, proved in [6] and noted
above, that the lower endpoint of the interval of boundedness of Riesz transform coincides
with the lower endpoint of the interval of boundedness of the heat semigroup .

2.3. Off-diagonal estimates and Lp − Lq bounds

We say that a family of operators {St}t>0 satisfies L2 off-diagonal estimates (“Gaffney
estimates”) if there are some constants c, C > 0 such that for arbitrary closed setsE,F ⊂ Rn

(2.21) ‖Stf‖L2(F ) ≤ C e−
dist (E,F )2

ct ‖f‖L2(E),
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for every t > 0 and every f ∈ L2(Rn) supported in E. Similarly, a family {Sz}z∈Σ0
µ

,
0 < µ < π/2, satisfiesL2 off-diagonal estimates in z if the analogue of (2.21) holds with |z| in
place of t on the right-hand side. For example, if 0 < µ < π/2−ω, the families {e−zL}z∈Σ0

µ

and {(zL)ke−zL}z∈Σ0
µ
, k = 1, 2, . . . satisfy L2 off-diagonal estimates in z (see [6], §2.3). For

later reference we record the following result.

L 2.22 ([39]). – If two families of operators, {St}t>0 and {Tt}t>0, satisfy Gaffney
estimates (2.21) then so does {StTt}t>0. Moreover, there exist c, C > 0 such that for arbitrary
closed sets E,F ⊂ Rn

(2.23) ‖SsTtf‖L2(F ) ≤ C e−
dist (E,F )2

cmax{t,s} ‖f‖L2(E),

for all t, s > 0 and all f ∈ L2(Rn) supported in E.

A family of operators {St}t>0 satisfies Lp − Lq off-diagonal estimates, 1 < p, q < ∞, if
for arbitrary closed sets E,F ⊂ Rn

(2.24) ‖Stf‖Lq(F ) ≤ Ct
1
2 (nq−

n
p ) e−

dist (E,F )2

ct ‖f‖Lp(E),

for every t > 0 and every f ∈ Lp(Rn) supported in E.

L 2.25 ([6]). – For every p and q such that p−(L) < p ≤ q < p+(L) the family
{e−tL}t>0 satisfies Lp − Lq off-diagonal estimates. In particular, the operator e−tL, t > 0,
maps Lp(Rn) to Lq(Rn) with norm controlled by Ct

1
2 (nq−

n
p ).

The lemma has been essentially proven in [6], Proposition 3.2. There, q ≡ 2, but the
argument directly extends to the full range stated in Lemma 2.25 above (see also the remark
following Proposition 3.2 in [6]).

L 2.26. – Assume that for some 1 ≤ r ≤ 2 the family {e−tL}t>0 satisfies Lr − L2

off-diagonal estimates. Then the family {tLe−tL}t>0 also satisfies Lr − L2 off-diagonal
estimates and the operators e−tL, tLe−tL, t > 0, are bounded from Lr(Rn) to L2(Rn) with
norms bounded by Ct

1
2 (n2−

n
r ), and from Lr(Rn) to Lr(Rn) with norms independent of t.

Proof. – The fact that Lr − L2 off-diagonal estimates implies boundedness in Lr(Rn) is
rather standard, see e.g., [6], Lemma 3.3, or [17].

As we mentioned above Lemma 2.22, the family of operators {tLe−tL}t>0 satisfiesL2−L2

off-diagonal estimates and, in particular, is bounded in L2(Rn). We can combine this infor-
mation with the properties of the heat semigroup, stated in Lemma 2.25, and Lemma 2.22 to
deduce that tLe−tL = 2

Ä
t
2Le

− t2L
ä
e−

t
2L, t > 0, also satisfies Lr−L2 off-diagonal estimates

and is Lr − L2 bounded.

We say that a family of operators {St}t>0 satisfies L2 off-diagonal estimates of order N ,
N > 0, N ∈ R, if there is a constant C > 0 such that for arbitrary closed sets E,F ⊂ Rn

(2.27) ‖Stf‖L2(F ) ≤ C min

ß
1,

t

dist (E,F )2

™N
‖f‖L2(E),

for every t > 0 and every f ∈ L2(Rn) supported in E.
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L 2.28. – Let µ ∈ (ω, π/2), ψ ∈ Ψσ,τ (Σ0
µ) for some σ, τ > 0, and f ∈ H∞(Σ0

µ).
Then the family of operators {ψ(tL)f(L)}t>0 satisfies L2 off-diagonal estimates of order σ,
with the constant controlled by ‖f‖L∞(Σ0

µ).

An analogous fact has been established for the Hodge-Dirac operator on a complete
Riemannian manifold in [11], Lemma 3.6.

Proof. – Recall the representation formulas (2.6), (2.7). We use them for the function
ψ(tL)f(L), t > 0. First of all,

(2.29) |η±(z)| ≤ C

t

∫
γ±

|ψ(tξ)| |f(ξ)| d(tξ)

≤ C

t
‖f‖L∞(Σ0

µ)

∫
γ±

|tξ|σ

1 + |tξ|σ+τ
d(tξ) ≤ C

t
‖f‖L∞(Σ0

µ),

for all z ∈ Γ±, in particular, for z with |z| ≤ t.
When |z| > t we break η±(z) into two integrals: one over {ξ ∈ γ± : |ξ| ≤ 1/t} (called J1)

and the second one over {ξ ∈ γ± : |ξ| ≥ 1/t} (called J2). Then

J1 ≤ C ‖f‖L∞(Σ0
µ)

∫
ξ∈γ±: |ξ|≤1/t

e−δ|z||ξ||tξ|σ dξ

≤ C

|z|
‖f‖L∞(Σ0

µ)
tσ

|z|σ

∫ ∞
0

e−δρ ρσ dρ ≤ C

t
‖f‖L∞(Σ0

µ)

( t

|z|

)σ+1

,(2.30)

where δ = − cos
(
π
2 − θ + ν

)
∈ (0, 1), and

(2.31) J2 ≤ C ‖f‖L∞(Σ0
µ)

∫
ξ∈γ±: |ξ|≥1/t

|zξ|−σ−1|tξ|−τ dξ

≤ C ‖f‖L∞(Σ0
µ)

( t

|z|

)σ+1

t−τ−σ−1

∫
ξ∈γ±: |ξ|≥1/t

|ξ|−σ−1−τ dξ

≤ C

t
‖f‖L∞(Σ0

µ)

( t

|z|

)σ+1

.

Hence,

(2.32) |η±(z)| ≤ C

t
‖f‖L∞(Σ0

µ) min

ß
1,
( t

|z|

)σ+1
™
, ∀ z ∈ Γ±.

Armed with this estimate, we proceed to the bounds on ψ(tL)f(L), t > 0. Take some
g ∈ L2(Rn) supported in a closed set E. Then for any closed set F ⊂ Rn

(2.33) ‖ψ(tL)f(L)g‖L2(F ) ≤
∫

Γ+

‖e−zLg‖L2(F )|η+(z)| dz +

∫
Γ−

‖e−zLg‖L2(F )|η−(z)| dz.

Further,∫
Γ±

‖e−zLg‖L2(F )|η±(z)| dz ≤ C ‖g‖L2(E)

∫
Γ±

e−
dist (E,F )2

c|z| |η±(z)| dz

≤ C ‖f‖L∞(Σ0
µ) ‖g‖L2(E)

∫
Γ±

e−
dist (E,F )2

c|z| min

ß
1,
( t

|z|

)σ+1
™

1

t
dz.(2.34)
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Now we split the last integral in (2.34) according to whether |z| ≤ t or |z| ≥ t, and denote
the corresponding parts of it by I1 and I2, respectively. Then

I1 =

∫
z∈Γ±:|z|≤t

e−
dist (E,F )2

c|z|
1

t
dz ≤ e−

dist (E,F )2

ct .(2.35)

On the other hand,

I2 =

∫
z∈Γ±:|z|≥t

e−
dist (E,F )2

c|z|

( t

|z|

)σ+1 1

t
dz.(2.36)

If t ≥ dist (E,F )2, we obtain the bound

I2 ≤
∫
z∈Γ±:|z|≥t

( t

|z|

)σ+1 1

t
dz ≤ C.(2.37)

If t ≤ dist (E,F )2, then

I2 ≤
∫
z∈Γ±:t≤|z|≤dist (E,F )2

( |z|
dist (E,F )2

)N ( t

|z|

)σ+1 1

t
dz

+

∫
z∈Γ±:|z|≥dist (E,F )2

( t

|z|

)σ+1 1

t
dz,(2.38)

for any N > 0. Let us take N > σ. Then

I2 ≤ C
( 1

dist (E,F )2

)N
tσdist (E,F )2(N−σ) + C

( t

dist (E,F )2

)σ
≤ C

( t

dist (E,F )2

)σ
.(2.39)

This finishes the proof of the lemma.

Finally, we establish the following lemma (cf. Lemma 3.7 in [11]).

L 2.40. – Let µ ∈ (ω, π/2) and σ1, σ2, τ1, τ2 > 0. Suppose further that
ψ ∈ Ψσ1,τ1(Σ0

µ), ψ̃ ∈ Ψσ2,τ2(Σ0
µ) and f ∈ H∞(Σ0

µ). Then for any 0 < a < min{σ1, τ2} and
0 < b < min{σ2, τ1} there is a family of operators Ts,t, s, t > 0 such that

(2.41) ψ(sL)f(L)ψ̃(tL) = min

ß(s
t

)a
,
( t
s

)b™
Ts,t,

where

(1) {Ts,t}s≤t satisfy the L2 off-diagonal estimates in t of order σ2 + a uniformly in s ≤ t,
(2) {Ts,t}t≤s satisfy the L2 off-diagonal estimates in s of order σ1 + b uniformly in t ≤ s,

with the constants bounded by ‖f‖L∞(Σ0
µ).

Proof. – Let us consider first s ≤ t. Then

(2.42) ψ(sL)f(L)ψ̃(tL) =
(s
t

)a
(sL)−aψ(sL)f(L)(tL)aψ̃(tL) =:

(s
t

)a
Ts,t.

The function (sξ)−aψ(sξ)f(ξ), ξ ∈ Σ0
µ, belongs to H∞(Σ0

µ) and

(2.43) ‖(sξ)−aψ(sξ)f(ξ)‖L∞(Σ0
µ) ≤ C‖f‖L∞(Σ0

µ),
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with the constant C independent of s > 0. Hence, by Lemma 2.28 the operators {Ts,t}s≤t
satisfy theL2 off-diagonal estimates in t of order σ2 +a uniformly in s ≤ t, with the constant
bounded by ‖f‖L∞(Σ0

µ). The case s ≥ t follows analogously, and their combination proves
the lemma.

3. Molecular decomposition and duality, 0 < p ≤ 1

To begin, we would like to make a few comments regarding the well-definedness and the
nature of the space ΛαL∗(Rn), α ≥ 0. Let M ∈ N, M > 1

2

(
α+ n

2

)
. First, (I − e−t2L∗)Mf ,

t ∈ R, is globally well defined in the sense of distributions for every f ∈MM, ∗
α,L , and belongs

to L2
loc. Indeed, if ϕ ∈ L2(Q) for some cube Q, it follows from the Gaffney estimate (2.21)

that (I−e−t2L)Mϕ ∈Mε,M
α,L for every ε > 0 (with the norm depending on t, `(Q), dist(Q, 0)).

Thus,

(3.1) 〈(I − e−t
2L∗)Mf, ϕ〉 ≡ 〈f, (I − e−t

2L)Mϕ〉 ≤ Ct,`(Q),dist(Q,0)‖f‖(Mε,M
α,L

)∗‖ϕ‖L2(Q).

Since Q was arbitrary, the claim follows. Therefore, the norm in (1.26) is well-defined for
such f . Furthermore, the elements of Mε,M

α,L are, modulo translation, dilation and normal-
ization, the molecules of the corresponding Hardy spaces. The details are as follows.

For a cube Q ⊂ Rn , by Si(Q), i = 0, 1, 2, . . . , we denote the dyadic annuli based on Q,
i.e.

(3.2) S0(Q) := Q and Si(Q) := 2iQ \ 2i−1Q for i = 1, 2, . . . ,

where 2iQ is the cube with the same center asQ and side length 2il(Q). Let 0 < p ≤ 1, ε > 0,
andM ∈ N. We will always assume the above restrictions on ε andM , and typically, given p,

unless otherwise stated we will take M > n
2

(
1
p −

1
2

)
. A function m ∈ L2(Rn) is called an

(Hp
L, ε,M) - molecule(10) if it belongs to the range of Lk in L2(Rn), for each k = 1, . . . ,M ,

and there exists a cube Q ⊂ Rn such that

(3.3) ‖(l(Q)−2L−1)km‖L2(Si(Q)) ≤ (2il(Q))
n
2−

n
p 2−iε, i = 0, 1, 2, . . . , k = 0, 1, . . . ,M.

Observe that for k = 0 the estimate (3.3) is the usual size control condition and for
k = 1, . . . ,M the condition (3.3) is a quantitative version of the requirement that
m ∈ R(Lk), which in turn is analogous to the classical requirement of vanishing moments.

We are now able to define a molecular Hp
L space, which we shall eventually show is

equivalent to the space Hp
L defined via square functions.

D 3.4. – Let 0 < p ≤ 1, and fix ε > 0. The Hardy space Hp
L,mol,M (Rn)

is defined as follows. We say that f =
∑
λjmj , where {λj}∞j=0 ∈ `p, is a molecular

(Hp
L, 2, ε,M)-representation (of f ) if each mj is an (Hp

L, ε,M)-molecule, and the sum
converges in L2(Rn). Set

Hp
L,mol,M (Rn) =

{
f : f has a molecular (Hp

L, 2, ε,M)-representation
}
,

(10) Molecules have been introduced in the classical setting corresponding to L = −∆ in [56]; see also [23].
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with the “norm” (it is a true norm only when p = 1), given by

||f ||Hp
L,mol,M

(Rn) =

inf
{( ∞∑

j=0

|λj |p
)1/p

: f =
∞∑
j=0

λjmj is a molecular (Hp
L, 2, ε,M)-representation

}
.

The space Hp
L,mol,M (Rn) is then defined as the completion of Hp

L,mol,M (Rn) with respect to
the metric induced by ||f ||pHp

L,mol,M
(Rn)

.

We note that this approach to the definition of adapted Hp spaces has also been used in
[38], at least in the case p = 1. We also remark that this approach, in the case p = 1, was
implicit in [40], but with a more complicated formulation in which L2 convergence of the
molecular sums was achieved constructively, by means of an explicit truncation in scale.

Eventually, we shall see that any fixed choice ofM > n
2 ( 1

p −
1
2 ) and ε > 0, yields the same

space. Indeed, more generally, we will show that the “square function” and “molecular” Hp

spaces are equivalent, if the parameter M > n
2 ( 1

p −
1
2 ). In fact, we shall prove

T 3.5. – Let 0 < p ≤ 1. Suppose that M > n
2 ( 1

p −
1
2 ) and that ε > 0. Then

Hp
L,mol,M (Rn) = Hp

L(Rn). Moreover,

‖f‖Hp
L,mol,M

(Rn) ≈ ‖f‖Hp
L

(Rn),

where the implicit constants depend only on M , n, p, ε and ellipticity.

Consequently, one may write simply Hp
L,mol(Rn) in place of Hp

L,mol,M (Rn), when
M > n

2 ( 1
p −

1
2 ), and for any fixed ε > 0, as these spaces are all equivalent. Moreover,

we could also define (Hp
L, q, ε,M)-molecules as m ∈ Lq(Rn) belonging to the range of Lk

in Lq(Rn), k = 1, . . . ,M , and satisfying the estimates

(3.6) ‖(l(Q)−2L−1)km‖Lq(Si(Q)) ≤ C (2il(Q))
n
q−

n
p 2−iε, i = 0, 1, 2, . . . , k = 0, 1, . . . ,M.

These would also yield the same Hp
L(Rn) spaces provided p−(L) < q < p+(L). We omit

the details here, although we do note that a proof is given in [40], [41] in the case p = 1.

We now proceed to the proof of Theorem 3.5. The basic strategy is as follows: by density,
it is enough to show that

(3.7) Hp
L,mol,M (Rn) = L2(Rn) ∩Hp

L(Rn), M >
n

2

Å
1

p
− 1

2

ã
with equivalence of norms. The proof of this fact proceeds in two steps.

Step 1. – Hp
L,mol,M (Rn) ⊆ L2(Rn) ∩Hp

L(Rn), if M > n
2 (1/p− 1/2).
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Step 2. – Hp
L(Rn) ∩ L2(Rn) ⊆ Hp

L,mol,M (Rn), for every M ∈ N.

We take these in order. The conclusion of Step 1 is an immediate consequence of the
following pair of lemmata.

L 3.8. – Fix M ∈ N, and suppose that 0 < p ≤ 1. Assume that T is a linear
operator, or a non-negative sublinear operator, satisfying the weak-type (2,2) bound

(3.9) µ{x ∈ Rn : |Tf(x)| > η} ≤ CT η−2‖f‖2L2(Rn), ∀η > 0,

and that for every (Hp
L, ε,M)-molecule m, we have

‖Tm‖Lp(Rn) ≤ C(3.10)

with constant C independent of m. Then T is bounded from Hp
L,mol,M (Rn) to Lp(Rn), and

‖Tf‖Lp(Rn) ≤ C‖f‖Hp
L,mol,M

(Rn).

Consequently, by density, T extends to a bounded operator from Hp
L,mol,M (Rn) to Lp(Rn).

We mention that a result similar to Lemma 3.8 appears in [44] (Lemma 5.1).

L 3.11. – Let m be an (Hp
L, ε,M)-molecule, with 0 < p ≤ 1, M > n

2 ( 1
p −

1
2 ) and

ε > 0. Then there is a constant C0 depending only on p, ε,M, n and ellipticity such that

‖Sm‖p ≤ C0,

where S denotes the square function defined in (1.10).

Indeed, given Lemma 3.11, we may apply Lemma 3.8 with T = S to obtain

‖f‖Hp
L

(Rn) := ‖Sf‖Lp(Rn) ≤ C‖f‖Hp
L,mol,M

(Rn),

whence Step 1 follows.

To finish Step 1, it therefore suffices to prove the two lemmata.

Proof of Lemma 3.8. – Let f ∈ Hp
L,mol,M (Rn), where f =

∑
λjmj is a molecular

(Hp
L, 2, ε,M)-representation such that

‖f‖pHp
L,mol,M

(Rn)
≈
∞∑
j=0

|λj |p.

Since the sum converges inL2 (by definition), and since T is of weak-type (2, 2), we have that
at almost every point,

(3.12) |T (f)| ≤
∞∑
j=0

|λj | |T (mj)|.

Indeed, for every η > 0, we have that, if fN :=
∑
j>N λjmj , then,

µ
{
|T (f)| −

∞∑
j=0

|λj | |T (mj)| > η
}
≤ lim sup

N→∞
µ
{
|T (fN )| > η

}
≤ CT η−2 lim sup

N→∞
‖fN‖2 = 0,
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from which (3.12) follows. In turn, (3.12) and (3.10) imply the desiredLp bound for Tf , since
0 < p ≤ 1.

Proof of Lemma 3.11. – Fix a cube Q, and let m be an (Hp
L, ε,M)-molecule, adapted

to Q, with 0 < p ≤ 1, M > n
2 ( 1

p −
1
2 ) and ε > 0. In particular, we have that for each

k ∈ {0, 1, . . . ,M},

(3.13) ‖
(
`(Q)2L

)−k
m‖L2(Rn) ≤ Ck |Q|1/2−1/p.

Hence, by Hölder’s inequality and the L2 boundedness of S, we have that

‖Sm‖Lp(16Q) ≤ C|Q|1/p−1/2 ‖Sm‖L2(Rn) ≤ C.

Writing now ‖Sm‖pp = ‖Sm‖pLp(16Q) +
∑∞
j=5 ‖Sm‖

p
Lp(Sj(Q)), where we recall that Sj(Q) :=

2jQ \ 2j−1Q, we see that it is enough to prove that

(3.14) ‖Sm‖L2(Sj(Q)) ≤ C2−jα|2jQ|1/2−1/p,

for some α > 0 and for each j ≥ 5. To this end, we write

‖Sm‖2L2(Sj(Q)) =

∫
Sj(Q)

∫ ∞
0

∫
|x−y|<t

∣∣∣Ät2Le−t2Lmä
(y)
∣∣∣2 dydt
tn+1

dx

=

∫
Sj(Q)

∫ 2θ(j−5)`(Q)

0

∫
|x−y|<t

+

∫
Sj(Q)

∫ ∞
2θ(j−5)`(Q)

∫
|x−y|<t

=: I + II,

where θ ∈ (0, 1) will be chosen momentarily. Then by Fubini’s theorem, the definition of an
(Hp

L, ε,M)-molecule (cf. (3.3)), the uniform L2 boundedness of t2KLKe−t
2L for each non-

negative integer K, and (3.13), setting b := L−Mm, we have

II ≤
∫ ∞

2θ(j−5)`(Q)

∫
Rn

∣∣∣Ät2(M+1)LM+1e−t
2L b

ä
(y)
∣∣∣2 dy dt

t4M+1

≤ C
(
2θj`(Q)

)−4M ‖b‖2L2(Rn) ≤ C2−j(4θM+n(1−2/p))2jn(1−2/p) |Q|1−2/p

= C2−j(4θM−n(2/p−1)) |2jQ|1−2/p .

Taking square roots, and choosing θ sufficiently close to 1, we obtain (3.14) for the contribu-
tion of the term II, with α = (2θM − n(1/p− 1/2)) > 0.

We now treat the term I. We set

S̃j(Q) := 2j+1Q \ 2j−2Q, Ŝj(Q) := 2j+2Q \ 2j−3Q,
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and observe that, by Fubini’s Theorem

I ≤
∫ 2θ(j−5)`(Q)

0

∫
S̃j(Q)

∣∣∣Ät2Le−t2Lmä
(y)
∣∣∣2 dy dt

t

.

∫ 2θ(j−5)`(Q)

0

∫
S̃j(Q)

∣∣∣Ät2Le−t2L (12j−3Qm)
ä

(y)
∣∣∣2 dy dt

t

+

∫ 2θ(j−5)`(Q)

0

∫
S̃j(Q)

∣∣∣(t2Le−t2L (1
Ŝj(Q)

m)
)

(y)
∣∣∣2 dy dt

t

+

∫ 2θ(j−5)`(Q)

0

∫
S̃j(Q)

∣∣∣Ät2Le−t2L (1Rn\2j+2Qm)
ä

(y)
∣∣∣2 dy dt

t

=: I1 + I2 + I3.

By the L2 boundedness of S and the definition of a molecule (cf. (3.3)),√
I2 ≤ C ‖m‖Ŝj(Q)

≤ C 2−jε|2jQ|1/2−1/p,

which is (3.14) for the contribution of I2. For the other two terms, we have that by the Gaffney
estimates (cf. Subsection 2.3),

I1 + I3 ≤ C‖m‖2L2(Rn)

∫ 2θ(j−5)`(Q)

0

exp

Å−(2j`(Q))2

c t2

ã
dt

t

≤ CN‖m‖2L2(Rn)

∫ 2θ(j−5)`(Q)

0

Å
t

2j`(Q)

ãN dt

t
≤ CN |Q|2(1/2−1/p)2N(θ−1)j ,

where we have used (3.13) in the last step, andN is at our disposal. Having fixed θ < 1 above,
we may now choose N so large that N(1− θ) ≥ 4M > 2n(1/p− 1/2), to obtain in turn the
desired bound

I1 + I3 ≤ C |2jQ|2(1/2−1/p)2−j(4M−2n(1/p−1/2)),

whence (3.14) follows.

This concludes Step 1. We now turn to Step 2.

Our goal is to show that every f ∈ L2(Rn) ∩Hp
L(Rn) has a molecular

(Hp
L, 2, ε,M)-representation, with appropriate quantitative control of the coefficients.

To this end, we follow the (nowadays) standard tent space approach of [22], as adapted to
the present setting in the case p = 1 in [11] (cf. [38] and [44], as well as the earlier work [27]);
yet another (somewhat more complicated) adaptation of the methods of [22] was used in
[40], [41].

Let us begin by recalling some basic facts from [22]. First, for 0 < p <∞, the tent spaces
on Rn+1

+ = Rn × (0,∞) are defined by

(3.15) T p(Rn+1
+ ) := {F : Rn+1

+ −→ C; ‖F‖Tp(Rn+1
+

) := ‖AF‖Lp(Rn) <∞},

where

(3.16) AF (x) =

Ç∫∫
Γ(x)

|F (y, t)|2 dydt
tn+1

å1/2

, x ∈ Rn.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



746 S. HOFMANN, S. MAYBORODA AND A. MCINTOSH

In addition, the case p =∞ may be handled as follows. For F : Rn+1
+ → C let

(3.17) CF (x) := sup
B3x

Å
1

|B|

∫∫
B̂

|F (y, t)|2 dydt
t

ã1/2

, x ∈ Rn,

where B stands for a ball in Rn and

(3.18) “B := {(x, t) ∈ Rn × (0,∞) : dist(x, cB) ≥ t}.

For p =∞, we then have

(3.19) T∞(Rn+1
+ ) := {F : Rn+1

+ −→ C; ‖F‖T∞(Rn+1
+

) := ‖ CF‖L∞(Rn) <∞}.

Moreover, according to [22],

(3.20) ‖ CF‖Lp(Rn) ≈ ‖AF‖Lp(Rn) = ‖F‖Tp(Rn+1
+

) , 2 < p <∞.

The tent spaces satisfy the natural duality and interpolation properties:

(3.21)
(
T q(Rn+1

+ )
)∗

= T q
′
(Rn+1

+ ), 1/q + 1/q′ = 1, 1 < q <∞,

and also
(
T 1(Rn+1

+ )
)∗

= T∞(Rn+1
+ ); moreover,

(3.22) [T p0(Rn+1
+ ), T p1(Rn+1

+ )]θ = T p(Rn+1
+ ), 1/p = (1− θ)/p0 + θ/p1, 0 < θ < 1,

for 0 < p0 < p1 ≤ +∞. We will later discuss the precise meaning of the complex
interpolation in (3.22) and provide references (see the proof of Lemma 4.20 and the preceding
discussion).

It has been proved in [22] that every F ∈ T p(Rn+1
+ ), 0 < p ≤ 1 has an atomic

decomposition. For future reference, we record this result below. We first define the notion
of a T p(Rn+1)-atom.

D 3.23. – Let 0 < p ≤ 1. A measurable function A on Rn+1
+ is said to be a

T p-atom if there exists a cube Q ⊂ Rn such that A is supported in the “Carleson box”

RQ := Q×
(

0, `(Q)
)
,

and Ç∫∫
RQ

|A(x, t)|2 dxdt
t

å1/2

≤ |Q|
1
2−

1
p .(3.24)

P 3.25 ([22]). – Let 0 < p ≤ 1. For every element F ∈ T p(Rn+1
+ ), there exist

a numerical sequence {λj}∞j=0 ⊂ `p and a sequence of T p-atoms {Aj}∞j=0 such that

(3.26) F =
∞∑
j=0

λjAj in T p(Rn+1
+ ) and a.e. in Rn+1

+ .

Moreover,
∞∑
j=0

|λj |p ≈ ‖F‖pTp(Rn+1
+

)
,

where the implicit constants depend only on dimension.
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Finally, if F ∈ T p(Rn+1
+ ) ∩ T 2(Rn+1

+ ), then the decomposition (3.26) also converges
in T 2(Rn+1

+ ).

Proof. – Except for the final part of the proposition, concerning T 2 convergence, this is
proved in [22], and we refer the reader to that paper for the proof. The T 2 convergence is only
implicit there, so we shall sketch the proof here. To this end, we first note that

‖F‖2
T 2(Rn+1

+
)

:=

∫
Rn

( AF )2dx =

∫
Rn

∫ ∞
0

∫
|x−y|<t

|F (y, t)|2 dydt
tn+1

dx(3.27)

≈
∫ ∞

0

∫
Rn
|F (y, t)|2 dydt

t
.

Suppose now thatF ∈ T p∩T 2. We recall that, in the constructive proof of the decomposition
(3.26) in [22], one has that

λjAj = F 1Sj ,

where {Sj} is a collection of sets which are pairwise disjoint (up to sets of measure zero), and
whose union covers Rn+1

+ . Thus, by (3.27),

‖
∑
j>N

λjAj‖2T 2(Rn+1
+

)
≈
∫ ∞

0

∫
Rn

∣∣∣ ∑
j>N

1Sj F (y, t)
∣∣∣2 dydt

t
=
∑
j>N

∫∫
Sj

|F |2 dydt
t
→ 0,

as N → ∞, where we have used disjointness of the sets Sj and dominated convergence. It
therefore follows that F =

∑
λjAj in T 2.

Now, given M ≥ 1, we define an operator πM,L, acting initially on T 2, as follows:

(3.28) πM,L(F ) :=

∫ ∞
0

(
t2L
)M+1

e−t
2LF (·, t) dt

t
.

By a standard duality argument involving well known quadratic estimates for L∗, one
obtains that the improper integral converges weakly in L2, and that

(3.29) ‖πM,L(F )‖L2(Rn) . ‖F‖T 2(Rn+1
+

), M ≥ 0,

where the implicit bound depends only on M , ellipticity and dimension.

Following [22], we now observe that πM,L essentially maps T p atoms into Hp
L-molecules.

We have:

L 3.30. – Suppose that A is a T p(Rn+1
+ )-atom associated to a cube Q ⊂ Rn (or

more precisely, to its Carleson box RQ). Then for each integer M ≥ 1, and every ε > 0, there
is a uniform constant Cε,M such that C−1

ε,M πM,L(A) is an (Hp
L, ε,M)-molecule associated

to Q.

Proof. – Fix a cube Q and let A be a T p(Rn+1
+ )-atom associated to RQ, so that (3.24)

holds. We set

m := πM,L(A) = LMb,

where

b :=

∫ ∞
0

t2M t2Le−t
2L
(
A(·, t)

)dt
t
,
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and we need to establish thatm satisfies (3.3). We first prove an L2 estimate which in particu-
lar yields the desired bound “near” Q. Let g ∈ L2(Rn). Then for every
k = 0, 1, . . . ,M we have

∣∣∣ ∫
Rn

(`(Q)2L)kb(x) g(x)dx
∣∣∣

(3.31)

=
∣∣∣ lim
δ→0

∫
Rn

Ç∫ 1/δ

δ

`(Q)2kLkt2M t2Le−t
2L
(
A(·, t)

)
(x)

dt

t

å
g(x) dx

∣∣∣
=
∣∣∣ ∫
RQ

A(x, t) `(Q)2k(L∗)kt2M t2L∗ e−t
2L∗g(x)

dxdt

t

∣∣∣
≤ `(Q)2M |Q|1/2−1/p

(∫
RQ

∣∣(t2L∗)k+1e−t
2L∗g(x)

∣∣2 dxdt
t

)1/2

.

Here, the third line is obtained by using the compactness of the t interval to interchange the
order of integration, and the fourth line by using that A is a T p-atom supported in RQ (so
that 0 < t < `(Q) and (3.24) holds) and the fact that k ≤ M. In turn, by standard square
function estimates for L∗, (3.31) is bounded by

C`(Q)2M |Q|1/2−1/p‖g‖L2(Rn).

Specializing to the case that g is supported in 2Q, and taking a supremum over all such g
with ‖g‖L2(2Q) = 1, we then have the bound

‖(`(Q)2L)kb‖L2(2Q) ≤ C`(Q)2M |Q|1/2−1/p, k = 0, 1, . . . ,M,

which is clearly equivalent to the cases i = 0, 1 of (3.3).

Now for i ≥ 2, let g be supported in Si(Q), with ‖g‖L2(Si(Q) = 1. Applying the Gaffney
estimate to dx integral in the last line in (3.31), and taking a supremum over all such g, we
find that

‖(`(Q)2L)kb‖L2(Si(Q)) ≤ C`(Q)2M |Q|1/2−1/p

∫ `(Q)

0

e−(2i`(Q)/t)2 dt

t

≤ CN2−iN `(Q)2M |Q|1/2−1/p,

for every N ∈ N and each k = 0, 1, . . . ,M. The molecular bound (3.3) follows, for every
choice of ε > 0.

We are now ready to establish the molecular decomposition of Hp
L(Rn) ∩ L2(Rn). Our

proof here is based on the approach in [11](11). A similar approach, also following [11], is
taken in [38] and in [44]. As mentioned above, a more complicated method was used in
[40, 41].

(11) In particular, it is the idea of [11], in the case p = 1, to exploit the fact that a T p-atomic decomposition, of an
element in T p ∩ T 2, converges also in T 2.
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P 3.32. – Let 0 < p ≤ 1 and M ≥ 1. If f ∈ Hp
L(Rn) ∩ L2(Rn), then there

exist a family of (Hp
L, ε,M)-molecules {mj}∞j=0 and a sequence of numbers {λj}∞j=0 ⊂ `p such

that f can be represented in the form f =
∑∞
j=0 λjmj , with the sum converging in L2(Rn),

and

‖f‖pHp
L,mol,M

(Rn)
≤ C

∞∑
j=0

|λj |p ≤ C‖f‖pHp
L

(Rn)
,

where C is independent of f . In particular,

Hp
L(Rn) ∩ L2(Rn) ⊆ Hp

L,mol,M (Rn).(3.33)

Proof. – Let f ∈ Hp
L(Rn) ∩ L2(Rn), and set

F (·, t) := t2Le−t
2Lf.

We note that F ∈ T 2(Rn+1
+ ) ∩ T p(Rn+1

+ ), by standard quadratic estimates for L and the
definition of Hp

L(Rn). Therefore, by Proposition 3.25, we have that

(3.34) F =
∑

λj Aj ,

where each Aj is a T p-atom, the sum converges in both T p(Rn+1
+ ) and T 2(Rn+1

+ ), and

(3.35)
∑
|λj |p ≤ C‖F‖pTp(Rn+1

+
)

= C‖f‖p
Hp
L

(Rn)
.

Also, by L2-functional calculus ([51]), we have the “Calderón reproducing formula”

(3.36) f = cM πM,L (t2Le−t
2Lf) = cM πM,L(F ) = cM

∑
λj πM,L(Aj),

where by (3.29) and the T 2 convergence of the decomposition in (3.34), the last sum
converges in L2(Rn). Moreover, by Lemma 3.30, for every M ≥ 1, we have that up to multi-
plication by some harmless constant, each mj := cM πM,L(Aj) is an (Hp

L, ε,M)-molecule.
Consequently, the last sum in (3.36) is a molecular (Hp

L, 2, ε,M)-representation, so that
f ∈ Hp

L,mol,M (Rn), and by (3.35) we have

‖f‖Hp
L,mol,M

(Rn) ≤ C‖f‖Hp
L

(Rn).

Step 2 is now complete. This concludes the proof of Theorem 3.5.

We next discuss duality for the spaces Hp
L(Rn) with 0 < p ≤ 1.

If m is an (Hp
L, ε,M)-molecule, then m ∈ Mε,M

n(1/p−1),L (this follows from the fact that,
given any two cubesQ1 andQ2, there exist integersK1 andK2, depending upon `(Q1), `(Q2)

and dist(Q1, Q2), such that 2K1Q1 ⊇ Q2 and 2K2Q2 ⊇ Q1), and the converse is also true (up
to a normalization). Therefore, g(m) := 〈g,m〉 is well-defined for every (Hp

L, ε,M)-molecule
m and every g ∈ Λ

n(1/p−1)
L∗ (Rn). Moreover, the following estimate holds.

L 3.37. – Suppose 0 < p ≤ 1, ε > 0, M > n
2

(
1
p −

1
2

)
. Then

(3.38) |g(m)| ≤ C‖g‖
Λ
n(1/p−1)

L∗ (Rn)

for every g ∈ Λ
n(1/p−1)
L∗ (Rn) (recall that Λ0

L∗ := BMOL∗) and every (Hp
L, ε,M)-molecule m.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



750 S. HOFMANN, S. MAYBORODA AND A. MCINTOSH

Proof. – The case p = 1 was proved in [40], so we now suppose that p < 1. For every
x ∈ Rn

(3.39) m(x) = 2M

(
l(Q)−2

∫ √2l(Q)

l(Q)

s ds

)M
m(x),

and

(3.40)
∫ √2l(Q)

l(Q)

s ds =

∫ √2l(Q)

l(Q)

s(I − e−s
2L)M ds+

M∑
k=1

Ck,M

∫ √2l(Q)

l(Q)

se−ks
2L ds,

where Ck,M ∈ R are some constants depending on k and M only. Going further,

2kL

∫ √2l(Q)

l(Q)

se−ks
2L ds = −

∫ √2l(Q)

l(Q)

∂se
−ks2L ds = e−kl(Q)2L − e−2kl(Q)2L

= e−kl(Q)2L(I − e−kl(Q)2L)

= e−kl(Q)2L(I − e−l(Q)2L)
k−1∑
j=0

e−jl(Q)2L.(3.41)

Applying the procedure outlined in (3.40)–(3.41) M times, we arrive at the following
formula

m = 2M

(
l(Q)−2

∫ √2l(Q)

l(Q)

s(I − e−s
2L)M ds

+
M∑
k=1

Ck,M l(Q)−2L−1e−kl(Q)2L(I − e−l(Q)2L)
k−1∑
j=0

e−jl(Q)2L

)M
m.(3.42)

Let

(3.43) mNi := l(Q)−2NiL−Nim, 0 ≤ Ni ≤M.

Then

g(m) = C1,1

∫
Rn

(I − e−l(Q)2L∗)Mg(x)T
l(Q)
1,1 mM (x) dx

(3.44)

+

(M+1)M−1∑
i=1

Ci,2

∫
Rn

(
l(Q)−2

∫ √2l(Q)

l(Q)

s(I − e−s
2L∗)Mg(x) ds

)
T
l(Q)
i,2 mNi(x) dx,

whereCi,k are some constants, T l(Q)
i,k are some operator families satisfying Gaffney estimates

(2.21) with t ≈ l(Q)2, and the integrals on the right-hand side are interpreted analogously to
(3.1). More precisely, each Ti,k is a composition of operators of the form (3.41) and operators
coming from

(3.45) l(Q)−2

∫ √2l(Q)

l(Q)

s(I − e−s
2L)M ds.

However, according to (3.41)–(3.42), the latter can be written as a constant plus an oper-
ator in (3.41), modulo the factor l(Q)−2L−1. The negative powers of l(Q)2L are absorbed
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inmNi . Hence, each Ti,k is a constant (possibly, zero) plus a linear combination of the terms
in the form e−t

2L with t ≈ l(Q)2.

Applying the Cauchy-Schwarz inequality, we deduce that

(3.46) |g(m)| ≤ C‖g‖
Λ
n(1/p−1)

L∗ (Rn)
|Q|

1
p−

1
2

∞∑
j=0

2jn( 1
p−

1
2 )
∑
i,k

‖T l(Q)
i,k mNi‖L2(Sj(Q)).

If j ≤ 3, then

(3.47) ‖T l(Q)
i,k mNi‖L2(Sj(Q)) ≤ C‖mNi‖L2(Rn) ≤ C|Q|

1
2−

1
p ,

for i and k as above. If j ≥ 3, we split

(3.48) mNi = mNi χS̃j(Q)
+mNi χRn\S̃j(Q)

,

where, as before,

(3.49) S̃j(Q) = 2j+1Q \ 2j−2Q.

Then

(3.50)
∥∥∥T l(Q)

i,k

(
mNi χS̃j(Q)

)∥∥∥
L2(Sj(Q))

≤ C
∥∥∥mNi χS̃j(Q)

∥∥∥
L2(Rn)

≤ C2j(
n
2−

n
p−ε)|Q|

1
2−

1
p ,

by the definition of molecule, and

(3.51)
∥∥∥T l(Q)

i,k

(
mNi χRn\S̃j(Q)

)∥∥∥
L2(Sj(Q))

≤ Ce−
(2jl(Q))2

cl(Q)2 ‖mNi‖L2(Rn) ≤ C2−jN |Q|
1
2−

1
p ,

for a number N arbitrarily large. Inserting the results into (3.46), we finish the proof of
(3.38).

We are now ready to state our duality results generalizing [27, 29, 32].

T 3.52. – Suppose 0 < p ≤ 1. Then

(3.53) (Hp
L(Rn))∗ = Λ

n(1/p−1)
L∗ (Rn) if p < 1, and (H1

L(Rn))∗ = BMOL∗(Rn).

Proof. – The statement about the duality of H1
L and BMOL∗ was proved in [40]. There-

fore we consider here only the case p < 1.

Step I. – We start with the left-to-the-right inclusion.

Assume that g is a linear functional on Hp
L(Rn). Then for every f ∈ Hp

L(Rn)

(3.54) |g(f)| ≤ ‖g‖ ‖f‖Hp
L

(Rn).

Theorem 3.5, in particular, implies that every (Hp
L, ε,M)-molecule belongs to Hp

L and
‖m‖Hp

L
≤ C. Hence,

(3.55) |g(m)| ≤ C‖g‖.

However, if µ ∈Mε,M
n(1/p−1),L with norm 1, then µ is a (Hp

L, ε,M)-molecule adapted toQ0.

Therefore, by (3.55), g defines a linear functional on Mε,M
n(1/p−1),L. It remains to prove that
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the norm (1.26), understood in the sense of (3.1), is finite. To do this, it is enough to show
that for every ϕ ∈ L2(Q) such that ‖ϕ‖L2(Q) = 1 the function

(3.56)
1

|Q|α/n+1/2
(I − e−l(Q)2L)Mϕ, α = n

Å
1

p
− 1

ã
, M >

n

2

Å
1

p
− 1

2

ã
,

is a (Hp
L, ε,M)-molecule (then the claim follows from (3.55)).

Since ϕ is supported in Q, by Gaffney estimates

1

|Q|α/n+1/2
‖(I − e−l(Q)2L)Mϕ‖L2(Sj(Q)) ≤ C

1

|Q|α/n+1/2

M∑
k=0

‖e−kl(Q)2Lϕ‖L2(Sj(Q))

≤ C

|Q|α/n+1/2
e
−

dist (Sj(Q),Q)2

cl(Q)2 ‖ϕ‖L2(Q) ≤
C 2−jN

|Q|α/n+1/2
=

C 2−jN

|Q|1/p−1/2
,(3.57)

for every j ∈ N and N ∈ N arbitrarily large. Similarly, for k = 1, . . . ,M ,

1

|Q|α/n+1/2
‖(l(Q)−2L−1)k(I − e−l(Q)2L)Mϕ‖L2(Sj(Q))

(3.58)

=
1

|Q|α/n+1/2

∥∥∥∥∥(l(Q)−2L−1)k
(∫ l(Q)

0

∂te
−t2L dt

)k
(I − e−l(Q)2L)M−kϕ

∥∥∥∥∥
L2(Sj(Q))

=
1

|Q|α/n+1/2

∥∥∥∥∥(
∫ l(Q)

0

2t

l(Q)2
e−t

2L dt
)k

(I − e−l(Q)2L)M−kϕ

∥∥∥∥∥
L2(Sj(Q))

≤ C

|Q|α/n+1/2
e
−

dist (Sj(Q),Q)2

cl(Q)2 ‖ϕ‖L2(Q) ≤
C 2−jN

|Q|1/p−1/2
,

where we employed Lemma 2.22 for the next-to-the-last inequality. As before,N ∈ N can be
taken arbitrarily large, and that finishes the argument.

Step II. – Let us now turn to the right-to-the-left inclusion in (3.53). Let g ∈ Λ
n(1/p−1)
L∗ (Rn).

We note that the mapping

Lg(f) := 〈g, f〉,

may be defined initially (by virtue of Lemma 3.37) when f is a finite linear combination
of (Hp

L, ε,M)-molecules, with M > (n/2)(1/p − 1/2), and by the density, in Hp
L(Rn), of

the collection of all such f , it is enough to establish the a priori bound

(3.59) | Lg(f)| ≤ C ‖g‖
Λ
n(1/p−1)

L∗ (Rn)
‖f‖Hp

L,mol,M
(Rn) ,

for some uniform constant C, whenever f is such a finite linear combination. Indeed, in that
case, Lg extends by continuity to a continuous linear functional on Hp

L(Rn).

Our proof of (3.59) is based in part on the approach in [40], but we shall incorporate a
simplification to that approach, which was introduced in [44]. As above, let g ∈ ΛαL∗(Rn),
α = n(1/p − 1), and let f be a finite linear combination of (Hp

L, ε,M)-molecules, with
M > (n/2)(1/p− 1/2). We begin by noting that the following two facts, first proved in [40]
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in the case p = 1 (equivalently, α = 0), may be extended to the case 0 < p < 1 (α > 0)
mutatis mutandi, and we omit the details. First, as in [40], Lemma 8.3, we have that

(3.60) sup
Q

1

|Q|1+2α/n

∫∫
RQ

|(t2L∗)Me−t
2L∗g|2 dxdt

t
≤ C‖g‖2Λα

L∗ (Rn) ;

second, as in [40], Lemma 8.4, for f, g as above, the following Calderón reproducing formula
is valid:

(3.61) 〈g, f〉 = CM lim
δ→0

∫ 1/δ

δ

∫
Rn

(t2L∗)Me−t
2L∗g(x) t2Le−t2Lf(x)

dxdt

t
.

At this point we follow [44]. Since t2Le−t
2Lf ∈ T p, we may invoke the result of [22] to

obtain the decomposition

t2Le−t
2Lf =

∑
λjAj ,

where each Aj is a T p atom, supported in a Carleson box RQj , and where {λj} ∈ `p, with

(3.62)
Ä∑

|λj |p
ä1/p

. ‖F‖Tp ≈ ‖f‖HpL,mol,M
(Rn).

Using (3.61), we then have

|〈g, f〉| ≤ C
∑
|λj |

∫∫
Rn+1

+

|(t2L∗)Me−t
2L∗g(x)| |Aj(x, t)|

dxdt

t

≤ C
∑
|λj |

(∫∫
RQj

|(t2L∗)Me−t
2L∗g(x)|2 dxdt

t

)1/2

|Qj |
1
2−

1
p

≤ C
∑
|λj | ‖g‖Λα

L∗
,

where in the second inequality we have used the definition of a T p-atom (cf. (3.24)), and in
the last inequality we have used (3.60) with α = n(1/p − 1). The desired bound (3.59) now
follows from (3.62), since p < 1.

4. Square function characterizations and interpolation

Recall the square function definition of Hardy spaces given in (1.10)–(1.11). In fact, there
is certain flexibility in the choice of the square function which gives an equivalent norm
in Hp

L(Rn). It is possible to replace ψ(ξ) = ξe−ξ, ξ = t2L, in (1.10) by another function of ξ
with holomorphic extension to an open sector of the complex plane, provided it has enough
decay at zero and infinity. One way to see this is to re-prove the molecular decomposition
of Hardy spaces, this time using a square function based on ψ, Lemma 2.28 and quadratic
estimates in [51].

Now we present a different approach, via the connection with the tent spaces (cf. (3.15),
(3.16)), again using fundamentally the ideas of [22]. In a different context this has been done
in [11]. Here we will follow a similar path, pointing out the aspects which are particular to
our setting.
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Let ω < µ < π/2 and ψ ∈ Ψ(Σ0
µ). According to the quadratic estimates in [51] the

operator

(4.1) Qψ,L f(x, t) := ψ(t2L)f(x), (x, t) ∈ Rn+1
+ ,

is bounded from L2(Rn) to T 2(Rn+1
+ ). Then for every ψ ∈ Ψ(Σ0

µ) the operator

(4.2) πψ,L F (x) :=

∫ ∞
0

ψ(t2L)F (x, t)
dt

t
, x ∈ Rn,

is well-defined for all F ∈ T 2(Rn+1
+ ) and bounded from T 2(Rn+1

+ ) to L2(Rn) by duality.
Indeed, the operator πψ,L is the adjoint of the operatorQψ,L∗ , and vice versa. In the sequel,
for the sake of notational convenience, we shall sometimes omit the subscript L, and write
merely Qψ, πψ when there is no chance of confusion.

Finally, for ψ, ψ̃ ∈ Ψ(Σ0
µ) and f ∈ H∞(Σ0

µ) let Qf := Qψ ◦ f ◦ πψ̃, i.e.,

(4.3) QfF (x, s) :=

∫ ∞
0

Ä
ψ(s2L)f(L)ψ̃(t2L)F (·, t)

ä
(x)

dt

t
, (x, s) ∈ Rn+1

+ .

Then it follows from the observations above that Qf is bounded in T 2(Rn+1
+ ), with the

norm bounded by ‖f‖L∞(Σ0
µ). We will sometimes write Q in place of Qf when f = 1.

P 4.4. – Let µ ∈ (ω, π/2). Then for every ψ, ψ̃ ∈ Ψ(Σ0
µ) and f ∈ H∞(Σ0

µ)

the operator Qf originally defined on T 2(Rn+1
+ ) extends by continuity to a bounded operator

on T p(Rn+1
+ ) provided that either

(1) 0 < p ≤ 2, ψ ∈ Ψα,β(Σ0
µ), ψ̃ ∈ Ψβ,α(Σ0

µ), or

(2) 2 ≤ p <∞, ψ ∈ Ψβ,α(Σ0
µ), ψ̃ ∈ Ψα,β(Σ0

µ),

where α > 0, β > n
2

Ä
max{ 1

p , 1} −
1
2

ä
. Moreover,

(4.5) ‖ QfF‖Tp(Rn+1
+

) ≤ C‖f‖L∞(Σ0
µ)‖F‖Tp(Rn+1

+
), for all F ∈ T p(Rn+1

+ ).

Proof of Proposition 4.4. – Let 0 < p ≤ 2. Using the Lemma 2.40 for any a, b such that
0 < a < α and 0 < b < β one can write

(4.6) QfF (x, s) =

∫ ∞
0

min

ß(s
t

)2a

,
( t
s

)2b
™
Ts2,t2F (·, t)(x)

dt

t
, (x, s) ∈ Rn+1

+ ,

where

(1) {Ts,t}s≤t satisfy the L2 off-diagonal estimates in t of order β + a uniformly in s ≤ t,
(2) {Ts,t}t≤s satisfy the L2 off-diagonal estimates in s of order α+ b uniformly in t ≤ s,

with the constant bounded by ‖f‖L∞(Σ0
µ). Note that the constants a, b can be chosen so that

both α + b > n
2

Ä
max{ 1

p , 1} −
1
2

ä
and β + a > n

2

Ä
max{ 1

p , 1} −
1
2

ä
. Then there exist some

M > n
2

Ä
max{ 1

p , 1} −
1
2

ä
and some C > 0 such that for arbitrary closed sets E,F ⊂ Rn

(4.7) ‖Ts2,t2g‖L2(F ) ≤ C ‖f‖L∞(Σ0
µ) min

ß
1,

max{t, s}
dist (E,F )

™2M

‖g‖L2(E),

for every s, t > 0 and every g ∈ L2(Rn) supported in E.
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The remainder of the proof follows the same path as that of Theorem 4.9 in [11]. Suppose
first that p ≤ 1. By density of T 2(Rn+) ∩ T p(Rn+) in T p(Rn+) it is enough to establish an a
priori estimate for F ∈ T 2(Rn+) ∩ T p(Rn+). We may then use the atomic decomposition of
tent spaces in [22] (cf. Proposition 3.25 above) to reduce (4.5) to the atomic estimate

(4.8) ‖ QfA‖Tp(Rn
+

) ≤ C‖f‖L∞(Σ0
µ) uniformly for T p(Rn+)-atoms A.

Then one breaks down QfA into a part close to the support of A and a part away from
the support of A. Close to the support we use the boundedness of Qf in T 2(Rn+), and away
from the support we use (4.7). The details can be recovered carefully following an analogous
argument in [11]. Then the case 1 < p ≤ 2 follows by interpolation and the case 2 ≤ p <∞
is obtained by duality.

P 4.9. – Let µ ∈ (ω, π/2) and ψ ∈ Ψ(Σ0
µ). The operator Qψ,L originally

defined on L2(Rn) by the formula (4.1) extends to a bounded operator

(4.10) Qψ,L : Hp
L(Rn) −→ T p(Rn+1

+ ),

provided that

either (1) 0 < p ≤ 2, ψ ∈ Ψα,β(Σ0
µ), or (2) 2 ≤ p <∞, ψ ∈ Ψβ,α(Σ0

µ),

where α > 0 and β > n
2

Ä
max{ 1

p , 1} −
1
2

ä
.

The operator πψ,L defined on T 2(Rn+1
+ ) by means of (4.2) extends to a bounded operator

(4.11) πψ,L : T p(Rn+1
+ ) −→ Hp

L(Rn),

provided that

either (1) 0 < p ≤ 2, ψ ∈ Ψβ,α(Σ0
µ), or (2) 2 ≤ p <∞, ψ ∈ Ψα,β(Σ0

µ),

where α > 0 and β > n
2

Ä
max{ 1

p , 1} −
1
2

ä
.

Remark. Before proving the proposition, we note that for ψ, ψ̃ ∈ Ψ(Σ0
µ) such that∫∞

0
ψ(t)ψ̃(t) dtt = 1, we have the following Calderón reproducing formula:

(4.12) πψ ◦Qψ̃ = π
ψ̃
◦Qψ = I in L2(Rn).

Moreover, for every non-trivial ψ ∈ Ψ(Σ0
µ), such ψ̃ can be found, for example, taking

(4.13) ψ̃(z) := ψ(z)
(∫ ∞

0

|ψ(t)|2 dt
t

)−1

, z ∈ Σ0
µ.

Proof of Proposition 4.9. – Let ψ0(z) = ze−z, z ∈ Σ0
µ. Then the boundedness of

the corresponding Qψ0
in (4.10) for 0 < p ≤ 2 follows directly from the definitions of

Hp
L(Rn), 0 < p ≤ 2, and T p(Rn+1

+ ).

Now take any ψ ∈ Ψβ,α and 0 < p ≤ 2. For every F ∈ T p(Rn+1
+ ) ∩ T 2(Rn+1

+ )

(4.14) ‖πψF‖Hp
L

(Rn) = ‖Qψ0
◦ πψF‖Tp(Rn+1

+
),

and due to Proposition 4.4 the last expression above is controlled by ‖F‖Tp(Rn+1
+

). Then

(4.11) follows by a density argument.
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Next, let ψ ∈ Ψα,β(Σ0
µ), 0 < p ≤ 2. Since L2 is dense in Hp

L, it is enough to prove that

(4.15) ‖Qψf‖Tp(Rn+1
+

) ≤ C‖f‖HpL(Rn), for every f ∈ Hp
L ∩ L

2.

By definition Qψ0
f ∈ T p(Rn+1

+ ) for every f ∈ Hp
L ∩ L2. Let M be the smallest integer

larger than n
2

Ä
max{ 1

p , 1} −
1
2

ä
and ψ̃0(ξ) := ξMe−ξ, ξ ∈ Σ0

µ. Then
∫∞

0
ψ0(t)ψ̃0(t) dtt = CM ,

and hence, by (4.12) we have

(4.16) f =
1

CM
π
ψ̃0
◦Qψ0

f for f ∈ L2.

Note that ψ̃0 ∈ ΨM,N for every N > 0. Therefore,

‖Qψf‖Tp(Rn+1
+

) = C‖Qψ ◦ πψ̃0
◦Qψ0

f‖Tp(Rn+1
+

) ≤ C‖Qψ0
f‖Tp(Rn+1

+
) = C‖f‖Hp

L
(Rn),

where the inequality is a consequence of Proposition 4.4.

For p > 2 we use the duality between the operators π and Q.

Remark. We would like to mention that in [42] the authors developed an alternative approach
to (4.10).

Remark. The results of Proposition 4.9 lead to an alternative molecular decomposition of
Hardy spaces, defining molecules as the images of the atoms of tent spaces under πψ for
appropriate ψ (cf. [11]).

Remark. The tent spaces have an appropriate counterpart when p = ∞ and the results of
Proposition 4.9 extend to this case as well (see [40]).

Proposition 4.9, in particular, provides the square function characterization for the Hardy
spaces Hp

L with p > 2, which were originally defined by duality (1.12).

C 4.17. – Let ψ be a nontrivial function satisfying either

(1) 0 < p ≤ 2, ψ ∈ Ψα,β(Σ0
µ), or

(2) 2 ≤ p <∞, ψ ∈ Ψβ,α(Σ0
µ),

where α > 0 and β > n
2

Ä
max{ 1

p , 1} −
1
2

ä
. DefineHp

ψ,L(Rn) to be the completion of the space

Hp
ψ,L(Rn) := {f ∈ L2(Rn) : Qψ,L f ∈ T p(Rn+1

+ )},

with respect to the norm

(4.18) ‖f‖Hp
ψ,L

(Rn) := ‖Qψ,Lf‖Tp(Rn+1
+

) =

∥∥∥∥∥∥
Ç∫∫

Γ(·)
|ψ(t2L)f(y)|2 dydt

tn+1

å1/2
∥∥∥∥∥∥
Lp(Rn)

.

Then Hp
L(Rn) = Hp

ψ,L, with equivalence of norms.
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Proof. – For 0 < p ≤ 2, by the definitions it is enough to establish equality of the dense
spacesL2(Rn)∩Hp

L(Rn) and Hp
ψ,L(Rn), with equivalence of norms. One direction is precisely

the estimate (4.15) above. The opposite direction is proved in exactly the same way as (4.15),
by simply interchanging the roles of ψ and ψ0, and observing that the reproducing formula
(4.16) is still valid (with a different constant), for the same choice of ψ̃0, but with ψ0 replaced
by ψ. We omit the routine details.

The case 2 < p <∞ is slightly more involved. We begin by claiming that
L2(Rn) ∩ Hp

L(Rn) is dense in Hp
L(Rn) (this fact is immediate by definition only for the

range 0 < p ≤ 2). To prove the claim, let χK denote the characteristic function of the set
{(x, t) ∈ Rn+1

+ : |x| < K, 1/K < t < K}, so that for F ∈ T p, 2 < p < ∞, we have that
FK := FχK ∈ T 2 ∩ T p, and also that FK → F in T p. Now given ψ ∈ Ψβ,α(Σ0

µ), choose

ψ̃ ∈ Ψα,β(Σ0
µ) satisfying the reproducing formula (4.12). Then by (4.10) and (4.11), the

reproducing formula extends to Hp′

L∗(Rn) (since L2 ∩Hp′

L∗ is dense in the latter space), and
thus by duality to Hp

L(Rn). Consequently, given f ∈ Hp
L(Rn), 2 < p <∞, we may write

f = π
ψ̃,L
◦Qψ,L f = lim

K→∞
π
ψ̃,L

((Qψ,Lf)χK) ,

where by our previous Remarks and (4.11), the limit exists in Hp
L(Rn). Moreover,

FK := (Qψ,Lf)χK ∈ T 2 ∩ T p, so that π
ψ̃,L

FK ∈ L2(Rn) ∩ Hp
L(Rn). Thus, the claimed

density holds.

Therefore, it is enough to prove that L2(Rn) ∩ Hp
L(Rn) = Hp

ψ,L(Rn), with equivalence
of norms. One direction follows immediately from (4.10). We now proceed to establish the
other direction, namely that for f ∈ Hp

ψ,L(Rn), we have

‖f‖Hp
L

(Rn) . ‖Qψ,L f‖Tp(Rn+1
+

).

In turn, by the definition of Hp
L(Rn), 2 < p <∞, as a dual space, it is enough to show that

for g ∈ L2(Rn) ∩Hp′

L∗(Rn), we have

(4.19)
∣∣∣∣∫

Rn
f g

∣∣∣∣ . ‖Qψ,Lf‖Tp(Rn+1
+

) ‖g‖Hp′
L∗ (Rn)

.

To this end, given ψ ∈ Ψβ,α(Σ0
µ), as above we choose ψ̃ ∈ Ψα,β(Σ0

µ) satisfying the
reproducing formula (4.12), so that∣∣∣∣∫

Rn
f g

∣∣∣∣ =

∣∣∣∣∫
Rn
π
ψ̃,L
◦Qψ,L f g

∣∣∣∣
≤ ‖Qψ,L f‖Tp(Rn+1

+
) ‖Qψ̃,L∗ g‖Tp′ (Rn+1

+
) ≤ C ‖Qψ,L f‖Tp(Rn+1

+
) ‖g‖Hp′

L∗ (Rn)
,

as desired, where in the last step we have used (4.15).

Let us now turn to the interpolation property. One of the most important features of the
classical Hardy spaces lies in the fact that they form a complex interpolation scale including,
in particular, Lp(Rn) for some values of p (in fact, 1 < p < ∞). It has to be mentioned
that Calderón’s original method of complex interpolation was defined for Banach spaces and
could not be immediately extended to the case when the underlying spaces were only quasi-
Banach (p < 1). One reason for that is a possible failure of the maximum modulus principle
in quasi-Banach spaces. Over the years there have been developed several approaches to this
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issue (see, in particular, [19], [43], [24], [37] regarding the classical Hardy spaces). Here we are
going to employ an extension of the complex interpolation method to analytically convex
spaces described in [46], [45].

L 4.20. – For each 0 < θ < 1 and 0 < p0, p1 < +∞,

(4.21) [Hp0
L (Rn), Hp1

L (Rn)]θ = Hp
L(Rn), where 1/p = (1− θ)/p0 + θ/p1,

and

(4.22) [Hp0
L (Rn),BMOL(Rn)]θ = Hp

L(Rn), 0 < θ < 1, 0 < p0 < +∞, 1/p = (1− θ)/p0.

Proof. – The proof of (4.21) is a combination of an analogous result for the tent spaces
and Proposition 4.9. First of all, (3.22) holds for all 0 < p0 < p1 ≤ +∞ (this is stated
in [22], Proposition 6, p. 326; complete details are given in [20]). On the other hand, by
Proposition 4.9, if 0 < p < ∞, Hardy spaces are the retracts of the corresponding tent
spaces, i.e. there exists an operator mapping any tent space to the corresponding Hardy
space and having the right inverse (actually, this is also true for p = ∞, if we designate
BMOL(Rn) =: H∞L (Rn); the proof is implicit in [40], however, we shall not need to make
explicit use of this fact in the sequel). More precisely, given any pair 0 < p0 < p1 < ∞, we
can take ψ ∈ Ψβ,β , where β > n

2

Ä
max{ 1

p0
, 1} − 1

2

ä
and ψ̃ ∈ Ψβ,β as in (4.13). Then for

all p between p0 and p1 the operator πψ maps T p to Hp
L, and Q

ψ̃
: Hp

L → T p is its right

inverse. Therefore, (3.22) implies (4.21) once we make sure that T p0(Rn+1) + T p1(Rn+1
+ ) is

analytically convex (see Lemma 7.11 in [45]). This, however, follows from Theorem 7.9 in [45]
(see also the discussion in [20], Section 3, and in the proof of Lemma 8.23 below). The space
BMOL can then be incorporated by duality and Wolff ’s reiteration theorem [58], once we
have shown that, given any fixed p0 > 0, there is some large ambient Banach space into which
everyHp

L(Rn), p0 ≤ p <∞, and also BMOL(Rn), may be continuously embedded. We shall
establish the existence of such an ambient space in an appendix (cf. Section 10 below).

5. Riesz transform characterization of Hardy spaces

Let us recall that for a given operator L the interval (p−(L), p+(L)) is the interior of the
interval of Lp-boundedness of the heat semigroup and 2 + ε(L) is an upper bound for the
interval of Lp-boundedness of the Riesz transform. As pointed out in the introduction, we
have

(5.1) ∇L−1/2 : Lp(Rn) −→ Lp(Rn) ⇐⇒ p−(L) < p < 2 + ε(L),

and the bounds p−(L) < 2n
n+2 , ε(L) > 0 are sharp in the sense of Corollary 2.20. In the

present section we aim to extend (5.1) to other values of p, passing to the Hardy Hp
L spaces,

and to prove the reverse estimate for a certain range of p, thus establishing for such p the
equivalence of the spaces Hp

L(Rn) and Hp
L,Riesz(Rn) (cf. (1.11) and (1.20)) Our main result

in this section is the following.
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T 5.2. – Let 1 < r ≤ 2 be such that the family {e−tL}t>0 satisfies Lr − L2

off-diagonal estimates. We then have

(5.3) Hp
L(Rn) = Hp

L,Riesz(Rn) ,
rn

n+ r
< p < 2 + ε(L).

Moreover, we have the following equivalence of norms:

(5.4) ‖f‖Hp
L

(Rn) ≈ ‖∇L−1/2f‖Lp(Rn) , max

ß
1,

rn

n+ r

™
< p < 2 + ε(L)

and if rn/(n+ r) ≤ 1, then

(5.5) ‖f‖Hp
L

(Rn) ≈ ‖∇L−1/2f‖Hp(Rn) ,
rn

n+ r
< p ≤ 1.

Remark. Note that, in particular, (5.4) holds for every p such that

max

ß
1,

p−(L)n

n+ p−(L)

™
< p < 2 + ε(L),

and if p−(L)n
n+p−(L) < 1, then (5.5) holds for every p such that p−(L)n

n+p−(L) < p ≤ 1.

The proof of the Theorem will be split into Propositions 5.6–5.33. Let us start with the
case p ≤ 1. For the sake of notational convenience, given p ∈ (0, 1], we shall throughout this
section fix M > (n/2)(1/p − 1/2) and ε > 0 (recall that, as we have seen, any such choice
leads to an equivalentHp

L space), and we may therefore refer to (Hp
L, ε,M)-molecules simply

as Hp
L-molecules. The first result concerns the boundedness of the Riesz transform.

P 5.6. – For every p such that n
n+1 < p ≤ 1, there is a constant C depending

only on n, p and ellipticity (and our fixed choices of M and ε), such that the Riesz transform
∇L−1/2, defined initially on L2 ∩Hp

L(Rn) = Hp
L,mol,M (Rn) (cf. (3.7)), satisfies

(5.7) ‖∇L−1/2f‖Hp(Rn) ≤ C‖f‖Hp
L,mol,M

(Rn) ,

and therefore extends to a bounded operator∇L−1/2 : Hp
L(Rn) −→ Hp(Rn).

Proof. – We begin by recalling that the classical Hardy spaces can be characterized via a
molecular decomposition (see, e.g., [23]). Our Theorem 3.5 with L = −∆ provides one such
characterization, but a more traditional version is as follows.

The function m ∈ L2(Rn) is an Hp-molecule, 0 < p ≤ 1, if it satisfies (3.3) for k = 0 and

(5.8)
∫

Rn
xαm(x) dx = 0, 0 ≤ |α| ≤ M̃,

for some M̃ ∈ N∪{0} such that M̃ ≥ [n(1/p−1)], with [γ] denoting the integer part of γ ∈ R.
Given p ∈ (0, 1], fix some M̃ as above. Then the classical real variable Hardy space can be
realized as

(5.9) Hp(Rn) =

{ ∞∑
i=0

λjmj : {λj}∞j=0 ∈ `p and mj are Hp-molecules

}
,

with

‖f‖Hp(Rn) ≈ inf
{( ∞∑

j=0

|λj |p
)1/p}

,
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where the infimum runs over all decompositions f =
∑∞
j=0 λjmj , converging in the space

of tempered distributions S′, such that {λj}∞j=0 ∈ `p and each mj is an Hp molecule. We do
not know if this particular version of molecular decomposition is explicitly stated anywhere
but it readily follows from the classical arguments (see [23], §2 of [56], and [35]).

Having these facts at hand, we first show that the Riesz transform maps Hp
L-molecules

into Hp-molecules. Let m ∈ L2(Rn) be an Hp
L-molecule associated with some cube Q ∈ Rn

(and M > n
2

(
1
p −

1
2

)
, ε > 0 fixed as above). Then

(5.10) ‖∇L−1/2m‖L2(2Q) ≤ C‖m‖L2(Rn) ≤ C l(Q)n/2−n/p,

using boundedness of∇L−1/2 in L2(Rn). Next, for i ≥ 2

‖∇L−1/2m‖L2(Si(Q)) ≤ ‖∇L−1/2(I − e−l(Q)2L)Mm‖L2(Si(Q))

+‖∇L−1/2[I − (I − e−l(Q)2L)M ]m‖L2(Si(Q)) =: I + II.(5.11)

According to Theorem 3.2 in [40] (see also Lemma 2.2 in [39]), for all closed sets E, F
in Rn with dist(E,F ) > 0, if f ∈ L2(Rn) is supported in E, then

‖∇L−1/2(I − e−tL)Mf‖L2(F )≤ C
Ä

t
dist (E,F )2

äM
‖f‖L2(E), ∀t > 0,(5.12)

‖∇L−1/2(tLe−tL)Mf‖L2(F )≤ C
Ä

t
dist (E,F )2

äM
‖f‖L2(E), ∀t > 0.(5.13)

Therefore,

I ≤ ‖∇L−1/2(I − e−l(Q)2L)M (mχ2i−2Q)‖L2(Si(Q))

+ ‖∇L−1/2(I − e−l(Q)2L)M (mχRn\2i−2Q)‖L2(Si(Q))

≤ C2−2Mi‖m‖L2(2i−2Q) + C‖m‖L2(Rn\2i−2Q)

≤ C2−2Mil(Q)n/2−n/p + C(2il(Q))n/2−n/p 2−iε.(5.14)

Since M > n
2

(
1
p −

1
2

)
, the estimate (5.14) implies

(5.15) I ≤ C(2il(Q))n/2−n/p 2−iε,

where ε = min{ε, 2M − n/p+ n/2} > 0.

Turning to the second part of (5.11), we observe that

‖∇L−1/2[I − (I − e−l(Q)2L)M ]m‖L2(Rn) ≤ C sup
1≤k≤M

‖∇L−1/2e−kl(Q)2Lm‖L2(Rn)

≤ C sup
1≤k≤M

∥∥∥∥∥∇L−1/2

Å
k

M
l(Q)2Le−

k
M l(Q)2L

ãM
(l(Q)−2L−1)Mm

∥∥∥∥∥
L2(Rn)

.

This allows to employ the argument above, using (5.13) in place of (5.12), to prove an
analogue of (5.15) for the expression II.

Finally, the vanishing moment condition (5.8) is satisfied, since

(5.16)
∫

Rn
∇L−1/2m(x) dx = 0,

and one can take M̃ = 0 when p > n
n+1 .
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So far, we have established that Riesz transform maps Hp
L-molecules into Hp-molecules

for p ∈
Ä

n
n+1 , 1

ó
. Let us now show that this implies the desired estimate (5.7). To this end,

let f ∈ Hp
L,mol,M (Rn), so that by definition we may select an L2 convergent molecular

decomposition f =
∑∞
i=0 λimi, where each mi is an Hp

L-molecule, such that

‖f‖Hp
L,mol,M

(Rn) ≈
( ∞∑
i=0

|λi|p
)1/p

.

By the L2 convergence of the sum, we have that

∇L−1/2f =
∑

λi
Ä
∇L−1/2mi

ä
=:
∑

λi ‹mi,

where by the preceding argument each ‹mi is a classical Hp-molecule, and where the last
sum also converges in L2 (hence in S′). The bound (5.7) then follows immediately by the
molecular characterization of classical Hp. This finishes the proof.

P 5.17. – Let 1 < r ≤ 2 be such that the family {e−tL}t>0 satisfies Lr − L2

off-diagonal estimates. Then for every p ≤ 1 such that p > rn
n+r

(5.18) ‖h‖Hp
L

(Rn) ≤ C‖∇L−1/2h‖Hp(Rn)

for every h ∈ L2(Rn) ∩ Hp
L,Riesz(Rn). In particular, if p−(L)n

n+p−(L) < 1, then (5.18) holds for

every p such that p−(L)n
n+p−(L) < p ≤ 1.

Remark: Combining Propositions 5.6 and 5.17, we therefore obtain (1.22), for f ∈ L2(Rn),
and thus by density, we obtain (1.19) in the case p ≤ 1.

Proof. – Let h ∈ Hp
L,Riesz(Rn) ∩ L2(Rn), and set

f := L−1/2h.

Since, in particular, h ∈ L2(Rn), we have that f is well defined: indeed, the solution of the
Kato square root problem [10] (cf. (1.4)) implies that f ∈ Ẇ 1,2(Rn) (cf. (1.31)).

Let us denote

(5.19) S1h(x) :=

Ç∫∫
Γ(x)

|t
√
Le−t

2Lh(y)|2 dydt
tn+1

å1/2

, x ∈ Rn.

Then by Corollary 4.17

(5.20) ‖S1h‖Lp(Rn) ≈ ‖h‖Hp
L

(Rn), 0 < p ≤ 2.

Hence, matters are reduced to proving the estimate

(5.21) ‖S1

√
Lf‖Lp(Rn) ≤ C‖∇f‖Hp(Rn),

rn

n+ r
< p ≤ 1.

Let us recall the “Hardy-Sobolev” spaces

(5.22) H1,p(Rn) := {f ∈ S′(Rn)/C : ∇f ∈ Hp(Rn)},
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where S′(Rn)/C is the space of tempered distributions modulo constants. The space
H1,p(Rn) may be identified with the corresponding Triebel-Lizorkin spaces (see, e.g., [52] or
Section 8.2 of the current paper), and thus admits an atomic decomposition [33]. Specifically,
a function a satisfying

(5.23) supp a ⊂ Q, ‖∇a‖L2(Rn) ≤ l(Q)n/2−n/p,

is called an H1,p-atom, n/(n + 1) < p ≤ 1 (as usual, for smaller p one has to impose extra
vanishing moment conditions). Then

(5.24) H1,p(Rn) =

{ ∞∑
i=0

λjaj : {λj}∞j=0 ∈ `p and aj are H1,p-atoms

}
,

with the series understood in the sense of convergence in S′(Rn)/C, and

‖f‖H1,p(Rn) ≈

inf
{( ∞∑

j=0

|λj |p
)1/p

: f =
∞∑
j=0

λjmj , {λj}∞j=0 ∈ `p and aj are H1,p-atoms
}
.

We now claim that it is enough to show that

(5.25) ‖S1

√
La‖Lp(Rn) ≤ C, for every H1,p-atom a, p >

rn

n+ r
, p ≤ 1,

whereC is a constant not depending on a. To see that (5.25) suffices to obtain the conclusion
of the proposition, we proceed as follows. We note that in the standard constructive tent
space proof of the atomic decomposition ofH1,p, one obtains, much as in the proof of Step 2
of Theorem 3.5 above, that for f in the dense subspace Ẇ 1,2(Rn) ∩ H1,p(Rn), there is a
decomposition f =

∑
λjaj , converging in Ẇ 1,2(Rn), where each aj is an H1,p-atom, and

where ∑
|λj |p . ‖∇f‖pHp(Rn).

By the solution of the Kato square root problem [10] (cf. (1.4)) and the L2 boundedness of
the square function S1, we have that

S1

√
L : Ẇ 1,2(Rn)→ L2(Rn),

so using the Ẇ 1,2 convergence of the atomic sum, we obtain that pointwise a.e.,

S1

√
Lf ≤

∑
|λj | S1

√
Laj .

Thus, (5.25) implies (5.21).
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It remains to prove (5.25). For j ∈ N∪{0} let R(Sj(Q)) :=
⋃
x∈Sj(Q) Γ(x) be a saw-tooth

region based on Sj(Q) ⊂ Rn. Then

‖S1

√
La‖pLp(Rn) ≤

∞∑
j=0

(2j l(Q))n(1− p2 )
Ç∫

Sj(Q)

∫∫
Γ(x)

|tLe−t
2La(y)|2 dydt

tn+1
dx

å p
2

≤ C
∞∑
j=3

(2j l(Q))n(1− p2 )
Ç∫∫

R(Sj(Q))

|tLe−t
2La(y)|2 dydt

t

å p
2

+Cl(Q)n(1− p2 )‖S1

√
La‖pL2(4Q)

≤ C
∞∑
j=3

(2j l(Q))n(1− p2 )
Ç∫

Rn\2j−2Q

∫ ∞
0

|t2Le−t
2La(y)|2 dydt

t3

å p
2

+C
∞∑
j=3

(2j l(Q))n(1− p2 )
Ç∫

2j−2Q

∫ ∞
c2j l(Q)

|t2Le−t
2La(y)|2 dydt

t3

å p
2

+Cl(Q)n(1− p2 )‖S1

√
La‖pL2(4Q) =: I + II + III.(5.26)

Then, since S1 is bounded in L2(Rn),

(5.27) III ≤ Cl(Q)n(1− p2 )‖
√
La‖pL2(Rn) ≤ Cl(Q)n(1− p2 )‖∇a‖pL2(Rn) ≤ C.

Going further, observe that

(5.28) ‖a‖L2(Q) ≤ l(Q)n/2−n/p+1,

for every H1,p-atom a by (5.23), Sobolev inequality and Hölder inequality. Then
Lemma 2.26, (5.28) and another application of Hölder inequality imply that

II ≤ C
∞∑
j=3

(2j l(Q))n(1− p2 )
Ç∫ ∞

c2j l(Q)

t2(
n
2−

n
r ) dt

t3

å p
2

‖a‖pLr(Q)

≤ C
∞∑
j=3

(2j l(Q))n(1− p2 )(2j l(Q))p(
n
2−

n
r−1)‖a‖pLr(Q) ≤ C,(5.29)

provided p > rn
n+r .

Finally, in order to handle I, we split the integral in t into two parts, corresponding to
0 < t < 2j l(Q) and t ≥ 2j l(Q), respectively. The second part can be estimated closely
following the argument in (5.29). As for the first one,

∞∑
j=3

(2j l(Q))n(1− p2 )

(∫
Rn\2j−2Q

∫ 2j l(Q)

0

|t2Le−t
2La(y)|2 dydt

t3

) p
2

≤ C
∞∑
j=3

(2j l(Q))n(1− p2 )

(∫ 2j l(Q)

0

t2(
n
2−

n
r ) e−

(2jl(Q))2

ct2
dt

t3

) p
2

‖a‖pLr(Rn) ≤ C,(5.30)

using Lr − L2 off-diagonal estimates. This completes the proof.
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Now we turn to the case p > 1.

P 5.31. – The Riesz transform of the operator L satisfies

(5.32) ∇L−1/2 : Hp
L(Rn) −→ Lp(Rn) for 1 < p < 2 + ε(L).

Proof. – Since p+(L) ≥ 2+ε(L) (see [6], Theorem 4.1 combined with §3.4), the properties
(5.1) and (1.15) (proved in Proposition 9.1 below) yield (5.32) for p−(L) < p < 2 + ε(L).
Then the full range of p in (5.32) can be achieved by interpolation (Lemma 4.20) with the
result of Proposition 5.6.

P 5.33. – Let 1 < r ≤ 2 be such that the family {e−tL}t>0 satisfies Lr − L2

off-diagonal estimates. Then for all p satisfying max
¶

1, rn
n+r

©
< p < p+(L),

(5.34) ‖h‖Hp
L

(Rn) ≤ C‖∇L−1/2h‖Lp(Rn),

for every h ∈ L2(Rn) ∩Hp
L,Riesz(Rn).

In particular, (5.34) holds for every p such that max
¶

1, p−(L)n
n+p−(L)

©
< p < 2 + ε(L).

Remark. This proposition is a sharpened version of [6], Proposition 4.10: in the latter, the
left hand side of (5.34) is replaced by the Lp norm. Our proof is based on the circle of ideas
developed in [6], but the estimates we seek are somewhat more delicate, since Hp

L is “strictly
smaller” than Lp (in the sense of Proposition 9.1 (ii) below) in the range 1 < p ≤ p−(L).

Proof. – Step I. — By (5.1) applied to L∗ and a standard duality argument, we deduce
that

‖
√
Lg‖Lp′ (Rn) ≤ C‖∇g‖Lp′ (Rn),

1

p
+

1

p′
= 1,

for p−(L∗) < p < 2 + ε(L∗), and hence, using the fact that (p−(L∗))
′

= p+(L), we have

(5.35) ‖h‖Lp(Rn) ≤ C‖∇L−1/2h‖Lp(Rn), 2 ≤ p < p+(L) ,

in which range of p we have Hp
L(Rn) = Lp(Rn) (cf. Appendix, Section 9). Therefore we may

suppose that p < 2.

We claim that it is enough to show that for each r as above,

(5.36) S1

√
L : Ẇ 1,p(Rn) −→ Lp,∞(Rn), p = p(n, r) := max

ß
1,

rn

n+ r

™
,

because, given (5.36), the desired estimate (5.34), for the range p(n, r) < p < 2, follows by
interpolation with (5.35). More precisely, setting f := L−1/2h, by (5.35) and the bounded-
ness of S1 in L2, we have, in particular, that

(5.37) ‖S1

√
Lf‖L2(Rn) ≤ C‖f‖Ẇ 1,2(Rn) .

Thus, interpolating between the latter estimate and (5.36), we obtain

(5.38) S1

√
L : Ẇ 1,p(Rn) −→ Lp(Rn) whenever max

ß
1,

rn

n+ r

™
< p < 2,

and this is equivalent to (5.34), in the remaining case p(n, r) < p < 2.
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Hence, it remains only to prove (5.36), i.e., we shall show that

(5.39)
∣∣∣¶x ∈ Rn : S1

√
Lf(x) > α

©∣∣∣ ≤ C

αp

∫
Rn
|∇f(y)|p dy, ∀α > 0,

for p as in (5.36), where by density we may suppose that f ∈ C∞0 .

Our proof is based on the use of a “Calderón-Zygmund type” decomposition of Sobolev
spaces taken from [6], where it was used to establish an analogue of (5.39), but for

√
L rather

than for S1

√
L.

L 5.40 ([6]). – Suppose n ≥ 1, 1 ≤ p < ∞ and f ∈ Ẇ 1,p(Rn). Then for every
α > 0 there exists a collection of cubes {Qi}i∈Z with finite overlap, a function g and a family
of functions {bi}i∈Z satisfying

supp bi ⊂ Qi, ‖∇bi‖Lp(Rn) ≤ Cα|Qi|1/p, ∀ i ∈ Z,(5.41)

‖∇g‖Lp(Rn) ≤ C‖∇f‖Lp(Rn), ‖∇g‖L∞(Rn) ≤ Cα,(5.42)

such that f can be represented in the form

(5.43) f = g +
∑
i∈Z

bi, with
∑
i∈Z
|Qi| ≤ Cα−p‖∇f‖pLp(Rn).

Returning to (5.39) we can write using the lemma above

S1

√
Lf(x) ≤ S1

√
Lg(x) +

(∫∫
Γ(x)

∣∣∣∑
i∈Z

tLe−t
2Lbi(y)χ(0,l(Qi))(t)

∣∣∣2 dydt
tn+1

)1/2

+

(∫∫
Γ(x)

∣∣∣∑
i∈Z

tLe−t
2Lbi(y)χ[l(Qi),∞)(t)

∣∣∣2 dydt
tn+1

)1/2

≤ S1

√
Lg(x) +

∑
i∈Z

Ç∫∫
t<l(Qi)

|x−y|<t
|tLe−t

2Lbi(y)|2 dydt
tn+1

å1/2

+

(∫∫
Γ(x)

∣∣∣t2Le−t2L∑
i∈Z

bi(y)

l(Qi)

∣∣∣2 dydt
tn+1

)1/2

=: I0(x) + I1(x) + I2(x),(5.44)

for all x ∈ Rn. Let us assign now

Al := {x ∈ Rn : Il(x) > α/3} , l = 0, 1, 2,

so that

(5.45)
∣∣∣¶x ∈ Rn : S1

√
Lf(x) > α

©∣∣∣ ≤ |A0|+ |A1|+ |A2|.

Step II. — Consider A0. By Chebyshev’s inequality

(5.46) |A0| ≤
C

α2

∫
Rn

∣∣∣S1

√
Lg(x)

∣∣∣2 dx ≤ C

α2

∫
Rn
|∇g(x)|2 dx
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where for the last estimate we used boundedness of S1 in L2(Rn) and the Kato square root
estimate ([10]). Combining the two statements in (5.42), we obtain that the expression in
(5.46) is bounded by Cα−p‖∇f‖pLp(Rn), as desired.

Step III. — The contribution fromA2 can be estimated as follows. By Chebyshev’s inequality

|A2| ≤
C

αr

∫
Rn

∣∣∣S(∑
i∈Z

bi(y)

l(Qi)

)∣∣∣r dx,(5.47)

with S as in (1.10). On the other hand, the Lr − L2 off-diagonal estimates for the heat
semigroup imply that S is bounded in Lr(Rn) (see, e.g., [6], Theorem 6.1, for an analogous
result in the case of vertical square function and [40]). Therefore, by Hölder’s inequality for
sequences

(5.48) |A2| ≤
C

αr

∥∥∥∥∥∑
i∈Z

|bi|
l(Qi)

∥∥∥∥∥
r

Lr(Rn)

≤ C

αr

∥∥∥∥∥(∑
i∈Z

|bi|r

l(Qi)r

)1/r(∑
i∈Z

χQi

)1−1/r
∥∥∥∥∥
r

Lr(Rn)

.

Now we recall that the cubes {Qi}i∈Z have finite overlap, i.e. there exists some fixed
constant C such that

∑
i∈Z χQi(x) ≤ C for all x ∈ Rn. This implies that

(5.49) |A2| ≤
C

αr

∫
Rn

∑
i∈Z

|bi|r

l(Qi)r
dx.

When p = rn
n+r we deduce from (5.41) and Poincaré’s inequality that

(5.50) ‖bi‖Lr(Rn) ≤ C‖∇bi‖Lp(Rn) ≤ Cα|Qi|1/p = Cα|l(Qi)|1+n/r.

When p = 1 > rn
n+r , by Hölder’s inequality

(5.51)
‖bi‖Lr(Qi) ≤ C|Qi|

1
r−

n−1
n ‖bi‖L n

n−1 (Qi)
≤ C|Qi|

1
r−

n−1
n ‖∇bi‖L1(Qi) ≤ Cα|l(Qi)|

1+n/r.

Hence, in any case,

(5.52) |A2| ≤ C
∑
i∈Z
|Qi| ≤ Cα−p‖∇f‖pLp(Rn).

Step 4. — We now proceed to estimate |A1|. The argument here resonates with that in [7],
Section 1.2. For each function v, define

(5.53) Tiv(x) :=

Ç∫∫
t<l(Qi)

|x−y|<t
|tLe−t

2Lv(y)|2 dydt
tn+1

å1/2

, i ∈ Z, x ∈ Rn.

Then

|A1| ≤
∑
i∈Z
|4Qi|+

{
x ∈ Rn \ ∪i∈Z4Qi :

∣∣∣∣∣∑
i∈Z

Tibi(x)

∣∣∣∣∣ > α/3

}

≤ C

αp
‖∇f‖pLp(Rn) +

C

α2

∫
Rn

∣∣∣∑
i∈Z

Tibi(x)χRn\4Qi(x)
∣∣∣2 dx.(5.54)
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The second term above (referred to as T̃ later on) is bounded by

(5.55)
C

α2

(∑
i∈Z

∫
Rn\4Qi

Tibi(x)u(x) dx

)2

,

for some u ∈ L2(Rn) such that ‖u‖L2(Rn) = 1. Therefore,

T̃ ≤ C

α2

(∑
i∈Z

∞∑
j=3

‖Tibi‖L2(Sj(Qi))‖u‖L2(Sj(Qi))

)2

≤ C

α2

(∑
i∈Z

∞∑
j=3

Ç∫∫
t<l(Qi)

(y,t)∈R(Sj(Qi))

|t2Le−t
2Lbi(y)|2 dydt

t3

å1/2

‖u‖L2(Sj(Qi))

)2

,(5.56)

where, as before, R(Sj(Qi)) = ∪x∈Sj(Qi)Γ(x) stands for the saw-tooth region built on the
set Sj(Qi). Then, using Lemma 2.26 and (5.50)–(5.51), we see that

T̃ ≤ C

α2

Ñ∑
i∈Z

∞∑
j=3

Ç∫ l(Qi)

0

‖t2Le−t
2Lbi‖2L2(2j+1Qi\2j−2Qi)

dt

t3

å1/2

‖u‖L2(Sj(Qi))

é2

≤ C

α2

Ñ∑
i∈Z

∞∑
j=3

Ç∫ l(Qi)

0

e−
(2jl(Qi))

2

ct2 t2(
n
2−

n
r−1)‖bi‖2Lr(Qi)

dt

t

å1/2

‖u‖L2(Sj(Qi))

é2

≤ C

(∑
i∈Z

∞∑
j=3

2−jN l(Qi)
n
[
M
(
|u|2
)

(y)
]1/2)2

(5.57)

for any y ∈ Qi and any large positive number N . Here M stands for the Hardy-Littlewood
maximal function, i.e.,

Mg(x) = sup
Q3x

1

|Q|

∫
Q

|g(y)| dy, x ∈ Rn.

Next, one can sum up the expression above in j and integrate in y to obtain
(5.58)

T̃ ≤ C

(∫
Rn

∑
i∈Z

χQi(y)
[
M
(
|u|2
)

(y)
]1/2

dy

)2

≤ C

(∫⋃
i∈Z Qi

[
M
(
|u|2
)

(y)
]1/2

dy

)2

,

by the finite overlap property of cubes {Qi}i∈Z. At this point we use Kolmogorov’s lemma. It
amounts to the fact that every sublinear operator T of weak type (1,1) satisfies the property∫

E

|Tf(x)|q dx ≤ C|E|1−q‖f‖qL1(Rn), for all f ∈ L1(Rn), 0 < q < 1,

and any set E of finite Lebesgue measure. Then, using the weak type (1, 1) boundedness of
the Hardy-Littlewood maximal function we control the expression in (5.58) by

(5.59) C

(∣∣∣⋃
i∈Z

Qi

∣∣∣1/2 ∥∥|u|2∥∥1/2

L1(Rn)

)2

≤ C
∑
i∈Z
|Qi| ≤

C

αp
‖∇f‖pLp(Rn),
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as desired. This concludes the proof of Proposition 5.33, and thus also that of Theorem 5.2.

6. Sharp maximal function characterization

Recall the sharp maximal function introduced in (1.28). This Section is devoted to the
proof of (1.29). More precisely, we define Hp

],M,L(Rn) to be the completion of the set

Hp
],M,L(Rn) := {f ∈ L2(Rn) : M]

Mf ∈ L
p(Rn)} ,

with respect to the norm

‖f‖Hp
],M,L

(Rn) := ‖M]
Mf‖Lp(Rn).

We have the following:

T 6.1. – Let 2 < p <∞ and M > n/4. Then f ∈ Hp
L(Rn) = Hp

],M,L(Rn), and,
for all f ∈ L2(Rn),

(6.2) ‖f‖Hp
L

(Rn) ≈ ‖M
]
Mf‖Lp(Rn).

Proof. – Recall that we have shown in the proof of Corollary 4.17 that L2(Rn)∩Hp
L(Rn)

is dense in Hp
L(Rn) when 2 < p < ∞ (for p ≤ 2, the analogous density statement holds by

definition). Consequently, it suffices to establish (6.2).

Step I. — First, we shall establish that for all M ∈ N

(6.3) M]
M : Lp(Rn) −→ Lp(Rn), for 2 < p ≤ ∞, M ∈ N.

Clearly, the latter estimate is an immediate consequence of the pointwise bound
M]
Mf ≤ C

(
M(|f |2)

)1/2
, where M denotes the Hardy-Littlewood maximal operator.

In turn, we establish the pointwise bound as follows:

M]
Mf ≤ sup

Q3 x

∞∑
j=0

Ç
1

|Q|

∫
Q

∣∣∣(I − e−l(Q)2L)M (fχSj(Q))(y)
∣∣∣2 dyå1/2

≤ CM sup
Q3 x

Ç
1

|Q|

∫
Q

|f(y)|2 dy
å1/2

+ CM sup
Q3 x

sup
1≤k≤M

∞∑
j=1

Ç
1

|Q|

∫
Q

∣∣∣e−kl(Q)2L(fχSj(Q))(y)
∣∣∣2 dyå1/2

.(6.4)

Then by the Gaffney estimate (Lemma 2.25), the expression above is controlled by

(6.5) C
(
M(|f |2)

)1/2
+ C sup

Q3 x
sup

1≤k≤M

∞∑
j=1

e
−

dist (Q,Sj(Q))2

cl(Q)2
1

|Q|1/2
‖f‖L2(Sj(Q))

≤ C
(
M(|f |2)

)1/2
.
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This finishes the proof of (6.3). Since for 2 ≤ p < p+(L), the spaces Hp
L coincide with Lp,

we also have

(6.6) M]
M : Hp

L(Rn) −→ Lp(Rn) for 2 < p < p+(L), M ∈ N.

Interpolating (6.6) with the property

(6.7) M]
M : BMOL(Rn) −→ L∞(Rn), M > n/4,

we deduce that

(6.8) M]
M : Hp

L(Rn) −→ Lp(Rn) for 2 < p <∞, M > n/4.

Step II. — Now we turn to the converse of (6.8). More precisely, let us show that

(6.9) ‖f‖Hp
L

(Rn) ≤ C‖M
]
Mf‖Lp(Rn),

whenever 2 < p < ∞, M > n/4 and f ∈ L2(Rn). Note that for such f , the adapted sharp
function M]

Mf is well-defined.

Recall the discussion of tent spaces in Section 3. In particular, by (3.20) and Corol-
lary 4.17, we have, for each M > n/4 and every 2 < p <∞,

(6.10) ‖f‖Hp
L

(Rn) ≤ CM,p

∥∥∥∥∥ sup
B3x

Å
1

|B|

∫∫
B̂

|(t2L)Me−t
2Lf(y)|2 dydt

t

ã1/2
∥∥∥∥∥
Lp(Rn)

.

Thus, in order to conclude (6.9) it suffices to show that, for M > n/4,
(6.11)∥∥∥∥∥ sup

Q3x

Ç
1

|Q|

∫ l(Q)

0

∫
Q

|(t2L)M+1e−t
2Lf(x)|2 dxdt

t

å1/2 ∥∥∥∥∥
Lp(Rn)

≤ C‖M]
Mf‖Lp(Rn),

for 2 < p <∞. Note that we have replaced the exponent M by M + 1 on the left-hand side
of (6.11), but this is harmless: since (6.10) holds for every M > n/4, we may choose it larger
at our convenience.

Step III. — In this part we prove that for every cube Q ⊂ Rn

IQ :=

Ç
1

|Q|

∫ l(Q)

0

∫
Q

∣∣∣(t2L)M+1e−t
2Lf(y)

∣∣∣2 dydt

t

å1/2

≤ C
∞∑
j=0

2−jN
1

|2jQ|1/2
sup

l(Q)≤ s≤
√

2l(Q)

‖(I − e−s
2L)Mf‖L2(2jQ), ∀N ∈ N.(6.12)
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Following the procedure outlined in (3.39)–(3.44) one can split

f = 2M

(
l(Q)−2

∫ √2l(Q)

l(Q)

s(I − e−s
2L)M ds

+
M∑
k=1

Ck,M l(Q)−2L−1e−kl(Q)2L(I − e−l(Q)2L)
k−1∑
i=0

e−il(Q)2L

)M
f

= C1,1T
l(Q)
1,1 (I − e−l(Q)2L)M l(Q)−2ML−Mf

+

(M+1)M−1∑
i=1

Ci,2T
l(Q)
i,2

(
l(Q)−2

∫ √2l(Q)

l(Q)

s(I − e−s
2L)M l(Q)−2NiL−Nif ds

)
,(6.13)

where Ci,k are some constants, 0 ≤ Ni ≤ M , and each Ti,k is given by a constant (possibly,
zero) plus a linear combination of the terms in the form e−t

2L with t ≈ l(Q)2. In particular,
Ti,k’s are bounded in L2(Rn) with the constant independent of l(Q) (see Lemma 2.26) and
satisfy Gaffney estimates (2.21) with t ≈ l(Q)2.

All the terms on the right-hand side of (6.13) are essentially of the same nature, and will
be handled similarly. Let us concentrate on the first one. The corresponding part of IQ is
bounded by

(6.14)
∞∑
j=0

Ç
1

|Q|

∫ l(Q)

0

∫
Q

∣∣∣∣( t

l(Q)

)2M

t2Le−t
2LT

l(Q)
1,1

[
χSj(Q)(I − e−l(Q)2L)Mf

]
(y)

∣∣∣∣2 dydt

t

å1/2

.

Since the mapping

(6.15) f 7→
Å∫ ∞

0

|t2Le−t
2Lf(·)|2 dt

t

ã1/2

is bounded in L2(Rn) (a consequence of the H∞ calculus for L, see [1]), and the operator
T
l(Q)
1,1 is bounded in L2, we can write

(6.16)∑
j=0,1

Ç
1

|Q|

∫ l(Q)

0

∫
Q

∣∣∣∣( t

l(Q)

)2M

t2Le−t
2LT

l(Q)
1,1

[
χSj(Q)(I − e−l(Q)2L)Mf

]
(y)

∣∣∣∣2 dydt

t

å1/2

≤ C 1

|Q|1/2
‖(I − e−l(Q)2L)Mf‖L2(2Q).

Furthermore, by Gaffney estimates and Lemma 2.22, when j ≥ 2 we haveÇ
1

|Q|

∫ l(Q)

0

∫
Q

∣∣∣∣( t

l(Q)

)2M

t2Le−t
2LT

l(Q)
1,1

[
χSj(Q)(I − e−l(Q)2L)Mf

]
(y)

∣∣∣∣2 dydt

t

å1/2

≤ C

|Q|1/2

Ç∫ l(Q)

0

e
− (2jl(Q))2

cl(Q)2

( t

l(Q)

)2M dt

t

å1/2

‖(I − e−l(Q)2L)Mf‖L2(Sj(Q))

≤ C2−jN
1

|2jQ|1/2
‖(I − e−l(Q)2L)Mf‖L2(Sj(Q)),(6.17)
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for any N ∈ N. Now the combination of (6.16) and (6.17), together with analogous consid-
erations for the remaining terms in (6.13), implies

IQ ≤ C
∞∑
j=0

2−jN
1

|2jQ|1/2

(
‖(I − e−l(Q)2L)Mf‖L2(Sj(Q))

+

∥∥∥∥∥l(Q)−2

∫ √2l(Q)

l(Q)

s(I − e−s
2L)Mf ds

∥∥∥∥∥
L2(Sj(Q))

)

≤ C
∞∑
j=0

2−jN
1

|2jQ|1/2

(
‖(I − e−l(Q)2L)Mf‖L2(Sj(Q))

+l(Q)−2

∫ √2l(Q)

l(Q)

s‖(I − e−s
2L)Mf‖L2(Sj(Q)) ds

)

≤ C
∞∑
j=0

2−jN
1

|2jQ|1/2
sup

l(Q)≤ s≤
√

2l(Q)

‖(I − e−s
2L)Mf‖L2(Sj(Q)),(6.18)

as desired.

Step IV. — The next step is to show that

sup
Q3x

∞∑
j=0

2−jN
1

|2jQ|1/2
sup

l(Q)≤ s≤
√

2l(Q)

‖(I − e−s
2L)Mf‖L2(Sj(Q))

≤ CM2( M]
Mf)(x), x ∈ Rn, M ∈ N,(6.19)

where M2 is an L2-based version of the Hardy-Littlewood maximal function, i.e.

(6.20) M2g(x) = sup
Q3x

Ç
1

|Q|

∫
Q

|g(y)|2 dy
å1/2

, x ∈ Rn.

Clearly,

(6.21) M2g(x) = sup
Q3x

sup
j∈N∪{0}

Ç
1

|2jQ|

∫
2jQ

|g(y)|2 dy
å1/2

, x ∈ Rn.

Hence,

M2( M]
Mf)(x)

= sup
Q3x

sup
j∈N∪{0}

(
1

|2jQ|

∫
2jQ

sup
Q̃3y

1

|‹Q| ∫Q̃ |(I − e−l(Q̃)2L)Mf(z)|2 dz dy

)1/2

.(6.22)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



772 S. HOFMANN, S. MAYBORODA AND A. MCINTOSH

Let us denote by {Qji}2
jn

i=1 some partition of 2jQ into subcubes of side length l(Q). Then
the expression above is further equal to

sup
Q3x

sup
j∈N∪{0}

Ñ
1

|2jQ|

2jn∑
i=1

∫
Qj
i

sup
Q̃3y

1

|‹Q| ∫Q̃ |(I − e−l(Q̃)2L)Mf(z)|2 dz dy

é1/2

≥ sup
Q3x

sup
j∈N∪{0}

Ñ
1

|2jQ|

2jn∑
i=1

∫
Qj
i

1

|Qji |

∫
Qj
i

(I − e−l(Q)2L)Mf(z)|2 dz dy

é1/2

= sup
Q3x

sup
j∈N∪{0}

Ñ
1

|2jQ|

2jn∑
i=1

∫
Qj
i

(I − e−l(Q)2L)Mf(z)|2 dz

é1/2

= sup
Q3x

sup
j∈N∪{0}

Ç
1

|2jQ|

∫
2jQ

(I − e−l(Q)2L)Mf(z)|2 dz
å1/2

,(6.23)

where we used the fact that l(Qji )=l(Q) for all i = 1, . . . , 2jn, j ∈ N ∪ {0}, to switch from
e−l(Q

j
i
)2L to e−l(Q)2L in the first inequality above. We claim that the expression in the last

line of (6.23) controls the left-hand side of (6.19). Indeed,

sup
Q3x

∞∑
j=0

2−jN
1

|2jQ|1/2
sup

l(Q)≤ s≤
√

2l(Q)

‖(I − e−s
2L)Mf‖L2(Sj(Q))

≤ C sup
Q3x

∞∑
j=0

2−jN sup
l(Q)≤ s≤

√
2l(Q)

(
1

|2jQs|

∫
2jQs

|(I − e−s
2L)Mf(z)|2 dz

)1/2

,(6.24)

whereQs is a cube with the same center asQ and side length s. Since s ≥ l(Q), in particular,
Qs ⊃ Q 3 x. Then the right-hand side of (6.24) is bounded by

C
∞∑
j=0

2−jN sup
Qs3x

(
1

|2jQs|

∫
2jQs

|(I − e−l(Qs)
2L)Mf(z)|2 dz

)1/2

≤ C sup
Q3x

sup
j∈N∪{0}

Ç
1

|2jQ|

∫
2jQ

(I − e−l(Q)2L)Mf(z)|2 dz
å1/2 ∞∑

j=0

2−jN

≤ C sup
Q3x

sup
j∈N∪{0}

Ç
1

|2jQ|

∫
2jQ

(I − e−l(Q)2L)Mf(z)|2 dz
å1/2

.(6.25)

This finishes the proof of (6.19).

Step IV. — Finally, (6.12), (6.19) allow to conclude that
(6.26)∥∥∥∥∥ sup

Q3x

Ç
1

|Q|

∫ l(Q)

0

∫
Q

|(t2L)M+1e−t
2Lf(x)|2 dxdt

t

å1/2 ∥∥∥∥∥
Lp(Rn)

≤ C‖M2( M]
Mf)‖Lp(Rn),
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for every 0 < p <∞. But since the classical Hardy-Littlewood maximal function is bounded
in Lp for 1 < p <∞, the operator M2 is bounded in Lp(Rn) for 2 < p <∞, and therefore,

(6.27) ‖M2( M]
Mf)‖Lp(Rn) ≤ C‖M]

Mf‖Lp(Rn), 2 < p <∞.

Now the combination of (6.26) and (6.27) yields (6.11) and finishes the proof of the
theorem.

7. Fractional powers of the operator L

Recall that for p−(L) < p < r < p+(L)

(7.1) L−α : Lp(Rn) −→ Lr(Rn), α =
1

2

Å
n

p
− n

r

ã
.

This result has been proved in [6], Proposition 5.3. In this section we aim to prove the
generalization of (7.1) to the full scale of Hp

L spaces.

T 7.2. – Let 0 < p < r <∞. Then

L−α : Hp
L(Rn) −→ Hr

L(Rn), α =
1

2

Å
n

p
− n

r

ã
,(7.3)

L−α : Hp
L(Rn) −→ BMOL(Rn), α =

n

2p
,(7.4)

L−α : BMOL(Rn) −→ Λ2α
L (Rn), α > 0,(7.5)

L−α : ΛβL(Rn) −→ Λβ+2α
L (Rn), α > 0, β > 0.(7.6)

Proof. – Let us denote pn := 2n/(n+ 2) and p′n := 2n/(n− 2). We recall that by [6], we
have p−(L) < pn and p+(L) > p′n. We begin by claiming that it is enough to prove (7.3) for

(7.7) 0 < p < r ≤ 1 such that
1

2

Å
n

p
− n

r

ã
≤ 1

2

Å
n

pn
− n

2

ã
=

1

2
,

which, in particular, says that

(7.8) 0 < α =
1

2

Å
n

p
− n

r

ã
≤ 1

2
.

Indeed, once (7.3) has been proved for this range, by interpolating with (7.1) via
Lemma 4.20, we may obtain that (7.3) holds for all

(7.9) 0 < p < r < p+(L) such that
1

2

Å
n

p
− n

r

ã
≤ 1

2
,

with α satisfying (7.8). We can then write L−α = (L−α/k)k for k large enough in order to
remove restrictions on α and, equivalently, on the difference between p and r, and obtain
(7.3) for

(7.10) 0 < p < r < p+(L), α =
1

2

Å
n

p
− n

r

ã
,

without restriction on the size of α. From here the results in (7.3)–(7.6) follow for the full
range of indices by duality and another application of the procedure with L−α = (L−α/k)k.
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Indeed, the fact that (7.3) holds for 1 < p < r ≤ 2 for all elliptic operators (and
hence, in particular, L∗) together with (1.12) implies that (7.3) holds also for 2 < p < r < +∞.
Combining this with the range (7.10) and suitably representing the powers of L as a compo-
sition of smaller powers, we cover the full range 0 < p < r < +∞ for (7.3). Furthermore,
using (7.3) for L∗ with p = 1 and Theorem 3.52, we arrive at (7.4). Similarly, dualizing (7.3)
for L∗ with r = 1 and using, once again, Theorem 3.52, one obtains (7.5), and, by the same
procedure starting with 0 < p < r < 1, (7.6).

Thus, it suffices to establish (7.3) under the restrictions (7.7)–(7.8), and it is to this task
that we now turn. We first show that

(7.11) ‖S(L−αm)‖Lr(Rn) ≤ C, for every (Hp
L, ε,M)-molecule m,

where M > n
2

(
1
p −

1
2

)
and ε > 0. To this end, observe that by Hölder’s inequality

(7.12) ‖S(L−αm)‖rLr(Rn) ≤ C
∞∑
j=0

(2j l(Q))n(1−r/2)‖S(L−αm)‖rL2(Sj(Q)).

When j ≤ 10, we employ boundedness of S in L2(Rn) and (7.1) to obtain the estimate

(7.13) ‖S(L−αm)‖L2(Sj(Q)) ≤ ‖m‖Lq(Rn).

Here and throughout the proof q is such that α = 1
2

Ä
n
q −

n
2

ä
, so that q ≤ 2 and q > pn by

(7.8). Then by the definition of the molecule the expression above is bounded by l(Q)
n
2−

n
r .

Indeed, by Hölder’s inequality every (Hp
L, ε,M)-molecule satisfies (3.6) for q ≤ 2. Therefore,

(7.14) ‖m‖Lq(Rn) ≤
∞∑
j=0

‖m‖Lq(Sj(Q)) ≤ Cl(Q)
n
q−

n
p = Cl(Q)

n
2−

n
r ,

since 1
2

Ä
n
p −

n
r

ä
= α = 1

2

Ä
n
q −

n
2

ä
.

Turning to the case j ≥ 10, one can represent the molecule as follows

m = (I − e−l(Q)2L)Mm+ [I − (I − e−l(Q)2L)M ]m

(7.15)

= (I − e−l(Q)2L)Mm+
∑

1≤k≤M

Ck,M

Å
k

M
l(Q)2Le−

k
M l(Q)2L

ãM
(l(Q)−2L−1)Mm,

where Ck,M are some constants depending on k,M only. Starting with the first term above,
we write

‖S(L−α(I − e−l(Q)2L)Mm)‖L2(Sj(Q))(7.16)

≤ ‖S(L−α(I − e−l(Q)2L)M (mχ
Ŝj(Q)

))‖L2(Sj(Q))

+ ‖S(L−α(I − e−l(Q)2L)M (mχRn\Ŝj(Q)
))‖L2(Sj(Q)),

where, as before,

(7.17) Ŝj(Q) := 2j+2Q \ 2j−3Q.
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Then
(7.18)
‖S(L−α(I − e−l(Q)2L)M (mχ

Ŝj(Q)
))‖L2(Rn) ≤ C‖m‖Lq(Ŝj(Q))

≤ C (2j l(Q))
n
2−

n
r 2−jε.

As for the second part of (7.16), using the notation (3.49), one can write

‖S(L−α(I − e−l(Q)2L)M (mχRn\Ŝj(Q)
))‖L2(Sj(Q))

≤ C
Ç∫∫

R(Sj(Q))

|s2Le−s
2LL−α(I − e−l(Q)2L)M (mχRn\Ŝj(Q)

)(x)|2 ds dx
s

å1/2

≤ C
Ç∫

S̃j(Q)

∫ ∞
0

|s2Le−s
2LL−α(I − e−l(Q)2L)M (mχRn\Ŝj(Q)

)(x)|2 ds dx
s

å1/2

+C

Ç∫
Rn\S̃j(Q)

∫ ∞
c2j l(Q)

|s2Le−s
2LL−α(I − e−l(Q)2L)M (mχRn\Ŝj(Q)

)(x)|2 ds dx
s

å1/2

=: I + II.

(7.19)

We claim that for arbitrary closed sets E,F ⊂ Rn

(7.20)
∥∥∥ s
τ
e−sL(I − e−τL)g

∥∥∥
L2(F )

≤ Ce−
dist (E,F )2

cs ‖g‖L2(E),

provided s ≥ τ and supp g ⊂ E. Indeed,

∥∥∥ s
τ

(e−sL − e−(s+τ)L)g
∥∥∥
L2(F )

=

∥∥∥∥ sτ
∫ τ

0

∂re
−(s+r)Lg dr

∥∥∥∥
L2(F )

≤ C s
τ

∫ τ

0

∥∥∥(s+ r)Le−(s+r)Lg
∥∥∥
L2(F )

dr

s+ r

≤ C ‖g‖L2(E)

Å
s

τ

∫ τ

0

e−
dist (E,F )2

c(s+r)
dr

s+ r

ã
.(7.21)

Since s+ r ≈ s for s ≥ τ and r ∈ (0, τ), the expression above does not exceed

(7.22) C ‖g‖L2(E)e
− dist (E,F )2

cs

Å
s

τ

∫ τ

0

dr

s+ r

ã
≤ Ce−

dist (E,F )2

cs ‖g‖L2(E).

Next, recall that

(7.23) L−αf = C

∫ ∞
0

tα−1e−tLf dt.
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Then we obtain the estimate

II ≤ C
Ç∫ ∞

[c2j l(Q)]2

∫
Rn
|sLe−sLL−α(I − e−l(Q)2L)M (mχRn\Ŝj(Q)

)(x)|2 dx ds
s

å1/2

≤ C

Ç∫ ∞
[c2j l(Q)]2

Å∫ ∞
0

tα−1‖sLe−sLe−tL(I − e−l(Q)2L)M (mχRn\Ŝj(Q)
)‖L2(Rn) dt

ã2
ds

s

å1/2

≤ C

(∫ ∞
c′[2j l(Q)]2

(∫ ∞
0

tα−1

(
l(Q)2

s+ t

)M

×
∥∥∥sLe−sL Å

s+ t

l(Q)2

ãM
e−(s+t)L(I − e−l(Q)2L)M (mχRn\Ŝj(Q)

)
∥∥∥
L2(Rn)

dt

)2
ds

s

)1/2

.

To estimate the last line above, we split further

e−(s+t)L(I − e−l(Q)2L)M =
[
e−

(s+t)
M L(I − e−l(Q)2L)

]M
and use Lemma 2.26 and (7.20) with τ = l(Q)2 and (s + t)/M in place of s (assuming
that (s + t)/M ≥ l(Q)2) and otherwise, if c′[2j l(Q)]2 ≤ (s + t)/M ≤ l(Q)2, just directly
Lemma 2.26. All in all,

II ≤ C

(∫ ∞
c′[2j l(Q)]2

(∫ ∞
0

tα−1

(
l(Q)2

s+ t

)M
dt

)2
ds

s

)1/2

‖m‖L2(Rn)

≤ C(2j l(Q))
n
2−

n
r 2j(

n
p−

n
2−2M) ≤ C(2j l(Q))

n
2−

n
r 2−jε,(7.24)

with ε denoting minimum between ε from the definition of the (Hp
L, ε,M) molecule and

n
p −

n
2 − 2M . We do not distinguish them in the notation as soon as ε > 0.

In order to estimate I, let us denote by S∗ the vertical version of square function, i.e.

(7.25) S∗f(x) =

Å∫ ∞
0

|t2Le−t
2Lf(x)|2 dt

t

ã1/2

, x ∈ Rn,

and record the following result:

(7.26) ‖S∗e−tL(I − e−τL)Mf‖L2(F ) ≤ C
Å

max{t, τ}
dist (E,F )2

ãM
‖f‖L2(E),

for arbitrary closed sets E,F ⊂ Rn, f ∈ L2(E) and t, τ > 0. For t = 0 this has been
established in Theorem 3.2, [40], and the proof of (7.26) follows the same path. Then

I ≤ C
∫ (M+1)l(Q)2

0

tα−1‖S∗e−tL(I − e−l(Q)2L)M (mχRn\Ŝj(Q)
)‖
L2(S̃j(Q))

dt

+ C

∫ ∞
(M+1)l(Q)2

tα−1

Å∫ ∞
0

‖sLe−sLe−tL(I − e−l(Q)2L)M (mχRn\Ŝj(Q)
)‖2
L2(S̃j(Q))

ds

s

ã1/2

dt

=: I1 + I2

(7.27)
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where we first used (7.23), then Minkowski inequality to switch the L2 and L1 norms, then
split the integral in t, and then made a substitution s2 to s in the second term. Then, by (7.26)

(7.28) I1 ≤ Cl(Q)2α2−2Mj‖m‖L2(Rn) ≤ C(2j l(Q))
n
2−

n
r 2−jε.

Going further,

I2 ≤ C
∫ ∞

(M+1)l(Q)2
tα−1

(∫ t

0

(s
t

)2
Å
l(Q)2

t

ã2M

×
∥∥∥∥∥tLe−tLe−sL

Å
t

l(Q)2

ãM
(I − e−l(Q)2L)M (mχRn\Ŝj(Q)

)

∥∥∥∥∥
2

L2(S̃j(Q))

ds

s

)1/2

dt

+C

∫ ∞
(M+1)l(Q)2

tα−1

(∫ ∞
t

Å
l(Q)2

s

ã2M

×
∥∥∥∥∥sLe−sLe−tL

Å
s

l(Q)2

ãM
(I − e−l(Q)2L)M (mχRn\Ŝj(Q)

)

∥∥∥∥∥
2

L2(S̃j(Q))

ds

s

)1/2

dt.

According to (7.20), the expression above is bounded by

C‖m‖L2(Rn)

∫ ∞
(M+1)l(Q)2

tα−1

Å
l(Q)2

t

ãM
e−

(2jl(Q))2

ct

(∫ t

0

(s
t

)2 ds

s

)1/2

dt

+ C‖m‖L2(Rn)

∫ ∞
(M+1)l(Q)2

tα−1

(∫ ∞
t

Å
l(Q)2

s

ã2M

e−
(2jl(Q))2

cs
ds

s

)1/2

dt.(7.29)

Here, to estimate the first term, we used (7.20) with t
M+1 in place of s and l(Q)2 in place

of τ , splitting tLe−tL(I − e−l(Q)2L)M = tLe−
t

M+1L
î
e−

t
M+1L(I − e−l(Q)2L)

óM
. Similarly,

for the second term we employed (7.20) with s
M+1 in place of s and l(Q)2 in place of τ , and

split sLe−sL(I − e−l(Q)2L)M = sLe−
s

M+1L
î
e−

s
M+1L(I − e−l(Q)2L)

óM
.

Now, making the change of variables t 7→ r, r := − (2j l(Q))2

ct , in the first line of (7.29), we
control it by

(7.30) C(2j l(Q))2α2−2jM‖m‖L2(Rn) ≤ C(2j l(Q))
n
2−

n
r 2−jε.

In order to control the second term in (7.29), let us take some δ > 0 and write

C‖m‖L2(Rn)

∫ ∞
(M+1)l(Q)2

tα−1

(∫ ∞
t

Å
l(Q)2

s

ã2M

e−
(2jl(Q))2

cs
ds

s

)1/2

dt

≤ C‖m‖L2(Rn)

∫ ∞
(M+1)l(Q)2

tα−1

Å
l(Q)2

t

ãα+δ
(∫ ∞

t

Å
l(Q)2

s

ã2M−2α−2δ

e−
(2jl(Q))2

cs
ds

s

)1/2

dt

≤ Cl(Q)2α2−j(2M−2α−2δ)‖m‖L2(Rn) ≤ C(2j l(Q))
n
2−

n
r 2−jε,

(7.31)

provided δ > 0 is small enough.
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All in all, we have the desired control for SL−α acting on the first term in (7.15). The sec-
ond one can be handled by a similar argument, since (l(Q)−2L−1)Mm satisfies the same size

conditions as a molecule itself and
Ä
l(Q)2Le−l(Q)2L

äM
behaves much as (I − e−l(Q)2L)M .

Roughly speaking, these two operators exhibit the same cancellation and decay properties (it
can be seen, e.g., from the argument of Theorem 3.52).

This finishes the proof of (7.11), and it remains only to pass to (7.3), under the conditions
(7.7)–(7.8). In particular, α ≤ 1/2, so by (7.1), and the fact that p+(L) > 2n/(n−2) (cf. [6]),
we then have that

(7.32) L−α : L2(Rn)→ Lq(Rn),
1

q
=

1

2
− 2α

n
.

Now by density, as usual it is enough to work with f ∈ Hp
L,mol,M (Rn), so that there is

an L2 convergent molecular decomposition f =
∑
λjmj , with

∑
|λj |p . ‖f‖pHp

L,mol,M
(Rn)

.

Consequently, (7.32) implies that

L−αf =
∑

λj L
−αmj in Lq(Rn),

and therefore also, since q < p+(L), that

S
(
L−αf

)
≤
∑
|λj |S

(
L−αmj

)
(here we have used that S : Lq → Lq whenever p−(L) < q < p+(L), by a slight modification
of an argument in [6], Theorem 6.1). It is now immediate that (7.11) implies (7.3), under
the conditions (7.7)–(7.8), and as we have observed above, the conclusion of Theorem 7.2
follows.

8. Functional calculus and fractional powers of L in smoothness spaces

8.1. Functional calculus and fractional powers of L in Hp
L-BMOL-ΛαL spaces

Recall from Section 2.1 that L has a bounded holomorphic functional calculus on L2 and
(2.5) holds. In general, these properties do not extend to all Lp, 1 < p < ∞. Otherwise, the
heat semigroup would be bounded in all Lp, 1 < p < ∞, as an H∞ function, which would
contradict Proposition 2.10. However, the functional calculus can be extended to a full scale
of Hp

L-BMOL-ΛαL spaces.

L 8.1. – The operator L defined in (1.1) (1.3) has a bounded holomorphic functional
calculus in Hp

L(Rn), 0 < p <∞, BMOL(Rn) and ΛαL(Rn), α > 0, in the following sense.

When 0 < p ≤ 2, for every non-trivial ψ ∈ H∞(Σ0
µ) the operator ψ(L) originally defined

on L2(Rn) extends by continuity to a bounded operator on Hp
L(Rn) satisfying

(8.2) ‖ψ(L)f‖Hp
L

(Rn) ≤ C‖ψ‖L∞(Σ0
µ)‖f‖Hp

L
(Rn) for every f ∈ Hp

L(Rn).

For p > 2 the operator ψ(L) can be defined on Hp
L(Rn) by duality:

(8.3) ∀f ∈ Hp
L(Rn), p > 2, ∀g ∈ Hp′

L∗(R
n) 〈ψ(L)f, g〉 := 〈f, ψ(L∗)g〉,
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and satisfies (8.2). In the same way ψ(L) can be defined on BMOL(Rn) and ΛαL(Rn), α > 0,
and

(8.4) ‖ψ(L)f‖BMOL(Rn) ≤ C‖ψ‖L∞(Σ0
µ)‖f‖BMOL(Rn) for every f ∈ BMOL(Rn),

(8.5) ‖ψ(L)f‖Λα
L

(Rn) ≤ C‖ψ‖L∞(Σ0
µ)‖f‖Λα

L
(Rn) for every f ∈ ΛαL(Rn), α > 0.

Proof. – Let 0 < p ≤ 2 and β > n
2

Ä
max{ 1

p , 1} −
1
2

ä
. Now take ψ ∈ Ψβ,β(Σ0

µ) and build

ψ̃ ∈ Ψβ,β(Σ0
µ) using (4.13) so that (4.12) is satisfied. Then for any g ∈ Hp

L(Rn)

(8.6) Qψg ∈ T p(Rn+1
+ ) and ‖Qψg‖Tp(Rn+1

+
) ≤ C‖g‖HpL(Rn).

Furthermore, by Proposition 4.4

(8.7) Qψ ◦ f(L) ◦ π
ψ̃

: T p(Rn+1
+ ) −→ T p(Rn+1

+ ),

and hence, by (8.6)

(8.8) Qψ ◦ f(L) = Qψ ◦ f(L) ◦ π
ψ̃
◦Qψ : Hp

L(Rn) −→ T p(Rn+1
+ ).

By virtue of (4.18) the property (8.8) implies that

(8.9) f(L) : Hp
L(Rn) −→ Hp

L(Rn),

thereby concluding the case 0 < p ≤ 2.

Now the functional calculus of L in Hp
L for p > 2, BMOL and ΛαL, α > 0, follows from

(1.12) and Theorem 3.52.

8.2. Classical scales of function spaces measuring smoothness

So far we have worked with a few different scales of function spaces on Rn: Lp(Rn),
1 < p ≤ ∞, Hardy spaces Hp(Rn), 0 < p ≤ 1, homogeneous Sobolev spaces Ẇ s,p(Rn),
s ∈ R, 1 < p < ∞ (cf. (1.32)), and their counterparts for p ≤ 1 and s = 1, namely the
regular Hardy spaces H1,p(Rn) defined in (5.22). All of them belong to (or can be identified
with the members of) a more extensive scale of the Triebel-Lizorkin spaces, Ḟ p,qs (Rn), s ∈ R,
0 < p, q <∞.

Let us denote by F the Fourier transform operator. We fix a Schwartz function ϕ such
that:

1. supp F (ϕ) ⊆ {ξ ∈ Rn : 1
2 ≤ |ξ| ≤ 2},

2. | F (ϕ)(ξ)| ≥ c > 0 uniformly for 3
5 ≤ |ξ| ≤

5
3 ,

3.
∑
i∈Z | F (ϕ)(2iξ)|2 = 1 if ξ 6= 0,
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and let ϕi(x) := 2inϕ(2ix), i ∈ Z, x ∈ Rn. Then for s ∈ R, 0 < p <∞ and 0 < q ≤ ∞,

(8.10) Ḟ p,qs (Rn) :=
{
f ∈ S′/P : ‖f‖Ḟp,qs (Rn) :=

∥∥∥(∑
i∈Z

(2is|ϕi ∗ f |)q
) 1
q
∥∥∥
Lp
<∞

}
,

where S′/P is the space of tempered distributions on Rn modulo polynomials. We have

Lp(Rn) ≈ Ḟ p,20 (Rn), 1 < p <∞,(8.11)

Ẇ s,p(Rn) ≈ Ḟ p,2s (Rn), 1 < p <∞, s ∈ R,(8.12)

Hp(Rn) ≈ Ḟ p,20 (Rn), 0 < p ≤ 1,(8.13)

H1,p(Rn) ≈ Ḟ p,21 (Rn), 0 < p ≤ 1.(8.14)

The details on the identifications in (8.11) and (8.13) are presented in [33] (Remark 7.8
and Appendix B). The identifications (8.12) and (8.14) will be discussed after Lemma 8.17.
We shall use the following basic properties of Triebel-Lizorkin spaces.

L 8.15. – The space

(8.16) Z(Rn) := {ϕ ∈ S(Rn) : (Dα F ϕ)(0) = 0 for every multiindex α}

is a dense subspace of Ḟ p,qs (Rn) for all s ∈ R, 0 < p, q <∞.

L 8.17. – The operator ∆α, α ∈ R, is an isomorphism from Ḟ p,qs (Rn) onto
Ḟ p,qs−2α(Rn), s ∈ R, 0 < p, q < +∞. Also, for any m ∈ N,

Ḟ p,qs (Rn) = {f ∈ S′/P : Dαf ∈ Ḟ p,qs−m(Rn), ∀α with |α| = m}.(8.18)

Lemma 8.15 is proved in [57], Section 5.1.3, and Lemma 8.17 directly follows from
Theorem 5.2.3 in [57]. Note that Lemma 8.17 together with (8.11) and (8.13) implies (8.12)
and (8.14).

Finally, we would like to record the following consequence of the Kato estimate.

L 8.19. – Let L be an operator defined by (1.1) (1.3). Then Lα, −1/2 ≤ α ≤ 1/2,
is an isomorphism from Ẇ s,2(Rn) onto Ẇ s−2α,2(Rn), −1 ≤ s ≤ 1.

Proof. – The Kato estimate (1.4) implies that L1/2 maps the Sobolev space Ẇ 1,2(Rn)

isomorphically ontoL2(Rn). Using this observation and interpolation, one can further show
that

(8.20) Lα, 0 ≤ α ≤ 1/2, is an isomorphism between Ẇ 2α,2(Rn) and L2(Rn),

(see, e.g., the proof of Proposition 5.3 in [6] for the details). Now we write Lα = Ls/2 ◦ L−s/2+α

and use duality and (8.20) to finish the argument.

Interchanging the order in which Lp and `q norms are taken in (8.10), one would obtain
the homogeneous Besov spaces Ḃp,qs , s ∈ R, 0 < p, q ≤ ∞. There are also appropriate
versions of (8.10) corresponding to p = ∞ or q = ∞; see, e.g., [33], Sections 1,2, for the
definitions. Since we aim to concentrate on the properties of the operatorL in Sobolev spaces
and their counterparts for p ≤ 1, we do not further elaborate on this point. However, below
we will use the notation Ḟ p,2s in place of Ẇ s,p andHs,p for uniformity and to avoid repetition
when considering p > 1 and p ≤ 1.
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8.3. Weighted tent spaces

Let s ∈ R, 0 < p, q <∞, and consider the spaces

(8.21) T p,qs (Rn+1
+ ) := {F : Rn+1

+ −→ C; ‖F‖Tp,qs (Rn+1
+

) := ‖AqsF‖Lp(Rn) <∞},

where

(8.22) AqsF (x) :=

Ç∫∫
Γ(x)

|F (y, t)|q dydt

tsq+n+1

å1/q

, x ∈ Rn.

When s = 0, these are the classical tent spaces we discussed in Section 4. They were first
introduced and studied in [22]. In particular, the authors established the complex interpola-
tion of tent spaces for s = 0 and p, q ≥ 1 (when the underlying spaces are Banach). Later
on the complex interpolation of tent spaces was proved for 0 < p, q < ∞ and s = 0 in [15],
[20] (see also [2], [3], [16]). We stated a partial case of this result in (3.22). However, for the
applications we have in mind we need to show that the tent spaces interpolate in s, p and q
for the full range of indices.

L 8.23. – For all s0, s1 ∈ R, 0 < p0, p1 <∞, 0 < q0, q1 <∞,

(8.24)
[
T p0,q0s0 (Rn+1

+ ), T p1,q1s1 (Rn+1
+ )

]
θ

= T p,qs (Rn+1
+ ), 0 < θ < 1,

where s = (1− θ)s0 + θs1, 1
p = 1−θ

p0
+ θ

p1
and 1

q = 1−θ
q0

+ θ
q1

.

Proof. – As we already mentioned (see the discussion preceding Lemma 4.20), extension
of the complex interpolation method to quasi-Banach spaces is not straightforward, and over
the years several approaches to this issue have been developed. Here we continue to follow the
method of complex interpolation of analytically convex spaces which have been employed in
the classical Hardy-Sobolev-Besov-Triebel-Lizorkin scales in [46], [52], [45], and for the tent
spaces with s = 0 in [20].

According to Theorem 7.9 in [45] (see also [46]), we have

(8.25)
[
T p0,q0s0 (Rn+1

+ ), T p1,q1s1 (Rn+1
+ )

]
θ

=
(
T p0,q0s0 (Rn+1

+ )
)(1−θ) (

T p1,q1s1 (Rn+1
+ )

)θ
,

provided that T pi,qisi (Rn+1
+ ), i = 0, 1, are analytically convex and separable. Here the space

on the right-hand side of (8.25) is interpreted as a set of functions F : Rn+1
+ −→ C such that

|F | ≤ |G|1−θ|H|θ for some G ∈ T p0,q0s0 and H ∈ T p1,q1s1 , equipped with the natural infimum
norm.

The fact that the tent spaces are separable is fairly obvious (note that p, q <∞). Further-
more, any tent space is a quasi-Banach lattice (a quasi-Banach space with a partial order),
and a quasi-Banach lattice X is analytically convex if it is lattice r-convex for some r > 0,
i.e.

(8.26)

∥∥∥∥∥∥
( m∑
j=1

|fj |r
)1/r

∥∥∥∥∥∥
X

≤
( m∑
j=1

‖fj‖rX
)1/r

for any finite family {fj}1≤j≤m ⊂ X (see Theorem 7.8 in [45]). The elements of T p,qs satisfy
(8.26) with r = min{p, q} by Minkowski inequality. Hence, the spaces (8.21) are analytically
convex and (8.25) applies.
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Now recall the factorization results from [20] for the tent spaces without weight:

(8.27) T p,q0 (Rn+1
+ ) = T p0,q00 (Rn+1

+ ) · T p1,q10 (Rn+1
+ ),

1

p
=

1

p0
+

1

p1
,

1

q
=

1

q0
+

1

q1
,

where 0 < p, q ≤ ∞ and the product in (8.27) is interpreted similarly to (8.25). Since for all
functions F,G : Rn+1

+ −→ C and s ∈ R we have F
ts0

G
ts1 = FG

ts0+s1
, the formula (8.27) entails

(8.28) T p,qs (Rn+1
+ ) = T p0,q0s0 (Rn+1

+ ) · T p1,q1s1 (Rn+1
+ ),

with s = s0 + s1, 1
p = 1

p0
+ 1
p1

and 1
q = 1

q0
+ 1
q1

. Furthermore, it can be checked directly that

(T p,qs )
r

= T
p/r,q/r
sr , so that (8.28) implies

(8.29)
(
T p0,q0s0

)(1−θ) (
T p1,q1s1

)θ
= T

p0
(1−θ) ,

q0
(1−θ)

s0(1−θ) · T
p1
θ ,

q1
θ

s1θ
= T p,qs (Rn+1

+ ),

for s = (1− θ)s0 + θs1, 1
p = 1−θ

p0
+ θ

p1
and 1

q = 1−θ
q0

+ θ
q1

. Together with (8.25) this finishes
the proof.

8.4. Hardy-Sobolev spaces associated to L: general theory

Let us now define a smooth version of the Hardy spaces Hs,p
L (Rn), 0 ≤ s ≤ 1, 0 < p ≤ 2,

as a completion of L−s/2(L2 ∩Hp
L) in the norm

(8.30) ‖f‖Hs,p
L

(Rn) := ‖SLs/2f‖Lp(Rn) = ‖Ls/2f‖Hp
L

(Rn).

Recall that L−s/2 is an isomorphism of L2 onto the space Ẇ s,2, hence, L−s/2(L2 ∩Hp
L)

is a subspace of Ẇ s,2, in particular, Ls/2f is well-defined for every f ∈ L−s/2(L2 ∩ Hp
L).

Moreover, it follows that

(8.31) Ẇ s,2(Rn) ∩Hs,p
L (Rn) is dense in Hs,p

L (Rn), for all 0 ≤ s ≤ 1, 0 < p ≤ 2.

L 8.32. – The operator Lα, −1/2 ≤ α ≤ 1/2, is an isomorphism of Hs,p
L onto

Hs−2α,p
L provided 0 ≤ s− 2α ≤ 1, 0 ≤ s ≤ 1 and 0 < p ≤ 2.

Proof. – This result is a direct consequence of the definitions. Indeed, by definition
L2 ∩Hp

L is dense in Hp
L and

(8.33) ‖L−αf‖H2α,p
L

= ‖SLαL−αf‖Lp = ‖f‖Hp
L
, ∀f ∈ L2 ∩Hp

L, 0 ≤ α ≤ 1/2.

Hence, the operator L−α extends by continuity to L−α : Hp
L → H2α,p

L and its range
is closed in H2α,p

L . On the other hand, its range contains L−α(L2 ∩ Hp
L), a dense subset

of H2α,p
L , and therefore, the range of L−α in H2α,p

L actually coincides with H2α,p
L . Then

L−α is an isomorphism of Hp
L onto H2α,p

L , 0 ≤ α ≤ 1/2. Using this fact and writing
Lα = Ls/2 ◦ Lα−s/2 we finish the proof of the lemma.

Clearly, Hs,p
L are analogues of the Sobolev spaces adapted to the elliptic operator L. In

particular, Lemmas 8.32, 8.17 and the remark after (1.15) show that

(8.34) Hs,p
∆ (Rn) ≈ Ẇ s,p(Rn), 0 ≤ s ≤ 1, 1 < p ≤ 2.

As their counterparts forL = ∆, the spacesHs,p
L (Rn) are amenable to complex interpola-

tion, satisfy natural duality properties, admit some version of the molecular decomposition
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etc. If necessary, the scale of Hs,p
L spaces can be extended to the full range of p and s anal-

ogously to the Triebel-Lizorkin spaces. We do not pursue this subject in the present paper,
and only mention the results which are important for the applications we have in mind.

L 8.35. – The operator L has bounded holomorphic functional calculus inHs,p
L (Rn)

for all 0 ≤ s ≤ 1 and 0 < p ≤ 2, in the sense that for every ϕ ∈ H∞(Σ0
µ)

(8.36) ϕ(L) : Hs,p
L (Rn) −→ Hs,p

L (Rn),

with the norm bounded by ‖ϕ‖L∞(Σ0
µ).

Moreover, for every ϕ ∈ Ψ′(Σ0
µ) and for all 0 ≤ α, β ≤ 1 and 0 < p ≤ q ≤ 2

(8.37) ϕ(L) : Hα,p
L (Rn) −→ Hβ,q

L (Rn),

and

(8.38) ‖ϕ(L)f‖Hβ,q
L

(Rn) ≤ C
∥∥∥z β−α2 + 1

2 (np−
n
q )ϕ

∥∥∥
L∞(Σ0

µ)
‖f‖Hα,p

L
(Rn),

whenever the L∞ norm on the right-hand side is finite.

Proof. – The lemma follows directly from Lemmas 8.32 and 8.1 as soon as we observe
that

(8.39) ϕ(L) =
(
L
β−α

2 + 1
2 (np−

n
q )ϕ(L)

)
L−

β−α
2 −

1
2 (np−

n
q ),

and by our assumptions the function z 7→ z
β−α

2 + 1
2 (np−

n
q )ϕ(z) belongs to H∞(Σ0

µ).

L 8.40. – For all 0 ≤ s0, s1 ≤ 1 and 0 < p0, p1 ≤ 2

(8.41) [Hs0,p0
L (Rn), Hs1,p1

L (Rn)]θ = Hs,p
L (Rn), 0 < θ < 1,

where s = (1− θ)s0 + θs1 and 1
p = 1−θ

p0
+ θ

p1
.

Proof. – Similarly to the case s0 = s1 = 0 we prove (8.41) via the reduction to the
interpolation of tent spaces, this time, using the weighted tent spaces discussed in Section 8.3.
Recall the operators Qψ and πψ introduced in (4.1) and (4.2), respectively. Let µ ∈ (ω, π/2).
Using Proposition 4.9, Lemma 8.32 and the fact that multiplication by t−s is an isomorphism
from T p,2s (Rn+1

+ ) onto T p(Rn+1
+ ), we can verify that

(8.42) Qψ : Hs,p
L (Rn) −→ T p,2s (Rn+1

+ ), and π
ψ̃

: T p,2s (Rn+1
+ ) −→ Hs,p

L (Rn),

for ψ ∈ Ψα,β(Σ0
µ) and ψ̃ ∈ Ψβ,α(Σ0

µ), where α > s
2 and β > n

2

Ä
max{ 1

p , 1} −
1
2

ä
− s

2 .

Now for any given (s0, p0) and (s1, p1), s0 ≤ s1, we choose ψ ∈ Ψα,β(Σ0
µ) and

ψ̃ ∈ Ψβ,α(Σ0
µ), where α > s1

2 and β > n
2

Ä
max{ 1

p , 1} −
1
2

ä
− s1

2 . Then the correspondingQψ
and π

ψ̃
satisfy (8.42) for all s0 ≤ s ≤ s1 and all p between p0 and p1. The rest of the proof

follows the same lines as the proof of Lemma 4.20. We omit the remaining details, except
to note that by Lemma 8.32 and Theorem 7.2, the Hs,p

L spaces under consideration embed
into Hp

L or ΛαL spaces falling under the scope of Proposition 10.1 below, and thus may all be
embedded into a common ambient Banach space.
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8.5. Hardy-Sobolev spaces associated to L: identifications with classical scales

P 8.43. – For every p such that p−(L)n
n+p−(L) < p ≤ 2

(8.44) H1,p
L (Rn) ≈ Ḟ p,21 (Rn).

Proof. – Step I. — First, we would like to show that

(8.45) H1,p
L (Rn) ↪→ Ḟ p,21 (Rn), for n

n+1 < p ≤ 2 .

By Propositions 5.6, 5.31 and (8.11), (8.13) we have

(8.46) ∇L−1/2 : Hp
L(Rn) −→ Ḟ p,20 (Rn), if n

n+1 < p < 2 + ε(L) .

On the other hand, according to Lemma 8.32 the operatorL1/2 is an isomorphism ofH1,p
L

onto Hp
L for 0 < p ≤ 2. Hence, L1/2g ∈ Hp

L for every g ∈ H1,p
L , and

(8.47)
‖∇g‖Ḟp,20 (Rn) = ‖∇L−1/2L1/2g‖Ḟp,20 (Rn) ≤ C‖L

1/2g‖Hp
L

(Rn) ≤ C‖g‖H1,p
L

(Rn), ∀ g ∈ H
1,p
L ,

if n
n+1 < p < 2 + ε(L). This gives the desired norm estimate (see Lemma 8.17). It

remains to show that the elements ofH1,p
L (Rn) can be seen as tempered distributions modulo

polynomials.

Indeed, by (8.31) for every g ∈ H1,p
L there is a sequence {gn}∞n=1 ⊂ Ẇ 1,2∩H1,p

L converging
to g in H1,p

L norm. Then

(8.48) {gn}∞n=1 ⊂ Ẇ 1,2 ≈ Ḟ 2,2
1 ⊂ S′/P,

in particular, gn, n = 1, 2, . . . , are tempered distributions modulo polynomials. Also,
{gn}∞n=1 is a Cauchy sequence in H1,p

L norm. Hence,

(8.49) {∇gn}∞n=1 is Cauchy in Ḟ p,20 norm

by (8.47). Combining (8.48), (8.49) and Lemma 8.17, we conclude that {gn}∞n=1 ⊂ Ḟ
p,2
1 and

{gn}∞n=1 is Cauchy in Ḟ p,21 . Now g can be identified with the limit of {gn} in Ḟ p,21 .

Step II. — Now we concentrate on the inverse inclusion, and show that

(8.50) H1,p
L (Rn)←↩ Ḟ p,21 (Rn), for p−(L)n

n+p−(L) < p ≤ 2.

It follows from (5.21), (5.38), (8.12) and (8.14) that

(8.51) S1

√
L : Ḟ p,21 (Rn) −→ Lp(Rn), for p−(L)n

n+p−(L) < p ≤ 2.

Combining this with (5.20) we have

(8.52) ‖f‖H1,p
L

(Rn) ≤ C‖f‖Ḟp,21 (Rn), ∀ f ∈ Ḟ
p,2
1 (Rn), p−(L)n

n+p−(L) < p ≤ 2,

and it remains to show that f actually belongs to H1,p
L (Rn), i.e., that it can be approximated

by the elements of L−1/2(L2 ∩Hp
L).

According to Lemma 8.15, Z(Rn) is a dense subset of Ḟ p,21 (Rn). Then every f in (8.52)
can be approximated in Ḟ p,21 (Rn) norm by a sequence {fn}∞n=1 ⊂ Z(Rn). The operator

√
L

maps Ẇ 1,2 ≈ Ḟ 2,2
1 to L2(Rn) and Z(Rn) is a subset of Ḟ 2,2

1 . Hence,

(8.53)
√
Lfn ∈ L2(Rn), n = 1, 2, . . .
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Since, in addition, ‖
√
Lfn‖Hp

L
(Rn) is finite for every n = 1, 2, . . . by (8.51), we can

conclude that {
√
Lfn}∞n=1 ⊂ L2 ∩Hp

L and therefore, {fn}∞n=1 ⊂ L−1/2(L2 ∩Hp
L).

By our assumptions {fn}∞n=1 is Cauchy in Ḟ p,21 (Rn) norm. Then by (8.51), it is also
Cauchy in H1,p

L (Rn) norm and belongs to L−1/2(L2 ∩ Hp
L). Now we identify its limit

in H1,p
L (Rn) with f ∈ Ḟ p,21 (Rn), and derive (8.50) with the appropriate norm estimate.

8.6. Functional calculus and fractional powers of L in Sobolev and regular Hardy spaces

In this section we restrict ourselves to the case n ≥ 3. One can derive analogues of all the
results below for n = 2 following the same arguments. We will not state them for the sake of
brevity.

T 8.54. – Let L be an elliptic operator satisfying (1.1) (1.3), and let p(L) and
ε(L) retain the same significance as before. Assume that −1 ≤ s ≤ 1 and 0 < p <∞ are such
that either of the conditions (1) or (2) below is satisfied

(1) − 1 ≤ s ≤ 0 and

max
¶

0, 1
n s+ 1− 1

p−(L∗)

©
< 1

p <
Ä

1
2+ε(L∗) − 1 + 1

p−(L)

ä
s+ 1

p−(L) ,(8.55)

(2) 0 ≤ s ≤ 1 andÄ
1

2+ε(L) − 1 + 1
p−(L∗)

ä
s+ 1− 1

p−(L∗) <
1
p <

1
n s+ 1

p−(L) .(8.56)

Then L has bounded holomorphic functional calculus in Ḟ p,2s (Rn), in the sense that for
every ϕ ∈ H∞(Σ0

µ)

(8.57) ϕ(L) : Ḟ p,2s (Rn) −→ Ḟ p,2s (Rn),

with the norm bounded by ‖ϕ‖L∞(Σ0
µ).

Moreover, for every ϕ ∈ Ψ′(Σ0
µ)

(8.58) ϕ(L) : Ḟ p,2α (Rn) −→ Ḟ q,2β (Rn),

and

(8.59) ‖ϕ(L)f‖Ḟ q,2
β

(Rn) ≤ C
∥∥∥z β−α2 + 1

2 (np−
n
q )ϕ

∥∥∥
L∞(Σ0

µ)
‖f‖Ḟp,2α (Rn),

whenever p ≤ q, and the pairs (α, 1/p), (β, 1/q) satisfy (8.55) or (8.56).

Remark. Above, the expression “the pair (α, 1/p) satisfies (8.55) or (8.56)” means that either
of the conditions (8.55), (8.56) holds withα in place of s. Similarly, “the pair (β, 1/q) satisfies
(8.55) or (8.56)" means that either of the conditions (8.55), (8.56) holds with β in place of s
and q in place of p. Finally, the expression “the pairs (α, 1/p), (β, 1/q) satisfy (8.55) or (8.56)”
means that both “the pair (α, 1/p) satisfies (8.55) or (8.56)” and “the pair (β, 1/q) satisfies
(8.55) or (8.56)”, in the sense outlined above.

The range of s and p satisfying either (8.55) or (8.56) can be identified with a polygon on
the (s, 1/p) plane. The shape of such a polygon depends on whether n+p−(L∗)

np−(L∗) < 1 (in which
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case we will denote the corresponding polygon by R1(L)) or n+p−(L∗)
np−(L∗) ≥ 1 (then the polygon

will be denoted by R2(L)).

First, assume that n+p−(L∗)
np−(L∗) < 1. The region R1(L) consists of the open polygon with

vertices

(8.60)
BL =

Ä
−1, 1− 1

2+ε(L∗)

ä
, EL =

Ä
0, 1

p−(L)

ä
, CL =

Ä
1, n+p−(L)

np−(L)

ä
,

AL =
Ä
−1, 1− n+p−(L∗)

np−(L∗)

ä
, FL =

Ä
0, 1− 1

p−(L∗)

ä
, DL =

Ä
1, 1

2+ε(L)

ä
,

together with the sides ALBL and CLDL. It is shown on Figure 3.

666

---

q

q

qq

q
r r

r

r

r

qr
1
2

-1 1

1

1
p

s

CL =

Ä
1,
n+p−(L)

np−(L)

ä

AL =

Ä
−1, 1−

n+p−(L∗)
np−(L∗)

ä
EL =

Ä
0, 1
p−(L)

ä
FL =

Ä
0, 1− 1

p−(L∗)

ä
BL =

(
−1,

1+ε(L∗)
2+ε(L∗)

)
DL =

(
1, 1

2+ε(L)

)
HL

GL

���
���

���
���

((((
((((

((((

((((
((((

((((�
��

���
���

���

F 3. – The region R1(L).

For the case n+p−(L∗)
np−(L∗) ≥ 1 we define the second region, R2(L), as an open polygon with

the vertices

(8.61)

BL =

Å
−1,

1 + ε(L∗)

2 + ε(L∗)

ã
, EL =

Å
0,

1

p−(L)

ã
, CL =

Å
1,
n+ p−(L)

np−(L)

ã
,

ÃL = (−1, 0), ‹FL =

Å
0,

n

p−(L∗)
− n

ã
,

FL =

Å
0, 1− 1

p−(L∗)

ã
, DL =

Å
1,

1

2 + ε(L)

ã
,

together with the sides ÃLBL and CLDL. Its picture is a modified version of Figure 3, much
as Figure 2 is a modification of Figure 1.

Proof of Theorem 8.54. – Let us introduce auxiliary points O = (0, 0), B = (−1, 1/2)

and D = (1, 1/2). As we already mentioned, the statement of Theorem 8.54 was proved
for all p, q which in addition to the aforementioned restrictions satisfy p, q > p−(L) (see [6],
Sections 5.3, 5.4). Thus, the interior of the polygonGLBLELHLDLFL is already covered (i.e.
the statement of the theorem holds with R1 substituted by GLBLELHLDLFL). The same
argument applies to the segments GLBL and HLDL.
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Next, (1.15), (8.44) and Lemma 8.40 together with the well-known results on the complex
interpolation of Triebel-Lizorkin spaces lead to the conclusion that Hs,p

L (Rn) ≈ Ḟ p,2s (Rn)

whenever (s, 1/p) belongs to OELCLD or the segment CLD. Then, by Lemma 8.35, the
statement of the theorem holds in OELCLD and on the segment CLD.

Combining these observations, we recover the result on the entire R1 or R2 using duality
and interpolation.

Remark. When n+p−(L∗)
np−(L∗) ≥ 1, then Theorem 8.54 can be complemented by the corres-

ponding results for p =∞. Specifically, consider the spaces Ḟ∞,∞α . For−1 ≤ α < 0 they can
be seen, e.g., as the dual spaces for Ḟ p,21 (Rn) with p = n

n+α+1 (see, e.g., [33], Remark 5.14,
and references therein). Then for every ϕ ∈ H∞(Σ0

µ)

(8.62) ϕ(L) : Ḟ∞,∞α (Rn) −→ Ḟ∞,∞α (Rn),

whenever −1 ≤ α < n
Ä

1
p−(L∗) − 1

ä
. In the same way the spaces Ḟ∞,∞α can be incor-

porated in (8.58)–(8.59), that is, we can say that (8.58)–(8.59) hold whenever p ≤ q and
(α, 1/p), (β, 1/q) belong to ‹R2 = R2 ∪ ÃL‹FL, where the segment ÃL‹FL corresponds to the
classes Ḟ∞,∞s .

The Theorem 8.54 and sharpness results in Section 2.2 lead to the complete description
of all functions spaces on Hardy-Sobolev-Triebel-Lizorkin scale where one can develop
functional calculus for an arbitrary elliptic operator satisfying (1.1)–(1.3).

C 8.63. – Let L be an elliptic operator satisfying (1.1) (1.3), and assume that
s ∈ R, p ∈ (0,∞) are such that

(8.64) − 1 ≤ s ≤ 1 and max
{

0, 1
n s+ n−2

2n

}
≤ 1

p ≤
1
n s+ n+2

2n .

Then L has a bounded holomorphic functional calculus in Ḟ p,2s (Rn), in the sense that

(8.65) ϕ(L) : Ḟ p,2s (Rn) −→ Ḟ p,2s (Rn), for every ϕ ∈ H∞(Σ0
µ),

with the norm bounded by ‖ϕ‖L∞(Σ0
µ).

More generally, if 0 < p ≤ q <∞ and the pairs α, p and β, q satisfy (8.64), i.e.

−1 ≤ α ≤ 1 and max
{

0, 1
n α+ n−2

2n

}
≤ 1

p ≤
1
n α+ n+2

2n ,(8.66)

−1 ≤ β ≤ 1 and max
{

0, 1
n β + n−2

2n

}
≤ 1

q ≤
1
n β + n+2

2n ,(8.67)

then

(8.68) ϕ(L) : Ḟ p,2α (Rn) −→ Ḟ q,2β (Rn),

with

(8.69) ‖ϕ(L)f‖Ḟ q,2
β

(Rn) ≤ C
∥∥∥z β−α2 + 1

2 (np−
n
q )ϕ

∥∥∥
L∞(Σ0

µ)
‖f‖Ḟp,2α (Rn),

for every ϕ ∈ Ψ′(Σ0
µ) such that the L∞ norm on the right-hand side of (8.69) is finite.

These results are sharp for all n ≥ 3. For every−1 ≤ s ≤ 1, 0 < p <∞ not satisfying (8.64)
there exists an elliptic operator L such that the heat semigroup is not bounded in Ḟ p,2s (Rn) and
hence, the property (8.65) does not hold. Similarly, (8.68), (8.69) need not hold if α, p or β, q
do not satisfy (8.66) (8.67).
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The Corollary 8.63 extends to the case p = ∞ in the vein of remark after the proof of
Theorem 8.54.

As we mentioned in the introduction, the range of indices s and p satisfying (8.64) can be
described as a region on (s, 1/p) plane.

Assume first that n ≥ 4. We denote by R1 a closed polygon on (s, 1/p) plane with vertices
at

(8.70)
A =

Å
−1,

n− 4

2n

ã
, B =

Å
−1,

1

2

ã
,

C =

Å
1,
n+ 4

2n

ã
, D =

Å
1,

1

2

ã
.

On an (s, 1/p) plane the region R1 is shown on Figure 1.

Now let n ≤ 4, and let R2 be a closed polygon on (s, 1/p) plane with vertices at

(8.71)
Ã = (−1, 0) , B =

Å
−1,

1

2

ã
, C =

Å
1,
n+ 4

2n

ã
,

D =

Å
1,

1

2

ã
, ‹F =

Å
2− n

2
, 0

ã
.

The region R2 is depicted on Figure 2.

Observe that for n = 4 we have R1 = R2, and the corresponding picture can be seen as
an extreme case of R1 (with A = (−1, 0) and C = (1, 1)) or an extreme case of R2 (with
Ã = ‹F = (−1, 0)).

In general, as dimension decreases, the slope of the line BC becomes larger, while B is
fixed and C moves up along the line {s = 1}. When n = 4, C = (1, 1) and for n ≤ 3 the
point C corresponds to p < 1. Strictly speaking, the Figure 2 shows R2 for n = 3, and as we
mentioned above, n = 4 is its extreme case.

All in all, s ∈ [−1, 1] and p ∈ (0,∞] satisfy (8.64) if and only if the point (s, 1/p) belongs
to R1 (n ≥ 4) or to R2 (n ≤ 4). As before, the segment Ã‹F corresponds to the spaces Ḟ∞,∞s .

Proof of Corollary 8.63. – The corollary follows from Theorem 8.54 and the fact that
p−(L) < 2n

n+2 for every elliptic operator L. The sharpness is a consequence of Proposi-
tion 2.10. Indeed, if n ≥ 4 and for some point (s0, 1/p0) 6∈ R1 the heat semigroup e−tL,
t > 0, is bounded in Ḟ p0,2s0 (Rn) for all elliptic operators L, then by interpolation the heat
semigroup is bounded in all Ḟ p,2s (Rn) with (s, 1/p) in the linear span of (s0, 1/p0) and R1.
In particular, there exists p 6∈

î
2n
n+2 ,

2n
n−2

ó
such that the heat semigroup is bounded in Lp

for all L, which contradicts Proposition 2.10. Similarly, when n = 3, we discover such a
contradiction starting with any (s0, 1/p0) 6∈ R2.
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9. Appendix 1: Relationships between Hp
L and classical Hp

In this appendix, we establish (1.15) - (1.17). We note that the containments in (1.16)
(resp. (1.17)) are strict if 1 < p−(L) (resp. p+(L) < ∞). For example, see item (vi) in
Proposition 9.1 below, and its proof.

We recall that classical Hp(Rn) = Lp(Rn), if 1 < p < ∞, that (p−(L), p+(L))

is the interior of the interval of Lp boundedness of the heat semigroup e−tL, and that
p−(L) < 2n/(n + 2) and p+(L) > 2n/(n − 2), if n > 2. For α > 0, we let Λα(Rn)

denote the classical homogeneous “Lipα” spaces (cf. (9.6) below), and in the case α = 0, we
let Λ0(Rn), Λ0

L(Rn) denote, respectively, the classical andL-adapted BMO spaces BMO(Rn)

and BMOL(Rn). We define null spaces

N p(L) := {f ∈ Lp(Rn) ∩W 1,2
loc : Lf = 0}, p+(L) ≤ p <∞,

and

N α(L) := {ϕ ∈ Λα(Rn) ∩W 1,2
loc : Lϕ = 0}, 0 ≤ α.

P 9.1. – We have the following containments and continuous embeddings:

(i) L2(Rn) ∩Hp
L(Rn) ⊂ L2(Rn) ∩Hp(Rn), n/(n+ 1) < p ≤ 1, and

(9.2) ‖f‖Hp(Rn) . ‖f‖Hp
L

(Rn) , f ∈ L2(Rn) ∩Hp
L(Rn).

(ii) L2(Rn) ∩Hp
L(Rn) ⊂ L2(Rn) ∩ Lp(Rn), 1 < p ≤ p−(L), and

(9.3) ‖f‖Lp(Rn) . ‖f‖Hp
L

(Rn) , f ∈ L2(Rn) ∩Hp
L(Rn).

(iii) Lp(Rn)/N p(L) ↪→ Hp
L(Rn), p+(L) ≤ p <∞, and

(9.4) ‖f‖Hp
L

(Rn) ≤ C‖f‖Lp(Rn), p+(L) ≤ p <∞.

(iv) Λα(Rn)/N α(L) ↪→ ΛαL(Rn), 0 ≤ α < 1,(12) and

(9.5) ‖ϕ‖Λα
L

(Rn) ≤ C‖ϕ‖Λα(Rn), 0 ≤ α < 1.

Moreover,

(v) Hp
L(Rn) = Lp(Rn), p−(L) < p < p+(L).

(vi) Hp
L(Rn) 6= Lp(Rn), 1 < p ≤ p−(L) or p+(L) ≤ p <∞.

Finally, for each p > 2n/(n− 2), n ≥ 3 (resp., for each α ∈ [0, 1)), there is an operator L and
a non-trivial u ∈ Lp(Rn) (resp., u ∈ Λα(Rn)) such that Lu = 0 weakly in Rn. Thus, for each
such p or α, there is an operator L for which the corresponding null space N p(L) or N α(L) is
non-trivial.

(12) In the presence of pointwise heat kernel bounds, the case α = 0 of (iv) was previously obtained in [27].
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Proof. – We carry out the proof in the following order: (iv), (v), (iii), (i), (ii), (vi) and then
conclude by presenting examples of non-trivial global null solutions.

Proof of (iv). Fix ϕ ∈ Λα, 0 ≤ α < 1. By definition, for n/(n+ 1) < p ≤ 1 (as is the case if
0 ≤ α = n(p−1−1) < 1), anHp

L(Rn)-molecule is, in particular, a classicalHp(Rn)-molecule
(since the operator L kills constants). Consequently, by the classical duality results [29, 32]
we have that ϕ ∈MM, ∗

α,L∗ , the ambient space in which ΛαL is defined (cf. (1.25) and the related
discussion, bearing in mind that in our present context, the roles of L and L∗ have been
reversed). Also, ‖ϕ‖Λα

L
= 0 for ϕ ∈ N α(L), by definition of the ΛαL norm (cf. (1.26), but

withL in place ofL∗). Thus, to prove (iv), it suffices to show thatϕ satisfies the norm estimate
(9.5). To this end, we fix a cube Q ⊂ Rn, and use the fact that e−tL1 = 1 to write

1

|Q|α/n

Ç
1

|Q|

∫
Q

∣∣∣(I − e−l(Q)2L)Mϕ(x)
∣∣∣2 dxå1/2

=
1

|Q|α/n

Ç
1

|Q|

∫
Q

∣∣∣(I − e−l(Q)2L)M (ϕ− ϕQ)(x)
∣∣∣2 dxå1/2

,

where ϕQ := AQϕ. It is then a routine matter to verify that this last expression is bounded
uniformly in Q by either ‖ϕ‖BMO (if α = 0), or by

(9.6) ‖ϕ‖Λα(Rn) := sup
x 6=y

|ϕ(x)− ϕ(y)|
|x− y|α

(if 0 < α < 1), using a dyadic annular decomposition plus the Gaffney estimates, much as
in the proof of (6.3). We omit the details.

Proof of (v). Recall thatL2(Rn)∩Hp
L(Rn) is dense inHp

L(Rn) (by definition, if 0 < p ≤ 2, and
as proved in Corollary 4.17, if 2 < p <∞). Of course, L2(Rn)∩Lp(Rn) is dense in Lp(Rn).
Therefore, it is enough to show thatL2(Rn)∩Lp(Rn) = L2(Rn)∩Hp

L(Rn),with equivalence
of norms.

One direction is easy: fix f ∈ L2(Rn) ∩ Lp(Rn), p−(L) < p < p+(L). By Corollary 4.17,
for appropriate ψ we have that

(9.7) ‖f‖Hp
L

(Rn) ≈

∥∥∥∥∥∥
Ç∫∫

Γ(·)
|ψ(t2L)f(y)|2 dydt

tn+1

å1/2
∥∥∥∥∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn) ,

where the last step essentially follows by the argument used in [6], Theorem 6.1, where the
case ψ(z) =

√
ze−z for the vertical (rather than conical) square function was treated. The

appropriate modifications are fairly straightforward.

Conversely, suppose that f ∈ L2(Rn) ∩ Hp
L(Rn), and let g ∈ L2(Rn) ∩ Lp′(Rn), with

‖g‖Lp′ (Rn) = 1. By the Calderón reproducing formula (4.12), for appropriate ψ, ψ̃ we have
that∣∣∣∣∫

Rn
f g

∣∣∣∣ =

∣∣∣∣∫
Rn
π
ψ̃,L
◦Qψ,L f g

∣∣∣∣
≤ ‖Qψ,L f‖Tp(Rn+1

+
) ‖Qψ̃,L∗ g‖Tp′ (Rn+1

+
) ≤ C ‖f‖Hp

L
(Rn) ‖g‖Lp′ (Rn),
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where in the last step we have used (4.10) and the square function bounds of [6] (cf. the second
inequality in (9.7) and the references thereafter). The latter are applicable to the adjoint
operator L∗ in Lp

′
(Rn) since p+(L∗) = (p−(L))

′. Taking the supremum over all such g, we
obtain that

‖f‖Lp(Rn) ≤ C‖f‖Hp
L

(Rn),

as desired.

Proof of (iii). We interpolate the inclusion map between p = 2 and p =∞ (i.e., α = 0 in (iv)),
to obtain (9.4). In turn, Theorem 6.1 implies that ‖f‖Hp

L
(Rn) = 0 for f ∈ N p(L), whence

(iii) follows.

Proof of (i). We suppose that n/(n+1) < p ≤ 1. As noted above, anHp
L(Rn)-molecule is also

a classicalHp(Rn)-molecule, if n/(n+1) < p ≤ 1. Consequently, by (3.7) and the molecular
decomposition of classical Hp spaces, we have that L2(Rn) ∩Hp

L(Rn) ⊂ L2(Rn) ∩Hp(Rn)

and (9.2) holds.

Remark: by the density of L2(Rn) ∩ Hp
L(Rn) in Hp

L(Rn), one may now extend the identity
map by continuity to produce an “embedding” J : Hp

L(Rn) → Hp(Rn), which equals the
identity on L2(Rn)∩Hp

L(Rn). It remains an open question to determine whether, in general,
this embedding is necessarily 1-1.

We further remark that, in the case p = 1, the containment L2 ∩H1
L ⊂ L2 ∩H1 amounts

to saying that, for f ∈ L2 ∩ H1
L, the limits of the molecular decomposition f =

∑
λjmj ,

in H1
L, H

1 and L1, are all the same. It is not known whether the same can be said for an
arbitrary element ofH1

L, except in the special case that the kernel of the heat semigroup e−tL

enjoys a pointwise Gaussian upper bound. In that case, it is a routine matter to verify that
one has the 1-1 embedding H1

L ↪→ H1.

Proof of (ii). Let f ∈ L2(Rn) ∩ Hp
L(Rn), 1 < p ≤ p−(L), and let g ∈ L2(Rn) ∩ Lp′(Rn),

so that in particular, by (iii) above, we have that g ∈ Hp′

L∗(Rn) (here we are using that
(p−(L))′ = p+(L∗)). Then for such f, g, we have that∣∣∣∣∫

Rn
f ḡ

∣∣∣∣ = |〈f, g〉| ≤ ‖f‖Hp
L

(Rn) ‖g‖Hp′
L∗ (Rn)

. ‖f‖Hp
L

(Rn) ‖g‖Lp′ (Rn),

where 〈·, ·〉 denotes theHp
L(Rn)−Hp′

L∗(Rn) duality pairing, and where in the last step we have
used the L∗ version of (9.4). Taking a supremum over all g as above, with ‖g‖Lp′ (Rn) = 1, we
obtain that f ∈ Lp and satisfies (9.3).

Proof of (vi). By duality, it suffices to treat the case 1 < p ≤ p−(L), since p+(L) = (p−(L∗))
′
.

Moreover, it is enough to treat the case p = p−(L): indeed, if (vi) holds in that case, then it
must also hold for 1 < p < p−(L), or else we would reach a contradiction by interpolating
with the case p = 2.

We therefore suppose that p = p−(L) > 1. We recall that by [6], the Riesz transform
∇L−1/2 fails to be bounded on Lp, if p = p−(L) (cf. (1.5)). Thus, by Proposition 5.31, we
must have that Hp

L(Rn) cannot equal Lp(Rn) if p = p−(L).

To conclude the proof of the proposition, it remains to construct examples to show that
the null spaces N α(L), 0 ≤ α < 1 and N p(L), 2n/(n − 2) < p < ∞, may be non-trivial.
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To this end, we recall the examples of Frehse [34], discussed above in Section 2, namely that
for each q < n/2 and λ > 0, there exists L := −divA∇, with A complex elliptic, L∞(Rn)

and C∞(Rn \ {0}), for which the W 1,2
loc function

(9.8) u(x) :=
x1

|x|q
eiλ ln |x|

is a global weak solution of the equation Lu = 0 in Rn. Taking α = 1 − q, we then have
that u in (9.8) belongs to Λα(Rn) if 0 < q ≤ 1; in fact, if q = 1 we even have the stronger
statement that u ∈ L∞(Rn). Thus, u ∈ N α(L).

To exhibit anL for which N p(L) is non-trivial is a bit more delicate, although matters will
still depend on the construction in [34]. Fix now p > 2n/(n − 2) and choose q < n/2 such
that p(q − 1) > n. We observe that for such p, q, the solution u in (9.8) belongs to Lp “at
infinity”, i.e., in the complement of any ball centered at the origin. However, u is not in Lp

in any neighborhood of the origin, so we shall have to work a little harder to produce a null
solution that belongs globally to Lp.

Let L := −divA∇ be the complex elliptic matrix constructed in [34], for which u in (9.8)
is a global weak solution in Rn (the matrixA is given explicitly in (2.12) above). We note that
A is smooth away from the origin, and that |∇A(x)| ≤ C if, say, |x| > 1/4. Fix a smooth
cut-off function η ∈ C∞0 (|x| ≤ 3/8),with 0 ≤ η ≤ 1, and η(x) ≡ 1 if |x| ≤ 1/4. Let 1 denote
the n× n identity matrix, and define an auxiliary matrix

A1 := η1 + (1− η)A.

Then A1 ∈ C∞(Rn) is complex elliptic (in the sense of (1.2)), with ‖∇A1‖L∞(Rn) ≤ C. Set
L1 := −divA1∇.

Next, we smoothly truncate u away from 0. Let 0 ≤ Φ ∈ C∞(Rn), with Φ(x) ≡ 1 if
|x| ≥ 1, and Φ(x) ≡ 0 if |x| ≤ 1/2, and define

w := uΦ.

We observe that

L1 w = Lw = −div(uA∇Φ)−A∇u · ∇Φ =: f ∈ C∞0
Å

1

2
≤ |x| ≤ 1

ã
.

We now fix r := 2n/(n− 2) and r′ = 2n/(n+ 2). Recall that by [6], we have that

(9.9) L−1
1 : Lr

′
(Rn)→ Ẇ 1,2(Rn) ∩ Lr(Rn).

Thus,

w1 := L−1
1 f ∈ Ẇ 1,2(Rn) ∩ Lr(Rn).

On the other hand, since q < n/2, the solution u in (9.8), and hence also w, do not belong
to Lr(Rn), nor to Ẇ 1,2(Rn) (this is related to the failure of semigroup bounds for L1 in Lp,
when p > n/(q−1)). Consequently, v := w−w1 is non-trivial, and solves L1v = 0, globally
in Rn in the weak sense.

It therefore remains only to show that v ∈ Lp(Rn) (in spite of the failure of functional
calculus for L1 in Lp), where we recall that p > 2n/(n − 2) was fixed above. We begin with
the following
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L 9.10. – Let r = 2n/(n− 2). Suppose that A ∈ C1(Rn) is complex elliptic (in the
sense of (1.2)), and that ‖∇A‖L∞(Rn) ≤ C0. Set L := −divA∇, and suppose that v ∈W 1,2

loc is
a global weak solution of Lv = 0. Then there are constants C1 and κ, depending only on n, C0

and ellipticity, such that for every unit cube Q ⊂ Rn, we have that

(9.11) ‖v‖L∞(Q) ≤ C1

Ç∫
κQ

|v|r
å1/r

,

where κQ denotes the concentric dilate of the unit cube Q, with side length κ.

Let us momentarily take the lemma for granted, and conclude the proof of Propo-
sition 9.1. We apply Lemma 9.10 to the operator L1 and to the solution v = w − w1

constructed above. We recall that w ∈ Lp(Rn), w1 ∈ Lr(Rn), with p > r := 2n/(n − 2).

Let {Qj} be an enumeration of the dyadic grid of unit cubes in Rn, and we observe that
for κ as in the lemma, ∑

aj :=
∑∫

κQj

|w1|r ≈
∫

Rn
|w1|r <∞,

since the dilated cubes κQj have bounded overlaps. We now consider∫
Rn
|v|p =

∑∫
Qj

|v|p .
∑Ç∫

κQj

|v|r
åp/r

.
∑Ç∫

κQj

|w|r
åp/r

+
∑

(aj)
p/r =:

∑
1

+
∑

2

,

where in the first inequality we have used (9.11). By Hölder’s inequality, we have∑
1

.
∑∫

κQj

|w|p .

∫
Rn
|w|p <∞.

Moreover, ∑
2

≤
Ä∑

aj
äp/r

< ∞,

since p > r. This concludes the proof of Proposition 9.1, modulo the proof of Lemma 9.10.

Proof of Lemma 9.10. – The inequality (9.11) is a variant of standard classical estimates.
For the reader’s convenience, we provide a proof here using a well known perturbation
argument (e.g., as in the argument on pages 87-88 in the monograph of Giaquinta [36]), plus
an iteration scheme.

For the moment, we fix an arbitrary (i.e., not necessarily unit) cube Q, of side length
`(Q), and a point x0 ∈ Q, and define a constant coefficient complex elliptic operator
L0 := −divA0∇, whereA0 := A(x0). By standard results for constant coefficient operators,
we have that Γ0, the fundamental solution for L0, belongs to C∞(Rn \ {0}) and satisfies

(9.12) |Γ0(x)| . |x|2−n, |∇Γ0(x)| . |x|1−n, |∇2Γ0(x)| . |x|−n,

where the implicit constants depend only upon ellipticity and dimension.
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Let φQ be a smooth non-negative cut-off function supported in 3Q, with φQ ≡ 1 on 2Q,
and satisfying ‖∇φQ‖∞ . `(Q)−1, ‖∇2φQ‖∞ . `(Q)−2. We now write

v(x0) = v(x0)φQ(x0) =

∫
∇yΓ0(x0 − y) ·A0∇ (v(y)φQ(y)) dy

=

∫
∇yΓ0(x0 − y) ·A0∇v(y)φQ(y)dy +

∫
∇yΓ0(x0 − y) ·A0∇φQ(y) v(y)dy

=

∫
∇y (Γ0(x0 − y)φQ(y)) · (A0 −A(y))∇v(y)dy

−
∫

Γ0(x0 − y)∇φQ(y) ·A0∇v(y)dy

+

∫
∇yΓ0(x0 − y) ·A0∇φQ(y) v(y)dy =: I + II + III,

where we have used in term I that Lv = 0.

By (9.12) and the definition of φQ, we have that

|III| . 1

|Q|

∫
3Q\2Q

|v|.

The same bound holds for II, as may be seen by integrating by parts to move the gradient
away from v. Similarly, integrating by parts in term I yields the estimate

|I| .
∫
|∇Γ0| |∇φQ| |v| +

∫
|Γ0| |∇2φQ| |v|

+ ‖∇A‖∞
∫

3Q

|∇2Γ0(x0 − y)| |x0 − y| |v(y)|dy + ‖∇A‖∞
∫
|Γ0| |∇φQ| |v|

+ ‖∇A‖∞
∫

3Q

|∇Γ0(x0 − y)| |v(y)|dy =: I1 + I2 + I3 + I4 + I5.

The terms I1, I2 satisfy the same bound as do II and III. For the remaining terms, we have

|I3 + I4 + I5| .
∫

3Q

|x0 − y|1−n |v(y)| dy =: IQv (x0).

Combining our estimates, we obtain

(9.13) |v(x)| . 1

|Q|

∫
3Q

|v| + IQv (x) , ∀x ∈ Q.

By Hölder’s inequality, we have

IQv (x) . `(Q)

Ç
1

|Q|

∫
3Q

|v|t
å1/t

,

for any t > n, and each x ∈ Q, so that also

(9.14) |v(x)| . 1

|Q|

∫
3Q

|v| + `(Q)

Ç
1

|Q|

∫
3Q

|v|t
å1/t

, ∀x ∈ Q.

4 e SÉRIE – TOME 44 – 2011 – No 5



SECOND ORDER ELLIPTIC OPERATORS 795

Iterating (that is, using (9.13) with Q replaced by 3Q), we obtain for x ∈ Q,

|v(x)| . 1

|Q|

∫
3Q

|v| + `(Q)

Ç
1

|Q|

∫
3Q

|v|t
å1/t

.
1

|Q|

∫
3Q

|v| +
`(Q)

|Q|

∫
9Q

|v|+ `(Q)

Ç
1

|Q|

∫
3Q

|I3Qv|t
å1/t

.
1

|Q|

∫
3Q

|v| +
`(Q)

|Q|

∫
9Q

|v|+ (`(Q))2

Ç
1

|Q|

∫
9Q

|v|s
å1/s

,

where in the last step 1/t = 1/s − 1/n and we have used the fractional integral theorem.
Iterating further, and takingQ to be a unit cube, we obtain the conclusion of the lemma.

10. Appendix 2: Embedding of Hp
L(Rn) spaces into an ambient Banach space

We shall continue to use the notational convention that Λ0
L(Rn) := BMOL(Rn). In this

appendix, we prove the following:

P 10.1. – Let 0 < p0 < 1, and 0 ≤ α0 < ∞. Then there exists a Banach
space B = B(p0, α0) such that the spaces Hp

L(Rn), p0 ≤ p <∞, and ΛαL(Rn), 0 ≤ α ≤ α0,
are all continuously embedded into B.

Proof. – We shall realize the space B as the dual of an appropriate normed space
M0 = M0(p0, α0), which in turn will be a subspace of the intersection of Mε0,M

α0,L∗
(cf. Sec-

tion 1) and D((L∗)M ) (the domain of (L∗)M in L2(Rn)), where ε0 > 0 and

(10.2) M > max

Å
1

2
(α0 + n/2),

n

2

Å
1

p0
− 1

2

ãã
.

More precisely, for such ε0 and M fixed, we define M0 = M0(p0, α0) as the collection of all
ϕ ∈ L2(Rn) such that ϕ belongs to the R((L∗)k), the range of (L∗)k in L2(Rn), and also
to D((L∗)k), for each k = 0, 1, . . . ,M, and satisfies

(10.3) ‖ϕ‖M0 := sup
j≥0

2j(n/2+α0+ε0)
M∑

k=−M

‖(L∗)kϕ‖L2(Sj(Q0)) <∞,

where Q0 is the unit cube centered at 0 and Sj(Q0), j ∈ N, are the corresponding dyadic
annuli (see (3.2)). We note that ‖ · ‖M0 clearly defines a norm. We observe also that it is easy
to construct elements of M0: just set ϕ = (L∗)Me−L

∗
f , where f ∈ L2 with support in Q0.

The bound ‖ϕ‖M0 ≤ C‖f‖L2(Q0) follows immediately from Gaffney estimates.

We now set B := M′0, the dual space of M0, and we consider first the embedding
ΛαL(Rn) ↪→ B, for 0 ≤ α ≤ α0. Suppose that ϕ ∈ M0, with ‖ϕ‖M0

= 1. Then ϕ is an
(Hp

L∗ , (α0 − α) + ε0,M)-molecule adapted to Q0 (cf. (3.3)), up to multiplication by some
harmless constant C, with α = n(1/p− 1), for every p such that n/(n+ α0) ≤ p ≤ 1. Thus,
by Lemma 3.37, for every g ∈ ΛαL(Rn), 0 ≤ α ≤ α0, we have

|〈ϕ, g〉| ≤ C‖g‖Λα
L

(Rn) = C‖ϕ‖M0
‖g‖Λα

L
(Rn),
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whence it follows that ΛαL(Rn) ↪→ B.

Next, we consider the embedding Hp
L(Rn) ↪→ B, p0 ≤ p ≤ 1. Since M0 ⊂ L2(Rn), by

(3.7) and Definition 3.4, it is enough to show that, given ε > 0,

(10.4)
∣∣ ∫

Rn
ϕ(x)m(x) dx

∣∣ ≤ C ‖ϕ‖M0
,

for every (Hp
L, ε,M)-moleculem. We fix such a moleculem, associated to a cubeQ. It is clear

from the definitions (cf. (10.3) and (3.3)) that for k = 0, 1, . . . ,M ,

(10.5) ‖(L∗)kϕ‖L2(Rn) ≤ C‖ϕ‖M0 and ‖
Ä(
`(Q)

)2
L
ä−k

m‖L2(Rn) ≤ C`(Q)n/2−n/p.

Thus, for `(Q) ≥ 1, the bound (10.4) follows immediately from Schwarz’s inequality and
(10.5) with k = 0. On the other hand, if `(Q) < 1, we have∣∣ ∫

Rn
ϕ(x)m(x) dx

∣∣ = `(Q)2M
∣∣ ∫

Rn
(L∗)Mϕ(x)

Ä(
`(Q)

)2
L
ä−M

m(x) dx
∣∣

≤ C ‖ϕ‖M0 `(Q)2M+n/2−n/p

by (10.5) with k = M . Since p ≥ p0, for M as in (10.2), we obtain (10.4).

Finally, we suppose that 1 < p < ∞, and let f ∈ L2(Rn) ∩ Hp
L(Rn). Setting

ψ(ζ) := ζMe−ζ , by the Calderón reproducing formula (4.12) and duality, we have∣∣ ∫
Rn
ϕ(x) f(x) dx

∣∣ ≤ C ‖Qψ,Lf‖Tp(Rn+1
+

) ‖Qψ,L∗ϕ‖Tp′ (Rn+1
+

)

≤ C ‖f‖Hp
L

(Rn) ‖Qψ,L∗ϕ‖Tp′ (Rn+1
+

).

It is therefore enough to show that, for ‖ϕ‖M0
= 1,

(10.6) ‖Qψ,L∗ϕ‖Tp′ (Rn+1
+

) ≡ ‖A(Qψ,L∗ϕ)‖Lp′ (Rn) ≤ C, 1 < p′ <∞,

where we remind the reader that the “area integral” A is defined in (3.16). We first note
that (10.6) with p′ = 2 follows immediately by standard quadratic estimates and the
case k = 0 of (10.5). Moreover, ‖ϕ‖H1

L
(Rn) ≤ C (indeed, as mentioned above, ϕ is an

(H1
L, α0 + ε0,M)-molecule adapted to Q0, up to multiplication by a harmless constant), so

that by Proposition 4.9, we have

‖Qψ,L∗ϕ‖T 1(Rn+1
+

) = ‖A(Qψ,L∗ϕ)‖L1(Rn) ≤ C.

Combining the latter bound with that for p′ = 2, we obtain immediately (10.6) in the case
1 < p′ < 2.

Similarly, to handle the case 2 < p′ <∞, it is enough to show that A(Qψ,L∗ϕ) ∈ L∞(Rn).

To this end, we write

( A(Qψ,L∗ϕ)(x))
2

:=

∫∫
|x−y|<t

|(t2L∗)Me−t
2L∗ϕ (y)|2 dydt

tn+1

≤
∫ 1

0

∫
Rn
|t2Me−t

2L∗(L∗)Mϕ (y)|2 dydt
tn+1

+

∫ ∞
1

∫
Rn
|(t2L∗)Me−t

2L∗ϕ (y)|2 dydt
tn+1

≤
∫ 1

0

t4M−n−1dt +

∫ ∞
1

t−n−1dt ≤ C ,
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where in the next-to-last inequality we have used (10.5) with k = M in the first term and with
k = 0 in the second, along with L2 boundedness of (t2L∗)ke−t

2L∗ for every non-negative
integer k, and in the very last step we have used that M > n/4, by (10.2) and the fact that
p0 ≤ 1.

REFERENCES

[1] D. A, X. D, A. MI, Operator theory and harmonic analysis, in
Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995), Proc.
Centre Math. Appl. Austral. Nat. Univ. 34, Austral. Nat. Univ., 1996, 77–136.

[2] J. A, M. M, Spaces of Carleson measures: duality and interpolation,
Ark. Mat. 25 (1987), 155–174.

[3] J. A, M. M, Interpolation of tent spaces and applications, in Function
spaces and applications (Lund, 1986), Lecture Notes in Math. 1302, Springer, 1988,
11–21.

[4] P. A, Some questions on elliptic operators, in Heat kernels and analysis on
manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math. 338, Amer.
Math. Soc., 2003, 1–10.

[5] P. A, OnLp estimates for square roots of second order elliptic operators on Rn,
Publ. Mat. 48 (2004), 159–186.

[6] P. A, On necessary and sufficient conditions for Lp-estimates of Riesz trans-
forms associated to elliptic operators on Rn and related estimates, Mem. Amer.
Math. Soc. 186 (2007).

[7] P. A, T. C, Riesz transform on manifolds and Poincaré inequalities,
Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 (2005), 531–555.

[8] P. A, T. C, P. T, Absence de principe du maximum
pour certaines équations paraboliques complexes, Colloq. Math. 71 (1996), 87–95.

[9] P. A, X. T. D, A. MI, Boundedness of Banach space valued
singular integral operators and Hardy spaces, preprint, 2005.

[10] P. A, S. H, M. L, A. MI, P. T, The solu-
tion of the Kato square root problem for second order elliptic operators on Rn, Ann.
of Math. 156 (2002), 633–654.

[11] P. A, A. MI, E. R, Hardy spaces of differential forms on Rieman-
nian manifolds, J. Geom. Anal. 18 (2008), 192–248.

[12] P. A, E. R, Hardy spaces and divergence operators on strongly Lipschitz
domains of Rn, J. Funct. Anal. 201 (2003), 148–184.

[13] P. A, P. T, Calcul fontionnel précisé pour des opérateurs ellip-
tiques complexes en dimension un (et applications à certaines équations elliptiques
complexes en dimension deux), Ann. Inst. Fourier (Grenoble) 45 (1995), 721–778.

[14] P. A, P. T, Square root problem for divergence operators and
related topics, Astérisque 249 (1998).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#1
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#2
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#3
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#4
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#5
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#6
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#7
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#8
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#9
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#10
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#11
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#12
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#13
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#14


798 S. HOFMANN, S. MAYBORODA AND A. MCINTOSH

[15] A. B, Some results on complex interpolation of T pq spaces, in Interpolation spaces
and related topics (Haifa, 1990), Israel Math. Conf. Proc. 5, Bar-Ilan Univ., 1992,
1–10.

[16] A. B, J. C, Complex interpolation of quasi-Banach spaces with an A-con-
vex containing space, Ark. Mat. 29 (1991), 183–201.

[17] S. B, P. C. K, Calderón-Zygmund theory for non-integral operators
and the H∞ functional calculus, Rev. Mat. Iberoamericana 19 (2003), 919–942.

[18] S. B, P. C. K, Weak type (p, p) estimates for Riesz transforms, Math.
Z. 247 (2004), 137–148.

[19] A.-P. C, A. T, Parabolic maximal functions associated with a
distribution. II, Advances in Math. 24 (1977), 101–171.

[20] W. S. C, I. E. V, Factorization of tent spaces and Hankel operators,
J. Funct. Anal. 175 (2000), 308–329.

[21] R. R. C, A real variable characterization of Hp, Studia Math. 51 (1974), 269–
274.

[22] R. R. C, Y. M, E. M. S, Some new function spaces and their appli-
cations to harmonic analysis, J. Funct. Anal. 62 (1985), 304–335.

[23] R. R. C, G. W, Extensions of Hardy spaces and their use in analysis, Bull.
Amer. Math. Soc. 83 (1977), 569–645.

[24] M. C, M. M, Y. S, Complex interpolation of some quasi-Banach
spaces, J. Funct. Anal. 65 (1986), 339–347.

[25] E. B. D, Limits on Lp regularity of self-adjoint elliptic operators, J. Differential
Equations 135 (1997), 83–102.

[26] X. T. D, J. X, L. Y, Old and new Morrey spaces with heat kernel bounds,
J. Fourier Anal. Appl. 13 (2007), 87–111.

[27] X. T. D, L. Y, Duality of Hardy and BMO spaces associated with operators
with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943–973.

[28] X. T. D, L. Y, New function spaces of BMO type, the John-Nirenberg
inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005),
1375–1420.

[29] P. L. D, B. W. R, A. L. S, Linear functionals on Hp spaces with
0 < p < 1, J. reine angew. Math. 238 (1969), 32–60.

[30] J. D , M. P, Riesz transform characterization of Hardy spaces asso-
ciated with Schrödinger operators with compactly supported potentials, Ark. Mat.
48 (2010), 301–310.

[31] J. D , J. Z, Hardy spaces associated with some Schrödinger
operators, Studia Math. 126 (1997), 149–160.

[32] C. F, E. M. S, Hp spaces of several variables, Acta Math. 129 (1972),
137–193.

[33] M. F, B. J, A discrete transform and decompositions of distribution
spaces, J. Funct. Anal. 93 (1990), 34–170.

[34] J. F, An irregular complex valued solution to a scalar uniformly elliptic equation,
Calc. Var. Partial Differential Equations 33 (2008), 263–266.

4 e SÉRIE – TOME 44 – 2011 – No 5

http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#15
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#16
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#17
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#18
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#19
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#20
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#21
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#22
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#23
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#24
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#25
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#26
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#27
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#28
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#29
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#30
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#31
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#32
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#33
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#34


SECOND ORDER ELLIPTIC OPERATORS 799

[35] J. G-C, J. L. R  F, Weighted norm inequalities and related
topics, North-Holland Mathematics Studies 116, North-Holland Publishing Co.,
1985.

[36] M. G, Multiple integrals in the calculus of variations and nonlinear elliptic
systems, Annals of Math. Studies 105, Princeton Univ. Press, 1983.

[37] M. E. G, M. M, Complex interpolation ofHp spaces on product domains,
Ann. Mat. Pura Appl. 155 (1989), 103–115.

[38] S. H, G. L, D. M, M. M, L. Y, Hardy spaces associated
to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, preprint
http://www.math.wayne.edu/~gzlu/papers/HLMMY22.pdf.

[39] S. H, J. M. M, Lp bounds for Riesz transforms and square roots
associated to second order elliptic operators, Publ. Mat. 47 (2003), 497–515.

[40] S. H, S. M, Hardy and BMO spaces associated to divergence form
elliptic operators, Math. Ann. 344 (2009), 37–116.

[41] S. H, S. M, Correction to [40], preprint arXiv:0907.0129.
[42] T. H, J.  N, P. P, Conical square function estimates in UMD

Banach spaces and applications toH∞-functional calculi, J. Anal. Math. 106 (2008),
317–351.

[43] S. J, P. W. J, Interpolation between Hp spaces: the complex method,
J. Funct. Anal. 48 (1982), 58–80.

[44] R. J, D. Y, New Orlicz-Hardy spaces associated with divergence form elliptic
operators, J. Funct. Anal. 258 (2010), 1167–1224.

[45] N. K, S. M, M. M, Interpolation of Hardy-Sobolev-Besov-
Triebel-Lizorkin spaces and applications to problems in partial differential equa-
tions, in Interpolation theory and applications, Contemp. Math. 445, Amer. Math.
Soc., 2007, 121–177.

[46] N. K, M. M, Stability of fredholm properties on interpolation scales of
quasi-Banach spaces and applications, Trans. Amer. Math. Soc. 350 (1998), 3837–
3901.

[47] R. H. L, A characterization of Hp(Rn) in terms of atoms, Studia Math. 62
(1978), 93–101.

[48] J. M. M, Sharp maximal functions associated with approximations of the iden-
tity in spaces of homogeneous type and applications, Studia Math. 161 (2004), 113–
145.

[49] S. M, The connections between Dirichlet, regularity and Neumann
problems for second order elliptic operators with complex bounded measurable
coefficients, Adv. Math. 225 (2010), 1786–1819.

[50] V. G. M′, S. A. N, B. A. P̆, Absence of a De Giorgi-type
theorem for strongly elliptic equations with complex coefficients, Zap. Nauchn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 115 (1982), 156–168.

[51] A. MI, Operators which have anH∞ functional calculus, in Miniconference on
operator theory and partial differential equations (North Ryde, 1986), Proc. Centre
Math. Anal. Austral. Nat. Univ. 14, Austral. Nat. Univ., 1986, 210–231.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#35
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#36
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#37
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#38
http://www.math.wayne.edu/~gzlu/papers/HLMMY22.pdf
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#39
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#40
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#41
http://arxiv.org/abs/0907.0129
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#42
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#43
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#44
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#45
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#46
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#47
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#48
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#49
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#50
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#51


800 S. HOFMANN, S. MAYBORODA AND A. MCINTOSH

[52] O. M, M. M, The Banach envelopes of Besov and Triebel-Lizorkin spaces
and applications to partial differential equations, J. Fourier Anal. Appl. 6 (2000),
503–531.

[53] N. G. M, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math.
Soc. 15 (1964), 717–721.

[54] E. M. S, Harmonic analysis: real-variable methods, orthogonality, and oscillatory
integrals, Princeton Mathematical Series 43, Princeton Univ. Press, 1993.

[55] E. M. S, G. W, On the theory of harmonic functions of several variables. I. The
theory of Hp-spaces, Acta Math. 103 (1960), 25–62.

[56] M. H. T, G. W, The molecular characterization of certain Hardy spaces,
Astérisque 77 (1980), 67–149.

[57] H. T, Theory of function spaces, Monographs in Math. 78, Birkhäuser, 1983.
[58] T. H. W, A note on interpolation spaces, in Harmonic analysis (Minneapolis,

Minn., 1981), Lecture Notes in Math. 908, Springer, 1982, 199–204.
[59] L. Y, Classes of Hardy spaces associated with operators, duality theorem and appli-

cations, Trans. Amer. Math. Soc. 360 (2008), 4383–4408.

(Manuscrit reçu le 23 février 2010 ;
accepté, après révision, le 18 mars 2011.)

Steve H

Mathematics Department,
University of Missouri,

Columbia, MO 65211, USA
E-mail: hofmanns@missouri.edu

Svitlana M

School of Mathematics,
University of Minnesota,

127 Vincent Hall,
206 Church St. SE,

Minneapolis, MN 55455, USA
E-mail: svitlana@math.purdue.edu

Alan MI

Centre for Mathematics and its Applications,
Mathematical Sciences Institute,
Australian National University,
Canberra ACT 0200, Australia

E-mail: Alan.McIntosh@anu.edu.au

4 e SÉRIE – TOME 44 – 2011 – No 5

http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#52
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#53
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#54
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#55
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#56
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#57
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#58
http://smf.emath.fr/Publications/AnnalesENS/4_44/html/ens_ann-sc_44_5.html#59

	1. Introduction
	2. The heat semigroup and functions of L in Lp
	3. Molecular decomposition and duality, 0<p1
	4. Square function characterizations and interpolation
	5. Riesz transform characterization of Hardy spaces
	6. Sharp maximal function characterization
	7. Fractional powers of the operator L
	8. Functional calculus and fractional powers of L in smoothness spaces
	9. Appendix 1: Relationships between HpL and classical Hp
	10. Appendix 2: Embedding of  HpL(Rn)  spaces into an ambient Banach space
	References

