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CRYSTALS OF FOCK SPACES AND CYCLOTOMIC
RATIONAL DOUBLE AFFINE HECKE ALGEBRAS

BY PEnG SHAN

ABSTRACT. — We define the i-restriction and i-induction functors on the category ) of the cyclo-
tomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of
simple modules, which is isomorphic to the crystal of a Fock space.

RESUME. — On définit les foncteurs de i-restriction et i-induction sur la catégorie ©) des algébres de
Hecke doublement affines rationnelles cyclotomiques. Ceci donne lieu a un cristal sur ’ensemble des
classes d’isomorphismes de modules simples, qui est isomorphe au cristal d’un espace de Fock.

Introduction

In [1], S. Ariki defined the i-restriction and ¢-induction functors for cyclotomic Hecke
algebras. He showed that the Grothendieck group of the category of finitely generated
projective modules of these algebras admits a module structure over the affine Lie algebra of
type A, with the action of Chevalley generators given by the i-restriction and i-induction
functors.

The restriction and induction functors for rational DAHA’s (= double affine Hecke
algebras) were recently defined by R. Bezrukavnikov and P. Etingof. With these functors, we
give an analogue of Ariki’s construction for the category ©) of cyclotomic rational DAHAs:
we show that as a module over the type A() affine Lie algebra, the Grothendieck group
of this category is isomorphic to a Fock space. We also construct a crystal on the set of
isomorphism classes of simple modules in the category ©. It is isomorphic to the crystal
of the Fock space. Recall that this Fock space also enters in some conjectural description
of the decomposition numbers for the category @) considered here. See [16], [17], [14] for
related works.
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148 P. SHAN

Notation

For A an algebra, we will write A -mod for the category of finitely generated A-modules.
For f : A — B an algebra homomorphism from A to another algebra B such that B is
finitely generated over A, we will write

f« : B-mod — A-mod
for the restriction functor and we write
ffiA-mod - B-mod, M +— B®4 M.

A C-linear category @ is called artinian if the Hom sets are finite dimensional C-vector
spaces and every object has a finite length. Given an object M in &, we denote by soc(M)
(resp. head(M)) the socle (resp. the head) of M, which is the largest semi-simple subobject
(quotient) of M.

Let & be an abelian category. The Grothendieck group of & is the quotient of the free
abelian group generated by objects in & modulo the relations M = M’ + M" for all objects
M, M', M" in & such that there is an exact sequence 0 — M’ — M — M" — 0. Let K(©)
denote the complexified Grothendieck group, a C-vector space. For each object M in ©, let
[M] be its class in K(&). Any exact functor F : & — &’ between two abelian categories
induces a vector space homomorphism K (&) — K(€'), which we will denote by F again.
Given an algebra A we will abbreviate K (A) = K(A-mod).

Denote by Fct(%, €') the category of functors from a category % to a category 6. For
F € Fct(6, ©') write End(F) for the ring of endomorphisms of the functor F. We denote
by 1z : F — F the identity element in End(F). Let G € Fct(6’, ") be a functor
from &' to another category &”. For any X € End(F) and any X’ € End(G) we write
X'X : Go F — G o F for the morphism of functors given by X' X (M) = X'(F(M)) o
G(X(M)) forany M € 6.

Let e > 2 be an integer and z be a formal parameter. Denote by sl. the Lie algebra of
traceless e x e complex matrices. The type A()) affine Lie algebra is

sl, = sl ® Clz,27 '] @ Cc @ CO
equipped with the Lie bracket
[E®2™+ac+bd, &' ®z2"+a c+b 0] = [£,&]102™ " +mby,, _ntr(€€ ) c+nbe' ®2" —mb @2,
for¢, & €sle,a,a’, b, b € C. Here tr : s, — C is the trace map. Let
sl, = sl. ® Clz,27 '] @ Ce.
It is the Lie subalgebra of sl, generated by the Chevalley generators
ei=E 1101, fi=E{1,01, 1<i<e-1
e0=FEa1®z, fo=FE.®2z "

Here E;; is the elementary matrix with 1 in the position (¢,5) and 0 elsewhere. Let
h; = [es, fi] for 0 < i < e — 1. We consider the Cartan subalgebra

t= P ChieCo,

i€ZL/el
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CRYSTALS AND DAHA 149

and its dual t*. Fori € Z/eZ let a; € t* (resp. ) € t) be the simple root (resp. coroot)
corresponding to e;. The fundamental weights are {A; € t* : i € Z/eZ} such that
Ai(af) = 6;; and A;(0) = O forany i,j € Z/eZ. Let§ € t* be the element given by
§(h;) = 0 for all i and §(8) = 1. We will write P for the weight lattice of sl.. It is the free
abelian group generated by the fundamental weights and §.

1. Reminders on Hecke algebras, rational DAHA’s and restriction functors

1.1. Hecke algebras

Let h be a finite dimensional vector space over C. Recall that a pseudo-reflection is a
non trivial element s of GL(h) which acts trivially on a hyperplane, called the reflecting
hyperplane of s. Let W C GL(h) be a finite subgroup generated by pseudo-reflections. Let
J be the set of pseudo-reflections in W and & be the set of reflecting hyperplanes. We set
breg = b — Umey H, it is stable under the action of W. Fix zg € b, and identify it with its
image in h,ee/W. By definition the braid group attached to (W, ), denoted by B(W, b), is
the fundamental group m1 (hreg/W, o).

For any H € %, let Wg be the pointwise stabilizer of H. This is a cyclic group. Write ey
for the order of Wy . Let sy be the unique element in Wy whose determinant is exp(%).
Let ¢ be a map from f to C* that is constant on the W-conjugacy classes. Following
[6, Definition 4.21] the Hecke algebra .2, (W, §) attached to (W, h) with parameter g is the

quotient of the group algebra CB(W, §) by the relations:
(1.1) (Toy —1) [[ (Tow—a®) =0, Het.
teWund

Here T, is a generator of the monodromy around H in b,z /W such that the lift of T, in
71 (W, Breg) via the map breg — hreg/W is represented by a path from zg to sg (). See [6,
Section 2B] for a precise definition. When the subspace h* of fixed points of W in b is trivial,
we abbreviate

Bw = B(W,b), (W) = AW, h).
1.2. Parabolic restriction and induction for Hecke algebras

In this section we will assume that b = 1. A parabolic subgroup W’ of W is by definition
the stabilizer of a point b € §. By a theorem of Steinberg, the group W' is also generated by
pseudo-reflections. Let ¢’ be the restriction of g to J' = W’N¢J. There is an explicit inclusion
g+ Sy (W') — (W) given by [6, Section 2D]. The restriction functor

" Resyy : (W) -mod — 5, (W')-mod
is the functor (¢4).. The induction functor
P Indyy, = AG(W) @, wr) —
is left adjoint to “*Resyy.,. The coinduction functor
# colndyy, = Hom y, (wr) (Hq(W), —)

is right adjoint to ” Res}}.. The three functors above are all exact.
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150 P. SHAN

Let us recall the definition of ¢4. It is induced from an inclusion 2 : By — By, which is
in turn the composition of three morphisms /, «, 7 defined as follows. First, let @ C %@ be
the set of reflecting hyperplanes of W’. Write

b=b/b", G={H=HN" :He @}, bo=0-|JH b,=b-J H
ﬁe@ Hed@

The canonical epimorphism p:h — b induces a trivial W'-equivariant fibration

P : Bleg = Brogs Which yields an isomorphism

(12) L BW’ = 7Tl(Ereg/.[/Vlap(x())) = 7Tl(biﬁeg/vvlaxO)'

Endow h with a W-invariant hermitian scalar product. Let || - || be the associated norm.
Set
(1.3) Q={zeh: ||lz-0| <e},

where ¢ is a positive real number such that the closure of 2 does not intersect any hyperplane
that is in the complement of &' in &. Let~ : [0,1] — b be a path such that v(0) = x,
v(1) = band y(t) € hreg for 0 < t < 1. Let u € [0,1] such that z; = ~y(u) belongs to €2,
write -y, for the restriction of 7y to [0, u]. Consider the homomorphism

U:Wl(meregyxl) —>7T1(f)reg7$0)7 )"_)'Yu_l’)"’)/u-

The canonical inclusion hreg — by, induces a homomorphism 1 (reg, o) — 1 (hreg, Zo)-

Composing it with o gives an invertible homomorphism
71 (2N breg, 1) = T1(Dreq, To)-
Since 2 is W’ -invariant, its inverse gives an isomorphism
(1.4) K2 1 (Breg /W5 20) = T (2N Breg) /W', 1)
Finally, we see from above that ¢ is injective. So it induces an inclusion
T1((2 N breg) /W', 1) — 71 (hreg /W', 20).

Composing it with the canonical inclusion 71 (hreg/W',20) — 71 (hreg/W, z0) gives an
injective homomorphism

(15) jlﬂl((Qﬁf)reg)/Wl7.’E1)‘—>7T1(breg/vv,$0):Bw.
By composing ¢, k, 3 we get the inclusion
(1.6) 1=jokol: By — By.

It is proved in [6, Section 4C] that : preserves the relations in (1.1). So it induces an inclusion
of Hecke algebras which is the desired inclusion

g Ay (W) > (W),

For :, ' : By, — By two inclusions defined as above via different choices of the
path ~, there exists an element p € Py = 71 (hreg, To) such that for any a € By we have
1(a) = p'(a)p~!. In particular, the functors 1, and (+'). from By, -mod to By -mod are
isomorphic. Also, we have (24). = (2;).. So there is a unique restriction functor Resyy/
up to isomorphisms.
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CRYSTALS AND DAHA 151

1.3. Rational DAHA’s

Let ¢ be a map from J to C that is constant on the W-conjugacy classes. The rational
DAHA attached to W with parameter c is the quotient H.(W, §) of the smash product of
CW and the tensor algebra of h & h* by the relations

[1'7'7:/] =0, [y,y/] =0, [y,:c] = <$ay> - ZCS<asay><$7a;/>Sv
sed

forall z,2" € h*, y,y’ € h. Here (-, ) is the canonical pairing between h* and b, the element
a, is a generator of Im(s|y- —1) and e is the generator of Im(s|p —1) such that (o, ar)) = 2.

For s €  write A, for the non trivial eigenvalue of s in h*. Let {z;} be a basis of h* and
let {y;} be the dual basis. Let
B dim(h) 2¢s
(1.7) eu-szyl—f— 3 —Zl_)\ss
i sed
be the Euler element in H.(W, h). Its definition is independent of the choice of the basis {z; }.
We have

(1.8) eu,z;] = z;, [ew,y;]=—vy;, [eu,s]=0.

1.4. The category 0

The category © of H.(W,h) is the full subcategory O.(W,h) of the category of
H_.(W,h)-modules consisting of objects that are finitely generated as C[h]-modules and
h-locally nilpotent. We recall from [10, Section 3] the following properties of &.(W, ).

The action of the Euler element eu on a module in ).(W, ) is locally finite. The category
O.(W, ) is a highest weight category. In particular, it is artinian. Write Irr (W) for the set
of isomorphism classes of irreducible representations of W. The poset of standard modules
in O.(W, ) is indexed by Irr(W) with the partial order given by [10, Theorem 2.19]. More
precisely, for £ € Irr(W), equip it with a CW x C[h*]-module structure by letting the elements
in h C C[h*] act by zero, the standard module corresponding to £ is

A(f) = Hc(W7 b) ®(CW><C[I)*] €.

It is an indecomposable module with a simple head L(). The set of isomorphism classes of
simple modules in ©.(W, ) is

{[L(O)] : € € e (W)}

It is a basis of the C-vector space K (0.(W, )). The set {[A(£)] : € € Irr(W)} gives another
basis of K(0.(W,h)).
We say a module N in 8.(W, h) has a standard filtration if it admits a filtration

0=NgoCN,C---CN,=N

such that each quotient N;/N;_; is isomorphic to a standard module. We denote by
@CA(W, h) the full subcategory of O.(W, §) consisting of such modules.

Lemma 1.1. — (1) Any projective object in ©.(W, §) has a standard filtration.
(2) A module in ©.(W, Y) has a standard filtration if and only if it is free as a Clh]-module.
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152 P. SHAN

Both (1) and (2) are given by [10, Proposition 2.21].

The category ©.(W, ) has enough projective objects and has finite homological dimen-
sion [10, Section 4.3.1]. In particular, any module in &.(W, §) has a finite projective resolu-
tion. Write Proj, (W, h) for the full subcategory of projective modules in .(W, §). Let

I : Proj,(W,h) — 0.(W,h)
be the canonical embedding functor. We have the following lemma.
LEMMA 1.2. — For any abelian category G and any right exact functors Fy, Fs from
0.(W, ) to G, the homomorphism of vector spaces
r; : Hom(Fy, F5) » Hom(Fyo [, Fo0l), ~+— ~1;

is an isomorphism.

In particular, if the functor Fj o I is isomorphic to F5 o I, then we have F; & F5.

Proof. — We need to show that for any morphism of functors v : Fy oI — F5 o I there is
a unique morphism 7 : F; — Fy such that 717 = v. Since 6.(W, h) has enough projectives,
for any M € ©.(W, h) there exist Py, P; in Proj.(W, §) and an exact sequence in (W, )

(1.9) P py 2 0.

Applying the right exact functors F7, Fj to this sequence we get the two exact sequences in the
diagram below. The morphism of functors v : Fy oI — F; o[ yields well defined morphisms
v(Py), v(Pp) such that the square commutes

Fi(d F1(d
Fy(Py) fildy) Fi(Py) Fildo) Fy(M) ——=0

v(P1) v(Po)

Fy(d F>(d
Ba(Py) 2 Fy(Py) 22 By (M) —— .

Define #(M) to be the unique morphism F; (M) — F»(M) that makes the diagram com-
mute. Its definition is independent of the choice of Py, P;, and it is independent of the
choice of the exact sequence (1.9). The assignment M — »(M) gives a morphism of functor
v : Fy — F, such that #1; = v. It is unique by the uniqueness of the morphism 7(M). O

1.5. The Knizhnik-Zamolodchikov functor

The Knizhnik-Zamolodchikov functor is an exact functor from the category 0.(W, §) to
the category (W, §) -mod, where ¢ is a certain parameter associated with c. Let us recall
its definition from [10, Section 5.3].

Let D(bhreg) be the algebra of differential operators on h,. Write
HC(I/Vv breg) = HC(VI/? b) ®(C[h] C[breg]'

We consider the Dunkl isomorphism, which is an isomorphism of algebras

HC(W7 breg) = @(breg) x CW
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given by x — z, w — wforz € h*, w € W, and

2¢s as(y
y»—>8y+zﬁ#(s—l), fOI'yEb.
sed s s

For any M € ©.(W, ), write
Mhreg = M ®C[h] C[hreg]'

It identifies via the Dunkl isomorphism with a D(h,ez) x W-module which is finitely gener-
ated over Cl[b,cg]. Hence My, is a W-equivariant vector bundle on b,cg With an integrable
connection V given by V,(m) = 9,mform € M,y € b. Itis proved in [10, Proposition 5.7]
that the connection V has regular singularities. Now, regard b,e, as a complex manifold en-
dowed with the transcendental topology. Denote by @zlg the sheaf of holomorphic func-
tions on fye,. For any free Clh,ee]-module N of finite rank, we consider

N* = N @clp,oq] Db, -

It is an analytic locally free sheaf on h,.,. For V an integrable connection on N, the sheaf of
holomorphic horizontal sections

NY ={ne N*":V,(n)=0forally € b}

is a W-equivariant local system on b,.;. Hence it identifies with a local system on brcg/W.
So it yields a finite dimensional representation of CB(W, §). For M € 0.(W, §) it is proved
in [10, Theorem 5.13] that the action of CB(W, b) on (M, )V factors through the Hecke
algebra ¢, (W, ). The formula for the parameter g is given in [10, Section 5.2].

The Knizhnik-Zamolodchikov functor is the functor
KZ(W, D) : (W, ) — (W, h)-mod, M — (My,,,)".

By definition it is exact. Let us recall some of its properties following [10]. Assume in the
rest of this subsection that the algebras 5¢;(W, ) and CW have the same dimension over C.
We abbreviate KZ = KZ(W, §). The functor KZ is represented by a projective object Pxz in
B.(W, h). More precisely, there is an algebra homomorphism

p: Hqg(W,h) — Endg_w,p) (Pxz)”

such that KZ is isomorphic to the functor Homg_ () (Pkz, —). By [10, Theorem 5.15] the
homomorphism p is an isomorphism. In particular KZ(Pxz) is isomorphic to sZ; (W, §) as
(W, h)-modules.

Now, recall that the center of a category @ is the algebra Z (&) of endomorphisms of the
identity functor Id. So there is a canonical map

Z(0:.(W, b)) — Endg_w,p)(Pkz)-

The composition of this map with p~? yields an algebra homomorphism
v Z(0.(W, b)) — Z(Ay(W, ),

where Z(.2,(W,§)) denotes the center of 7, (W, h).
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LemMma 1.3. — (1) The homomorphism v is an isomorphism.
(2) For a module M in ©.(W,§) and an element f in Z(0.(W,4)) the morphism
KZ(f(M)) : KZ(M) — KZ(M)

is the multiplication by v(f).

See [10, Corollary 5.18] for (1). Part (2) follows from the construction of ~.

The functor KZ is a quotient functor, see [10, Theorem 5.14]. Therefore it has a right
adjoint S :(W,h) — O.(W,h) such that the canonical adjunction map
KZ oS — 1d s, (w,p) 1s an isomorphism of functors. We have the following proposition.

PROPOSITION 1.4. — Let Q be a projective object in ©.(W, §).

(1) For any object M € O.(W,), the following morphism of C-vector spaces is an
isomorphism

Homyg)_ w5 (M, Q) — Hom s (w)(KZ(M),KZ(Q)), [~ KZ(f).

In particular, the functor XZ is fully faithful over Proj (W, ).
(2) The canonical adjunction map gives an isomorphism @ = S o KZ(Q).

See [10, Theorems 5.3, 5.16].

1.6. Parabolic restriction and induction for rational DAHA’s

From now on we will always assume that B = 1. Recall from Section 1.2 that W/ c W
is the stabilizer of a point b € b and that h = h/h"". Let us recall from [4] the definition of
the parabolic restriction and induction functors

Resb . @c(W7 b) - @c'(W/7E)7 Indb : Qc’(W/yg) - @c(VVu b)
First we need some notation. For any point p € h we write C[[h]],, for the completion of C[h)]
at p, and we write C[h],, for the completion of C[h] at the W-orbit of p in . Note that we
have C|[h]]o = 6@0- For any C[h]-module M let

]/W\p = (C[f)] ®(C[h] M.

The completions H, (W, 5)s, H H, (W', h)o are well defined algebras. We denote by @ (W, 6)p
the category of H (W, h)p-modules that are finitely generated over (C[b]b, and we denote by

O (W', h)o the category of H (W', h)o-modules that are finitely generated over (C[b] Let
P = Funy (W, HC(W’, h)o) be the set of W’ -invariant maps from W to HC(W ,b)o. Let
Z(W, W', ﬁc(W’, B)o) be the ring of endomorphisms of the right JEI\C(W’, b)o-module P. We
have the following proposition given by [4, Theorem 3.2].

PRrROPOSITION 1.5. — There is an isomorphism of algebras

© : H (W, ), — Z(W, W', Hy (W', h)0)
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CRYSTALS AND DAHA 155

defined as follows: for f € P,a € h*, a € hu € W,
(Ow)f)(w) = f(wu),
(O(za)f)(w) = (@3 + a(w™'b)) f(w),

O f)w) = yifw) + Y 22D (i) gy,
sed,sgW’ s Toy T as(b)

where ZTo € H* C H (W, D), :z:((lb) eh* C Ho.(W',h), Yo €H C H (W, H),
(b) ehcC H.(W'h).

Using © we will identify H. (W h)p-modules with Z (W W', H, (W’ h)o)-modules. So
the module P = Funy (W, H, (W',h)o) becomes an ( (W, 8)p, H (W', h)o)-bimodule.
Hence for any N € @ (W’,h)o the module P D%, (W.6)o N lives in O.(W, ). It is

naturally identified with Funy (W, N), the set of W’-invariant maps from W to N. For any
C[h*]-module M write E(M) C M for the locally nilpotent part of M under the action of b.

The ingredients for defining the functors Res; and Ind; consist of:

the adjoint pair of functors (7, E?) with

/\b : @c(Wy h) - @C(W7 h)b7 M — Mbv

@C(W7 b)b - @C(W7h)7 N - E(N)a

the Morita equivalence
T 0w (W,9)o — 0.(W,h)s, N — Funy: (W, N),

and its quasi-inverse R given in Section 1.7 below,
the equivalence of categories

Do (W', b)o — Ou (W', ), M — E(M)

and its quasi-inverse given by N — ]/V\O,
the equivalence of categories

(1.10) C:0u(W',h) = O, (W'.5), M—{veM:yv=0, forally € "'}

and its quasi-inverse ¢ ~! given in Section 1.8 below.

For M € O.(W,h) and N € 6., (W', ) the functors Res;, and Ind,, are defined by
(1.11) Resy (M) = ¢ o E o R(M,),
Ind,(N) = E® 0 J((71(N),)-

We refer to [4, Section 2,3] for details.
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1.7. The idempotent z,, and the functor R

We give some details on the isomorphism © for a future use. Fix elements 1 = uq, us, ..., U,
in W such that W = | |;_; W'u,. Let Mat, ( (W' b)) be the algebra of r x r matrices
with coefficients in Hc (W’,5)o. We have an algebra isomorphism

(1.12) @ Z(W, W', Ho (W', b)) — Mat, (He (W', b)o),
A (@(A)ij)i<ig<r
such that
(Af)(uy) Z{D f(u;), forall feP,1<i<r.

Denote by E;;, 1 < 4,5 < r, the elementary matrix in Mat,. ( (W', h)o) with coefficient 1
in the position (7, j) and zero elsewhere. Note that the algebra isomorphism

® 0O : H(W,h), = Mat,(H. (W', )o)

restricts to an isomorphism of subalgebras

(1.13) Chol, = P lvllor

Indeed, there is a unique isomorphism of algebras

(1.14) @ : Clh], = @C[[b“ui‘lb’
i=1

extending the algebra homomorphism
@(C z e (z,2,...,2), Vzebh™

For each i consider the isomorphism of algebras
&; C[[b]]uflb — C[[b]lo, =+ wiz +x(u;'b), Yz eb*

The isomorphism (1.13) is exactly the composmon of w with the direct sum &]_, ¢;. Here
E;; is the image of the idempotent in (C[b] corresponding to the component C[[h]],,-1,. We
will denote by z,, the idempotent in (E[E]b corresponding to C[[h]]p, i.e., ® 0 O(zp,) = Ei;.
Then the functor
R: @C(W7 b)b - @c’ (Wla b)Ov M — xprM

is a quasi-inverse of J. Here, the action of JEI\C/(W’ ,h)o on R(M) = z,, M is given by the
following formulas deduced from Proposition 1.5. Foranya € h*,w € W ,a € b*, me M
we have

(1.15) 2Pz (m) = 25 (20 — a(b))m),

(1.16) Wrpr(m) = Tpr(wm),

(117) Wronlm) = e (et 30 0D
sed, s¢W’ s Os
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In particular, we have

(1.18) R(M) = ¢1(zp:(M))

as C[[h]]o ¥ W’-modules. Finally, note that the following equality holds in ﬁc(W, H)s
(1.19) Tpeupe =0, YueW —W'.

1.8. A quasi-inverse of

Let us recall from [4, Section 2.3] the following facts. Let h*"" be the subspace of h*
consisting of fixed points of W’. Set

VY ={vep: f(v)=0forall f € h*"'}.
We have a W'-invariant decomposition
b — (b*W')J_ o) hW/'

The W'-space (h*"')L is canonically identified with b. Since the action of W’ on "' is
trivial, we have an obvious algebra isomorphism

(1.20) H.(W',h) = Hy (W', h) @ (™).

It maps an element y in the subset h" of H. (W', ) to the operator 0y in D(H™"). Write
O(1,h"") for the category of finitely generated D(h"")-modules that are 0y-locally nilpotent
for ally € h'. The algebra isomorphism above yields an equivalence of categories

Do (W', h) = 0. (W', h) ® 0(1,5").
The functor ¢ in (1.10) is an equivalence, because it is induced by the functor
0(1,6"') 5 C-mod, M — {m € M,d,(m)=0forally e h"'},

which is an equivalence by Kashiwara’s lemma upon taking Fourier transforms. In particu-
lar, a quasi-inverse of ( is given by

(1.21) ¢l 0.(WB) - 0.(W',h), N NeChW],

where C[h"'] € ©(1,5"") is the polynomial representation of D(h"").

Moreover, the functor ¢ maps a standard module in O (W', §) to a standard module in
0. (W', ). Indeed, for any ¢ € Irr(W’), we have an isomorphism of H. (W', h)-modules

Hc’(W/a b) ®C[b*]>4W' f = (Hc’(W/aE) ®(c[(5)*]>qwf f) ® (@(bW,) ®<C[(hW’)*] (C).

On the right hand side C denotes the trivial module of C[(§"")*], and the latter is identified
with the subalgebra of D(h"") generated by 0y forally e h"'. We have

D(H"") Bcppwy« C= CH™)

as D(§"")-modules. So ¢ maps the standard module A(€) for H, (W', ) to the standard
module A(¢) for H. (W', ).
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1.9. — Here are some properties of Res, and Ind,.

ProrosiTiON 1.6. — (1) Both functors Res, and Ind, are exact. The functor Resy, is
left adjoint to Indy. In particular the functor Resy, preserves projective objects and Indy
preserves injective objects.

(2) Let Res%, and Ind%, be respectively the restriction and induction functors of groups.
We have the following commutative diagram

K(Dc(W,h)) —<— K(CW)

Indbw I/Resb Indyy, T I/Res“:vv,
’

E(O(W',b)) ——= K(CW").

Here the isomorphism w (resp. w') is given by mapping [A(€)] to [€] for any & € Irr(W)
(resp. € € Irr(W')).

See [4, Proposition 3.9, Theorem 3.10] for (1), [4, Proposition 3.14] for (2).

1.10. Restriction of modules having a standard filtration

In the rest of Section 1, we study the actions of the restriction functors on modules having
a standard filtration in ©.(W, §) (Proposition 1.9). We will need the following lemmas.

LEMMA 1.7. — Let M be an object in QCA(W, h).
(1) There is a finite dimensional subspace V' of M such that V is stable under the action of
CW and the map
Chl®V - M, pRu pv
is an isomorphism of C[h] x W-modules.
(2) The map w : K(0.(W,4)) — K(CW) in Proposition 1.6(2) satisfies
(1.22) w([M]) = [V].

Proof. — Let
O=MyCcMyC---CM;=M
be a filtration of M such that for any 1 < ¢ < [ we have M;/M;_; = A(¢;) for some
& € Irr(W). We prove (1) and (2) by recurrence on {. If I = 1, then M is a standard module.
Both (1) and (2) hold by definition. For ! > 1, by induction we may suppose that there is
a subspace V' of M;_; such that the properties in (1) and (2) are satisfied for M;_; and V".
Now, consider the exact sequence

0— Mi_; — M 15 A(g) — 0.

From the isomorphism of C[h] x W-modules A(&;) = C[h]|®E we see that A(&;) is a projective
C[p] x W-module. Hence there exists a morphism of C[h] x W-modules s : A(&;) — M that
provides a section of j. Let V = V' @ s(§) C M. It is stable under the action of CW.
The map Clh] ® V. — M in (1) is an injective morphism of C[h] x W-modules. Its image is
M;_1 @ s(A(§)), which is equal to M. So it is an isomorphism. We have

w([M]) = w([M;-1]) + w([AE)D,

by assumption w([M;-1]) = [V'], so w([M]) = [V'] + [&] = [V]. D
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LemMA 1.8. — (1) Let M be an f{\c(VV, h)o-module free over C[[bllo. If there exist
generalized eigenvectors v1,...v, of eu which form a basis of M over C[[bl]lo, then for
f1,--., fn € C[[b]]o the element m = >, f;v; is eu-finite if and only if f1,. .., f all belong
to C[h].

(2) Let N be an object in O.(W,h). If Ny is a free C[[b]]o-module, then N is a free
Clb]-module. It admits a basis consisting of generalized eigenvectors vy, . . ., v, of eu.

Proof. — (1) It follows from the proof of [4, Theorem 2.3].

(2) Since N belongs to 6.(W,h), it is finitely generated over C[h]. Denote by m the
maximal ideal of C[[h]]o. The canonical map N — No /mJ/\f\o is surjective. So there exist
v1,-..,V, In N such that their images form a basis of ﬁo /mﬁo over C. Moreover, we
may choose vy, ..., v, to be generalized eigenvectors of eu, because the eu-action on N is
locally finite. Since Ny is free over C[[b]]o, Nakayama’s lemma yields that v, ..., v, form
a basis of Ny over C[[b]]o- By part (1) the set N’ of eu-finite elements in N is the free
C[h]-submodule generated by vy, . .., v,. On the other hand, since ]vo belongs to @C(VV7 H)o,
by [4, Proposition 2.4] an element in ]/\7\0 is h-nilpotent if and only if it is eu-finite. So
N = E(]/\T\O). On the other hand, the canonical inclusion N C E(]/V\O) is an equality by
[4, Theorem 3.2]. Hence N = N’. This implies that N is free over C[h], with a basis given by
v1,...,vn, Which are generalized eigenvectors of eu. O

PROPOSITION 1.9. — Let M be an object in QCA(W, h).
(1) The object Resy (M) has a standard filtration.
(2) Let V be a subspace of M that has the properties of Lemma 1.7(1). Then there is an

isomorphism of C[h] x W'-modules
Resy(M) = C[h] @ Resly (V).

Proof. — (1) By the end of Section 1.8 the equivalence ¢ maps a standard module in
O (W', b) to a standard one in O (W', §). Hence to prove that Res,(M) = ¢ o E o R(M,)
has a standard filtration, it is enough to show that N = E o R(]\//fb) has one. We claim that
the module N is free over C[h]. So the result follows from Lemma 1.1(2).

Let us prove the claim. Recall from (1.18) that we have R(M,) = qﬁ’{(xprj\/fb) as
C[[h]]o x W'-modules. Using the isomorphism of C[h] x W-modules M = C[p] ® V
given in Lemma 1.7(1), we deduce an isomorphism of C[[h]]p x W'-modules

—

R(My) = ¢} (2:(C[h], ® V)
=~ C[[hllo ® V.

So the module R(]\//fb) is free over C[[h]]o. The completion of the module NV at 0 is isomorphic
to R(]\//fb). By Lemma 1.8(2) the module N is free over C[h]. The claim is proved.

(2) Since Res, (M) has a standard filtration, by Lemma 1.7 there exists a finite dimensional
vector space V' C Resy(M) such that V” is stable under the action of CW’ and we have an

isomorphism of C[h] x W'-modules

Resy(M) = C[hl @ V.

Moreover, we have w’([Resy(M)]) = [V'] where w’ is the map in Proposition 1.6(2). The
same proposition yields that Resjy (w[M]) = w’([Resy(M)]). Since w([M]) = [V] by
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(1.22), the CW’-module V' is isomorphic to Res}. (V). So we have an isomorphism of

C[h] x» W'-modules
Resy(M) = C[h] ® Resly (V). O

2. KZ commutes with restriction functors

In this section, we relate the restriction and induction functors for rational DAHA’s to the
corresponding functors for Hecke algebras via the functor KZ. We will always assume that
the Hecke algebras have the same dimension as the corresponding group algebras. Thus the
Knizhnik-Zamolodchikov functors admit the properties recalled in Section 1.5.

2.1. — Let W be a complex reflection group acting on f. Let b be a point in b and let W’ be
its stabilizer in W. We will abbreviate KZ = KZ(W, §), KZ' = KZ(W', ).

THEOREM 2.1. — There is an isomorphism of functors

KZ' oResy = *Res}}, oKZ.

Proof. — We will regard KZ : 0.(W,h) — #,(W)-mod as a functor from O.(W, h)
to By -mod in the obvious way. Similarly we will regard KZ' as a functor to By -mod.
Recall the inclusion ¢ : By <— By from (1.6). The theorem amounts to prove that for any
M € 9.(W, b) there is a natural isomorphism of By -modules

2.1) KZ' o Resy (M) 2 1, 0o KZ(M).

Step 1. Recall the functor ¢ : O, (W', h) — O, (W', b) from (1.10) and its quasi-inverse
¢~tin (1.21). Let
N = ¢ (Resy(M)).
We have N 2 Res;(M)®C[h"']. Since the canonical epimorphism h — b induces a fibration

/ " : o)
reg — Dreg» s€€ Section 1.2, we have

2.2) Ny, = Resy(M);  ® cp™.

By Dunkl isomorphisms, the left hand side is a D(b;,,) x W'-module while the right hand
side is a (D(h,eg) ¥ W') @ D(h"")-module. Identify these two algebras in the obvious way.
The isomorphism (2.2) is compatible with the W’-equivariant 9-module structures. Hence
we have

(Nyy,,)Y = (Resy(M); )Y @ C[p)"]Y.

reg Breg

Since C[h"']V = C, this yields a natural isomorphism
L, o KZ(W' b)(N) =2 KZ' o Resy(M),

where ¢ is the homomorphism defined in (1.2).
Step 2. Consider the W’-equivariant algebra isomorphism

¢:Clh] = C[p], z+— x+z(b)forz e h*.
It induces an isomorphism ¢ : C[[h]], = C[[h]]o. The latter yields an algebra isomorphism

Cl[b1]s ®cio) Clhreg] == C[h]lo ciy) Clhreg)-
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To see this note first that by definition, the left hand side is C[[h]]s[as !, s € J]. For s € ,
s ¢ W’ the element «; is invertible in C[[f]], so we have

CI[b])s ®cio] Clbreg] = Cl[b]ls[az ', s € SN W'
For s € J N W’ we have o, (b) = 0, 50 $(cts) = ar,. Hence

S(Cl[0]le)[(cs) ™" 5 € SNW'] = Cl[b]lo[e; ', s € SN W]
= C[[b]]o ®c[p) C[b;eg]'

Step 3. We will assume in Steps 3, 4, 5 that M is a module in @CA(VV, b). In this step we
prove that N is isomorphic to ¢* (M) as C[h] x W’-modules. Let V be a subspace of M as
in Lemma 1.7(1). So we have an isomorphism of C[h] x W-modules

(2.3) M=ChaV.

Also, by Proposition 1.9(2) there is an isomorphism of C[h] x W’-modules
N = C[h] ® Resyy (V).

So N is isomorphic to ¢* (M) as C[h] x W'-modules.

— —

Step 4. In this step we compare ((¢*(M)),)y:. and (]/V\O)b;eg as D(h}eg),-modules. The

Bieg reg

definition of these D(b.,) -module structures will be given below in terms of connections.

By (I.11) we have N = FE o R(]\//fb), so we have Ny = R(JT/[\I,). Next, by (1.18) we have an
isomorphism of C[[h]]o x W’-modules

R(My) = 6" (p: (M)
= (¢’*(M))0'
So we get an isomorphism of C[[h]]o x W’'-modules

U (¢*(M))o — -Z/V\O-

Now, let us consider connections on these modules. Note that by Step 2 we have

——

((6*(M))g)yy,, = & (@pe(My)s.,)-

Write V for the connection on My, given by the Dunkl isomorphism for H.(W, breg). We

equip ((¢*(M))g)sp;,, With the connection V given by
Va(@prm) = 2pe(Va(m), Vim € (M), a €.

reg

Let V) be the connection on N, By given by the Dunkl isomorphism for H. (W', §._,). This

restricts to a connection on (Ng)
1.e., we have

(2.4) VO (zpm) = 25, Va(m), Vm € (M)

b/.,- We claim that ¥ is compatible with these connections,

Breg*

Recall the subspace V' of M from Step 3. By Lemma 1.7(1) the map

—_

(CIb], ®cip) Clhreg)) ® V = (Mp)p,eys PO v — pv
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—_

is a bijection. So it is enough to prove (2.4) for m = pv with p € C[h], ®cp] Clhreg), v € V.
We have

2¢cs og(a
VO () = @0 — S 222 (1)) )
SEJNW’ S Ta,
2¢s as(a)
= mpr(ya + Z — )\ e
se,s¢W’ s s
2¢s as(a)
- Z 1=\, z, (s = 1))(zprpv)
sefNwW’ s
2cs oagl(a
=z (Ve + Z ( )s)(xprpv)
1— X z,
sed,sgW’ s
(2.5) = Tpr Vo (TprDv).

Here the first equality is by the Dunkl isomorphism for H. (W’ b..,). The second is by

reg

(1.15), (1.16), (1.17) and the fact that :vf)r = Zpy. The third is by the Dunkl isomorphism for

—

H (W, breg). The lastis by (1.19). Next, since p, is the idempotent in C[h], corresponding
to the component C[[h]], in the decomposition (1.14), we have

Va(prpv) = (9a(2p:p))v + Tpep (Vav)
= Zpr(0a(p))v + Tprp (Vav)
= Zp: Va(pv).

Together with (2.5) this implies that
ng)(asprpv) = Tp: Va(pv).
So (2.4) is proved.

Step 5. In this step we prove the isomorphism (2.1) for M € @CA(W7 h). Here we need
some more notation. For X = b or by, let U be an open analytic subvariety of X, write
i : U — X for the canonical embedding. For F' an analytic coherent sheaf on X we write
i*(F) for the restriction of F' to U. If U contains 0, for an analytic locally free sheaf E over
U, we write E for the restriction of E to the formal disc at 0.

Let Q C b be the open ball defined in (1.3). Let f : h — b be the morphism defined by ¢.
The preimage of €2 via f is an open ball £ in h centered at 0. We have

f(QO n b;eg) =Qan hreg-
Letu: Qo NbhLe, — hand v : QN b — h be the canonical embeddings. By Step 3 there is

reg
an isomorphism of W’-equivariant analytic locally free sheaves over Q¢ N h;eg

u* (Nan) o~ ¢)* (U* (Man))
By Step 4 there is an isomorphism

—
~

u*(Nam) — ¢* (v (M*"))

which is compatible with their connections. It follows from Lemma 2.2 below that there is
an isomorphism
* an (b) ~J * * an
(V)Y = g (0" (1)),
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!

reg Via u, the left hand side is isomorphic to

Since Qg N b, is homotopy equivalent to b

reg

(Nh;eg)v(b). So we have
K 0 Jx 0 KZ(M) = KZ(W/» H)(IN),
where k, 7 are as in (1.4), (1.5). Combined with Step 1 we have the following isomorphisms

KZ' o Resy(M) =2 £, o KZ(W',h)(N)
(2.6) >/, 0 Ky 0 Jx 0 KZ(M)
=1, 0o KZ(M).

They are functorial on M.

LEMMA 2.2. — Let E be an analytic locally free sheaf over the complex manifold f];eg.
Let V1, V3 be two integrable connections on E with regular singularities. If there exists an

isomorphism 1 : (E, Vi) — (/E\, Vs), then the local systems EN' and EV? are isomorphic.

Proof. — Write End(F) for the sheaf of endomorphisms of E. Then End(FE) is a locally

free sheaf over b;eg. The connections V1, V5 define a connection V on End(F) as follows,

V :End(E) — End(E), f+— Vaof—foVj.

So the isomorphism 4 is a horizontal section of (ﬁﬁ@), V). Let (End(E)Y)g be the set
of germs of horizontal sections of (End(FE), V) on zero. By the Comparison theorem [12,
Theorem 6.3.1] the canonical map (End(E)Y), — (lngd(\E))v is bijective. Hence there
exists a holomorphic isomorphism ¢ : (E,V;) — (E,V2) which maps to ¥. Now, let U
be an open ball in b;,, centered at 0 with radius e small enough such that the holomorphic
isomorphism % converges in U. Write Ey for the restriction of E to U. Then v induces an
isomorphism of local systems (Ey)YV* = (Ey)V2. Since b, is homotopy equivalent to U,
we have

EVi > EVz, O

Step 6. Finally, write I for the inclusion of Proj. (W, §) into ©.(W, §). By Lemma 1.1(1)
any projective object in &.(W, h) has a standard filtration, so (2.6) yields an isomorphism of
functors

KZ' oResy ol — 1, 0 KZol.

Applying Lemma 1.2 to the exact functors KZ’ o Res, and 2, o KZ yields that there is an
isomorphism of functors

KZ oResp = 1, o KZ. O

2.2. — We give some corollaries of Theorem 2.1.

COROLLARY 2.3. — There is an isomorphism of functors

KZoInd, = “colndyy, o KZ' .
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Proof. — To simplify notation let us write
0=0.W,h), 0 =0.W.0), H=HW) A =AHW).

Recall that the functor KZ is represented by a projective object Pxy in €. So for any N € ¢
we have a morphism of .7#-modules

KZ oIndy(N) = Homg(Pkz,Ind,(N))
= Homyy (Resp(Pkz), N)
2.7 — Hom s (KZ' (Resy(Pkz)), KZ'(N)).
By Theorem 2.1 we have
KZ' oResy(Pkz) = “Resly, o KZ(Pxz).

Recall from Section 1.5 that the s#-module KZ(Pkz) is isomorphic to 5. So as #’-mod-
ules KZ'(Resy,(Pkz)) is also isomorphic to 7. Therefore the morphism (2.7) rewrites as

(2.8) X(N) : KZoIndy(N) — Hom s (5, KZ'(N)).
It yields a morphism of functors
x : KZoInd, — “colndyy, o KZ'.

Note that if N is a projective objectin €', then Xx(IV) is an isomorphism by Proposition 1.4(1).
So Lemma .2 implies that x is an isomorphism of functors, because both functors KZ o Ind,
and ” colnd}},, o KZ' are exact. O

2.3. — The following lemma will be useful to us.

LEMMA 2.4. — Let K, L be two right exact functors from 0y to O, where ©1 and Oy can
be either O.(W,b) or O (W' b). Let KZy denote the KZ-functor on 0. Suppose that K, L
map projective objects to projective ones. Then the vector space homomorphism

2.9) Hom(K, L) — Hom(KZs oK,KZyoL), [+ lkz,f,

is an isomorphism.
Notice that if K = L, this is even an isomorphism of rings.

Proof. — Let Proj;, Proj, be respectively the subcategory of projective objects in 6y, £s.
Write K, L for the functors from Proj 1 to Proj, given by the restrictions of K, L, respectively.
Let 7 be the Hecke algebra corresponding to @. Since the functor KZs is fully faithful over
Proj, by Proposition 1.4(1), the following functor

Fct(Projy, Proj,) — Fet(Projy, 7% -mod), G+ KZ3oG
is also fully faithful. This yields an isomorphism
Hom(K, L) = Hom(KZs oK ,KZyoL), [+ lxz,f.
Next, by Lemma 1.2 the canonical morphisms
Hom(K, L) — Hom(K, L), Hom(KZjoK,KZsoL) — Hom(KZy oK, KZsoL)

are isomorphisms. So the map (2.9) is also an isomorphism. O

4¢ SERIE - TOME 44 — 2011 - N° 1



CRYSTALS AND DAHA 165

Let b(W,W") be a point in h whose stabilizer is W”. Let b(W',W") be its image in
b = b/6"" via the canonical projection. Write b(W, W’) = b.

COROLLARY 2.5. — There are isomorphisms of functors
Resb(W/7W,,) o Resb(W7W/) = ReSb(W’Wu),
Indb(W’W,) oIndb(W/7W,/) = Indb(W’Wu) .

Proof. — Since the restriction functors map projective objects to projective ones by Propo-
sition 1.6(1), Lemma 2.4 applied to the categories €1 = O.(W,h), Oz = O (W”, 5/5"")
yields an isomorphism

Hom(Resb(W/7W//) o Resb(W,W’)a Resb(W,W”))

= HOIIl(KZH o Resb(WQWu) o Resb(W,W’)a KZ” o Resb(W,W”))‘
By Theorem 2.1 the set on the second row is
(2.10) Hom(” Resl o * Resly, o KZ, Resly, o KZ).
By the presentations of Hecke algebras in [6, Proposition 4.22], there is an isomorphism
o : “Resl o “Resll, = “ReslV, .
Hence the element o1k in the set (2.10) maps to an isomorphism
Resb(W/7W//) o Resb(ww/) = Resb(W)Wu) .

This proves the first isomorphism in the corollary. The second one follows from the unique-
ness of right adjoint functor. O

2.4. Biadjointness of Res; and Ind,

Recall that a finite dimensional C-algebra A is symmetric if A is isomorphic to
A* = Homc(A4, C) as (A, A)-bimodules.

LEMMA 2.6. — Assume that 56,(W) and Hy(W') are symmetric algebras. Then the
functors *Indyy, and *colndyy, are isomorphic, i.e., the functor *IndYy, is biadjoint to
“Resp.

Proof. — We abbreviate 5 = ,(W) and 5" = 5, (W'). Since 5 is free as a left
2'-module, for any .7#’-module M the map
(2.11) Hom o/ (A, ') @ pr M — Hom s (7, M)

given by multiplication is an isomorphism of .7#-modules. By assumption 5 is isomorphic
to (') as (', #")-bimodules. Thus we have the following (57, 5#")-bimodule isomor-
phisms
Homt#/(%,%l) & Hom 0/ (A, (%ﬂ/)*)
= Homc(%/ Qe A, C)
~
= 7.
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The last isomorphism follows from the fact the 5 is symmetric. Thus, by (2.11) the functors
“Ind}y, and * colndyy, are isomorphic. O

REMARK 2.7. — It is proved that 7, (W) is a symmetric algebra for all irreducible com-
plex reflection group W except for some of the 34 exceptional groups in the Shephard-Todd
classification. See [5, Section 2A] for details.

The biadjointness of Res;, and Ind, was conjectured in [4, Remark 3.18] and was an-
nounced by I. Gordon and M. Martino. We give a proof in Proposition 2.9 since it seems
not yet to be available in the literature. Let us first consider the following lemma.

LEMMA 2.8. — (1) Let A, B be noetherian algebras and T be a functor
T: A-mod — B-mod.

If T is right exact and commutes with direct sums, then it has a right adjoint.
(2) The functor
Res; : O.(W,h) — O/ (W', h)
has a left adjoint.

Proof. — (1) Consider the (B, A)-bimodule M = T'(A). We claim that the functor T is
isomorphic to the functor M ® 4 —. Indeed, by definition we have T(A) & M ®4 A as
B-modules. Now, for any N € A-mod, since N is finitely generated and A is noetherian
there exist m, n € N and an exact sequence

AP AT L N — 0.
Since both T'and M ® 4 — are right exact and they commute with direct sums, the fact that

T(A) =2 M ®4 Aimplies that T'(N) =2 M ® 4 N as B-modules. This proved the claim. Now,
the functor M ® 4 — has a right adjoint Hompg (M, —), so T also has a right adjoint.

(2) Recall that for any complex reflection group W, a contravariant duality functor
(_)\/ : @C(W7 b) - @cf (W7 h*)

was defined in [10, Section 4.2], here ¢! :  — C is another parameter explicitly determined
by c¢. Consider the functor

Res?,/ = (_)\/ © Resbo(_)v : QCT(VVa b*) - Qc’*(Wla (E)*)

The category O, (W, h*) has a projective generator P. The algebra Endy (W) (P)°P s
finite dimensional over C and by Morita theory we have an equivalence of categories

@c’r (VV, b*) = End@cT (WJJ*)(P)OD -mod .

Since the functor Res, is exact and obviously commutes with direct sums, by part (1) it has
a right adjoint ¥. Then it follows that (—)Y o ¥ o (—)V is left adjoint to Res,. The lemma is
proved. O

PROPOSITION 2.9. — Assume that ,(W) and A (W') are symmetric algebras. Then
the functor Indy, is left adjoint to Resy.
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Proof. — Step 1. We abbreviate 0 = 0.(W,b), 0 = 0.(W'.h), # = H,(W),
H' = Hy(W'), and write Idg, Idyr, Id s, Id s for the identity functor on the correspond-
ing categories. We also abbreviate E = “*Resyy,, F* = * Ind%, and E = Res,. By
Lemma 2.8 the functor E has a left adjoint. We denoteit by F : & — ©. Recall the functors

KZ: 0 — #-mod, KZ':0 — # -mod.
The goal of this step is to show that there exists an isomorphism of functors
KZoF = F* o KZ'.

To this end, let S, S’ be respectively the right adjoints of KZ, KZ', see Section 1.5. We will
first give an isomorphism of functors

F” 2KZoFoS'.
Let M € '-mod and N € J7-mod. Consider the following equalities given by
adjunctions
Hom y(KZoF o S'(M),N) = Homg(F o S'(M), S(N))
= Homyy (S (M), E o S(N)).
The functor KZ’ yields a map
(2.12) a(M,N) : Homgy (S'(M),E o S(N)) — Hom s (KZ' 0S'(M),KZ' oE o S(N)).

Since the canonical adjunction maps KZ' 0S8’ — Id s, KZoS — Id, are isomorphisms
(see Section 1.5) and since we have an isomorphism of functors KZ' oE = E* o KZ by
Theorem 2.1, we get the following equalities

Hom ' (KZ' oS'(M),KZ' oE 0 S(N)) = Hom s (M, E” o KZoS(N))
= Hom (M, E”(N))
= Hom (F” (M), N).

In the last equality we used that F'** is left adjoint to £*. So the map (2.12) can be rewritten
into the following form

a(M,N) : Hom »(KZoF o S'(M), N) — Hom »(F” (M), N).

Now, take N = 5. Recall that 7 is isomorphic to KZ(Pkz) as ##-modules. Since Pky is
projective, by Proposition 1.4(2) we have a canonical isomorphism in £

Pxz = S(KZ(Pkz)) = S(H).

Further E maps projectives to projectives by Proposition 1.6(1), so E o S(5¢) is also projec-
tive. Hence Proposition 1.4(1) implies that in this case (2.12) is an isomorphism for any M,
i.e., we get an isomorphism

a(M, ) : Hom 4 (KZ oF o S’ (M), ) = Hom s (F” (M), 7).
Further this is an isomorphism of right s#Z-modules with respect to the .77-actions induced

by the right action of .7 on itself. Now, the fact that .7 is a symmetric algebra yields that
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for any finite dimensional .7Z-module N we have isomorphisms of right 7#-modules
Hom (N, #2) = Hom 5 (N, Home (52, C))
=~ Hom¢(N, C).
Therefore a(M, 5) yields an isomorphism of right 7#-modules
Hom¢(KZoF o S'(M),C) — Homc(F” (M), C).
We deduce a natural isomorphism of left .7Z-modules
KZoF o S'(M) & F” (M)
for any ##”’-module M. This gives an isomorphism of functors

Y :KZoF oS 5 F*,

Finally, consider the canonical adjunction map i : Idy — S’ o KZ'. We have a morphism
of functors

d) = (IKZOFU) o (’([}11,(2/) :KZoF — FW OKZ/.

Note that ¥1xy is an isomorphism of functors. If Q is a projective object in £, then by
Proposition 1.4(2) the morphism 7(Q) : @ — S’ o KZ'(Q) is also an isomorphism, so ¢(Q)
is an isomorphism. This implies that ¢ is an isomorphism of functors by Lemma 1.2, because
both KZ oF and F” oKZ’ are right exact functors. Here the right exactness of F follows from
that it is left adjoint to E. So we get the desired isomorphism of functors

KZoF = F”* o KZ'.

Step 2. Let us now prove that F' is right adjoint to E. By uniqueness of adjoint
functors, this will imply that F' is isomorphic to Ind,. First, by Lemma 2.6 the functor F'** is
isomorphic to % coInd%,. So F”* is right adjoint to £, i.e., we have morphisms of functors

e’ E”oF” - 1Idy, n”:Idyp — F*oE”
such that
(e 1gw)o(lgwen™) =1gsw, (lpwe”™)o(nlpx)=1px.

Next, both F' and E have exact right adjoints, given respectively by E and Ind,. Therefore
F and E map projective objects to projective ones. Applying Lemma 2.4 to 6, = 0, = ¢,
K = FEoF, L =1dy yields that the following map is bijective

(2.13) Hom(E o F,1dy) — Hom(KZ' oE o F,KZ'o1dy), f~ lxz f.
By Theorem 2.1 and Step 1 there exist isomorphisms of functors
¢p: E” oKZ 5 KZ' oE, ¢p: F”* oKZ' = KZoF.
Let
¢pr = (¢p1r) o (lgw¢r) : B 0o F* oKZ' S KZ oEoF,
¢rE = (prlp) o (lpwop) : F* o E” 0o KZ = KZoF o E.

Identify
KZoldy =1Id, 0KZ, KZ oldy =Idy oKZ' .
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We have a bijective map
Hom(KZ' oE o F,KZ' oldy) = Hom(E” o F”* 0o KZ',1d 4 oKZ'), g+ godrr.

Together with (2.13), it implies that there exists a unique morphism ¢ : £ o F' — Idy such
that

(1kze) o ppr = €7 1kz'-
Similarly, there exists a unique morphism 7 : Idyp — F o E such that
(prE)~" o (1kzn) = 1" 1kz.

Now, we have the following commutative diagram

E* o KZ E* o KZ or K7 oF
lE%n%’leJ/ 1o lkzn J/le’lE"l
E* o F* o B* oKZ EE  pr oKZoFoE ““X5 K7 oEoFoE
E?* o F* o E* o KZ 1Eﬁ&afd)EE”doF"foKZ'oE ¢EF£> KZ' oEoFoFE
e 1w 1KZJ/ e 1yl J/lKZ’ElE
E* o KZ or KZ' oF K7/ oF.
It yields that

(Ikzelp) o (1kz 1En) = ¢ o (e 1pwlkz) o (1prn™lkz) o (¢5) "
We deduce that
lxz ((elg) o (1gn)) = ¢pp o (g lkz) o (¢5) "
(2.14) =1z lg.

By applying Lemma 2.4 to ©, = 0, 0, = ', K = L = E, we deduce that the following
map is bijective

End(E) — End(KZ' oE), f+ lkz/f.
Hence (2.14) implies that
(elg) o (1gn) = 1g.

Similarly, we have (1pe) o (nlp) = 1. So E is left adjoint to F'. By uniqueness of adjoint
functors this implies that F' is isomorphic to Ind,. Therefore Ind, is biadjoint to Res,. O

3. Reminders on the cyclotomic case

From now on we will concentrate on the cyclotomic rational DAHA’s. We fix some
notation in this section.
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3.1. — Let [, n be positive integers. Write ¢ = exp(%lﬁ). Let h = C™, write {y1,...,yn}

for its standard basis. For 1 < 4,4,k < n with 4, j, k distinct, let e, s;; be the following
elements of GL(h):
ex(Yr) = €yk, ex(Y;) = v, Sij (Vi) = Y5, 8 (Yk) = Yi-

Let B,(I) be the subgroup of GL(h) generated by e, and s;; for 1 <k <n and
1 <i < j < n. Itisacomplex reflection group with the set of reflections

Jo=1{el:1<i<n1<p<i—1}| J{si =syele;?1<i<j<n,1<p<i)
Note that there is an obvious inclusion f,,_; — ¢J,,. It yields an embedding
3.1 Bo-1(l) = Ba(l)
This embedding identifies B,,— () with the parabolic subgroup of B, () given by the stabi-
lizer of the point b, = (0,...,0,1) € C™.

The cyclotomic rational DAHA is the algebra H.(B,(l), ). We will use another presen-

tation in which we replace the parameter ¢ by an I-tuple h = (h, hq, ..., hj_1) such that

1=t
- ’
e =—h, c,=— (e7PP — 1)hy.

We will denote H.(B,(l),h) by Hyn,. The corresponding category @ will be denoted
by O .. In the rest of the paper, we will fix the positive integer [. We will also fix a positive

integer e > 2 and an [-tuple of integers s = (s1,...,s;). We will always assume that the
parameter h is given by the following formulas,

-1 - 1
(3.2) h=_, h,,:w—j, 1<p<i—1.

e e

The functor KZ(B,(l),C™) goes from O, to the category of finite dimensional
modules of a certain Hecke algebra .77, ,, attached to the group B, (I). Here the parameter

isqa=(q,q1,...,q) with
g=-exp(2mv—-1/e), ¢, =¢», 1<p<l
The algebra S, ,, has the following presentation:

— Generators: Ty, 11, ..., Th_1,
— Relations:
(To—q1) - (To—a)=(Ti+1)(Ti—¢) =0, 1<i<n-—1,
T\ ToTh = Th IoT1 To,
TT = T,T, iffi—j] > 1,
Tl T =TT, 1<i<n—2.

The algebra .77, ,, satisfies the assumption of Section 2, i.e., it has the same dimension as
CB,(1).
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3.2. — For each positive integer n, the embedding (3.1) of B, _(I) into B, () yields an
embedding of Hecke algebras

see Section 1.2. Under the presentation above this embedding is given by
(T =T;, YO<i<n-—2,
see [0, Proposition 2.29].

We will consider the following restriction and induction functors:

E(n) =Resy,, E(n)” = ”Resgz(_ll)(l),

F(n)=Ind,,, F(n)” = "Ind"", .

The algebra S, ,, is symmetric (see Remark 2.7). Hence by Lemma 2.6 we have

Bn(1)

F(n)™ = “colndg""" -

We will abbreviate

@hJ\T = @ Qh,na K7 = @ KZ(Bn(l)’ (C")’ %71\] -mod = @ %m -mod.

neN neN neN
So KZ is the Knizhnik-Zamolodchikov functor from Oy, i to 7 n-mod. Let

E=PEMn, E”=PEn~,

n>1 n>1
F=Fn), F"=FFn~.
n>1 n>1

So (E”,F”) is a pair of biadjoint endo-functors of /7, y-mod, and (E, F) is a pair of
biadjoint endo-functors of &y, y by Proposition 2.9.

3.3. Fock spaces

Recall that an I-partition is an I-tuple A = (A!,--- , A!) with each M\ a partition, that is a
sequence of integers (AM); > - -+ > (M) > 0. To any l-partition A = (A1,..., A!) we attach
the set

Ty ={(a,b,j) ENxNx (Z/IZ): 0 < b < (M)}
Write |A| for the number of elements in this set, we say that A is an [-partition of |\|. Forn € N
we denote by 2, ; the set of I-partitions of n. For any I-partition x such that T, contains
T, we write p/\ for the complement of T in T,,. Let |/ A| be the number of elements in
this set. To each element (a, b, j) in T we attach an element

res((a,b,j)) =b—a+s; € Z/eZ,

called the residue of (a, b, j). Here s; is the j-th component of our fixed I-tuple s.

The Fock space with multi-charge s is the C-vector space & ¢ spanned by the [-partitions,

ie.,
=P P c

neENXeP,,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



172 P. SHAN

It admits an integrable sl.-module structure such that the Chevalley generators act as follows
(cf. [11]): forany i € Z/eZ,
(3.3) ei(N) = > g fi(\) = > 7
IX/pl=1,res(A/p)=i |/ X|=1,res(u/N)=i
Let n; be the number of elements in the set {(a,b,j) € Ty : res((a, b, j)) = i}. The element
0 € sl acts on g by
8()\) = —’I'L())\.
For each n € Z set A,, = A,,, where n is the image of n in Z/eZ and A, is the corresponding
fundamental weight of sl,. Set
As=As +--+ A,
Each [-partition X is a weight vector of &¢ with weight
(3.4) wt(\) = A — Y nias.
i€L/el
We will call wt(\) the weight of .
In [14, Section 6.1.1] an explicit bijection was given between the sets Irr(B,, (1)) and #,, ;.

Using this bijection we identify these two sets and index the standard and simple modules in
On,n by l-partitions. In particular, we have an isomorphism of C-vector spaces

(3.5) 0: K(Oun) = Ts, [AN)] = A

3.4. — We end this section by the following lemma. Recall that the functor KZ gives a map
K (Onn) — K(5#,n). For any l-partition A of n let Sy be the corresponding Specht module
in J% » -mod, see [2, Definition 13.22] for its definition.

LEMMA 3.1. — In K (3 ), we have KZ([A(X)]) = [SA].

Proof. — Let R be any commutative ring over C. For any [-tuple z = (z,21,...,2,-1)
of elements in R one defines the rational DAHA over R attached to B, (I) with parameter
z in the same way as before. Denote it by Hg ,,. The standard modules Agr(X) are
also defined as before. For any (I + 1)-tuple u = (u,uy,...,u;) of invertible elements
in R the Hecke algebra .¢% ,, , over R attached to B, (I) with parameter u is defined by
the same presentation as in Section 3.1. The Specht modules Sg » are also well-defined
(see [2]). If R is a field, we will write Irr(#% v, ) for the set of isomorphism classes of simple
R u,n-modules.

Now, fix R to be the ring of holomorphic functions of one variable w. We choose
z = (z,2,...,21—1) to be given by

z=lw, zp=(Spt1—sp)lw+ew, 1<p<i—-1L1L
Write z = exp(—27v/—1w). Let u = (u, uq, ..., u;) be given by
u= IL‘Z, up, = Ep—lxspl—(p—l)e’ 1 g P < L

By [0, Theorem 4.12] the same definition as in Section 1.5 yields a well defined .7¢%  ,,-mod-
ule
Tr(N) = KZr(AR(N)).
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Itis a free R-module of finite rank and it commutes with the base change functor by the exis-
tence and unicity theorem for linear differential equations, i.e., for any ring homomorphism
R — R’ over C, we have a canonical isomorphism of .#%; 4 »,-modules

(3.6) Tr/(\) = KZp (Ap/(N) = Tr(A) ®r R'.

In particular, for any ring homomorphism ¢ : R — C. Write C, for the vector space
C equipped with the R-module structure given by a. Let a(z), a(u) denote the images of
z, u by a. Note that we have Hy(;), = HRzn ®r Cq and Hw)n = HRun ®r Ca.
Denote the Knizhnik-Zamolodchikov functor of H,(,) ,, by KZ,(,) and the standard module
corresponding to A by A,(,)(A). Then we have an isomorphism of ), ,-modules

Tr(A) ®r Co =2 KZq(z) (Aaiz) (M)

Let K be the fraction field of R. By [10, Theorem 2.19] the category Ok ,,, is split
semisimple. In particular, the standard modules are simple. We have

{TK()\), A€ gjn,l} = Irr(%K7u7n).
The Hecke algebra ¢ v » is also split semisimple and we have
{Sk A€ Py} =TIrr(Hiun),

see for example [2, Corollary 13.9]. Thus there is a bijection ¢ : £, ; — %, ; such that T (\)
isisomorphic to Sk ,(x) for all \. We claim that ¢ is identity. To see this, consider the algebra
homomorphism ag : R — C given by @ + 0. Then J7 (y),, is canonically isomorphic to
the group algebra CB,, (1), thus it is semi-simple. Let K be the algebraic closure of K. Let
R be the integral closure of R in K and fix an extension ag of ag to R. By Tit’s deformation
theorem (see for example [9, Section 68A]), there is a bijection

Y Ir( A, ) S Irr (A (u),n)
such that
Y(Tr(N) = T(N) ®5 Cay,  ¥(S%.\) = Sz ©7 Cao-
By the definition of Specht modules we have S , ®% Cg, = A as CB,,(I)-modules. On the
other hand, since ag(z) = 0, by (3.6) we have the following isomorphisms
T7(\) ©f Cg, 2 Tr(N) ®r Cq,
= KZo(Ao(N))
= A\
S0 (Tx(N) = (S ). Hence we have T()) = S . Since T(\) = Tr(\) ®x K is
isomorphic to Sf,so(/\) = Sk,p(\) OK K, we deduce that ¢()\) = . The claim is proved.

Finally, let m be the maximal ideal of R consisting of the functions vanishing at
w = —1/el. Let R be the completion of R at m. It is a discrete valuation ring with
residue field C. Leta; : R — ﬁ/mf% = C be the quotient map. We have a;(z) = h and
a1(u) = q. Let K be the fraction field of R. Recall that the decomposition map is given by

d: K(Hy )= K(Han), [M]—[LegCa).
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Here L is any free R-submodule of M such that L ® B K = M. The choice of L does not
affect the class [L ® 5 Cq, | in K(g,,). See [2, Section 13.3] for details on this map. Now,
observe that we have

d([Sz D) = 157, ©3 Ca] = [SH],

A
[Tz W) = [T ( ) @5 Ca,] = [KZ(AW)].
Since K is an extension of K, by the last paragraph we have [S5 || = [T%())]. We deduce
that [KZ(A(M))] = [Sh]. ’ O

4. i-restriction and :-induction

We define in this section the i-restriction and i-induction functors for the cyclotomic
rational DAHAs. This is done in parallel with the Hecke algebra case.

4.1. — Let us recall the definition of the i-restriction and i-induction functors for J# ,,. First
define the Jucy-Murphy elements Jy, ..., J,_1 in Jg ,, by

Jo=Ty, Ji=q 'TiJ;_1T; forl<i<n-—1.

Write Z(#,,») for the center of 7 ,,. For any symmetric polynomial o of n variables the
element o(Jo, ..., JJ,—1) belongs to Z (7 ) (cf. [2, Section 13.1]). In particular, if z is
a formal variable the polynomial C,,(2) = [[iZy (z — Ji) in J# ,[2] has coefficients in
Z(Han)-

Now, for any a(z) € C(z) let P, 4() be the exact endo-functor of the category .77 ,, -mod
that maps an object M to the generalized eigenspace of C,, (z) in M with the eigenvalue a(z).

For any i € Z/eZ the i-restriction functor and i-induction functor
E;(n)” : H#yn-mod — Hy ,—1-mod, F;(n)” : Ay ,—1-mod — J, -mod
are defined as follows (cf. [2, Definition 13.33]):

(41) E’i(n)%) = @ P, 1 ,a(2)/(z—gqt) © E( ) © Pn,a(z);
a(z)€C(z)

(42) FZ(n)% = @ Pn ,a(z)(z—qt) © F(’)’L) o Pn l,a(z)*
a(2)€C(z)

We will write
4.3) Ef =@ Ei(n)”, F*=@Fn”.
n>=1 n>1
They are endo-functors of .7 y-mod. For each A € 2, ; set
ar(z) = ] (e = =)
vETY )

We recall some properties of these functors in the following proposition.
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PrOPOSITION 4.1. — (1) The functors E;(n)”, F;(n)” are exact. The functor E;(n)” is
biadjoint to F;(n)”.

(2) For any \ € P, the element Cy,(z) has a unique eigenvalue on the Specht module S\.
It is equal to ax(z).

(3) We have
Em)” (S = > S, E@m7(SHD= > ISl
res(A/p)=1 res(pu/A)=i
(4) We have
Em)”* = @ Em”, Fn)*= @ FM®)”.
1€EL/ el €L/l
Proof. — Part (1) is obvious. See [2, Theorem 13.21(2)] for (2) and [2, Lemma 13.37] for
(3). Part (4) follows from (3) and [2, Lemma 13.32]. O

4.2. — By Lemma 1.3(1) we have an algebra isomorphism
Y Z(Onn) S Z(Hyn):
So there are unique elements K7, ..., K, € Z(0y ,) such that the polynomial
Dp(2)=2"4+ K 2" ' +-- -+ K,

maps to Cy,(z) by 7. Since the elements K7, . .., K, act on simple modules by scalars and the
category 0, ,, is artinian, every module M in 6y, ,, is a direct sum of generalized eigenspaces
of Dy, (z). Fora(z) € C(z) let @, 4(.) be the exact endo-functor of Oy, which maps an
object M to the generalized eigenspace of D,,(z) in M with the eigenvalue a(z).

DEFINITION 4.2. — The ¢-restriction functor and the i-induction functor
El(n) : @h,n - @h,n—la Fz(n) : @h,n—l - @h,n
are given by

Ez(n) = @ Qn—l,a(z)/(z—qi) © E(TL) © Qn,a(z);

a(2)€C(2)
Fin)= @ Quae)e-q)°F (1) o Qu-ta).
a(2)€C(2)
We will write
(4.4) Ei=@Ein), F=FMm.
n>1 n>1

We have the following proposition.
PROPOSITION 4.3. — For any i € 7Z/eZ there are isomorphisms of functors
KZoFE;(n) 2 E;(n)” oKZ, KZoF;(n)= F;(n)” cKZ.
Proof. — Since v(D,(z)) = Cp(2), by Lemma 1.3(2) for any a(z) € C(z) we have
KZ0Qp.a(z) = Pra(z) 0 KZ.

So the proposition follows from Theorem 2.1 and Corollary 2.3. O
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The next proposition is the DAHA version of Proposition 4.1.

ProPOSITION 4.4. — (1) The functors E;(n), Fi(n) are exact. The functor E;(n) is
biadjoint to F;(n).

(2) For any X € P, ; the unique eigenvalue of D,,(z) on the standard module A(X) is ax(z).

(3) We have the following equalities
@5  Em(AM)= > AWl Em@AX)= Y. Aw]

res(A/p)=t res(pu/A)=t
(4) We have
E(n)= @ Ein), Fin)= @ Fin).
i€EL] el i€ZL] el
Proof. — (1) This is by construction and by Proposition 2.9.

(2) Since a standard module is indecomposable, the element D,,(z) has a unique eigen-
value on A()). By Lemma 3.1 this eigenvalue is the same as the eigenvalue of C,,(z) on S).

(3) Let us prove the equality for E;(n). The Pieri rule for the group B,,(l) together with
Proposition 1.6(2) yields

(4.6) Em)([AND) = Y [Aw], F)(ANW)= > A
I/ ul=1 |1/ Al=1

So we have

Em([AN]) = D Qu-1at)/(—q)BEM)(@na) ([AN]))

a(z)eC[z]
= Qn—l,a,\(z)/(z—qi')(E(n)(Qn,ax(z)([A(A)])))
= Qun-1,a(2)/(2—q") (E(n)([AN)]))
= anl,ak(z)/(zfqi)( [A(lu)])
Ap|=1
= Y (A
res(A/p)=t

The last equality follows from the fact that for any I-partition x such that |A\/u| = 1 we have
ax(z) = a,(2)(z — ¢"**/M). The proof for F;(n) is similar.
(4) It follows from part (3) and (4.6). O

COROLLARY 4.5. — Under the isomorphism 0 in (3.5) the operators E; and F; on K (O n)
go respectively to the operators e; and f; on Fs. When i runs over Z]eZ they yield an action
of sle on K (On ) such that 8 is an isomorphism of sl.-modules.

Proof. — This is clear from Proposition 4.4(3) and from (3.3). O

5. sl, -categorification

In this section, we construct an ;[e—categoriﬁcation on the category Oy n (Theorem 5.1).
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5.1. — Recall that we put ¢ = exp(@) and P denotes the weight lattice of sl.. Let & be
a C-linear artinian abelian category. For any functor F : ¥ — & and any X € End(F), the
generalized eigenspace of X acting on F' with eigenvalue a € C will be called the a-eigenspace
of X in F. By [15, Definition 5.29] an g[e—categoriﬁcation on @ is the data of

(a) an adjoint pair (U, V') of exact functors € — @,

(b) X € End(U) and T € End(U?),

(c) a decomposition 6 = @, cp G-,
such that, set U; (resp. V;) to be the ¢*-eigenspace of X in U (resp. in V)" for i € Z/eZ, we
have

U= @ieZ/ez Ui,
(2) the endomorphisms X and T satisfy

(1yT)e (Tly) e (1yT) = (Tly) o (lyT) o (T1y),
(5.1 (T + 1g2) o (T — qly2) =0,
To (1UX) ol = qX].U,
(3) the action of e; = U;, f; = V; on K(%) with ¢ running over Z/eZ gives an integrable
representation of sl,.

(4) Ul(gT) C €T+ai and ‘/z(g'r) C ngaia
(5) V isisomorphic to a left adjoint of U.

5.2. — We construct an sl.-categorification on Oh,n in the following way. The adjoint pair
will be given by (E, F'). To construct the part (b) of the data we need to go back to Hecke
algebras. Following [7, Section 7.2.2] let X be the endomorphism of E* given on E(n)”
as the multiplication by the Jucy-Murphy element J,,_;. Let T be the endomorphism of
(E**)?% given on E(n)” o E(n—1)” as the multiplication by the element T,,_1 in %% ,. The
endomorphisms X and T satisfy the relations (5.1). Moreover the ¢*-eigenspace of X
in E” and F” gives respectively the ¢-restriction functor E;* and the i-induction functor
F foranyi € Z/eZ.

By Theorem 2.1 we have an isomorphism KZ oE = E” oKZ. This yields an isomorphism

End(KZoFE) = End(E” o KZ).
By Proposition 1.6(1) the functor E maps projective objects to projective ones, so Lemma 2.4
applied to 1 = Oy = Oy and K = L = E yields an isomorphism
End(E) & End(KZ oE).

Composing it with the isomorphism above gives a ring isomorphism
(5.2) og : End(E) = End(E” o KZ).
Replacing E by E? we get another isomorphism

og2 : End(E?) 5 End((E”)? 0o KZ).

(U Here X acts on V via the isomorphism End(U) = End(V)°P given by adjunction, see [7, Section 4.1.2] for the
precise definition.
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The data of X € End(E) and T € End(E?) in our sl,-categorification on On,n will be
provided by
XIO'EI(X‘%)le), T:CTEQI(Tlez)

Finally, the part (c) of the data will be given by the block decomposition of the cate-
gory O n. Recall from [13, Theorem 2.11] that the block decomposition of the category
Mg, N -mod is

SN -mod = @ (Hyn-mod),,
TEP
where (/€5 n-mod) is the subcategory generated by the composition factors of the Specht
modules Sy with A running over I-partitions of weight 7. By convention (¢ i -mod) is zero
if such A does not exist. By Lemma 1.3 the functor KZ induces a bijection between the blocks
of the category @y n and the blocks of .7 y-mod. So the block decomposition of @, v is

Oy = @(@h,N)Ty
TEP

where (6n ). is the block corresponding to (.77 y-mod), via KZ.

5.3. — Now we prove the following theorem.

THEOREM 5.1. — The data of
(a) the adjoint pair (E, F),
(b) the endomorphisms X € End(E), T € End(E?),
(c) the decomposition Onn = @rcp(Onn)r
is an ;[e-categoriﬁcation on @h,N.
Proof. — First, we prove that for any i € Z/eZ the ¢*-generalized eigenspaces of X in E

and F are respectively the i-restriction functor E; and the i-induction functor F; as defined
in (4.4). Recall from Proposition 4.1(4) and Proposition 4.4(4) that we have

E= P E and E”= P E”.

i€L/el €L/ el

By the proof of Proposition 4.3 we see that any isomorphism
KZoFE =2 E” o KZ
restricts to an isomorphism KZ oE; = E7* o KZ for each ¢ € Z/eZ. So the isomorphism o
in (5.2) maps Hom(E;, E;) to Hom(E;” o KZ, E7 o KZ). Write
X = Z Xij, X7lgz = Z (X7 1kz)ij
i,j€L/ €T i,jE€L/eL
with X;; € Hom(E;, E;) and (X 1xz);; € Hom(E;* o KZ, E¥ o KZ). We have
op(Xij) = (X7 1kz)ij-

Since E7 is the ¢'-eigenspace of X in E*, we have (X*1kz);; = 0 fori # j and
(X”1kz)ii — ¢ is nilpotent for any i € Z/eZ. Since o is an isomorphism of rings, this
implies that X;; = 0 and X;; — ¢’ is nilpotent in End(E). So E; is the ¢'-eigenspace of X
in E. The fact that F; is the ¢*-eigenspace of X in F follows from adjunction.
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Now, let us check the conditions (1)—(5):

(1) It is given by Proposition 4.4(4).

(2) Since X” and T”* satisfy relations in (5.1), the endomorphisms X and T also satisfy
them. Because these relations are preserved by ring homomorphisms.

(3) It follows from Corollary 4.5.

(4) By the definition of (6 ). and Lemma 3.1, the standard modules in (@), y)- are all
the A(X) such that wt(A) = 7. By (3.4) if p is an [-partition such that res(A/u) = i then
wt(u) = wt(A) + a;. Now, the result follows from (4.5).

(5) This is Proposition 2.9. O

6. Crystals

Using the ;[e-categoriﬁcation in Theorem 5.1 we construct a crystal on the classes of
simple objects in @y y and prove that it coincides with the crystal of the Fock space ¥
(Theorem 6.3).

6.1. — A crystal (or more precisely, an ;[e-crystal) is a set B together with maps
wt: B — P, éi,fi:B—>B|_|{O}, €,0i: B—ZU{—o00},
such that
- we have ¢i(b) = €i(b) + (aY, wt(b)),
- if ;b € B, then wt(&;b) = ( )+, €(€b) =€) — 1, pi(€b) = pi(b) + 1,
— if fib € B, then wt(fib) = wt(b) — o, & (fib) = e:(b) + 1, @i(fib) = ¢i(b) — 1,
— letb,b’ € B, then f;b =1’ if and only if ;' = b,
— if ¢;(b) = —o0, then €;b = 0 and f;b = 0.
Let b be the Lie subalgebra of sl, generated by the elements e;, ¢ € Z/eZ and ¢t. We say
that an sl.-module V is b-locally finite if
- wehave V =@, cp Vi, where V, = {v € V : hv = p(h)v, V h € t},
— for any v € V, the b-submodule of V' generated by v is finite dimensional.

Let V be a b-locally finite sl,-module. For any nonzero vector v € V and any i € Z/eZ we
set

li(v) = max{l € N: el(v) # 0}.
Write [;(0) = —oo. For ! > 0 let
={veV: ) <l}.

A weight basis of V' is a basis B of V such that each element of B is a weight vector. Following
A. Berenstein and D. Kazhdan (cf. [3, Definition 5.30]), a perfect basis of V' is a weight basis
B together with maps é;, f; : B — B {0} for i € Z/eZ such that

— for b, b’ € B we have f;b = b’ if and only if &b’ = b,

— we have é;(b) # 0if and only if e;(b) # 0,

— if e;(b) # 0 then we have

6.1) ei(b) € C*&(b) + VO
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We denote it by (B, &, f;). For such a basis let wt(b) be the weight of b, let ¢;(b) = I;(b) and
let

@i(b) = €i(b) + (o), wt(D))
for all b € B. The data

(62) (B’Wt7éiafi76ia(pi)

is a crystal. We will always attach this crystal structure to (B, &;, f;). Wecallb € B a
primitive element if e;(b) = 0 for alli € Z/eZ. Let B be the set of primitive elements
in B. Let VT be the vector space spanned by all the primitive vectors in V. The following
lemma is [3, Claim 5.32].

LEMMA 6.1. — For any perfect basis (B, &;, f;) the set BT is a basis of V™.

Proof. — By definition we have BT C V*. Given a vector v € V1, there exist (y,...,(, € C*
and distinct elements by,...,b, € Bsuchthatv = Y77, (;b;. Foranyi € Z/eZ let
li = max{li(bj) 1 < j < 7‘} and J = {j : lz(b]) = li, 1< j < 7‘}. Then by the third
property of perfect basis there exist n; € C* for j € J and a vector w € V<li=1 such that
0 = e;(v) = > e Cn;€i(bj) + w. For distinct 5, j* € J, we have b; # bj, so €;(b;) and
€;(bj/) are different unless they are zero. Moreover, since [;(€;(b;)) = I; — 1, the equality
yields that €;(b;) =0 forallj € J. Sol; = 0. Hence b; € Bt forj=1,...,r. O

6.2. — Given an g[e-categoriﬁcation on a C-linear artinian abelian category & with the
adjoint pair of endo-functors (U, V), X € End(U) and T € End(U?), assume that the
sl,-module K (&) is b-locally finite, then one can construct a perfect basis of K (&) as follows.
For i € Z/eZ let U;, V; be the ¢'-eigenspaces of X in U and V. By definition, the action of
X restricts to each U;. One can prove that T also restricts to endomorphism of (U;)?, see
for example the beginning of Section 7 in [7]. It follows that the data (U;, V;, X, T) gives an
sly-categorification on & in the sense of [7, Section 5.21]. By [7, Proposition 5.20] this implies
that for any simple object L in &, the object head(U;(L)) (resp. soc(V;L)) is simple unless it
is zero.

Let By be the set of isomorphism classes of simple objects in &. As part of the data of the
;[e-categoriﬁcation, we have a decomposition & = @,cp G,. For a simple module L € G,
the weight of [L] in K(©) is 7. Hence By is a weight basis of K (). Now fori € Z/eZ define
the maps

é;: By — Be U{0}, [L]+ [head(U;L)],

fi:Be— BgU{0}, (L] soc(ViL)]
PROPOSITION 6.2. — The data (By, &, f;) is a perfect basis of K(%).

Proof. — Fix i € Z/eZ. Let us check the conditions in order. First, for two simple
modules L, L’ € @, we have é;([L]) = [L], if and only if 0 # Hom(U;L,L') =
Hom(L, V;L'), if and only if f;([L']) = [L]. The second condition follows from the fact that
any non trivial module has a non trivial head. The third condition is [7, Proposition 5.20(d)].

O
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6.3. — Let By, be the set of [-partitions. In [11] this set is given a crystal structure. We will
call it the crystal of the Fock space .

THEOREM 6.3. — (1) The set
BOh,N = {[LO‘)] € K(@h,N) A€ @n,l,n S N}
and the maps

é : By, — By, , U{0}, [L]— [head(E;L)],
fi: Bp,, = Bo,,,U{0}, [L]— [soc(FiL)].
define a crystal structure on By, .
(2) The crystal By, , given by (1) is isomorphic to the crystal Bg.,.

Proof. — (1) The Fock space Y is a locally finite b-module. So applying Proposition 6.2
to the sl.-categorification in Theorem 5.1 yields that (By, , &;, f;) is a perfect basis. There-
fore it defines a crystal structure on By, by (6.2).

(2) Itis known that By is a perfect basis of 7. Identify the sl.-modules 75 and K ( OaN).
By Lemma 6.1 the set B;s and th , are two weight bases of &, i . So there is a bijection

¢ : By — Bj such that wt(b) = wt(s(b)). Since T is a direct sum of highest weight

simple sl,-modules, this bijection extends to an automorphism ¢ of the sl.-module 7. By
[3, Main Theorem 5.37] any automorphism of & which maps B;s to th . induces an
isomorphism of crystals By, & By, . O

REMARK 6.4. — One can prove that if n < e then a simple module L € 6, ,, has finite
dimension over C if and only if the class [L] is a primitive element in By, . Inthecasen = 1,
we have B, () = p;, the cyclic group, and the primitive elements in the crystal By, have
explicit combinatorial descriptions. This yields another proof of the classification of finite
dimensional simple modules of Hy(p;), which was first given by W. Crawley-Boevey and
M. P. Holland. See type A case of [8, Theorem 7.4].
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