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MONODROMY OF A FAMILY OF HYPERSURFACES

BY VinceENzo DI GENNARO anp Davibe FRANCO

ABSTRACT. — Let Y be an (m + 1)-dimensional irreducible smooth complex projective variety em-
bedded in a projective space. Let Z be a closed subscheme of Y, and 4 be a positive integer such that
Zz,v () is generated by global sections. Fix an integer d > § + 1, and assume the general divisor
X € |H°(Y,Zz,y(d))| is smooth. Denote by H™(X; Q)*s the quotient of H™(X; Q) by the coho-
mology of Y and also by the cycle classes of the irreducible components of dimension m of Z. In the
present paper we prove that the monodromy representation on H™ (X ; Q)2 for the family of smooth
divisors X € |H°(Y,Zz,v(d))| is irreducible.

REsSUME. — Soit Y une variété projective complexe lisse irréductible de dimension m + 1, plongée
dans un espace projectif. Soit Z un sous-schéma fermé de Y, et soit § un entier positif tel que Zz,y (§)
soit engendré par ses sections globales. Fixons un entier d > §+ 1, et supposons que le diviseur général
X € |H°(Y,Zz,y(d))| soit lisse. Désignons par H™(X; Q)" le quotient de H™(X; Q) par la coho-
mologie de Y et par les classes des composantes irréductibles de Z de dimension m. Dans cet article,
nous prouvons que la représentation de monodromie sur H™ (X; Q)2 pour la famille des diviseurs
lisses X € |H°(Y,Zz,y(d))| est irréductible.

1. Introduction

In this paper we provide an affirmative answer to a question formulated in [9].

LetY C PV (dim Y = m + 1) be an irreducible smooth complex projective variety em-
bedded in a projective space PV, Z be a closed subscheme of Y, and § be a positive integer
such that Zz y () is generated by global sections. Assume that for d >> 0 the general divisor
X € |H(Y,Zzy(d))| is smooth. In the paper [9] it is proved that this is equivalent to the
fact that the strata Z;, = {zx € Z : dim T, Z = j}, where T,,Z denotes the Zariski tangent
space, satisfy the following inequality:

(1) dim Zg;3 +j <dimY —1 forany j<dimY.
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518 V. DI GENNARO AND D. FRANCO

This property implies that, for any d > 4, there exists a smooth hypersurface of degree d
which contains Z ([9], 1.2. Theorem).

It is generally expected that, for d > 0, the Hodge cycles of the general hypersurface
X € |H°(Y,Zz,y(d))| depend only on Z and on the ambient variety Y. A very precise con-
jecture in this direction was made in [9]:

CONJECTURE 1 (Otwinowska - Saito). — Assume deg X > § + 1. Then the monodromy
representation on H™(X; Q)2 for the family of smooth divisors X € |H°(Y, Oy (d))| con-
taining Z as above is irreducible.

We denote by H™ (X ; Q)%™ the subspace of H™(X;Q)"*" generated by the cycle classes of
the maximal dimensional irreducible components of Z modulo the image of H™(Y;Q)
(using the orthogonal decomposition H™(X;Q) = H™(Y;Q) L1 H™(X;Q)"™) if
m = 2dim Z, and H™(X;Q)%" = 0 otherwise, and we denote by H™(X; Q)2 the
orthogonal complement of H™(X; Q)%™ in H™(X;Q)¥*". The conjecture above cannot
be strengthened because, even in Y = P3, there exist examples for which dim H™(X; Q)2
is arbitrarily large and the monodromy representation associated to the linear system
|HO(Y,Zzy(d))] is diagonalizable.

The authors of [9] observed that a proof for such a conjecture would confirm the ex-
pectation above and would reduce the Hodge conjecture for the general hypersurface
X; € |[H°(Y,Zz,y(d))| to the Hodge conjecture for Y. More precisely, by a standard argu-
ment, from Conjecture | it follows that when m = 2 dim Z and the vanishing cohomology
of the general X; € |[H*(Y,Zzy(d))| (d > & + 1) is not of pure Hodge type (m/2,m/2),
then the Hodge cycles in the middle cohomology of X; are generated by the image of the
Hodge cycles on Y together with the cycle classes of the irreducible components of Z. So,
the Hodge conjecture for X; is reduced to that for Y (compare with [9], Corollary 0.5).
They also proved that the conjecture is satisfied in the range d > 6 + 2, or ford = d + 1 if
hyperplane sections of Y have non trivial top degree holomorphic forms ([9], 0.4. Theorem).
Their proof relies on Deligne’s semisimplicity Theorem and on Steenbrink’s Theory for
semistable degenerations.

Arguing in a different way, we prove in this paper Conjecture | in full. More precisely,
avoiding degeneration arguments, in Section 2 we will deduce Conjecture 1 from the follow-
ing:

THEOREM 1.1. — Fixintegers1 < k < d, andlet W = GNX CY be a complete intersec-
tion of smooth divisors G € |H°(Y, Oy (k))| and X € |H°(Y, Oy (d))|. Then the monodromy
representation on H™ (X ; Q)28, for the family of smooth divisors X € |H°(Y, Oy (d))| con-
taining W' is irreducible.

Here we define H™(X; Q)Y%;, in a similar way as before, i.e. as the orthogonal complement
in H™(X; Q)" of the image H™(X; Q)}%" of the map obtained by composing the natural
maps H,,(W;Q) — H,(X;Q) = H™(X;Q) — H™(X;Q)*™".

The proof of Theorem 1.1 will be given in Section 4 and consists in a Lefschetz type
argument applied to the image of the rational map on Y associated to the linear system
|H°(Y, Zw,y (d))|, which turns out to have at worst isolated singularities. This approach was
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started in our paper [2] where we proved a particular case of Theorem 1.1, but the proof
given here is independent and much simpler.

We begin by proving Conjecture |1 as a consequence of Theorem 1.1, and next we prove
Theorem 1.1.

2. Proof of Conjecture 1 as a consequence of Theorem 1.1.
We keep the same notation we introduced before, and need further preliminaries.

NotaTIONS 2.1. — (i) Let Vs € HO(Y,Zzy(5)) be a subspace generating Zz y (§), and
VaC H(Y,Zzy(d)) (d>d+1) be a subspace containing the image of
Vs @ HO(PN,Opn(d — 6)) in H*(Y,Zzy(d)). Let G € |Vs| and X € |Vy| be divisors.
Put W := G n X. From condition (1), and [9], 1.2. Theorem, we know that if G and X are
general then they are smooth. Moreover, by ([4], p. 133, Proposition 4.2.6. and proof), we
know that if G and X are smooth then W has only isolated singularities.

(ii) In the case m > 2, fix a smooth G € |V;|. Let H € |H°(PN,Opn(1))| be a gen-
eral hypersurface of degree | > 0, and put Z’ := Z N H and G’ := G N H. Denote by
Vi C H%G',Zz ¢ (d)) the restriction of V; on G', and by V) C H°(G,Zz,:(d)) the re-
striction of Vz on G. Since H*(G,Zz,¢(d)) € H°(G', Iz ¢+ (d)), we may identify V' = V.
Put W' := W n H e |V;|. Similarly as we did for the triple (Y, X, Z), using the orthogo-
nal decomposition H™ 2(W';Q) = H™ 2(G’;Q) L H™ 2(W’;Q)¥®", we define the sub-
spaces H™~2(W'; Q)%™ and H™2(W';Q)2g, of H™~2(W’; Q) with respect to the triple
(G, W', Z"). Passing from (Y, X, Z) to (G', W', Z') will allow us to prove Conjecture | ar-
guing by induction on m (see the proof of Proposition 2.4 below).

(i) Let o : W — |[VJ| W C G x |V}']) be the universal family parametrizing the di-
visors W = GN X € |V]|. Denote by o : W — W a desingularization of W, and by
U, C |V;'| a nonempty open set such that the restriction (¢ 0 o)y, : (¢ 0 o)~ (Uy,) — U,
is smooth. Next, let ¢ : W — |V;| W' C G x |V}]) be the universal family parametriz-
ing the divisors W/ = W N H € |VJ|, and denote by U, C |V]| a nonempty open set
such that the restriction ¢y, : ¢¥~'(Uy) — Uy is smooth. Shrinking U, and Uy, if nec-
essary, we may assume U := U, = Uy, C |V)| = |V]|. Forany t € U put W, := ¢~ 1(t),
W, := o= }(W,), and W/ := ¢~1(t). Observe that W, N Sing(W) C Sing(W}), so we may
assume W) = W, N H C W;\Sing(W;) C Wt. Denote by ¢; and i; the inclusion maps
W] — W, and W] — W,. The pull-back maps ; : H™2(W;;Q) — H™ 2(W/; Q) give
rise to a natural map 7* : R™2((p 0 0)7)«Q — R™ ?(¢1y).Q between local systems on
U, showing that &(}) is globally invariant under the monodromy action on the cohomology
of the smooth fibers of 4. Finally, we recall that the inclusion map ¢; defines a Gysin map
¢ Hy (W Q) — Hpp—o(W/; Q) (see [5], p. 382, Example 19.2.1).

REMARK 2.2. — Fix a smooth G € |V5|, and assume m > 2. The linear system |Vy| in-
duces an embedding of G\ Z in some projective space: denote by I the image of G\ Z through
this embedding. Since G\ Z is irreducible, then also I' is, and so is its general hyperplane sec-
tion, which is isomorphic to (GNX)\Z via |V4|. So we see that, when m > 2, for any smooth
G € |Vs| and any general X € |V, one has that W\ Z is irreducible. In particular, when
m > 2, then also W is irreducible.
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LEMMA 2.3. — Fix a smooth G € |V;s|, and assume m > 2. Then, for a general t € U, one
has S(iy) = S(PD o «}), and the map PD o i is injective ( PD means “Poincaré duality”:
Hop 2(W(;Q) = H™2(W/;Q)).

Proof. — By ([13], p. 385, Proposition 16.23) we know that I(Z}) is equal to the image of
the pull-back H™~2(W;\Sing(W;); Q) — H™~2(W/; Q). On the other hand, by ([3], p. 157
Proposition 5.4.4., and p. 158 (PD)) we have natural isomorphisms involving intersection
cohomology groups:

2 H™ (W, \Sing(W;); Q) = TH™*(W,) = ITH™(W)"
> H™(Wy; Q)Y = Hp, (Wy; Q).

So we may identify the pull-back H™~2(W;\Sing(W;); Q) — H™~2(W/; Q) with PD o .}.
This proves that (7)) = (PDo «f). Moreover, since W/ 1is smooth, then
ITH™2(W/}) =2 H™2(W/;Q) (3], p. 157). So, from (2), we may identify PD o .} with
the natural map ITH™2(W,) — TH™ ?(W, N H), which is injective in view of Lefschetz
Hyperplane Theorem for intersection cohomology ([3], p. 158 (I), and p. 159, Theorem
5.4.6) (recall that W} = W, N H). O

We are in position to prove Conjecture 1.

Fix a smooth G € |Vs|, and a general X € |V4|. Put W = G n X. Since the mon-
odromy group of the family of smooth divisors X € |H°(Y, Oy (d))| containing W is a
subgroup of the monodromy group of the family of smooth divisors X € |H°(Y, Oy (d))|
containing Z, in order to deduce Conjecture | from Theorem 1.1, it suffices to prove that
H™(X; Q)2 = H™(X;Q)P. Equivalently, it suffices to prove that H™(X;Q)}" =
H™(X;Q)y%". This is the content of the following:

PROPOSITION 2.4. — For any smooth G € |Vs| and any general X € |Vy|, one has
H™(X; Q)" = H™(X; Q)"

Proof. — First we analyze the cases m = 1 and m = 2, and next we argue by induction
onm > 2 (recall that dim Y = m + 1).

The case m = 1 is trivial because in this case dim Z < dim W = 0.

Next assume m = 2. In this case dim Y = 3 and dim Z < 1. Denote by Z4,..., 2
(h > 0) the irreducible components of Z of dimension 1 (if there are). Fix a smooth G € |Vj|
and a general X € |V, andput W = GNX = Z; U---U Z, U, where C is the resid-
ual curve, with respect to Z; U - - - U Z, in the complete intersection W. By Remark 2.2 we
know that C is irreducible. Then, as (co)cycle classes, Z1, . .., Z, C generate H?(X; Q)yan,
and Z1,...,Z, generate H*(X;Q)¥". Since Z; + --- + Z» + C = §Hx in H*(X;Q)
(Hx= general hyperplane section of X in PV), and this cycle comes from H2(Y;Q), then
Zi+ -+ Zp,+C = 0in H*(X;Q)*", and so H*(X; Q)%™ = H?(X;Q)y#". This con-
cludes the proof of Proposition 2.4 in the case m = 2.

Now assume m > 2 and argue by induction on m. First we observe that the intersection
pairing on H™~2(W’; Q)%™ is non-degenerate: this follows from Hodge Index Theorem,
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because the cycles in H™~2(W’; Q)%™ are primitive and algebraic. So we have the following
orthogonal decomposition:

(3) Hm—2(W/;Q) — Hm—2(G/;Q) 1 Hm_Q(WI;Q)}a,n 1 Hm_2(WI;Q)j_a§/-

Let J be the local system on U with fibre given by H™~2(G’; Q) L H™2(W';Q)%". We
claim that:

() () = 7.

We will prove (4) shortly after. From (4) and Lemma 2.3 we get an isomorphism:
H,(W;Q) & H™"%(G;Q) L H™2(W';Q)%". Taking into account that by Lefschetz
Hyperplane Theorem we have H™~2(Y;Q) = H™ %(G; Q) = H™ 2(G’;Q), and that the
Gysin map H,,,(Z;Q) — H,,—2(Z'; Q) is bijective (because H,,(Z; Q) and H,,_2(Z'; Q)
are simply generated by the components which are of dimension m or m — 2 of Z and
Z' (if there are)), one sees that the natural map H,,(W;Q) — H,,(X;Q) & H™(X;Q)
sends H™ %(G";Q) in H™(Y;Q), and H™2(W/;Q)%™ in H™(X;Q)%¥". This proves
H™(X; Q)%™ 2 H™(X;Q)jp". Since the reverse inclusion is obvious, it follows that
H™(X; Q)% = H™(X; Q)3

So, to conclude the proof of Proposition 2.4, it remains to prove claim (4). To this
purpose first notice that I(z}) contains H™~2(W/; Q)%", because, by Lemma 2.3, we
have $(7}) = S(PD o }), and S(PD o ) 2 H™ 2(W/;Q)E" in view of the quoted
isomorphism H,,(Z;Q) = H,,_2(Z'; Q). Moreover S(i}) contains H™~2(G’; Q) because
H™2(G";Q) 2 H™ %(G;Q), and H™ 2(G; Q) is contained in I(i}). Therefore we obtain
$(t*) 2 J, from which we deduce that $(i*) = J. In fact, otherwise, since by induction
H™=2(W/{; Q) is irreducible, from (3) it would follow that $(i*) = R™2(¢y).Q. This
is impossible because for [ > 0 the dimension of H™~2(W/; Q) is arbitrarily large (by the
way, we notice that the same argument proves that 7 is nothing but the invariant part of

Rm72(¢|U)*Q)- O

3. A monodromy theorem

In this section we prove a monodromy theorem (see Theorem 3.1 below), which we will
use in next section for proving Theorem 1.1, and that we think of independent interest.

Let @ C P be an irreducible, reduced, non-degenerate projective variety of dimension
m + 1 (m > 0), with isolated singular points ¢1,...,q.. Let L € G(1,P*) be a general
pencil of hyperplane sections of @), and denote by @1, the blowing-up of @ along the base
locus of L, and by f : Q@ — L the natural map. The ramification locus of f is a finite set
{q1,---,¢s} := Sing(Q)U{gr+1,---,4s}, where {g,+1, - . ., gs } denotes the set of tangencies
of the pencil. Set a; := f(g;), 1 <14 < s (compare with [12], p. 304). The restriction map f :
Qr\f'({a1,...,as}) — L\{ai,...,as} is a smooth proper map. Hence the fundamental
group 71 (L\{a1,...,as},t) (t = general point of L) acts by monodromy on Q; := f~1(¢),
and so on H™(Qy; Q). By [10], p. 165-167, we know that f : Qr\f *({as,...,as}) —
L\{ay,...,as} induces an orthogonal decomposition: H™(Q;; Q) = I L V, where I is the
subspace of the invariant cocycles, and V is its orthogonal complement.
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In the case @ is smooth, a classical basic result in Lefschetz Theory states that V' is gener-
ated by “standard vanishing cycles” (i.e. by vanishing cycles corresponding to the tangencies
of the pencil). This implies the irreducibility of V' by standard classical reasonings ([7], [13]).
Now we are going to prove that it holds true also when @ has isolated singularities. This is the
content of the following Theorem 3.1, for which we did not succeed in finding an appropriate
reference (for a related and somewhat more precise statement, see Proposition 3.4 below).

THEOREM 3.1. — Let @ C P be an irreducible, reduced, non-degenerate projective variety
of dimension m + 1 > 1, with isolated singularities, and Q, be a general hyperplane section
of Q. Let H™(Q4; Q) = I L V be the orthogonal decomposition given by the monodromy
action on the cohomology of Qy, where I denotes the invariant subspace. Then V is generated,
via monodromy, by standard vanishing cycles.

REMARK 3.2. — (i) For a particular case of Theorem 3.1, see [12], Theorem (2.2).

(i) When @ is a curve, i.e. when m = 0, then Theorem 3.1 follows from the well-known
fact that the monodromy group is the full symmetric group (see [1], p. 111). So we assume
from now on that m > 1.

(i) When @ is a cone over a degenerate and necessarily smooth subvariety of P, then
f : QL — L has only one singular fiber f~1(a;) (i.e. s = 1). In this case 7 (L\{a1},t)
is trivial. Therefore we have that H™(Q;; Q) = I, V = 0, and Theorem 3.1 follows.

Before proving Theorem 3.1, we need some preliminaries. We keep the same notation we
introduced before.

NortaTIONS 3.3. — (i) Let Ry, — @ be a desingularization of Q). The decompo-
sition H™(Q¢;Q) = I L V can be interpreted via Ry as I = j*(H™(Rr;Q)) and
V = Ker(H™(Q;Q) — H™2(Rr;Q)) = Ker(Hn(Q;Q) — Hp(Rr;Q)), where j
denotes the inclusion ; C Ry. Using standard arguments (compare with [13], p. 325,
Corollaire 14.23) one deduces a natural isomorphism:

®) V 2 S(Hpt1 (R — 97 (t1), Q; Q) — Hp(Qr;Q)),

where g : Ry, — L denotes the composition of R, — @ with f : Q@ — L,andt; # ¢t
another regular value of g.

(ii) For any critical value a; of L fix a closed disk A; C L\{t;} = C with center a; and
radius 0<p<1l. As in [7], (5.3.1) and (5.3.2), one may prove that
Hpy1(Rr — 971 (1), @ Q) = @5 Hin+1(97 1 (A4), 97 (@i + p); Q). By (5) we have:

(©) V=Vito Vi,

where we denote by V; the image in H™(Q:;Q) =  H,(9 '(a; +p);Q) of each
Hpni1(971(A), 97 ai + p); Q). Whenr + 1 < i < s, we recognize in V; € H™(Qy; Q)
the subspace generated by the standard vanishing cocycle §; corresponding to a tangent
hyperplane section of @ (see [7], [13], [12]).

(ii1) Consider again the pencil f : Q@ — L, and let P, be the blowing-up of P along the
base locus By,. Forany i € {1,...,s}, denote by D; C P, a closed ball with center ¢; and
small radius e. Define M; := S(H,,(f*(ai + p) N D;;Q) — Hp(f(ai + p); Q)), with
0 < p<e< 1. Since Hyp(f Ha; + p);Q) = H,\(Qi;Q) = H™(Qy; Q), we may regard
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M; C H™(Q:;Q). When 1 < 4 < r, M; represents the subspace spanned by the cocycles
“coming” from the singularities of @, and lying in the Milnor fibre f~!(a; + p) N D;. When
r+1 <1 < s,i.e. when a; corresponds to a tangent hyperplane section of @), then V; = M;.
In general we have:

@) ViCM; foranyi=1,...,s.

This is a standard fact, that one may prove as in ([8], (7.13) Proposition). For Reader’s con-
venience, we give the proof of property (7) in the appendix, at the end of the paper.

Now we are going to prove Theorem 3.1

Proof of Theorem 3.1. — Letw : F — P* (F C P*xP) be the universal family parametriz-
ing the hyperplane sections of @ C P, and denote by D C P* the discriminant locus of 7, i.e.
the set of hyperplanes H € IP* such that @ N H is singular. At least set-theoretically, we have
D=Q*UHU---UH,, where Q* denotes the dual variety of @, and H; denotes the dual
hyperplane of g; (compare with [12], p. 303).

When the codimension of Q* in P* is 1, denote by T3 the stalk at ¢ € P*\D of the lo-
cal subsystem of R™ (7|, -1 (p+\1p))+Q generated by the vanishing cocycle at general point of
Q* (compare with [9], p. 373, or [12], p. 306). If the codimension of @* in P* is > 2, put
T; := {0}. In order to prove Theorem 3.1 it suffices to prove that V. = T (T := T3). By
Deligne Complete Reducibility Theorem ([10], p. 167), we may write H™(Q; Q) =W & T,
for a suitable invariant subspace W. Now we claim the following proposition, which we will
prove below:

PROPOSITION 3.4. — The monodromy representation on the quotient local system with
stallk H™(Qy; Q) /Ty at t € P*\D is trivial.

By previous Proposition 3.4 it follows that for any g € 71 (L\{a1,...,as},t) and any
w € W there exists 7 € T such that w? = w+ 7. Then 7 = w9 —w € TNW = {0}, and so
w9 = w. Therefore W is invariant, i.e. W C I, andsince T C V and H™(Q;Q) =1V =
W @ T,thenwehave T = V. O

It remains to prove Proposition 3.4. To this aim, we need some preliminaries. We keep
the same notation we introduced before.

Consider again the universal family = : F — P* parametrizing the hyperplane sections
of @ C P. We will denote by H, the hyperplane parametrized by z € P*. Fix a point
g; € Sing(Q) (hence i € {1,...,r}). For general L, g; is not a base point of the pencil
defined by L, hence Q1 = Q over ¢;. Combined with the inclusion Q7 C F, we thus have a
natural lift of ¢; to a point of F, still denoted by g;.

REMARK 3.5. — If Q* is contained in H,; for some j € {1,...,r}, then Q* is degenerate
in P*, and so Q = Q** is a cone in P. Therefore, if () is not a cone, then Q* is not contained
in H; for any j € {1,...,r}. In this case, for a general line £ C H;, the set £ N Q* is finite,
and for any x € ¢, H, N Q has an isolated singularity at g;.
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NotaTiONS 3.6. — (i) Let £ C 'H; be a general line. For any v € £N Q*, denote by AS an
open disk of £ with center u and small radius. Consider the compact K := £\(U,csng- A2)-
In the appendix below (see Lemma 5.1) we prove that there is a closed ball Dy, C P* x P,
with positive radius and centered at q;, such that for any x € K the distance function
p € H,NQN Dy, — ||p— all €R has no critical points p # g; (we already proved a similar
result in [2], Lemma 3.4, (v)). By ([8], pp. 21-28) it follows that for any x € K there is a closed
ball C,; C P* centered at z, for which the induced map z € 7=(C,) N D,, — w(z) € Cy is
a Milnor fibration, with discriminant locus given by H; N C,.. Since K is compact, we may
cover it with finitely many of such C,’s. So we deduce the existence of a connected closed
tubular neighborhood K of K in P*, such that the map:

®) mcizem H(K)ND, — n(z) €K

defines a C°°-fiber bundle on K\'H;, and whose fibre W,El (t) = HyNnQNDy,,t € K\'H;, may
be identified with the Milnor fibre.

(i) Let M; be the local system with fibre M, at ¢t € K\D given by the image of
H,(H: N QN Dg;Q) in Hy(Hy N Q;Q) =2 H™(Q+; Q). Notice that, for any general
pencil L € G(1,P*), the local system M, extends, as a local system, M; on all L N (K\D)
(compare with Notations 3.3 (iii)). In particular we may assume M; = M, ;.

We are in position to prove Proposition 3.4. We keep the same notation we introduced
before.

Proof of Proposition 3.4. — Asin ([12], proof of Theorem (2.2)), we need to consider only
the action of 71 (P*\ (U1 <<, Hj): t)-

Consider the finite set A := £ (|, H;), and let a € A be a point. In view of Remark
3.2 (i), and Remark 3.5, we may assume that H, NQ has an isolated singularity at ¢;. Notice
that, a priori, it may happen that a € £ N Q* and so a ¢ K. But in any case, since H, N @
has an isolated singularity at ¢;, as before, for any a € A we may construct a closed ball
Dg‘f) C P* x P, with positive radius and centered at ¢;, and a closed ball C, C P* centered
at a, for which the induced map

) zem HCy)N ng?) —7(z) € C,

is a Milnor fibration with discriminant locus contained in H; U @Q*. We may assume
D, C Dé‘f) for any a € A, and, shrinking the disks AJ (v € ¢ N Q*) if necessary, we
may also assume that the interior K° of K meets the interior C? of each C,. Therefore, in
(K° N C\(H; U Q*), the bundle (8) appears as a subbundle of (9).

Observe that the image in H™(Qy; Q)/T; of the cohomology of (9) coincides with
(M, +T;)/T, on (K° N CJH\(H; U Q*). This implies that, in a suitable small analytic
neighborhood £ of ¢ in P*, the quotient local system (M, ; + T3)/T; extends on all £L\D.
Taking into account Picard-Lefschetz formula, and that the discriminant locus of (9) is
contained in H; U @*, we have that =1 (P*\D, t) acts trivially on (M, ¢ + T3)/T;. This holds
true for any ¢ € {1,--- ,r}. Hence, in view of (6) and (7), it follows that the monodromy
action is trivial on H™(Qy; Q)/T;. This concludes the proof of Proposition 3.4. O

By standard classical reasonings as in [7] or [13], from Theorem 3.1 we deduce the follow-
ing:
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COROLLARY 3.7. — V isirreducible.

Proof. — Let {0} # V' C V be an invariant subspace. As before, we may write
H™(Q; Q) =UeaV’, for a suitable invariant subspace U. Hence we have V = (VNU)® V".
On the other hand, one knows that V' is nondegenerate with respect to the intersection form
(+,-y on Q¢ ([10], p.167). Therefore, for somei € {r+1,...,s}, thereexistsT € (VNU)UV’
such that (r,d;) # 0 (Span(d;) := V;). From the Picard-Lefschetz formula it follows that
the tangential vanishing cycle ¢; liesin (V. N U) U V'. If §; € V N U, then by Theorem 3.1
we deduce V' = V N U (compare with [7], [8], [12], [13]), and this is in contrast with the
fact that {0} # V'. Hence §; € V', and by the same reason V/ = V. This proves that V is
irreducible. O

4. Proof of Theorem 1.1

4.1. The set-up

Consider the rational map Y --» P := P(H°(Y,Zw,y (d))*) defined by the linear system
|H(Y, Zw,y (d))|. By [5], 4.4, such a rational map defines a morphism Bly (Y) — P. We
denote by @ the image of this morphism, i.e.:

(10) Q = 3(Blw(Y) — P).

Set E = P(Oy(k) & Oy(d)). The surjections Oy (k) & Oy(d) — Oy(d) and
Oy (k) ® Oy(d) — Oy(k) giverise to divisors ® 2 Y C Fand & Y C E, with
O NI = @. The line bundle Og(O) is base point free and the corresponding morphism
E — P(H°(E,0g(0©))*) sends E to a cone over the Veronese variety of Y (i.e. over Y em-
bedded via |[H°(Y, Oy (d—k))|) in such a way that T is contracted to the vertex v, and © to a
general hyperplane section. In other words, we may view E, via E — P(H°(E, Og(0©))*), as
the blowing-up of the cone over the Veronese variety at the vertex, and I' as the exceptional
divisor ([6], p. 374, Example 2.11.4).

From the natural resolution of Zyyy: 0 — Oy(—k — d) — Oy(—k) & Oy(—d) —
Iwy — 0, we find that Biw (Y) = Proj(@izol'&,yy) is contained in E, and that
Ogp(© — dA) |51y (= Opiy (v)(1) (A == pull-back of the hyperplane section of Y C PN
through £ — Y'). Therefore:

(i) we have natural isomorphisms: H°(Y,Zwy(d)) = H°(Y,Oy @ Oy(d — k))
HO(E,0g(9));

(ii) the linear series |O| cut on Bly (Y) the linear series spanned by the strict transforms
X of the divisors X € |H°(Y, Zyw.y (d))|, and, sending E to a cone in P over a Veronese va-
riety, restricts to Bly (Y) to the map Blw (Y) — @ defined above. Hence we have a natural
commutative diagram:

Blw(Y) — E
oo N
Y > Q — P.
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By the same reason I' N Bly (Y) = G (G := the strict transform of G in Bly (Y)). Notice
that G = G since W is a Cartier divisor in G. Similarly X = X when G is not contained
in X;

(iii) since |©| contracts T to the vertex v.,, the map Bl (Y) — @ contracts G to
Voo € Q. Furthermore we have Bly (Y)\G 2 Q\{vw } and so the hyperplane sections of Q
not containing the vertex are isomorphic, via Bly (Y) — @, to the corresponding divisors
X € [H(Y, Iwy (d))];

(iv) by (ii) above, G is a smooth Cartier divisor in Blw (Y), hence G is disjoint with
Sing(Blw (Y)). On the other hand, from ([4], p. 133, Proposition 4.2.6. and proof) we
know that Sing(W) is a finite set. The singularities of Bly,(Y) must be contained in the
inverse image of Sing(W) via Bl (Y) — Y this is a finite set of lines none of which lying
in Sing(Blw (Y)) because G meets all such lines. Therefore Sing(Bly (Y)) must be a finite
set, and so also Sing(Q) is. Observe also that G is isomorphic to the tangent cone to Q at
Voo, and its degree is k(d — k)™deg Y. Hence @ is nonsingular at v, only when Y = Pm+1,
k =1and d = 2. In this case X is a smooth quadric, therefore dim H™(X; Q)% <1, and
Theorem 1.1 is trivial. So we may assume v, € Sing(Q).

4.2. The proof

We are going to prove Theorem 1.1, that is the irreducibility of the monodromy action on
H™(X; Q). The proof consists in an application of previous Corollary 3.7 to the variety
Q@ C P defined in (10). We keep the same notation we introduced in 4.1.

Proof of Theorem 1.1. — Consider the variety @@ C P defined in (10). By the description
ofit given in 4.1, we know that @ is an irreducible, reduced, non-degenerate projective variety
of dimension m + 1 > 2, with isolated singularities.

Let L € G(1,P*) be a general pencil of hyperplane sections of @, and denote by @, the
blowing-up of @) along the base locus of L, and by f : @ — L the natural map (com-
pare with Section 3). Denote by {a1,...,as} C L the set of the critical values of f. The
fundamental group w1 (L\{a1,...,as},t) (¢t = general point of L) acts by monodromy on
f~L(t), and so on H™(f~1(¢); Q), and this action induces an orthogonal decomposition:
H™(f~1(t);Q) = I L V, where I is the subspace of the invariant cocycles, and V is its
orthogonal complement. By Corollary 3.7 we know that V is irreducible.

On the other hand, in view of 4.1, we may identify f~!(¢) with a general
X; € |H°(Y,Zw.y(d))|, and the action of m1(L\{a1,...,as},t) with the action induced
on X; by a general pencil of divisors in |[H°(Y,Zw,y(d))]. So, in order to prove Theo-
rem 1.1, it suffices to prove that H™(X;; Q)% = V. This is equivalent to prove that
I = H™(Y;Q) + H™(X:; Q)yp". Since the inclusion H™(Y;Q) + H™(X,; Q)™ C Iis
obvious, to prove Theorem 1.1 it suffices to prove that:

(1n I'C H™(Y;Q) + H™(Xy; Qpp".
To this purpose, let B, C @ be the base locus of L. Since v, ¢ By, then we may re-
gard By, C Blw (Y) via Bl (Y) — Q. Notice that By, & X, N My, for a suitable general

M € |H(Y,Oy(d — k))|. Let Bly (Y), be the blowing-up of Bl (Y) along By, and
consider the pencil f; : Bl (Y)r — L induced from the natural map Blw (Y)r, — Qr.
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We have QL\f’l({al, N ,as}) = Blw(Y)L\fl_l({al, e ,as}). SO, lfRL — Blw(Y)L de-
notes a desingularization of Bly/ (YY), then the subspace I of the invariant cocycles can be
interpreted via Ry, as I = j*(H™(Ry;Q)), where j denotes the inclusion X; C Ry.

Denote by W and EZ the inverse images of W C Y and By, C Bly (Y) in Ry. The map
R; — Y induces an isomorphism «; : R \(W U Br) — Y\(W U (X; N My)). Consider
the following natural commutative diagram:

al || ai
H™Y;Q) & H™Y\(W U (X, N My));Q)
,3l l/jl

H™(X4;Q) B H™(X\(W U (X, N ML)); Q)

where « is the Gysin map, and fix c € I = j*(H™(Rp;Q)). Let ¢’ € H™(Rr; Q) such that
j*(c') = c. Since 81 0 ay 0 p1 = p3 o j*, then we have: p3(c) = (p3 o B0 a)(c’). Hence we
have ¢ — B(a(c')) € Ker ps = S(H™ (X, X \(W U (X; N Mp)); Q) — H™(Xy; Q)). Since
H™ (X4, X\(W U (X, N M1)); Q) = Hy(W U (X, 0 My); Q) (5] 3), p. 371), we deduce
c—pB(a(c)) € S(Hm (WU (X:NML); Q) — Hpn(Xy; Q) = H™(X;Q)). So to prove (1), it
suffices to prove that S(H,,(W U (X: N ML); Q) — H,(X:; Q) = H™(X,; Q)) is contained
in H"(Y; Q) + S(Hn(W; Q) — Hi(Xy; Q) = H™(Xy; Q)).

Since W has only isolated singularities, and M, is general, then W N My, and X; N My, are
smooth complete intersections. From Lefschetz Hyperplane Theorem and Hard Lefschetz
Theorem it follows that the natural map H,,,_1(W N Mp; Q) — Hp,—1(X: N Mp;Q) is in-
jective. Hence, from the Mayer-Vietoris sequence of the pair (W, X; N M},) we deduce that
the natural map H,,(W;Q) & H,,(X; N Mp; Q) — H,, (WU (X;NMp);Q) is surjective. So
to prove (11) it suffices to prove that S(H,,,(X: N M1;Q) — H,,(X; Q) =2 H™(X;Q)) is
contained in H™(Y; Q). And this follows from the natural commutative diagram:

Hp(Xe N Mp;Q) = H™ 2(X, N Mz; Q) & H™2(Y;Q) = Hypys(Y;Q)

! QU
Hp(X1;Q) = H™(X4; Q) — H™(Y;Q) = Hppa(Y;Q),
taking into account that p is an isomorphism by Lefschetz Hyperplane Theorem. This proves
(11), and concludes the proof of Theorem 1.1. O
5. Appendix

Proof of property (7). — First notice that since f~1(A;) — D — A, is a trivial fiber
bundle (D$= interior of D;), then the inclusion (f~1(a), f~1(a) N D;) < (f~1(A)),
f~1(A;) N D;) induces natural isomorphisms H,,,(f~1(a), f~1(a) N D;; Q) = H,,(f~1(As),

F Y A)ND; Q) foranya € A; (use[11], p. 200 and 258). So, from the natural commutative
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diagram:

Ho(f~Hai + 9); Q) 2 Ho(f7ai + p), F2(a; + p) N D;; Q)

al l
Hp(f71(2:);Q) —  Hn(f7'(A), f71(A) N D;Q),

we deduce that Ker oo C Ker 8 = M;.

On the other hand, since the inclusion f~!(a; + p) € f~1(A;) is the composition of the
isomorphism f~1(a; + p) = g~ (a; + p) with g~ (a; + p) C g~ 1(A;), followed by the
desingularization g=1(A;) — f~1(A;), we have: V; C Ker a. O

LeMMA 5.1. — Let £ C 'H; be a general line. For any uw € £ N Q*, denote by A?, an open
disk of € with center w and small radius. Consider the compact K := {\(U,econg+ Ar)- Then
there is a closed ball D,, C P* x P, with positive radius and centered at g;, such that for any
z € K the distance functionp € Hy NQ N Dy, — ||p — ¢;|| € R has no critical points p # g;.

Proof. — We argue by contradiction. Suppose the claim is false. Then there is a sequence
of hyperplanes y,, € K, n € N, converging to some =z € K, and a sequence of critical points
pn # g; for the distance function on H,,, N (), converging to ¢; (we may assume p,, is smooth
for Hy, N Q). Let Ty, 0. Ty 5, no and sq, p, be the corresponding sequences of tangent
spaces and secants, and denote by 74, . C g, p,. the real line meeting ¢; and p,,. We may as-
sume they converge, and we denote by T', T, s and r their limits (r C s). Since p,, is a critical
point, then ry, ,, is orthogonal to T}, o, hencer 7", and so T'is spanned by 7" U s
by dimension reasons. Since 7" U s C H, then T C H,, so H, contains a limit of tangent
spaces of ), with tangencies converging to g;. This implies that z € @Q*, contradicting the
fact thatz € K. O
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