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CRYSTALS OF FOCK SPACES AND CYCLOTOMIC
RATIONAL DOUBLE AFFINE HECKE ALGEBRAS

 P SHAN

A. – We define the i-restriction and i-induction functors on the category O of the cyclo-
tomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of
simple modules, which is isomorphic to the crystal of a Fock space.

R. – On définit les foncteurs de i-restriction et i-induction sur la catégorie O des algèbres de
Hecke doublement affines rationnelles cyclotomiques. Ceci donne lieu à un cristal sur l’ensemble des
classes d’isomorphismes de modules simples, qui est isomorphe au cristal d’un espace de Fock.

Introduction

In [1], S. Ariki defined the i-restriction and i-induction functors for cyclotomic Hecke
algebras. He showed that the Grothendieck group of the category of finitely generated
projective modules of these algebras admits a module structure over the affine Lie algebra of
type A(1), with the action of Chevalley generators given by the i-restriction and i-induction
functors.

The restriction and induction functors for rational DAHA’s (= double affine Hecke
algebras) were recently defined by R. Bezrukavnikov and P. Etingof. With these functors, we
give an analogue of Ariki’s construction for the category O of cyclotomic rational DAHA’s:
we show that as a module over the type A(1) affine Lie algebra, the Grothendieck group
of this category is isomorphic to a Fock space. We also construct a crystal on the set of
isomorphism classes of simple modules in the category O. It is isomorphic to the crystal
of the Fock space. Recall that this Fock space also enters in some conjectural description
of the decomposition numbers for the category O considered here. See [16], [17], [14] for
related works.
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148 P. SHAN

Notation

For A an algebra, we will write A -mod for the category of finitely generated A-modules.
For f : A → B an algebra homomorphism from A to another algebra B such that B is
finitely generated over A, we will write

f∗ : B -mod→ A -mod

for the restriction functor and we write

f∗ : A -mod→ B -mod, M 7→ B ⊗AM.

A C-linear category A is called artinian if the Hom sets are finite dimensional C-vector
spaces and every object has a finite length. Given an object M in A, we denote by soc(M)

(resp. head(M)) the socle (resp. the head) of M , which is the largest semi-simple subobject
(quotient) of M .

Let C be an abelian category. The Grothendieck group of C is the quotient of the free
abelian group generated by objects in C modulo the relations M = M ′ +M ′′ for all objects
M,M ′,M ′′ in C such that there is an exact sequence 0→M ′ →M →M ′′ → 0. Let K( C)

denote the complexified Grothendieck group, a C-vector space. For each object M in C , let
[M ] be its class in K( C). Any exact functor F : C → C ′ between two abelian categories
induces a vector space homomorphism K( C) → K( C ′), which we will denote by F again.
Given an algebra A we will abbreviate K(A) = K(A -mod).

Denote by Fct( C , C ′) the category of functors from a category C to a category C ′. For
F ∈ Fct( C , C ′) write End(F ) for the ring of endomorphisms of the functor F . We denote
by 1F : F → F the identity element in End(F ). Let G ∈ Fct( C ′, C ′′) be a functor
from C ′ to another category C ′′. For any X ∈ End(F ) and any X ′ ∈ End(G) we write
X ′X : G ◦ F → G ◦ F for the morphism of functors given by X ′X(M) = X ′(F (M)) ◦
G(X(M)) for any M ∈ C .

Let e > 2 be an integer and z be a formal parameter. Denote by sle the Lie algebra of
traceless e× e complex matrices. The type A(1) affine Lie algebra is

s̃le = sle ⊗ C[z, z−1]⊕ Cc⊕ C∂

equipped with the Lie bracket

[ξ⊗zm+ac+b∂, ξ′⊗zn+a′c+b′∂] = [ξ, ξ′]⊗zm+n+mδm,−ntr(ξξ′)c+nbξ′⊗zn−mb′ξ⊗zm,

for ξ, ξ′ ∈ sle, a, a′, b, b′ ∈ C. Here tr : sle → C is the trace map. Let

ŝle = sle ⊗ C[z, z−1]⊕ Cc.

It is the Lie subalgebra of s̃le generated by the Chevalley generators

ei = Ei,i+1 ⊗ 1, fi = Ei+1,i ⊗ 1, 1 6 i 6 e− 1

e0 = Ee1 ⊗ z, f0 = E1e ⊗ z−1.

Here Eij is the elementary matrix with 1 in the position (i, j) and 0 elsewhere. Let
hi = [ei, fi] for 0 6 i 6 e− 1. We consider the Cartan subalgebra

t =
⊕
i∈Z/eZ

Chi ⊕ C∂,
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CRYSTALS AND DAHA 149

and its dual t∗. For i ∈ Z/eZ let αi ∈ t∗ (resp. α∨i ∈ t) be the simple root (resp. coroot)
corresponding to ei. The fundamental weights are {Λi ∈ t∗ : i ∈ Z/eZ} such that
Λi(α

∨
j ) = δij and Λi(∂) = 0 for any i, j ∈ Z/eZ. Let δ ∈ t∗ be the element given by

δ(hi) = 0 for all i and δ(∂) = 1. We will write P for the weight lattice of s̃le. It is the free
abelian group generated by the fundamental weights and δ.

1. Reminders on Hecke algebras, rational DAHA’s and restriction functors

1.1. Hecke algebras

Let h be a finite dimensional vector space over C. Recall that a pseudo-reflection is a
non trivial element s of GL(h) which acts trivially on a hyperplane, called the reflecting
hyperplane of s. Let W ⊂ GL(h) be a finite subgroup generated by pseudo-reflections. Let
S be the set of pseudo-reflections in W and A be the set of reflecting hyperplanes. We set
hreg = h−

⋃
H∈ A H, it is stable under the action of W . Fix x0 ∈ hreg and identify it with its

image in hreg/W . By definition the braid group attached to (W, h), denoted by B(W, h), is
the fundamental group π1(hreg/W, x0).

For any H ∈ A, let WH be the pointwise stabilizer of H. This is a cyclic group. Write eH
for the order ofWH . Let sH be the unique element inWH whose determinant is exp( 2π

√
−1

eH
).

Let q be a map from S to C∗ that is constant on the W -conjugacy classes. Following
[6, Definition 4.21] the Hecke algebra Hq(W, h) attached to (W, h) with parameter q is the
quotient of the group algebra CB(W, h) by the relations:

(1.1) (TsH − 1)
∏

t∈WH∩ S

(TsH − q(t)) = 0, H ∈ A.

Here TsH is a generator of the monodromy around H in hreg/W such that the lift of TsH in
π1(W, hreg) via the map hreg → hreg/W is represented by a path from x0 to sH(x0). See [6,
Section 2B] for a precise definition. When the subspace hW of fixed points ofW in h is trivial,
we abbreviate

BW = B(W, h), Hq(W ) = Hq(W, h).

1.2. Parabolic restriction and induction for Hecke algebras

In this section we will assume that hW = 1. A parabolic subgroupW ′ ofW is by definition
the stabilizer of a point b ∈ h. By a theorem of Steinberg, the group W ′ is also generated by
pseudo-reflections. Let q′ be the restriction of q to S′ = W ′∩ S. There is an explicit inclusion
ıq : Hq′(W

′) ↪→Hq(W ) given by [6, Section 2D]. The restriction functor
H ResWW ′ : Hq(W ) -mod→Hq′(W

′) -mod

is the functor (ıq)∗. The induction functor
H IndWW ′ = Hq(W )⊗Hq′ (W

′) −

is left adjoint to H ResWW ′ . The coinduction functor
H coIndWW ′ = HomHq′ (W

′)(Hq(W ),−)

is right adjoint to H ResWW ′ . The three functors above are all exact.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



150 P. SHAN

Let us recall the definition of ıq. It is induced from an inclusion ı : BW ′ ↪→ BW , which is
in turn the composition of three morphisms `, κ,  defined as follows. First, let A′ ⊂ A be
the set of reflecting hyperplanes of W ′. Write

h = h/hW
′
, A = {H = H/hW

′
: H ∈ A′}, hreg = h−

⋃
H∈ A

H, h′reg = h−
⋃
H∈ A′

H.

The canonical epimorphism p : h→ h induces a trivial W ′-equivariant fibration
p : h′reg → hreg, which yields an isomorphism

(1.2) ` : BW ′ = π1(hreg/W
′, p(x0))

∼→ π1(h′reg/W
′, x0).

Endow h with a W -invariant hermitian scalar product. Let || · || be the associated norm.
Set

(1.3) Ω = {x ∈ h : ||x− b|| < ε},

where ε is a positive real number such that the closure of Ω does not intersect any hyperplane
that is in the complement of A′ in A. Let γ : [0, 1] → h be a path such that γ(0) = x0,
γ(1) = b and γ(t) ∈ hreg for 0 < t < 1. Let u ∈ [0, 1[ such that x1 = γ(u) belongs to Ω,
write γu for the restriction of γ to [0, u]. Consider the homomorphism

σ : π1(Ω ∩ hreg, x1)→ π1(hreg, x0), λ 7→ γ−1
u · λ · γu.

The canonical inclusion hreg ↪→ h′reg induces a homomorphism π1(hreg, x0)→ π1(h′reg, x0).
Composing it with σ gives an invertible homomorphism

π1(Ω ∩ hreg, x1)→ π1(h′reg, x0).

Since Ω is W ′-invariant, its inverse gives an isomorphism

(1.4) κ : π1(h′reg/W
′, x0)

∼→ π1((Ω ∩ hreg)/W ′, x1).

Finally, we see from above that σ is injective. So it induces an inclusion

π1((Ω ∩ hreg)/W ′, x1) ↪→ π1(hreg/W
′, x0).

Composing it with the canonical inclusion π1(hreg/W
′, x0) ↪→ π1(hreg/W, x0) gives an

injective homomorphism

(1.5)  : π1((Ω ∩ hreg)/W ′, x1) ↪→ π1(hreg/W, x0) = BW .

By composing `, κ,  we get the inclusion

(1.6) ı =  ◦ κ ◦ ` : BW ′ ↪→ BW .

It is proved in [6, Section 4C] that ı preserves the relations in (1.1). So it induces an inclusion
of Hecke algebras which is the desired inclusion

ıq : Hq′(W
′) ↪→Hq(W ).

For ı, ı′ : BW ′ ↪→ BW two inclusions defined as above via different choices of the
path γ, there exists an element ρ ∈ PW = π1(hreg, x0) such that for any a ∈ BW ′ we have
ı(a) = ρı′(a)ρ−1. In particular, the functors ı∗ and (ı′)∗ from BW -mod to BW ′ -mod are
isomorphic. Also, we have (ıq)∗ ∼= (ı′q)∗. So there is a unique restriction functor H ResWW ′

up to isomorphisms.
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CRYSTALS AND DAHA 151

1.3. Rational DAHA’s

Let c be a map from S to C that is constant on the W -conjugacy classes. The rational
DAHA attached to W with parameter c is the quotient Hc(W, h) of the smash product of
CW and the tensor algebra of h⊕ h∗ by the relations

[x, x′] = 0, [y, y′] = 0, [y, x] = 〈x, y〉 −
∑
s∈ S

cs〈αs, y〉〈x, α∨s 〉s,

for all x, x′ ∈ h∗, y, y′ ∈ h. Here 〈·, ·〉 is the canonical pairing between h∗ and h, the element
αs is a generator of Im(s|h∗−1) andα∨s is the generator of Im(s|h−1) such that 〈αs, α∨s 〉 = 2.

For s ∈ S write λs for the non trivial eigenvalue of s in h∗. Let {xi} be a basis of h∗ and
let {yi} be the dual basis. Let

(1.7) eu =
∑
i

xiyi +
dim(h)

2
−

∑
s∈ S

2cs
1− λs

s

be the Euler element inHc(W, h). Its definition is independent of the choice of the basis {xi}.
We have

(1.8) [eu, xi] = xi, [eu, yi] = −yi, [eu, s] = 0.

1.4. The category O

The category O of Hc(W, h) is the full subcategory Oc(W, h) of the category of
Hc(W, h)-modules consisting of objects that are finitely generated as C[h]-modules and
h-locally nilpotent. We recall from [10, Section 3] the following properties of Oc(W, h).

The action of the Euler element eu on a module in Oc(W, h) is locally finite. The category
Oc(W, h) is a highest weight category. In particular, it is artinian. Write Irr(W ) for the set
of isomorphism classes of irreducible representations of W . The poset of standard modules
in Oc(W, h) is indexed by Irr(W ) with the partial order given by [10, Theorem 2.19]. More
precisely, for ξ ∈ Irr(W ), equip it with a CWnC[h∗]-module structure by letting the elements
in h ⊂ C[h∗] act by zero, the standard module corresponding to ξ is

∆(ξ) = Hc(W, h)⊗CWnC[h∗] ξ.

It is an indecomposable module with a simple head L(ξ). The set of isomorphism classes of
simple modules in Oc(W, h) is

{[L(ξ)] : ξ ∈ Irr(W )}.

It is a basis of the C-vector space K( Oc(W, h)). The set {[∆(ξ)] : ξ ∈ Irr(W )} gives another
basis of K( Oc(W, h)).

We say a module N in Oc(W, h) has a standard filtration if it admits a filtration

0 = N0 ⊂ N1 ⊂ · · · ⊂ Nn = N

such that each quotient Ni/Ni−1 is isomorphic to a standard module. We denote by
O∆
c (W, h) the full subcategory of Oc(W, h) consisting of such modules.

L 1.1. – (1) Any projective object in Oc(W, h) has a standard filtration.
(2) A module in Oc(W, h) has a standard filtration if and only if it is free as a C[h]-module.
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152 P. SHAN

Both (1) and (2) are given by [10, Proposition 2.21].

The category Oc(W, h) has enough projective objects and has finite homological dimen-
sion [10, Section 4.3.1]. In particular, any module in Oc(W, h) has a finite projective resolu-
tion. Write Projc(W, h) for the full subcategory of projective modules in Oc(W, h). Let

I : Projc(W, h)→ Oc(W, h)

be the canonical embedding functor. We have the following lemma.

L 1.2. – For any abelian category A and any right exact functors F1, F2 from
Oc(W, h) to A, the homomorphism of vector spaces

rI : Hom(F1, F2)→ Hom(F1 ◦ I, F2 ◦ I), γ 7→ γ1I

is an isomorphism.

In particular, if the functor F1 ◦ I is isomorphic to F2 ◦ I, then we have F1
∼= F2.

Proof. – We need to show that for any morphism of functors ν : F1 ◦ I → F2 ◦ I there is
a unique morphism ν̃ : F1 → F2 such that ν̃1I = ν. Since Oc(W, h) has enough projectives,
for any M ∈ Oc(W, h) there exist P0, P1 in Projc(W, h) and an exact sequence in Oc(W, h)

(1.9) P1
d1−→ P0

d0−→M −→ 0.

Applying the right exact functorsF1,F2 to this sequence we get the two exact sequences in the
diagram below. The morphism of functors ν : F1 ◦I → F2 ◦I yields well defined morphisms
ν(P1), ν(P0) such that the square commutes

F1(P1)
F1(d1) //

ν(P1)

��

F1(P0)
F1(d0) //

ν(P0)

��

F1(M) // 0

F2(P1)
F2(d1) // F2(P0)

F2(d0) // F2(M) // 0.

Define ν̃(M) to be the unique morphism F1(M) → F2(M) that makes the diagram com-
mute. Its definition is independent of the choice of P0, P1, and it is independent of the
choice of the exact sequence (1.9). The assignmentM 7→ ν̃(M) gives a morphism of functor
ν̃ : F1 → F2 such that ν̃1I = ν. It is unique by the uniqueness of the morphism ν̃(M).

1.5. The Knizhnik-Zamolodchikov functor

The Knizhnik-Zamolodchikov functor is an exact functor from the category Oc(W, h) to
the category Hq(W, h) -mod, where q is a certain parameter associated with c. Let us recall
its definition from [10, Section 5.3].

Let D(hreg) be the algebra of differential operators on hreg. Write

Hc(W, hreg) = Hc(W, h)⊗C[h] C[hreg].

We consider the Dunkl isomorphism, which is an isomorphism of algebras

Hc(W, hreg)
∼→ D(hreg) o CW
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given by x 7→ x, w 7→ w for x ∈ h∗, w ∈W , and

y 7→ ∂y +
∑
s∈ S

2cs
1− λs

αs(y)

αs
(s− 1), for y ∈ h.

For any M ∈ Oc(W, h), write

Mhreg = M ⊗C[h] C[hreg].

It identifies via the Dunkl isomorphism with a D(hreg) oW -module which is finitely gener-
ated over C[hreg]. Hence Mhreg is a W -equivariant vector bundle on hreg with an integrable
connection∇ given by∇y(m) = ∂ym form ∈M , y ∈ h. It is proved in [10, Proposition 5.7]
that the connection∇ has regular singularities. Now, regard hreg as a complex manifold en-
dowed with the transcendental topology. Denote by Oan

hreg
the sheaf of holomorphic func-

tions on hreg. For any free C[hreg]-module N of finite rank, we consider

Nan = N ⊗C[hreg] Oan
hreg

.

It is an analytic locally free sheaf on hreg. For∇ an integrable connection onN , the sheaf of
holomorphic horizontal sections

N∇ = {n ∈ Nan : ∇y(n) = 0 for all y ∈ h}

is a W -equivariant local system on hreg. Hence it identifies with a local system on hreg/W .
So it yields a finite dimensional representation of CB(W, h). For M ∈ Oc(W, h) it is proved
in [10, Theorem 5.13] that the action of CB(W, h) on (Mhreg)∇ factors through the Hecke
algebra Hq(W, h). The formula for the parameter q is given in [10, Section 5.2].

The Knizhnik-Zamolodchikov functor is the functor

KZ(W, h) : Oc(W, h)→Hq(W, h) -mod, M 7→ (Mhreg)∇.

By definition it is exact. Let us recall some of its properties following [10]. Assume in the
rest of this subsection that the algebras Hq(W, h) and CW have the same dimension over C.
We abbreviate KZ = KZ(W, h). The functor KZ is represented by a projective object PKZ in
Oc(W, h). More precisely, there is an algebra homomorphism

ρ : Hq(W, h)→ End Oc(W,h)(PKZ)op

such that KZ is isomorphic to the functor Hom Oc(W,h)(PKZ,−). By [10, Theorem 5.15] the
homomorphism ρ is an isomorphism. In particular KZ(PKZ) is isomorphic to Hq(W, h) as
Hq(W, h)-modules.

Now, recall that the center of a category C is the algebra Z( C) of endomorphisms of the
identity functor Id C . So there is a canonical map

Z( Oc(W, h))→ End Oc(W,h)(PKZ).

The composition of this map with ρ−1 yields an algebra homomorphism

γ : Z( Oc(W, h))→ Z(Hq(W, h)),

where Z(Hq(W, h)) denotes the center of Hq(W, h).
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L 1.3. – (1) The homomorphism γ is an isomorphism.

(2) For a module M in Oc(W, h) and an element f in Z( Oc(W, h)) the morphism

KZ(f(M)) : KZ(M)→ KZ(M)

is the multiplication by γ(f).

See [10, Corollary 5.18] for (1). Part (2) follows from the construction of γ.

The functor KZ is a quotient functor, see [10, Theorem 5.14]. Therefore it has a right
adjoint S : Hq(W, h)→ Oc(W, h) such that the canonical adjunction map
KZ ◦S → IdHq(W,h) is an isomorphism of functors. We have the following proposition.

P 1.4. – Let Q be a projective object in Oc(W, h).

(1) For any object M ∈ Oc(W, h), the following morphism of C-vector spaces is an
isomorphism

Hom Oc(W,h)(M,Q)
∼−→ HomHq(W )(KZ(M),KZ(Q)), f 7→ KZ(f).

In particular, the functor KZ is fully faithful over Projc(W, h).

(2) The canonical adjunction map gives an isomorphism Q
∼→ S ◦KZ(Q).

See [10, Theorems 5.3, 5.16].

1.6. Parabolic restriction and induction for rational DAHA’s

From now on we will always assume that hW = 1. Recall from Section 1.2 that W ′ ⊂W
is the stabilizer of a point b ∈ h and that h = h/hW

′
. Let us recall from [4] the definition of

the parabolic restriction and induction functors

Resb : Oc(W, h)→ Oc′(W ′, h) , Indb : Oc′(W ′, h)→ Oc(W, h).

First we need some notation. For any point p ∈ hwe write C[[h]]p for the completion of C[h]

at p, and we write ‘C[h]p for the completion of C[h] at the W -orbit of p in h. Note that we

have C[[h]]0 = ‘C[h]0. For any C[h]-module M let

M̂p = ‘C[h]p ⊗C[h] M.

The completions “Hc(W, h)b, “Hc′(W
′, h)0 are well defined algebras. We denote by Ôc(W, h)b

the category of “Hc(W, h)b-modules that are finitely generated over ‘C[h]b, and we denote by

Ôc′(W ′, h)0 the category of “Hc′(W
′, h)0-modules that are finitely generated over ‘C[h]0. Let

P = FunW ′(W, “Hc(W
′, h)0) be the set of W ′-invariant maps from W to “Hc(W

′, h)0. Let
Z(W,W ′, “Hc(W

′, h)0) be the ring of endomorphisms of the right “Hc(W
′, h)0-moduleP . We

have the following proposition given by [4, Theorem 3.2].

P 1.5. – There is an isomorphism of algebras

Θ : “Hc(W, h)b −→ Z(W,W ′, “Hc′(W
′, h)0)
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defined as follows: for f ∈ P , α ∈ h∗, a ∈ h, u ∈W ,

(Θ(u)f)(w) = f(wu),

(Θ(xα)f)(w) = (x(b)
wα + α(w−1b))f(w),

(Θ(ya)f)(w) = y(b)
waf(w) +

∑
s∈ S,s/∈W ′

2cs
1− λs

αs(wa)

x
(b)
αs + αs(b)

(f(sw)− f(w)),

where xα ∈ h∗ ⊂ Hc(W, h), x
(b)
α ∈ h∗ ⊂ Hc′(W

′, h), ya ∈ h ⊂ Hc(W, h),
y

(b)
a ∈ h ⊂ Hc′(W

′, h).

Using Θ we will identify “Hc(W, h)b-modules with Z(W,W ′, “Hc′(W
′, h)0)-modules. So

the module P = FunW ′(W, “Hc(W
′, h)0) becomes an (“Hc(W, h)b, “Hc′(W

′, h)0)-bimodule.
Hence for any N ∈ Ôc′(W ′, h)0 the module P ⊗

Ĥc′ (W
′,h)0

N lives in Ôc(W, h)b. It is

naturally identified with FunW ′(W,N), the set ofW ′-invariant maps fromW toN . For any
C[h∗]-moduleM writeE(M) ⊂M for the locally nilpotent part ofM under the action of h.

The ingredients for defining the functors Resb and Indb consist of:

– the adjoint pair of functors (“ b, E
b) with“ b : Oc(W, h)→ Ôc(W, h)b, M 7→ M̂b,

Eb : Ôc(W, h)b → Oc(W, h), N → E(N),

– the Morita equivalence

J : Ôc′(W ′, h)0 → Ôc(W, h)b, N 7→ FunW ′(W,N),

and its quasi-inverse R given in Section 1.7 below,
– the equivalence of categories

E : Ôc′(W ′, h)0 → Oc′(W ′, h), M 7→ E(M)

and its quasi-inverse given by N 7→ “N0,
– the equivalence of categories

(1.10) ζ : Oc′(W ′, h)→ Oc′(W ′, h), M 7→ {v ∈M : yv = 0, for all y ∈ hW
′
}

and its quasi-inverse ζ−1 given in Section 1.8 below.

For M ∈ Oc(W, h) and N ∈ Oc′(W ′, h) the functors Resb and Indb are defined by

Resb(M) = ζ ◦ E ◦R(M̂b),(1.11)

Indb(N) = Eb ◦ J(◊�ζ−1(N)0).

We refer to [4, Section 2,3] for details.
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1.7. The idempotent xpr and the functor R

We give some details on the isomorphism Θ for a future use. Fix elements 1 = u1, u2, . . . , ur
in W such that W =

⊔r
i=1W

′ui. Let Matr(“Hc′(W
′, h)0) be the algebra of r × r matrices

with coefficients in “Hc′(W
′, h)0. We have an algebra isomorphism

Φ : Z(W,W ′, “Hc′(W
′, h)0)→ Matr(“Hc′(W

′, h)0),(1.12)

A 7→ (Φ(A)ij)16i,j6r

such that

(Af)(ui) =
r∑
j=1

Φ(A)ijf(uj), for all f ∈ P, 1 6 i 6 r.

Denote by Eij , 1 6 i, j 6 r, the elementary matrix in Matr(“Hc′(W
′, h)0) with coefficient 1

in the position (i, j) and zero elsewhere. Note that the algebra isomorphism

Φ ◦Θ : “Hc(W, h)b
∼−→ Matr(“Hc′(W

′, h)0)

restricts to an isomorphism of subalgebras

(1.13) ‘C[h]b
∼=

r⊕
i=1

C[[h]]0Eii.

Indeed, there is a unique isomorphism of algebras

(1.14) $ : ‘C[h]b
∼=

r⊕
i=1

C[[h]]u−1
i
b,

extending the algebra homomorphism

C[h]→
r⊕
i=1

C[h], x 7→ (x, x, . . . , x), ∀ x ∈ h∗.

For each i consider the isomorphism of algebras

φi : C[[h]]u−1
i
b → C[[h]]0, x 7→ uix+ x(u−1

i b), ∀ x ∈ h∗.

The isomorphism (1.13) is exactly the composition of $ with the direct sum ⊕ri=1φi. Here

Eii is the image of the idempotent in ‘C[h]b corresponding to the component C[[h]]u−1
i
b. We

will denote by xpr the idempotent in ‘C[h]b corresponding to C[[h]]b, i.e., Φ ◦Θ(xpr) = E11.
Then the functor

R : Ôc(W, h)b → Ôc′(W ′, h)0, M 7→ xprM

is a quasi-inverse of J . Here, the action of “Hc′(W
′, h)0 on R(M) = xprM is given by the

following formulas deduced from Proposition 1.5. For any α ∈ h∗, w ∈W ′, a ∈ h∗, m ∈M
we have

x(b)
α xpr(m) = xpr((xα − α(b))m),(1.15)

wxpr(m) = xpr(wm),(1.16)

y(b)
a xpr(m) = xpr

ÅÅ
ya +

∑
s∈ S, s/∈W ′

2cs
1− λs

αs(a)

xαs

ã
m

ã
.(1.17)
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In particular, we have

(1.18) R(M) = φ∗1(xpr(M))

as C[[h]]0 oW ′-modules. Finally, note that the following equality holds in “Hc(W, h)b

(1.19) xpruxpr = 0, ∀ u ∈W −W ′.

1.8. A quasi-inverse of ζ

Let us recall from [4, Section 2.3] the following facts. Let h∗W
′

be the subspace of h∗

consisting of fixed points of W ′. Set

(h∗W
′
)⊥ = {v ∈ h : f(v) = 0 for all f ∈ h∗W

′
}.

We have a W ′-invariant decomposition

h = (h∗W
′
)⊥ ⊕ hW

′
.

The W ′-space (h∗W
′
)⊥ is canonically identified with h. Since the action of W ′ on hW

′
is

trivial, we have an obvious algebra isomorphism

(1.20) Hc′(W
′, h) ∼= Hc′(W

′, h)⊗ D(hW
′
).

It maps an element y in the subset hW
′

of Hc′(W
′, h) to the operator ∂y in D(hW

′
). Write

O(1, hW
′
) for the category of finitely generated D(hW

′
)-modules that are ∂y-locally nilpotent

for all y ∈ hW ′ . The algebra isomorphism above yields an equivalence of categories

Oc′(W ′, h) ∼= Oc′(W ′, h)⊗ O(1, hW
′
).

The functor ζ in (1.10) is an equivalence, because it is induced by the functor

O(1, hW
′
)
∼→ C -mod, M → {m ∈M,∂y(m) = 0 for all y ∈ hW

′
},

which is an equivalence by Kashiwara’s lemma upon taking Fourier transforms. In particu-
lar, a quasi-inverse of ζ is given by

(1.21) ζ−1 : Oc′(W ′, h)→ Oc′(W ′, h), N 7→ N ⊗ C[hW
′
],

where C[hW
′
] ∈ O(1, hW

′
) is the polynomial representation of D(hW

′
).

Moreover, the functor ζ maps a standard module in Oc′(W ′, h) to a standard module in
Oc′(W ′, h). Indeed, for any ξ ∈ Irr(W ′), we have an isomorphism of Hc′(W

′, h)-modules

Hc′(W
′, h)⊗C[h∗]oW ′ ξ = (Hc′(W

′, h)⊗C[(h)∗]oW ′ ξ)⊗ ( D(hW
′
)⊗C[(hW ′ )∗] C).

On the right hand side C denotes the trivial module of C[(hW
′
)∗], and the latter is identified

with the subalgebra of D(hW
′
) generated by ∂y for all y ∈ hW ′ . We have

D(hW
′
)⊗C[(hW ′ )∗] C ∼= C[hW

′
]

as D(hW
′
)-modules. So ζ maps the standard module ∆(ξ) for Hc′(W

′, h) to the standard
module ∆(ξ) for Hc′(W

′, h).
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1.9. – Here are some properties of Resb and Indb.

P 1.6. – (1) Both functors Resb and Indb are exact. The functor Resb is
left adjoint to Indb. In particular the functor Resb preserves projective objects and Indb
preserves injective objects.

(2) Let ResWW ′ and IndWW ′ be respectively the restriction and induction functors of groups.
We have the following commutative diagram

K( Oc(W, h)) ∼
ω //

Resb
��

K(CW )

ResW
W ′

��
K( Oc′(W ′, h)) ∼

ω′ //

Indb

OO

K(CW ′).

IndW
W ′

OO

Here the isomorphism ω (resp. ω′) is given by mapping [∆(ξ)] to [ξ] for any ξ ∈ Irr(W )

(resp. ξ ∈ Irr(W ′)).

See [4, Proposition 3.9, Theorem 3.10] for (1), [4, Proposition 3.14] for (2).

1.10. Restriction of modules having a standard filtration

In the rest of Section 1, we study the actions of the restriction functors on modules having
a standard filtration in Oc(W, h) (Proposition 1.9). We will need the following lemmas.

L 1.7. – Let M be an object in O∆
c (W, h).

(1) There is a finite dimensional subspace V of M such that V is stable under the action of
CW and the map

C[h]⊗ V →M, p⊗ v 7→ pv

is an isomorphism of C[h] oW -modules.
(2) The map ω : K( Oc(W, h))→ K(CW ) in Proposition 1.6(2) satisfies

(1.22) ω([M ]) = [V ].

Proof. – Let
0 = M0 ⊂M1 ⊂ · · · ⊂Ml = M

be a filtration of M such that for any 1 6 i 6 l we have Mi/Mi−1
∼= ∆(ξi) for some

ξi ∈ Irr(W ). We prove (1) and (2) by recurrence on l. If l = 1, thenM is a standard module.
Both (1) and (2) hold by definition. For l > 1, by induction we may suppose that there is
a subspace V ′ of Ml−1 such that the properties in (1) and (2) are satisfied for Ml−1 and V ′.
Now, consider the exact sequence

0 −→Ml−1 −→M
j−→ ∆(ξl) −→ 0.

From the isomorphism of C[h]oW -modules ∆(ξl) ∼= C[h]⊗ξ we see that ∆(ξl) is a projective
C[h]oW -module. Hence there exists a morphism of C[h]oW -modules s : ∆(ξl)→M that
provides a section of j. Let V = V ′ ⊕ s(ξl) ⊂ M . It is stable under the action of CW .
The map C[h]⊗ V → M in (1) is an injective morphism of C[h] oW -modules. Its image is
Ml−1 ⊕ s(∆(ξ)), which is equal to M . So it is an isomorphism. We have

ω([M ]) = ω([Ml−1]) + ω([∆(ξl)]),

by assumption ω([Ml−1]) = [V ′], so ω([M ]) = [V ′] + [ξl] = [V ].
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L 1.8. – (1) Let M be an “Hc(W, h)0-module free over C[[h]]0. If there exist
generalized eigenvectors v1, . . . vn of eu which form a basis of M over C[[h]]0, then for
f1, . . . , fn ∈ C[[h]]0 the elementm =

∑n
i=1 fivi is eu-finite if and only if f1, . . . , fn all belong

to C[h].
(2) Let N be an object in Oc(W, h). If “N0 is a free C[[h]]0-module, then N is a free

C[h]-module. It admits a basis consisting of generalized eigenvectors v1, . . . , vn of eu.

Proof. – (1) It follows from the proof of [4, Theorem 2.3].
(2) Since N belongs to Oc(W, h), it is finitely generated over C[h]. Denote by m the

maximal ideal of C[[h]]0. The canonical map N → “N0/m“N0 is surjective. So there exist
v1, . . . , vn in N such that their images form a basis of “N0/m“N0 over C. Moreover, we
may choose v1, . . . , vn to be generalized eigenvectors of eu, because the eu-action on N is
locally finite. Since “N0 is free over C[[h]]0, Nakayama’s lemma yields that v1, . . . , vn form
a basis of “N0 over C[[h]]0. By part (1) the set N ′ of eu-finite elements in “N0 is the free
C[h]-submodule generated by v1, . . . , vn. On the other hand, since “N0 belongs to Ôc(W, h)0,
by [4, Proposition 2.4] an element in “N0 is h-nilpotent if and only if it is eu-finite. So
N ′ = E(“N0). On the other hand, the canonical inclusion N ⊂ E(“N0) is an equality by
[4, Theorem 3.2]. HenceN = N ′. This implies thatN is free over C[h], with a basis given by
v1, . . . , vn, which are generalized eigenvectors of eu.

P 1.9. – Let M be an object in O∆
c (W, h).

(1) The object Resb(M) has a standard filtration.
(2) Let V be a subspace of M that has the properties of Lemma 1.7(1). Then there is an

isomorphism of C[h] oW ′-modules

Resb(M) ∼= C[h]⊗ ResWW ′(V ).

Proof. – (1) By the end of Section 1.8 the equivalence ζ maps a standard module in
Oc′(W ′, h) to a standard one in Oc′(W ′, h). Hence to prove that Resb(M) = ζ ◦E ◦R(M̂b)

has a standard filtration, it is enough to show that N = E ◦ R(M̂b) has one. We claim that
the module N is free over C[h]. So the result follows from Lemma 1.1(2).

Let us prove the claim. Recall from (1.18) that we have R(M̂b) = φ∗1(xprM̂b) as
C[[h]]0 o W ′-modules. Using the isomorphism of C[h] o W -modules M ∼= C[h] ⊗ V

given in Lemma 1.7(1), we deduce an isomorphism of C[[h]]0 oW ′-modules

R(M̂b) ∼= φ∗1(xpr(‘C[h]b ⊗ V ))

∼= C[[h]]0 ⊗ V.

So the moduleR(M̂b) is free over C[[h]]0. The completion of the moduleN at 0 is isomorphic
to R(M̂b). By Lemma 1.8(2) the module N is free over C[h]. The claim is proved.

(2) Since Resb(M) has a standard filtration, by Lemma 1.7 there exists a finite dimensional
vector space V ′ ⊂ Resb(M) such that V ′ is stable under the action of CW ′ and we have an
isomorphism of C[h] oW ′-modules

Resb(M) ∼= C[h]⊗ V ′.

Moreover, we have ω′([Resb(M)]) = [V ′] where ω′ is the map in Proposition 1.6(2). The
same proposition yields that ResWW ′(ω[M ]) = ω′([Resb(M)]). Since ω([M ]) = [V ] by
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(1.22), the CW ′-module V ′ is isomorphic to ResWW ′(V ). So we have an isomorphism of
C[h] oW ′-modules

Resb(M) ∼= C[h]⊗ ResWW ′(V ).

2. KZ commutes with restriction functors

In this section, we relate the restriction and induction functors for rational DAHA’s to the
corresponding functors for Hecke algebras via the functor KZ. We will always assume that
the Hecke algebras have the same dimension as the corresponding group algebras. Thus the
Knizhnik-Zamolodchikov functors admit the properties recalled in Section 1.5.

2.1. – Let W be a complex reflection group acting on h. Let b be a point in h and let W ′ be
its stabilizer in W . We will abbreviate KZ = KZ(W, h), KZ′ = KZ(W ′, h).

T 2.1. – There is an isomorphism of functors

KZ′ ◦Resb ∼= H ResWW ′ ◦KZ .

Proof. – We will regard KZ : Oc(W, h) → Hq(W ) -mod as a functor from Oc(W, h)
to BW -mod in the obvious way. Similarly we will regard KZ′ as a functor to BW ′ -mod.
Recall the inclusion ı : BW ′ ↪→ BW from (1.6). The theorem amounts to prove that for any
M ∈ Oc(W, h) there is a natural isomorphism of BW ′ -modules

(2.1) KZ′ ◦Resb(M) ∼= ı∗ ◦KZ(M).

Step 1. Recall the functor ζ : Oc′(W ′, h) → Oc′(W ′, h) from (1.10) and its quasi-inverse
ζ−1 in (1.21). Let

N = ζ−1(Resb(M)).

We haveN ∼= Resb(M)⊗C[hW
′
]. Since the canonical epimorphism h→ h induces a fibration

h′reg → hreg, see Section 1.2, we have

(2.2) Nh′reg
∼= Resb(M)

hreg
⊗ C[hW

′
].

By Dunkl isomorphisms, the left hand side is a D(h′reg) o W ′-module while the right hand
side is a ( D(hreg) oW ′)⊗ D(hW

′
)-module. Identify these two algebras in the obvious way.

The isomorphism (2.2) is compatible with the W ′-equivariant D-module structures. Hence
we have

(Nh′reg)∇ ∼= (Resb(M)
hreg

)∇ ⊗ C[hW
′
]∇.

Since C[hW
′
]∇ = C, this yields a natural isomorphism

`∗ ◦KZ(W ′, h)(N) ∼= KZ′ ◦Resb(M),

where ` is the homomorphism defined in (1.2).
Step 2. Consider the W ′-equivariant algebra isomorphism

φ : C[h]→ C[h], x 7→ x+ x(b) for x ∈ h∗.

It induces an isomorphism φ̂ : C[[h]]b
∼→ C[[h]]0. The latter yields an algebra isomorphism

C[[h]]b ⊗C[h] C[hreg] ' C[[h]]0 ⊗C[h] C[h′reg].
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To see this note first that by definition, the left hand side is C[[h]]b[α
−1
s , s ∈ S]. For s ∈ S,

s /∈W ′ the element αs is invertible in C[[h]]b, so we have

C[[h]]b ⊗C[h] C[hreg] = C[[h]]b[α
−1
s , s ∈ S ∩W ′].

For s ∈ S ∩W ′ we have αs(b) = 0, so φ̂(αs) = αs. Hence

φ̂(C[[h]]b)[φ̂(αs)
−1, s ∈ S ∩W ′] = C[[h]]0[α−1

s , s ∈ S ∩W ′]
= C[[h]]0 ⊗C[h] C[h′reg].

Step 3. We will assume in Steps 3, 4, 5 that M is a module in O∆
c (W, h). In this step we

prove that N is isomorphic to φ∗(M) as C[h] o W ′-modules. Let V be a subspace of M as
in Lemma 1.7(1). So we have an isomorphism of C[h] oW -modules

(2.3) M ∼= C[h]⊗ V.

Also, by Proposition 1.9(2) there is an isomorphism of C[h] oW ′-modules

N ∼= C[h]⊗ ResWW ′(V ).

So N is isomorphic to φ∗(M) as C[h] oW ′-modules.

Step 4. In this step we compare (ÿ�(φ∗(M))0)h′reg and (“N0)h′reg as ◊�D(h′reg)
0
-modules. The

definition of these ◊�D(h′reg)
0
-module structures will be given below in terms of connections.

By (1.11) we have N = E ◦ R(M̂b), so we have “N0
∼= R(M̂b). Next, by (1.18) we have an

isomorphism of C[[h]]0 oW ′-modules

R(M̂b) = φ̂∗(xpr(M̂b))

= ÿ�(φ∗(M))0.

So we get an isomorphism of C[[h]]0 oW ′-modules

Ψ̂ : ÿ�(φ∗(M))0 → “N0.

Now, let us consider connections on these modules. Note that by Step 2 we have

(ÿ�(φ∗(M))0)h′reg = φ̂∗(xpr(M̂b)hreg).

Write ∇ for the connection on Mhreg given by the Dunkl isomorphism for Hc(W, hreg). We

equip (ÿ�(φ∗(M))0)h′reg with the connection ∇̃ given by

∇̃a(xprm) = xpr(∇a(m)), ∀m ∈ (M̂b)hreg , a ∈ h.

Let∇(b) be the connection onNh′reg given by the Dunkl isomorphism forHc′(W
′, h′reg). This

restricts to a connection on (“N0)h′reg . We claim that Ψ is compatible with these connections,
i.e., we have

(2.4) ∇(b)
a (xprm) = xpr∇a(m), ∀m ∈ (M̂b)hreg .

Recall the subspace V of M from Step 3. By Lemma 1.7(1) the map

(‘C[h]b ⊗C[h] C[hreg])⊗ V → (”Mb)hreg , p⊗ v 7→ pv
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is a bijection. So it is enough to prove (2.4) for m = pv with p ∈‘C[h]b ⊗C[h] C[hreg], v ∈ V .
We have

∇(b)
a (xprpv) = (y(b)

a −
∑

s∈ S∩W ′

2cs
1− λs

αs(a)

x
(b)
αs

(s− 1))(xprpv)

= xpr(ya +
∑

s∈ S,s/∈W ′

2cs
1− λs

αs(a)

xαs

−
∑

s∈ S∩W ′

2cs
1− λs

αs(a)

xαs
(s− 1))(xprpv)

= xpr(∇a +
∑

s∈ S,s/∈W ′

2cs
1− λs

αs(a)

xαs
s)(xprpv)

= xpr∇a(xprpv).(2.5)

Here the first equality is by the Dunkl isomorphism for Hc′(W
′, h′reg). The second is by

(1.15), (1.16), (1.17) and the fact that x2
pr = xpr. The third is by the Dunkl isomorphism for

Hc(W, hreg). The last is by (1.19). Next, since xpr is the idempotent in ‘C[h]b corresponding
to the component C[[h]]b in the decomposition (1.14), we have

∇a(xprpv) = (∂a(xprp))v + xprp (∇av)

= xpr(∂a(p))v + xprp (∇av)

= xpr∇a(pv).

Together with (2.5) this implies that

∇(b)
a (xprpv) = xpr∇a(pv).

So (2.4) is proved.
Step 5. In this step we prove the isomorphism (2.1) for M ∈ O∆

c (W, h). Here we need
some more notation. For X = h or h′reg, let U be an open analytic subvariety of X, write
i : U ↪→ X for the canonical embedding. For F an analytic coherent sheaf on X we write
i∗(F ) for the restriction of F to U . If U contains 0, for an analytic locally free sheaf E over
U , we write “E for the restriction of E to the formal disc at 0.

Let Ω ⊂ h be the open ball defined in (1.3). Let f : h→ h be the morphism defined by φ.
The preimage of Ω via f is an open ball Ω0 in h centered at 0. We have

f(Ω0 ∩ h′reg) = Ω ∩ hreg.

Let u : Ω0 ∩ h′reg ↪→ h and v : Ω∩ hreg ↪→ h be the canonical embeddings. By Step 3 there is
an isomorphism of W ′-equivariant analytic locally free sheaves over Ω0 ∩ h′reg

u∗(Nan) ∼= φ∗(v∗(Man)).

By Step 4 there is an isomorphismÿ�u∗(Nan)
∼→ ¤�φ∗(v∗(Man))

which is compatible with their connections. It follows from Lemma 2.2 below that there is
an isomorphism

(u∗(Nan))∇
(b) ∼= φ∗((v∗(Man))∇).
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Since Ω0 ∩ h′reg is homotopy equivalent to h′reg via u, the left hand side is isomorphic to

(Nh′reg)∇
(b)

. So we have

κ∗ ◦ ∗ ◦KZ(M) ∼= KZ(W ′, h)(N),

where κ,  are as in (1.4), (1.5). Combined with Step 1 we have the following isomorphisms

KZ′ ◦Resb(M) ∼= `∗ ◦KZ(W ′, h)(N)

∼= `∗ ◦ κ∗ ◦ ∗ ◦KZ(M)(2.6)

= ı∗ ◦KZ(M).

They are functorial on M .

L 2.2. – Let E be an analytic locally free sheaf over the complex manifold h′reg.
Let ∇1, ∇2 be two integrable connections on E with regular singularities. If there exists an
isomorphism ψ̂ : (“E,∇1)→ (“E,∇2), then the local systems E∇1 and E∇2 are isomorphic.

Proof. – Write End(E) for the sheaf of endomorphisms of E. Then End(E) is a locally
free sheaf over h′reg. The connections∇1,∇2 define a connection∇ on End(E) as follows,

∇ : End(E)→ End(E), f 7→ ∇2 ◦ f − f ◦ ∇1.

So the isomorphism ψ̂ is a horizontal section of ( ◊�End(E),∇). Let (End(E)∇)0 be the set
of germs of horizontal sections of (End(E),∇) on zero. By the Comparison theorem [12,

Theorem 6.3.1] the canonical map (End(E)∇)0 → ( ◊�End(E))∇ is bijective. Hence there
exists a holomorphic isomorphism ψ : (E,∇1) → (E,∇2) which maps to ψ̂. Now, let U
be an open ball in h′reg centered at 0 with radius ε small enough such that the holomorphic
isomorphism ψ converges in U . Write EU for the restriction of E to U . Then ψ induces an
isomorphism of local systems (EU )∇1 ∼= (EU )∇2 . Since h′reg is homotopy equivalent to U ,
we have

E∇1 ∼= E∇2 .

Step 6. Finally, write I for the inclusion of Projc(W, h) into Oc(W, h). By Lemma 1.1(1)
any projective object in Oc(W, h) has a standard filtration, so (2.6) yields an isomorphism of
functors

KZ′ ◦Resb ◦I → ı∗ ◦KZ ◦I.

Applying Lemma 1.2 to the exact functors KZ′ ◦Resb and ı∗ ◦ KZ yields that there is an
isomorphism of functors

KZ′ ◦Resb ∼= ı∗ ◦KZ .

2.2. – We give some corollaries of Theorem 2.1.

C 2.3. – There is an isomorphism of functors

KZ ◦ Indb ∼= H coIndWW ′ ◦KZ′ .
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Proof. – To simplify notation let us write

O = Oc(W, h), O′ = Oc′(W ′, h), H = Hq(W ), H ′ = Hq′(W
′).

Recall that the functor KZ is represented by a projective object PKZ in O. So for anyN ∈ O′

we have a morphism of H -modules

KZ ◦ Indb(N) ∼= Hom O(PKZ, Indb(N))

∼= Hom O′(Resb(PKZ), N)

→ HomH ′(KZ′(Resb(PKZ)),KZ′(N)).(2.7)

By Theorem 2.1 we have

KZ′ ◦Resb(PKZ) ∼= H ResWW ′ ◦KZ(PKZ).

Recall from Section 1.5 that the H -module KZ(PKZ) is isomorphic to H . So as H ′-mod-
ules KZ′(Resb(PKZ)) is also isomorphic to H . Therefore the morphism (2.7) rewrites as

(2.8) χ(N) : KZ ◦ Indb(N)→ HomH ′(H ,KZ′(N)).

It yields a morphism of functors

χ : KZ ◦ Indb → H coIndWW ′ ◦KZ′ .

Note that ifN is a projective object in O′, thenχ(N) is an isomorphism by Proposition 1.4(1).
So Lemma 1.2 implies that χ is an isomorphism of functors, because both functors KZ ◦ Indb
and H coIndWW ′ ◦KZ′ are exact.

2.3. – The following lemma will be useful to us.

L 2.4. – Let K, L be two right exact functors from O1 to O2, where O1 and O2 can
be either Oc(W, h) or Oc′(W ′, h). Let KZ2 denote the KZ-functor on O2. Suppose that K, L
map projective objects to projective ones. Then the vector space homomorphism

(2.9) Hom(K,L)→ Hom(KZ2 ◦K,KZ2 ◦L), f 7→ 1KZ2
f,

is an isomorphism.

Notice that if K = L, this is even an isomorphism of rings.

Proof. – Let Proj1, Proj2 be respectively the subcategory of projective objects in O1, O2.
Write K̃, L̃ for the functors from Proj1 to Proj2 given by the restrictions ofK,L, respectively.
Let H2 be the Hecke algebra corresponding to O2. Since the functor KZ2 is fully faithful over
Proj2 by Proposition 1.4(1), the following functor

Fct(Proj1,Proj2)→ Fct(Proj1,H2 -mod) , G 7→ KZ2 ◦G

is also fully faithful. This yields an isomorphism

Hom(K̃, L̃)
∼→ Hom(KZ2 ◦K̃,KZ2 ◦L̃), f 7→ 1KZ2f.

Next, by Lemma 1.2 the canonical morphisms

Hom(K,L)→ Hom(K̃, L̃), Hom(KZ2 ◦K,KZ2 ◦L)→ Hom(KZ2 ◦K̃,KZ2 ◦L̃)

are isomorphisms. So the map (2.9) is also an isomorphism.
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Let b(W,W ′′) be a point in h whose stabilizer is W ′′. Let b(W ′,W ′′) be its image in
h = h/hW

′
via the canonical projection. Write b(W,W ′) = b.

C 2.5. – There are isomorphisms of functors

Resb(W ′,W ′′) ◦Resb(W,W ′) ∼= Resb(W,W ′′),

Indb(W,W ′) ◦ Indb(W ′,W ′′) ∼= Indb(W,W ′′) .

Proof. – Since the restriction functors map projective objects to projective ones by Propo-
sition 1.6(1), Lemma 2.4 applied to the categories O1 = Oc(W, h), O2 = Oc′′(W ′′, h/hW

′′
)

yields an isomorphism

Hom(Resb(W ′,W ′′) ◦Resb(W,W ′),Resb(W,W ′′))

∼= Hom(KZ′′ ◦Resb(W ′,W ′′) ◦Resb(W,W ′),KZ′′ ◦Resb(W,W ′′)).

By Theorem 2.1 the set on the second row is

(2.10) Hom( H ResW
′

W ′′ ◦
H ResWW ′ ◦KZ, H ResWW ′′ ◦KZ).

By the presentations of Hecke algebras in [6, Proposition 4.22], there is an isomorphism

σ : H ResW
′

W ′′ ◦
H ResWW ′

∼→ H ResWW ′′ .

Hence the element σ1KZ in the set (2.10) maps to an isomorphism

Resb(W ′,W ′′) ◦Resb(W,W ′) ∼= Resb(W,W ′′) .

This proves the first isomorphism in the corollary. The second one follows from the unique-
ness of right adjoint functor.

2.4. Biadjointness of Resb and Indb

Recall that a finite dimensional C-algebra A is symmetric if A is isomorphic to
A∗ = HomC(A,C) as (A,A)-bimodules.

L 2.6. – Assume that Hq(W ) and Hq′(W
′) are symmetric algebras. Then the

functors H IndWW ′ and H coIndWW ′ are isomorphic, i.e., the functor H IndWW ′ is biadjoint to
H ResWW ′ .

Proof. – We abbreviate H = Hq(W ) and H ′ = Hq′(W
′). Since H is free as a left

H ′-module, for any H ′-module M the map

(2.11) HomH ′(H ,H ′)⊗H ′ M → HomH ′(H ,M)

given by multiplication is an isomorphism of H -modules. By assumption H ′ is isomorphic
to (H ′)∗ as (H ′,H ′)-bimodules. Thus we have the following (H ,H ′)-bimodule isomor-
phisms

HomH ′(H ,H ′) ∼= HomH ′(H , (H ′)∗)

∼= HomC(H ′ ⊗H ′ H ,C)

∼= H ∗

∼= H .
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The last isomorphism follows from the fact the H is symmetric. Thus, by (2.11) the functors
H IndWW ′ and H coIndWW ′ are isomorphic.

R 2.7. – It is proved that Hq(W ) is a symmetric algebra for all irreducible com-
plex reflection group W except for some of the 34 exceptional groups in the Shephard-Todd
classification. See [5, Section 2A] for details.

The biadjointness of Resb and Indb was conjectured in [4, Remark 3.18] and was an-
nounced by I. Gordon and M. Martino. We give a proof in Proposition 2.9 since it seems
not yet to be available in the literature. Let us first consider the following lemma.

L 2.8. – (1) Let A, B be noetherian algebras and T be a functor

T : A -mod→ B -mod .

If T is right exact and commutes with direct sums, then it has a right adjoint.

(2) The functor
Resb : Oc(W, h)→ Oc′(W ′, h)

has a left adjoint.

Proof. – (1) Consider the (B,A)-bimodule M = T (A). We claim that the functor T is
isomorphic to the functor M ⊗A −. Indeed, by definition we have T (A) ∼= M ⊗A A as
B-modules. Now, for any N ∈ A -mod, since N is finitely generated and A is noetherian
there exist m, n ∈ N and an exact sequence

A⊕n −→ A⊕m −→ N −→ 0.

Since both T and M ⊗A − are right exact and they commute with direct sums, the fact that
T (A) ∼= M ⊗AA implies that T (N) ∼= M ⊗AN asB-modules. This proved the claim. Now,
the functor M ⊗A − has a right adjoint HomB(M,−), so T also has a right adjoint.

(2) Recall that for any complex reflection group W , a contravariant duality functor

(−)∨ : Oc(W, h)→ Oc†(W, h
∗)

was defined in [10, Section 4.2], here c† : S → C is another parameter explicitly determined
by c. Consider the functor

Res∨b = (−)∨ ◦ Resb ◦(−)∨ : Oc†(W, h
∗)→ Oc′†(W

′, (h)∗).

The category Oc†(W, h∗) has a projective generator P . The algebra End O
c† (W,h

∗)(P )op is
finite dimensional over C and by Morita theory we have an equivalence of categories

Oc†(W, h
∗) ∼= End O

c† (W,h
∗)(P )op -mod .

Since the functor Res∨b is exact and obviously commutes with direct sums, by part (1) it has
a right adjoint Ψ. Then it follows that (−)∨ ◦Ψ ◦ (−)∨ is left adjoint to Resb. The lemma is
proved.

P 2.9. – Assume that Hq(W ) and Hq′(W
′) are symmetric algebras. Then

the functor Indb is left adjoint to Resb.
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Proof. – Step 1. We abbreviate O = Oc(W, h), O′ = Oc′(W ′, h), H = Hq(W ),
H ′ = Hq′(W

′), and write Id O, Id O′ , IdH , IdH ′ for the identity functor on the correspond-
ing categories. We also abbreviate EH = H ResWW ′ , F

H = H IndWW ′ and E = Resb. By
Lemma 2.8 the functorE has a left adjoint. We denote it by F : O′ → O. Recall the functors

KZ : O→H -mod, KZ′ : O′ →H ′ -mod .

The goal of this step is to show that there exists an isomorphism of functors

KZ ◦F ∼= FH ◦KZ′ .

To this end, let S, S′ be respectively the right adjoints of KZ, KZ′, see Section 1.5. We will
first give an isomorphism of functors

FH ∼= KZ ◦F ◦ S′.

Let M ∈ H ′ -mod and N ∈ H -mod. Consider the following equalities given by
adjunctions

HomH (KZ ◦F ◦ S′(M), N) = Hom O(F ◦ S′(M), S(N))

= Hom O′(S
′(M), E ◦ S(N)).

The functor KZ′ yields a map

(2.12) a(M,N) : Hom O′(S
′(M), E ◦ S(N))→ HomH ′(KZ′ ◦S′(M),KZ′ ◦E ◦ S(N)).

Since the canonical adjunction maps KZ′ ◦S′ → IdH ′ , KZ ◦S → IdH are isomorphisms
(see Section 1.5) and since we have an isomorphism of functors KZ′ ◦E ∼= EH ◦ KZ by
Theorem 2.1, we get the following equalities

HomH ′(KZ′ ◦S′(M),KZ′ ◦E ◦ S(N)) = HomH ′(M,EH ◦KZ ◦S(N))

= HomH ′(M,EH (N))

= HomH (FH (M), N).

In the last equality we used that FH is left adjoint toEH . So the map (2.12) can be rewritten
into the following form

a(M,N) : HomH (KZ ◦F ◦ S′(M), N)→ HomH (FH (M), N).

Now, take N = H . Recall that H is isomorphic to KZ(PKZ) as H -modules. Since PKZ is
projective, by Proposition 1.4(2) we have a canonical isomorphism in O

PKZ
∼= S(KZ(PKZ)) = S(H ).

Further E maps projectives to projectives by Proposition 1.6(1), so E ◦S(H ) is also projec-
tive. Hence Proposition 1.4(1) implies that in this case (2.12) is an isomorphism for any M ,
i.e., we get an isomorphism

a(M,H ) : HomH (KZ ◦F ◦ S′(M),H )
∼→ HomH (FH (M),H ).

Further this is an isomorphism of right H -modules with respect to the H -actions induced
by the right action of H on itself. Now, the fact that H is a symmetric algebra yields that
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for any finite dimensional H -module N we have isomorphisms of right H -modules

HomH (N,H ) ∼= HomH (N,HomC(H ,C))

∼= HomC(N,C).

Therefore a(M,H ) yields an isomorphism of right H -modules

HomC(KZ ◦F ◦ S′(M),C)→ HomC(FH (M),C).

We deduce a natural isomorphism of left H -modules

KZ ◦F ◦ S′(M) ∼= FH (M)

for any H ′-module M . This gives an isomorphism of functors

ψ : KZ ◦F ◦ S′ ∼→ FH .

Finally, consider the canonical adjunction map η : Id O′ → S′ ◦ KZ′. We have a morphism
of functors

φ = (1KZ ◦F η) ◦ (ψ1KZ′) : KZ ◦F → FH ◦KZ′ .

Note that ψ1KZ′ is an isomorphism of functors. If Q is a projective object in O′, then by
Proposition 1.4(2) the morphism η(Q) : Q→ S′ ◦KZ′(Q) is also an isomorphism, so φ(Q)

is an isomorphism. This implies that φ is an isomorphism of functors by Lemma 1.2, because
both KZ ◦F andFH ◦KZ′ are right exact functors. Here the right exactness ofF follows from
that it is left adjoint to E. So we get the desired isomorphism of functors

KZ ◦F ∼= FH ◦KZ′ .

Step 2. Let us now prove that F is right adjoint to E. By uniqueness of adjoint
functors, this will imply that F is isomorphic to Indb. First, by Lemma 2.6 the functor FH is
isomorphic to H coIndWW ′ . SoFH is right adjoint toEH , i.e., we have morphisms of functors

εH : EH ◦ FH → IdH ′ , ηH : IdH → FH ◦ EH

such that

(εH 1EH ) ◦ (1EH ηH ) = 1EH , (1FH εH ) ◦ (ηH 1FH ) = 1FH .

Next, both F and E have exact right adjoints, given respectively by E and Indb. Therefore
F and E map projective objects to projective ones. Applying Lemma 2.4 to O1 = O2 = O′,
K = E ◦ F , L = Id O′ yields that the following map is bijective

(2.13) Hom(E ◦ F, Id O′)→ Hom(KZ′ ◦E ◦ F,KZ′ ◦ Id O), f 7→ 1KZ′f.

By Theorem 2.1 and Step 1 there exist isomorphisms of functors

φE : EH ◦KZ
∼→ KZ′ ◦E, φF : FH ◦KZ′

∼→ KZ ◦F.

Let

φEF = (φE1F ) ◦ (1EH φF ) : EH ◦ FH ◦KZ′
∼→ KZ′ ◦E ◦ F,

φFE = (φF 1E) ◦ (1FH φE) : FH ◦ EH ◦KZ
∼→ KZ ◦F ◦ E.

Identify
KZ ◦ Id O = IdH ◦KZ, KZ′ ◦ Id O′ = IdH ′ ◦KZ′ .
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We have a bijective map

Hom(KZ′ ◦E ◦ F,KZ′ ◦ Id O′)
∼→ Hom(EH ◦ FH ◦KZ′, IdH ′ ◦KZ′), g 7→ g ◦ φEF .

Together with (2.13), it implies that there exists a unique morphism ε : E ◦ F → Id O′ such
that

(1KZ′ε) ◦ φEF = εH 1KZ′ .

Similarly, there exists a unique morphism η : Id O → F ◦ E such that

(φFE)−1 ◦ (1KZη) = ηH 1KZ.

Now, we have the following commutative diagram

EH ◦KZ

1
EH ηH 1KZ

��

EH ◦KZ
φE //

1
EH 1KZη

��

KZ′ ◦E

1KZ′1Eη

��
EH ◦ FH ◦ EH ◦KZ

1
EH φFE // EH ◦KZ ◦F ◦ E

φE1F 1E // KZ′ ◦E ◦ F ◦ E

EH ◦ FH ◦ EH ◦KZ
1
EH 1

FH φE//

εH 1
EH 1KZ

��

EH ◦ FH ◦KZ′ ◦E

1
EH φF 1E

OO

φEF 1E //

εH 1KZ′1E
��

KZ′ ◦E ◦ F ◦ E

1KZ′ε1E
��

EH ◦KZ
φE // KZ′ ◦E KZ′ ◦E.

It yields that

(1KZ′ε1E) ◦ (1KZ′1Eη) = φE ◦ (εH 1EH 1KZ) ◦ (1EH ηH 1KZ) ◦ (φE)−1.

We deduce that

1KZ′((ε1E) ◦ (1Eη)) = φE ◦ (1EH 1KZ) ◦ (φE)−1

= 1KZ′1E .(2.14)

By applying Lemma 2.4 to O1 = O, O2 = O′, K = L = E, we deduce that the following
map is bijective

End(E)→ End(KZ′ ◦E), f 7→ 1KZ′f.

Hence (2.14) implies that

(ε1E) ◦ (1Eη) = 1E .

Similarly, we have (1F ε) ◦ (η1F ) = 1F . So E is left adjoint to F . By uniqueness of adjoint
functors this implies that F is isomorphic to Indb. Therefore Indb is biadjoint to Resb.

3. Reminders on the cyclotomic case

From now on we will concentrate on the cyclotomic rational DAHA’s. We fix some
notation in this section.
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3.1. – Let l, n be positive integers. Write ε = exp( 2π
√
−1
l ). Let h = Cn, write {y1, . . . , yn}

for its standard basis. For 1 6 i, j, k 6 n with i, j, k distinct, let εk, sij be the following
elements of GL(h):

εk(yk) = εyk, εk(yj) = yj , sij(yi) = yj , sij(yk) = yk.

Let Bn(l) be the subgroup of GL(h) generated by εk and sij for 1 6 k 6 n and
1 6 i < j 6 n. It is a complex reflection group with the set of reflections

Sn = {εpi : 1 6 i 6 n, 1 6 p 6 l − 1}
⊔
{s(p)
ij = sijε

p
i ε
−p
j : 1 6 i < j 6 n, 1 6 p 6 l}.

Note that there is an obvious inclusion Sn−1 ↪→ Sn. It yields an embedding

(3.1) Bn−1(l) ↪→ Bn(l).

This embedding identifies Bn−1(l) with the parabolic subgroup of Bn(l) given by the stabi-
lizer of the point bn = (0, . . . , 0, 1) ∈ Cn.

The cyclotomic rational DAHA is the algebra Hc(Bn(l), h). We will use another presen-
tation in which we replace the parameter c by an l-tuple h = (h, h1, . . . , hl−1) such that

c
s
(p)
ij

= −h, cεp =
−1

2

l−1∑
p′=1

(ε−pp
′
− 1)hp′ .

We will denote Hc(Bn(l), h) by Hh,n. The corresponding category O will be denoted
by Oh,n. In the rest of the paper, we will fix the positive integer l. We will also fix a positive
integer e > 2 and an l-tuple of integers s = (s1, . . . , sl). We will always assume that the
parameter h is given by the following formulas ,

(3.2) h =
−1

e
, hp =

sp+1 − sp
e

− 1

l
, 1 6 p 6 l − 1 .

The functor KZ(Bn(l),Cn) goes from Oh,n to the category of finite dimensional
modules of a certain Hecke algebra Hq,n attached to the group Bn(l). Here the parameter
is q = (q, q1, . . . , ql) with

q = exp(2π
√
−1/e), qp = qsp , 1 6 p 6 l.

The algebra Hq,n has the following presentation:

– Generators: T0, T1, . . . , Tn−1,
– Relations:

(T0 − q1) · · · (T0 − ql) = (Ti + 1)(Ti − q) = 0, 1 6 i 6 n− 1,

T0T1T0T1 = T1T0T1T0,

TiTj = TjTi, if |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1, 1 6 i 6 n− 2.

The algebra Hq,n satisfies the assumption of Section 2, i.e., it has the same dimension as
CBn(l).
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3.2. – For each positive integer n, the embedding (3.1) of Bn−1(l) into Bn(l) yields an
embedding of Hecke algebras

ıq : Hq,n−1 ↪→Hq,n,

see Section 1.2. Under the presentation above this embedding is given by

ıq(Ti) = Ti, ∀ 0 6 i 6 n− 2,

see [6, Proposition 2.29].

We will consider the following restriction and induction functors:

E(n) = Resbn , E(n)H = H Res
Bn(l)
Bn−1(l),

F (n) = Indbn , F (n)H = H Ind
Bn(l)
Bn−1(l) .

The algebra Hq,n is symmetric (see Remark 2.7). Hence by Lemma 2.6 we have

F (n)H ∼= H coInd
Bn(l)
Bn−1(l) .

We will abbreviate

Oh,N =
⊕
n∈N

Oh,n, KZ =
⊕
n∈N

KZ(Bn(l),Cn), Hq,N -mod =
⊕
n∈N

Hq,n -mod .

So KZ is the Knizhnik-Zamolodchikov functor from Oh,N to Hq,N -mod. Let

E =
⊕
n>1

E(n), EH =
⊕
n>1

E(n)H ,

F =
⊕
n>1

F (n), FH =
⊕
n>1

F (n)H .

So (EH , FH ) is a pair of biadjoint endo-functors of Hq,N -mod, and (E,F ) is a pair of
biadjoint endo-functors of Oh,N by Proposition 2.9.

3.3. Fock spaces

Recall that an l-partition is an l-tuple λ = (λ1, · · · , λl) with each λj a partition, that is a
sequence of integers (λj)1 > · · · > (λj)k > 0. To any l-partition λ = (λ1, . . . , λl) we attach
the set

Υλ = {(a, b, j) ∈ N× N× (Z/lZ) : 0 < b 6 (λj)a}.
Write |λ| for the number of elements in this set, we say thatλ is an l-partition of |λ|. Forn ∈ N
we denote by Pn,l the set of l-partitions of n. For any l-partition µ such that Υµ contains
Υλ, we write µ/λ for the complement of Υλ in Υµ. Let |µ/λ| be the number of elements in
this set. To each element (a, b, j) in Υλ we attach an element

res((a, b, j)) = b− a+ sj ∈ Z/eZ,

called the residue of (a, b, j). Here sj is the j-th component of our fixed l-tuple s.

The Fock space with multi-charge s is the C-vector space F s spanned by the l-partitions,
i.e.,

F s =
⊕
n∈N

⊕
λ∈ Pn,l

Cλ.
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It admits an integrable s̃le-module structure such that the Chevalley generators act as follows
(cf. [11]): for any i ∈ Z/eZ,

(3.3) ei(λ) =
∑

|λ/µ|=1,res(λ/µ)=i

µ, fi(λ) =
∑

|µ/λ|=1,res(µ/λ)=i

µ.

Let ni be the number of elements in the set {(a, b, j) ∈ Υλ : res((a, b, j)) = i}. The element
∂ ∈ s̃le acts on F s by

∂(λ) = −n0λ.

For each n ∈ Z set Λn = Λn, where n is the image of n in Z/eZ and Λn is the corresponding
fundamental weight of s̃le. Set

Λs = Λs1 + · · ·+ Λsl .

Each l-partition λ is a weight vector of F s with weight

(3.4) wt(λ) = Λs −
∑

i∈Z/eZ

niαi.

We will call wt(λ) the weight of λ.
In [14, Section 6.1.1] an explicit bijection was given between the sets Irr(Bn(l)) and Pn,l.

Using this bijection we identify these two sets and index the standard and simple modules in
Oh,N by l-partitions. In particular, we have an isomorphism of C-vector spaces

(3.5) θ : K( Oh,N)
∼→ F s, [∆(λ)] 7→ λ.

3.4. – We end this section by the following lemma. Recall that the functor KZ gives a map
K( Oh,n)→ K(Hq,n). For any l-partition λ of n let Sλ be the corresponding Specht module
in Hq,n -mod, see [2, Definition 13.22] for its definition.

L 3.1. – In K(Hq,n), we have KZ([∆(λ)]) = [Sλ].

Proof. – Let R be any commutative ring over C. For any l-tuple z = (z, z1, . . . , zl−1)

of elements in R one defines the rational DAHA over R attached to Bn(l) with parameter
z in the same way as before. Denote it by HR,z,n. The standard modules ∆R(λ) are
also defined as before. For any (l + 1)-tuple u = (u, u1, . . . , ul) of invertible elements
in R the Hecke algebra HR,u,n over R attached to Bn(l) with parameter u is defined by
the same presentation as in Section 3.1. The Specht modules SR,λ are also well-defined
(see [2]). IfR is a field, we will write Irr(HR,u,n) for the set of isomorphism classes of simple
HR,u,n-modules.

Now, fix R to be the ring of holomorphic functions of one variable $. We choose
z = (z, z1, . . . , zl−1) to be given by

z = l$, zp = (sp+1 − sp)l$ + e$, 1 6 p 6 l − 1.

Write x = exp(−2π
√
−1$). Let u = (u, u1, . . . , ul) be given by

u = xl, up = εp−1xspl−(p−1)e, 1 6 p 6 l.

By [6, Theorem 4.12] the same definition as in Section 1.5 yields a well defined HR,u,n-mod-
ule

TR(λ) = KZR(∆R(λ)).
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It is a freeR-module of finite rank and it commutes with the base change functor by the exis-
tence and unicity theorem for linear differential equations, i.e., for any ring homomorphism
R→ R′ over C, we have a canonical isomorphism of HR′,u,n-modules

(3.6) TR′(λ) = KZR′(∆R′(λ)) ∼= TR(λ)⊗R R′.

In particular, for any ring homomorphism a : R → C. Write Ca for the vector space
C equipped with the R-module structure given by a. Let a(z), a(u) denote the images of
z, u by a. Note that we have Ha(z),n = HR,z,n ⊗R Ca and Ha(u),n = HR,u,n ⊗R Ca.
Denote the Knizhnik-Zamolodchikov functor ofHa(z),n by KZa(z) and the standard module
corresponding to λ by ∆a(z)(λ). Then we have an isomorphism of Ha(u),n-modules

TR(λ)⊗R Ca ∼= KZa(z)(∆a(z)(λ)).

Let K be the fraction field of R. By [10, Theorem 2.19] the category OK,z,n is split
semisimple. In particular, the standard modules are simple. We have

{TK(λ), λ ∈ Pn,l} = Irr(HK,u,n).

The Hecke algebra HK,u,n is also split semisimple and we have

{SK,λ, λ ∈ Pn,l} = Irr(HK,u,n),

see for example [2, Corollary 13.9]. Thus there is a bijectionϕ : Pn,l → Pn,l such that TK(λ)

is isomorphic toSK,ϕ(λ) for all λ. We claim thatϕ is identity. To see this, consider the algebra
homomorphism a0 : R → C given by $ 7→ 0. Then Ha0(u),n is canonically isomorphic to
the group algebra CBn(l), thus it is semi-simple. Let K be the algebraic closure of K. Let
R be the integral closure of R in K and fix an extension a0 of a0 to R. By Tit’s deformation
theorem (see for example [9, Section 68A]), there is a bijection

ψ : Irr(HK,u,n)
∼→ Irr(Ha0(u),n)

such that

ψ(TK(λ)) = TR(λ)⊗R Ca0
, ψ(SK,λ) = SR,λ ⊗R Ca0

.

By the definition of Specht modules we have SR,λ ⊗R Ca0
∼= λ as CBn(l)-modules. On the

other hand, since a0(z) = 0, by (3.6) we have the following isomorphisms

TR(λ)⊗R Ca0
∼= TR(λ)⊗R Ca0

∼= KZ0(∆0(λ))

= λ.

So ψ(TK(λ)) = ψ(SK,λ). Hence we have TK(λ) ∼= SK,λ. Since TK(λ) = TK(λ) ⊗K K is

isomorphic to SK,ϕ(λ) = SK,ϕ(λ) ⊗K K, we deduce that ϕ(λ) = λ. The claim is proved.

Finally, let m be the maximal ideal of R consisting of the functions vanishing at
$ = −1/el. Let R̂ be the completion of R at m. It is a discrete valuation ring with
residue field C. Let a1 : R̂ → R̂/mR̂ = C be the quotient map. We have a1(z) = h and
a1(u) = q. Let “K be the fraction field of R̂. Recall that the decomposition map is given by

d : K(H
K̂,u,n

)→ K(Hq,n), [M ] 7→ [L⊗
R̂

Ca1
].
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Here L is any free R̂-submodule of M such that L ⊗
R̂

“K = M . The choice of L does not
affect the class [L ⊗

R̂
Ca1

] in K(Hq,n). See [2, Section 13.3] for details on this map. Now,
observe that we have

d([S
K̂,λ

]) = [S
R̂,λ
⊗
R̂

Ca1 ] = [Sλ],

d([T
K̂

(λ)]) = [T
R̂

(λ)⊗
R̂

Ca1 ] = [KZ(∆(λ))].

Since “K is an extension of K, by the last paragraph we have [S
K̂,λ

] = [T
K̂

(λ)]. We deduce
that [KZ(∆(λ))] = [Sλ].

4. i-restriction and i-induction

We define in this section the i-restriction and i-induction functors for the cyclotomic
rational DAHA’s. This is done in parallel with the Hecke algebra case.

4.1. – Let us recall the definition of the i-restriction and i-induction functors for Hq,n. First
define the Jucy-Murphy elements J0, . . . , Jn−1 in Hq,n by

J0 = T0, Ji = q−1TiJi−1Ti for 1 6 i 6 n− 1.

Write Z(Hq,n) for the center of Hq,n. For any symmetric polynomial σ of n variables the
element σ(J0, . . . , Jn−1) belongs to Z(Hq,n) (cf. [2, Section 13.1]). In particular, if z is
a formal variable the polynomial Cn(z) =

∏n−1
i=0 (z − Ji) in Hq,n[z] has coefficients in

Z(Hq,n).

Now, for any a(z) ∈ C(z) let Pn,a(z) be the exact endo-functor of the category Hq,n -mod

that maps an objectM to the generalized eigenspace ofCn(z) inM with the eigenvalue a(z).

For any i ∈ Z/eZ the i-restriction functor and i-induction functor

Ei(n)H : Hq,n -mod→Hq,n−1 -mod, Fi(n)H : Hq,n−1 -mod→Hq,n -mod

are defined as follows (cf. [2, Definition 13.33]):

Ei(n)H =
⊕

a(z)∈C(z)

Pn−1,a(z)/(z−qi) ◦ E(n)H ◦ Pn,a(z),(4.1)

Fi(n)H =
⊕

a(z)∈C(z)

Pn,a(z)(z−qi) ◦ F (n)H ◦ Pn−1,a(z).(4.2)

We will write

EH

i =
⊕
n>1

Ei(n)H , FH

i =
⊕
n>1

Fi(n)H .(4.3)

They are endo-functors of Hq,N -mod. For each λ ∈ Pn,l set

aλ(z) =
∏
v∈Υλ

(z − qres(v)).

We recall some properties of these functors in the following proposition.
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P 4.1. – (1) The functors Ei(n)H , Fi(n)H are exact. The functor Ei(n)H is
biadjoint to Fi(n)H .

(2) For any λ ∈ Pn,l the element Cn(z) has a unique eigenvalue on the Specht module Sλ.
It is equal to aλ(z).

(3) We have

Ei(n)H ([Sλ]) =
∑

res(λ/µ)=i

[Sµ], Fi(n)H ([Sλ]) =
∑

res(µ/λ)=i

[Sµ].

(4) We have

E(n)H =
⊕
i∈Z/eZ

Ei(n)H , F (n)H =
⊕
i∈Z/eZ

Fi(n)H .

Proof. – Part (1) is obvious. See [2, Theorem 13.21(2)] for (2) and [2, Lemma 13.37] for
(3). Part (4) follows from (3) and [2, Lemma 13.32].

4.2. – By Lemma 1.3(1) we have an algebra isomorphism

γ : Z( Oh,n)
∼→ Z(Hq,n).

So there are unique elements K1, . . . ,Kn ∈ Z( Oh,n) such that the polynomial

Dn(z) = zn +K1z
n−1 + · · ·+Kn

maps toCn(z) by γ. Since the elementsK1, . . . ,Kn act on simple modules by scalars and the
category Oh,n is artinian, every moduleM in Oh,n is a direct sum of generalized eigenspaces
of Dn(z). For a(z) ∈ C(z) let Qn,a(z) be the exact endo-functor of Oh,n which maps an
object M to the generalized eigenspace of Dn(z) in M with the eigenvalue a(z).

D 4.2. – The i-restriction functor and the i-induction functor

Ei(n) : Oh,n → Oh,n−1, Fi(n) : Oh,n−1 → Oh,n

are given by

Ei(n) =
⊕

a(z)∈C(z)

Qn−1,a(z)/(z−qi) ◦ E(n) ◦Qn,a(z),

Fi(n) =
⊕

a(z)∈C(z)

Qn,a(z)(z−qi) ◦ F (n) ◦Qn−1,a(z).

We will write

(4.4) Ei =
⊕
n>1

Ei(n), Fi =
⊕
n>1

Fi(n).

We have the following proposition.

P 4.3. – For any i ∈ Z/eZ there are isomorphisms of functors

KZ ◦Ei(n) ∼= Ei(n)H ◦KZ, KZ ◦Fi(n) ∼= Fi(n)H ◦KZ .

Proof. – Since γ(Dn(z)) = Cn(z), by Lemma 1.3(2) for any a(z) ∈ C(z) we have

KZ ◦Qn,a(z)
∼= Pn,a(z) ◦KZ .

So the proposition follows from Theorem 2.1 and Corollary 2.3.
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The next proposition is the DAHA version of Proposition 4.1.

P 4.4. – (1) The functors Ei(n), Fi(n) are exact. The functor Ei(n) is
biadjoint to Fi(n).

(2) For any λ ∈ Pn,l the unique eigenvalue of Dn(z) on the standard module ∆(λ) is aλ(z).
(3) We have the following equalities

(4.5) Ei(n)([∆(λ)]) =
∑

res(λ/µ)=i

[∆(µ)], Fi(n)([∆(λ)]) =
∑

res(µ/λ)=i

[∆(µ)].

(4) We have
E(n) =

⊕
i∈Z/eZ

Ei(n), F (n) =
⊕
i∈Z/eZ

Fi(n).

Proof. – (1) This is by construction and by Proposition 2.9.

(2) Since a standard module is indecomposable, the element Dn(z) has a unique eigen-
value on ∆(λ). By Lemma 3.1 this eigenvalue is the same as the eigenvalue of Cn(z) on Sλ.

(3) Let us prove the equality for Ei(n). The Pieri rule for the group Bn(l) together with
Proposition 1.6(2) yields

(4.6) E(n)([∆(λ)]) =
∑
|λ/µ|=1

[∆(µ)], F (n)([∆(λ)]) =
∑
|µ/λ|=1

[∆(µ)].

So we have

Ei(n)([∆(λ)]) =
⊕

a(z)∈C[z]

Qn−1,a(z)/(z−qi)(E(n)(Qn,a(z)([∆(λ)])))

= Qn−1,aλ(z)/(z−qi)(E(n)(Qn,aλ(z)([∆(λ)])))

= Qn−1,aλ(z)/(z−qi)(E(n)([∆(λ)]))

= Qn−1,aλ(z)/(z−qi)(
∑
|λ/µ|=1

[∆(µ)])

=
∑

res(λ/µ)=i

[∆(µ)].

The last equality follows from the fact that for any l-partition µ such that |λ/µ| = 1 we have
aλ(z) = aµ(z)(z − qres(λ/µ)). The proof for Fi(n) is similar.

(4) It follows from part (3) and (4.6).

C 4.5. – Under the isomorphism θ in (3.5) the operators Ei and Fi on K( Oh,N)

go respectively to the operators ei and fi on F s. When i runs over Z/eZ they yield an action
of ŝle on K( Oh,N) such that θ is an isomorphism of ŝle-modules.

Proof. – This is clear from Proposition 4.4(3) and from (3.3).

5. s̃le-categorification

In this section, we construct an s̃le-categorification on the category Oh,N (Theorem 5.1).
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5.1. – Recall that we put q = exp( 2π
√
−1
e ) and P denotes the weight lattice of s̃le. Let C be

a C-linear artinian abelian category. For any functor F : C → C and any X ∈ End(F ), the
generalized eigenspace ofX acting onF with eigenvalue a ∈ C will be called the a-eigenspace
of X in F . By [15, Definition 5.29] an s̃le-categorification on C is the data of

(a) an adjoint pair (U, V ) of exact functors C → C ,
(b) X ∈ End(U) and T ∈ End(U2),
(c) a decomposition C =

⊕
τ∈P C τ ,

such that, set Ui (resp. Vi) to be the qi-eigenspace of X in U (resp. in V )(1) for i ∈ Z/eZ, we
have

(1) U =
⊕

i∈Z/eZ Ui,
(2) the endomorphisms X and T satisfy

(1UT ) ◦ (T1U ) ◦ (1UT ) = (T1U ) ◦ (1UT ) ◦ (T1U ),

(T + 1U2) ◦ (T − q1U2) = 0,(5.1)

T ◦ (1UX) ◦ T = qX1U ,

(3) the action of ei = Ui, fi = Vi on K( C) with i running over Z/eZ gives an integrable
representation of ŝle.

(4) Ui( C τ ) ⊂ C τ+αi and Vi( C τ ) ⊂ C τ−αi ,
(5) V is isomorphic to a left adjoint of U .

5.2. – We construct an s̃le-categorification on Oh,N in the following way. The adjoint pair
will be given by (E,F ). To construct the part (b) of the data we need to go back to Hecke
algebras. Following [7, Section 7.2.2] let XH be the endomorphism of EH given on E(n)H

as the multiplication by the Jucy-Murphy element Jn−1. Let TH be the endomorphism of
(EH )2 given onE(n)H ◦E(n−1)H as the multiplication by the element Tn−1 in Hq,n. The
endomorphisms XH and TH satisfy the relations (5.1). Moreover the qi-eigenspace of XH

in EH and FH gives respectively the i-restriction functor EH
i and the i-induction functor

FH
i for any i ∈ Z/eZ.

By Theorem 2.1 we have an isomorphism KZ ◦E ∼= EH ◦KZ. This yields an isomorphism

End(KZ ◦E) ∼= End(EH ◦KZ).

By Proposition 1.6(1) the functorE maps projective objects to projective ones, so Lemma 2.4
applied to O1 = O2 = Oh,N and K = L = E yields an isomorphism

End(E) ∼= End(KZ ◦E).

Composing it with the isomorphism above gives a ring isomorphism

(5.2) σE : End(E)
∼→ End(EH ◦KZ).

Replacing E by E2 we get another isomorphism

σE2 : End(E2)
∼→ End((EH )2 ◦KZ).

(1) Here X acts on V via the isomorphism End(U) ∼= End(V )op given by adjunction, see [7, Section 4.1.2] for the
precise definition.
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The data of X ∈ End(E) and T ∈ End(E2) in our s̃le-categorification on Oh,N will be
provided by

X = σ−1
E (XH 1KZ), T = σ−1

E2 (TH 1KZ).

Finally, the part (c) of the data will be given by the block decomposition of the cate-
gory Oh,N. Recall from [13, Theorem 2.11] that the block decomposition of the category
Hq,N -mod is

Hq,N -mod =
⊕
τ∈P

(Hq,N -mod)τ ,

where (Hq,N -mod)τ is the subcategory generated by the composition factors of the Specht
modulesSλ withλ running over l-partitions of weight τ . By convention (Hq,N -mod)τ is zero
if such λ does not exist. By Lemma 1.3 the functor KZ induces a bijection between the blocks
of the category Oh,N and the blocks of Hq,N -mod. So the block decomposition of Oh,N is

Oh,N =
⊕
τ∈P

( Oh,N)τ ,

where ( Oh,N)τ is the block corresponding to (Hq,N -mod)τ via KZ.

5.3. – Now we prove the following theorem.

T 5.1. – The data of

(a) the adjoint pair (E,F ),
(b) the endomorphisms X ∈ End(E), T ∈ End(E2),
(c) the decomposition Oh,N =

⊕
τ∈P ( Oh,N)τ

is an s̃le-categorification on Oh,N.

Proof. – First, we prove that for any i ∈ Z/eZ the qi-generalized eigenspaces of X in E
and F are respectively the i-restriction functor Ei and the i-induction functor Fi as defined
in (4.4). Recall from Proposition 4.1(4) and Proposition 4.4(4) that we have

E =
⊕
i∈Z/eZ

Ei and EH =
⊕
i∈Z/eZ

EH

i .

By the proof of Proposition 4.3 we see that any isomorphism

KZ ◦E ∼= EH ◦KZ

restricts to an isomorphism KZ ◦Ei ∼= EH
i ◦KZ for each i ∈ Z/eZ. So the isomorphism σE

in (5.2) maps Hom(Ei, Ej) to Hom(EH
i ◦KZ, EH

j ◦KZ). Write

X =
∑

i,j∈Z/eZ

Xij , XH 1KZ =
∑

i,j∈Z/eZ

(XH 1KZ)ij

with Xij ∈ Hom(Ei, Ej) and (XH 1KZ)ij ∈ Hom(EH
i ◦KZ, EH

j ◦KZ). We have

σE(Xij) = (XH 1KZ)ij .

Since EH
i is the qi-eigenspace of XH in EH , we have (XH 1KZ)ij = 0 for i 6= j and

(XH 1KZ)ii − qi is nilpotent for any i ∈ Z/eZ. Since σE is an isomorphism of rings, this
implies that Xij = 0 and Xii − qi is nilpotent in End(E). So Ei is the qi-eigenspace of X
in E. The fact that Fi is the qi-eigenspace of X in F follows from adjunction.
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Now, let us check the conditions (1)–(5):
(1) It is given by Proposition 4.4(4).
(2) Since XH and TH satisfy relations in (5.1), the endomorphisms X and T also satisfy

them. Because these relations are preserved by ring homomorphisms.
(3) It follows from Corollary 4.5.
(4) By the definition of ( Oh,N)τ and Lemma 3.1, the standard modules in ( Oh,N)τ are all

the ∆(λ) such that wt(λ) = τ . By (3.4) if µ is an l-partition such that res(λ/µ) = i then
wt(µ) = wt(λ) + αi. Now, the result follows from (4.5).

(5) This is Proposition 2.9.

6. Crystals

Using the s̃le-categorification in Theorem 5.1 we construct a crystal on the classes of
simple objects in Oh,N and prove that it coincides with the crystal of the Fock space F s

(Theorem 6.3).

6.1. – A crystal (or more precisely, an s̃le-crystal) is a set B together with maps

wt : B → P, ẽi, f̃i : B → B t {0}, εi, ϕi : B → Z t {−∞},

such that

– we have ϕi(b) = εi(b) + 〈α∨i ,wt(b)〉,
– if ẽib ∈ B, then wt(ẽib) = wt(b) + αi, εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1,
– if f̃ib ∈ B, then wt(f̃ib) = wt(b)− αi, εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1,
– let b, b′ ∈ B, then f̃ib = b′ if and only if ẽib′ = b,
– if ϕi(b) = −∞, then ẽib = 0 and f̃ib = 0.

Let b be the Lie subalgebra of s̃le generated by the elements ei, i ∈ Z/eZ and t. We say
that an s̃le-module V is b-locally finite if

– we have V =
⊕

µ∈P Vµ, where Vµ = {v ∈ V : hv = µ(h)v, ∀ h ∈ t},
– for any v ∈ V , the b-submodule of V generated by v is finite dimensional.

Let V be a b-locally finite s̃le-module. For any nonzero vector v ∈ V and any i ∈ Z/eZ we
set

li(v) = max{l ∈ N : eli(v) 6= 0}.
Write li(0) = −∞. For l > 0 let

V <li = {v ∈ V : li(v) < l}.

A weight basis ofV is a basisB ofV such that each element ofB is a weight vector. Following
A. Berenstein and D. Kazhdan (cf. [3, Definition 5.30]), a perfect basis of V is a weight basis
B together with maps ẽi, f̃i : B → B t {0} for i ∈ Z/eZ such that

– for b, b′ ∈ B we have f̃ib = b′ if and only if ẽib′ = b,

– we have ẽi(b) 6= 0 if and only if ei(b) 6= 0,
– if ei(b) 6= 0 then we have

(6.1) ei(b) ∈ C∗ẽi(b) + V
<li(b)−1
i .
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We denote it by (B, ẽi, f̃i). For such a basis let wt(b) be the weight of b, let εi(b) = li(b) and
let

ϕi(b) = εi(b) + 〈α∨i ,wt(b)〉
for all b ∈ B. The data

(6.2) (B,wt, ẽi, f̃i, εi, ϕi)

is a crystal. We will always attach this crystal structure to (B, ẽi, f̃i). We call b ∈ B a
primitive element if ei(b) = 0 for all i ∈ Z/eZ. Let B+ be the set of primitive elements
in B. Let V + be the vector space spanned by all the primitive vectors in V . The following
lemma is [3, Claim 5.32].

L 6.1. – For any perfect basis (B, ẽi, f̃i) the set B+ is a basis of V +.

Proof. – By definition we have B+⊂V +. Given a vector v ∈ V +, there exist ζ1, . . . , ζr ∈ C∗

and distinct elements b1, . . . , br ∈ B such that v =
∑r
j=1 ζjbj . For any i ∈ Z/eZ let

li = max{li(bj) : 1 6 j 6 r} and J = {j : li(bj) = li, 1 6 j 6 r}. Then by the third
property of perfect basis there exist ηj ∈ C∗ for j ∈ J and a vector w ∈ V <li−1 such that
0 = ei(v) =

∑
j∈J ζjηj ẽi(bj) + w. For distinct j, j′ ∈ J , we have bj 6= bj′ , so ẽi(bj) and

ẽi(bj′) are different unless they are zero. Moreover, since li(ẽi(bj)) = li − 1, the equality
yields that ẽi(bj) = 0 for all j ∈ J . So li = 0. Hence bj ∈ B+ for j = 1, . . . , r.

6.2. – Given an s̃le-categorification on a C-linear artinian abelian category C with the
adjoint pair of endo-functors (U, V ), X ∈ End(U) and T ∈ End(U2), assume that the
s̃le-moduleK( C) is b-locally finite, then one can construct a perfect basis ofK( C) as follows.
For i ∈ Z/eZ let Ui, Vi be the qi-eigenspaces of X in U and V . By definition, the action of
X restricts to each Ui. One can prove that T also restricts to endomorphism of (Ui)

2, see
for example the beginning of Section 7 in [7]. It follows that the data (Ui, Vi, X, T ) gives an
sl2-categorification on C in the sense of [7, Section 5.21]. By [7, Proposition 5.20] this implies
that for any simple object L in C , the object head(Ui(L)) (resp. soc(ViL)) is simple unless it
is zero.

LetB C be the set of isomorphism classes of simple objects in C . As part of the data of the
s̃le-categorification, we have a decomposition C = ⊕τ∈P C τ . For a simple module L ∈ C τ ,
the weight of [L] inK( C) is τ . HenceB C is a weight basis ofK( C). Now for i ∈ Z/eZ define
the maps

ẽi : B C → B C t {0}, [L] 7→ [head(UiL)],

f̃i : B C → B C t {0}, [L] 7→ [soc(ViL)].

P 6.2. – The data (B C , ẽi, f̃i) is a perfect basis of K( C).

Proof. – Fix i ∈ Z/eZ. Let us check the conditions in order. First, for two simple
modules L, L′ ∈ C , we have ẽi([L]) = [L′], if and only if 0 6= Hom(UiL,L

′) =

Hom(L, ViL
′), if and only if f̃i([L′]) = [L]. The second condition follows from the fact that

any non trivial module has a non trivial head. The third condition is [7, Proposition 5.20(d)].
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6.3. – Let B F s
be the set of l-partitions. In [11] this set is given a crystal structure. We will

call it the crystal of the Fock space F s.

T 6.3. – (1) The set

B Oh,N = {[L(λ)] ∈ K( Oh,N) : λ ∈ Pn,l, n ∈ N}

and the maps

ẽi : B Oh,N → B Oh,N t {0}, [L] 7→ [head(EiL)],

f̃i : B Oh,N → B Oh,N t {0}, [L] 7→ [soc(FiL)].

define a crystal structure on B Oh,N .
(2) The crystal B Oh,N given by (1) is isomorphic to the crystal B F s

.

Proof. – (1) The Fock space F s is a locally finite b-module. So applying Proposition 6.2
to the s̃le-categorification in Theorem 5.1 yields that (B Oh,N , ẽi, f̃i) is a perfect basis. There-
fore it defines a crystal structure on B Oh,N by (6.2).

(2) It is known thatB F s
is a perfect basis of F s. Identify the s̃le-modules F s andK( Oh,N).

By Lemma 6.1 the set B+
F s

and B+
Oh,N

are two weight bases of F +
s . So there is a bijection

ψ : B+
F s
→ B+

Oh,N
such that wt(b) = wt(ψ(b)). Since F s is a direct sum of highest weight

simple s̃le-modules, this bijection extends to an automorphism ψ of the s̃le-module F s. By
[3, Main Theorem 5.37] any automorphism of F s which maps B+

F s
to B+

Oh,N
induces an

isomorphism of crystals B F s
∼= B Oh,N .

R 6.4. – One can prove that if n < e then a simple module L ∈ Oh,n has finite
dimension over C if and only if the class [L] is a primitive element inB Oh,N . In the case n = 1,
we have Bn(l) = µl, the cyclic group, and the primitive elements in the crystal B F s

have
explicit combinatorial descriptions. This yields another proof of the classification of finite
dimensional simple modules of Hh(µl), which was first given by W. Crawley-Boevey and
M. P. Holland. See type A case of [8, Theorem 7.4].
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