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A DUALITY THEOREM FOR DIEUDONNÉ DISPLAYS

ʙʏ Eɪ�� LAU

Aʙ��ʀ���. – We show that the Zink equivalence between p-divisible groups and Dieudonné dis-
plays over a complete local ring with perfect residue field of characteristic p is compatible with duality.
The proof relies on a new explicit formula for the p-divisible group associated to a Dieudonné display.

R�����. – Nous montrons que l’équivalence de Zink entre les groupes p-divisibles et les displays
de Dieudonné sur un anneau local complet à corps résiduel parfait de caractéristique p est compatible
avec la dualité. La preuve repose sur une nouvelle formule explicite pour le groupe p-divisible associé
à un display de Dieudonné.

Introduction

Let R be a complete local ring with maximal idealm and perfect residue field k of positive
characteristic p. If p = 2 we assume that pR = 0.

As a generalisation of classical Dieudonné theory, Th. Zink defines in [11] a category
of Dieudonné displays over R and shows that it is equivalent to the category of p-divisible
groups over R. In the present article we give a unified formula for the group associated to a
Dieudonné display and apply it to show that the equivalence is compatible with the natural
duality operations on both sides. This is not clear from the original construction because
that depends on decomposing a p-divisible group into its étale and infinitesimal part, which
is not preserved under duality.

Let us recall the definition of a Dieudonné display. There is a unique subring W(R) of the
Witt ring W (R) that is stable under its Frobenius f and Verschiebung v, that surjects onto
W (k), and that contains an element x ∈ W (m) if and only if the components of x converge
to zero m-adically. In [11] the ring W(R) is denoted by �W (R). Let IR be the kernel of the
natural homomorphism W(R) → R. A Dieudonné display over R is a quadruple

P = (P,Q, F, F1)

where P is a finite free W(R)-module, Q a submodule containing IRP such that P/Q is a free
R-module, F : P → P and F1 : Q → P are f -linear maps such that F1(v(w)x) = wF (x)
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242 E. LAU

for x ∈ P and w ∈ W(R), and the image of F1 generates P . Dieudonné displays over k are
equivalent to Dieudonné modules (P, F, V ) where Q = V (P ) and F1 = V

−1.

Our formula is based on viewing both p-divisible groups and the modules P , Q as abelian
sheaves for the flat topology on the opposite category of all R-algebras S with the following
properties: the nilradicalN (S) is a nilpotent ideal, it containsmS, and S/N (S) is a union of
finite dimensional k-algebras; see section 1 for details. With that convention, the equivalence
functor BT from Dieudonné displays to p-divisible groups is given by

(�) BT(P) = [Q
F1-incl
−−−−→ P ]

L
⊗Qp/Zp

where [Q → P ] is a complex of sheaves in degrees 0, 1. In other words, the cohomology of
the right hand side of (�) vanishes outside degree zero and the zero-th cohomology is the
p-divisible group associated to P. Instead of the flat topology one could also use the ind-
étale topology, but for some arguments the former is more convenient.

Before stating the main result let us recall the duality of Dieudonné displays. We have the
special Dieudonné display Gm = (W(R), IR, f, v

−1
) that corresponds to the formal multi-

plicative group “Gm. A bilinear form P � ×P → Gm is a bilinear map α : P
� × P → W(R)

satisfying α(x
�
, x) = v(α(F

�
1x
�
, F1x)) for x

� ∈ Q
� and x ∈ Q. For every P there is a dual

Pt equipped with a perfect bilinear form Pt ×P → Gm, which determines Pt uniquely.
The Serre dual of a p-divisible group G is denoted by G

∨.

Tʜ��ʀ��. – For every Dieudonné display P over R there is a natural isomorphism

Ψ : BT(Pt
) ∼= BT(P)

∨
.

The proof is independent of the fact that the functor BT from Dieudonné displays to
p-divisible groups defined by (�) is actually an equivalence. Let us indicate how to define
the homomorphism Ψ. Denote by Z(P) the complex [Q → P ] in (�). To the tautologi-
cal bilinear form Pt × P → Gm one can directly assign a homomorphism of complexes
Z(Pt

)⊗Z(P) → Z(Gm), which gives after tensoring twice with Qp/Zp a homomorphism

BT(Pt
)

L
⊗ BT(P) → BT(Gm)

L
⊗Qp/Zp

∼= “Gm[1].

By the cohomological theory of biextensions, such a homomorphism is equivalent to a ho-
momorphism Ψ as above. That Ψ is an isomorphism must be shown only if the group BT(P)

is étale or of multiplicative type or bi-infinitesimal. The first two cases are straightforward;
the bi-infinitesimal case relies on the theorem of Cartier [3] on the Cartier dual of the Witt
ring functor.

Over arbitrary rings in which p is nilpotent, infinitesimal p-divisible groups are equivalent
to displays according to [13] and [5]. The bi-infinitesimal case of the above theorem is closely
related to the duality theorem in [13] for the display associated to a bi-infinitesimal p-divisible
group. This in turn has been anticipated by Norman [10] who shows a similar duality theo-
rem for the Cartier module of a bi-infinitesimal p-divisible group, provided the module is
displayed (which is always the case by the said equivalence). These duality results all depend
on the theory of biextensions developed in [9], that appears here in the cohomological form
it was given in SGA 7.
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A DUALITY THEOREM FOR DIEUDONNÉ DISPLAYS 243

The present proof that the functor BT defined by (�) is an equivalence of categories
consists in verifying that it reproduces the equivalence constructed in [11]. However, it
should be possible to relate the crystals associated to a Dieudonné display P and to the
p-divisible group BT(P). Then the fact that BT is an equivalence will follow directly from
the Grothendieck-Messing deformation theory of p-divisible groups [8], and the duality
theorem for Dieudonné displays will be related to the crystalline duality theorem [1]. We
hope to return to this point soon. Let us also note that Caruso [4] proved a duality theorem
for Breuil modules of finite flat p-group schemes [2] by using the crystalline duality theorem.
Breuil modules of p-divisible groups are related to Dieudonné displays by [12].

This article is organised as follows. In Section 1 the formula for BT is explained, in Section
2 it is shown to give an equivalence of categories, in Section 3 the duality theorem is proved,
and Section 4 is concerned with functoriality in the base. In an appendix we discuss briefly
the deformational duality theorem [7] since variants of it are used in the text.

Acknowledgement

The author is grateful to W. Messing and Th. Zink for many valuable discussions and to
one of the referees for pointing out that Section 4 was missing.

1. Exposition of the main formula

We begin with a number of general definitions and notations. Let p be a prime. For any
ring A let W (A) be the ring of p-Witt vectors and IA the kernel of the first Witt polynomial
w0 : W (A) → A. If A is perfect of characteristic p, IA is generated by p. Let f be the Frobe-
nius of W (A) and v the Verschiebung. If a ⊂ A is a nilpotent ideal, let �W (a) ⊆ W (a) be
the subgroup of Witt vectors with only finitely many non-zero components. More generally,
if A is a-adically complete and separated, let �W (a) ⊆ W (a) be the subgroup of Witt vectors
whose components converge to zero a-adically; in other words, �W (a) = lim

←−
�W (a/an). In any

case �W (a) is an ideal in W (A).

D��ɪɴɪ�ɪ�ɴ 1.1. – Let A be a ring and a ⊂ A an ideal. The pair (A, a) is called admissi-
ble if A is a-adically complete and separated and A/a is perfect of characteristic p. If p = 2

we also require that pA = 0.

L���� 1.2. – If (A, a) is admissible then there is a unique f -stable subring W(A) of W (A)

such that W(A)∩W (a) = �W (a) and W(A) maps surjectively onto W (A/a). The subring W(A)

is also stable under v.

This is proved in [11] if A is noetherian and A/a is a field, but neither of these assump-
tions is used in the proof. W(A) is constructed as follows: Since A/a is perfect, the projection
W (A) → W (A/a) has a unique splitting, necessarily f -equivariant, thus an f -equivariant
decomposition of abelian groups W (A) ∼= W (A/a)⊕W (a), under which W(A) is mapped
to W (A/a)⊕�W (a). The condition that 2 is invertible or zero in A is only needed to guarantee
that W(A) is v-stable. We have

W(A) = lim
←−

W(A/an)

by uniqueness or by the construction. Let IA be the kernel of w0 : W(A) → A.
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244 E. LAU

D��ɪɴɪ�ɪ�ɴ 1.3. – Assume that (A, a) is admissible. A Dieudonné display over A is a
quadruple P = (P,Q, F, F1) such that

P is a finitely generated projective W(A)-module,
Q is a submodule of P containing IAP ,
P/Q is projective as an A-module,
F : P → P and F1 : Q → P are f -linear maps,
F1(v(w)x) = wF (x) for w ∈ W(A) and x ∈ P ,
F1(Q) generates P as a W(A)-module.

These axioms also imply F (x) = pF1(x) for x ∈ Q.

R���ʀ��. – (1) Every pair of W(A)-modules (P,Q) satisfying the first three of the
above conditions admits a decomposition P = L⊕T such that Q = L⊕ IAT , called normal
decomposition. Its existence is straightforward if a = 0, thus A perfect; if a is nilpotent one
can use that �W (a) is nilpotent as well; the general case follows by passing to the limit.

(2) For a W(A)-module M let M
(1)

= W(A)⊗f,W(A) M , and for an f -linear homomor-
phism of W(A)-modules F : M → N let F

�
: M

(1) → N be its linearisation. In analogy
with [13] Lemma 9, the structure of a Dieudonné display on a pair (P,Q) as above with given
normal decomposition P = L⊕ T is equivalent to the isomorphism

(F
�
1 , F

�
) : L

(1)
⊕ T

(1) ∼
−→ P.

(3) We have the following notion of base change. If (A, a) and (B, b) are admissible pairs,
every ring homomorphism g : A → B with g(a) ⊆ b induces a ring homomorphism W(g) :

W(A) → W(B). The base change of a Dieudonné display P over A by g is then PB =

(PB , QB , FB , F1,B) where

PB = W(B)⊗W(A) P, QB = Ker(PB → B ⊗A P/Q),

and FB , F1,B are the unique f -linear extensions of F , F1, whose existence follows from a
normal decomposition as explained in [13] Definition 20.

(4) For a Dieudonné display P over A there is a unique W(A)-linear map V
�
: P → P

(1)

such that V
�
(F1x) = 1⊗ x for x ∈ Q, cf. [13] Lemma 10. Uniqueness is clear; if P = L⊕ T

is a normal decomposition, V
� can be defined to be

P
(F �

1 ,F �)−1

−−−−−−−→ L
(1)
⊕ T

(1) (1,p)
−−−→ L

(1)
⊕ T

(1)
= P

(1)
.

We have F
�
V

�
= p and V

�
F

�
= p. If A is perfect, F1 is bijective, and its inverse defines an

f
−1-linear map V : P → P whose linearisation is V

�.

Assume now that R is a local ring with maximal ideal m and residue field k such that
(R,m) is admissible, i.e. R is m-adically complete, k is perfect of characteristic p, and p = 2

implies pR = 0.

D��ɪɴɪ�ɪ�ɴ 1.4. – Let CR be the category of all R-algebras S such that the nilradical
N (S) is nilpotent, N (S) contains mS, and Sred = S/N (S) is a union of finite dimensional,
necessarily étale, k-algebras.
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A DUALITY THEOREM FOR DIEUDONNÉ DISPLAYS 245

The last condition implies that Sred is perfect, hence (S,N (S)) is admissible, and W(S)

is defined. The following stability properties of CR are easily established: If S
� ← S → S

��

are homomorphisms in CR, then S
� ⊗S S

�� lies in CR; if S ∈ CR and S → S
� is a finite ring

homomorphism, then S
� ∈ CR; if S ∈ CR and S → S1 → S2 → . . . is an infinite sequence

of étale ring homomorphisms, then lim
−→

Si lies in CR.
Let �CR be the category of abelian sheaves on C

op
R for the fpqc topology, i.e. coverings of

S ∈ CR are finite families of homomorphisms S → Si in CR such that S →
�

Si is faithfully
flat. The category of p-divisible groups over R is naturally a full exact subcategory of �CR that
is stable under extensions. If P is a Dieudonné display over R, base change of Dieudonné
displays makes P and Q into abelian presheaves on C

op
R , i.e. for S ∈ CR we put P (S) =

PS and Q(S) = QS . Note that the presheaf Q is determined by the modules Q ⊆ P but
not by the module Q alone. The homomorphisms F and F1 induce homomorphisms of the
associated presheaves which we denote by the same letters. By the following lemma, P and
Q are in fact sheaves.

L���� 1.5. – For a faithfully flat homomorphism S → T in CR the natural sequence
0 → W(S) → W(T ) ⇒ W(T ⊗S T ) is exact.

Proof. – The analogous assertion with W in place of W is clear, cf. [13] Lemma 30. One
easily checks that W(S) = W(T ) ∩W (S), and the lemma follows.

D��ɪɴɪ�ɪ�ɴ 1.6. – If P is a Dieudonné display over R, let

Z(P) = [Q
F1-incl
−−−−→ P ]

as a complex in �CR in degrees 0, 1 and

BT(P) = Z(P)⊗
L Qp/Zp

in the derived category D(�CR).

Explicitly BT(P) can be represented by the tensor product Z(P) ⊗ [Z → Z[
1
p ]] sitting

in degrees −1, 0, 1.

Tʜ��ʀ�� 1.7. – Suppose R is an admissible local ring. For every Dieudonné display P
over R, BT(P) is a p-divisible group, i.e. H

i
(BT(P)) vanishes for i �= 0 and is a p-divisible

group for i = 0. The functor BT induces an equivalence of exact categories

{Dieudonné displays over R} ∼= {p-divisible groups over R}

that coincides with the equivalence in [11]. The height of BT(P) is equal to the rank of P , and
there is a natural isomorphism Lie(BT(P)) ∼= P/Q.

Here the additive category of Dieudonné displays is made into an exact category by declar-
ing a short sequence to be exact if it is exact on the P ’s and on the Q’s. Let us stress again
that the only new aspect in Theorem 1.7 is the formula for the functor BT. It will be proved
in the next section.

R���ʀ�. – The functor BT is also compatible with base change, see Section 4.
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246 E. LAU

2. Proof of the main formula

Let R, m, k be as before. We begin with recalling some definitions and results from [11]
that are stated there only if R is artinian, but if m is nilpotent the arguments apply without
change, and the general case follows by passing to the limit since Dieudonné displays over R

are equivalent to compatible systems of Dieudonné displays over R/mn for n ≥ 1.
A Dieudonné display P over R is called étale if V

� is an isomorphism, of multiplicative
type if F

� is an isomorphism, and V -nilpotent or F -nilpotent if V
� or F

� is topologically nilpo-
tent for the adic topology on W(R) defined by the ideal �W (m) + IR. P is étale if and only
if Q = P and of multiplicative type if and only if Q = IRP , see [11] Definitions 13 & 14.
Etale or multiplicative or V -nilpotent or F -nilpotent Dieudonné displays over R are equiv-
alent to compatible systems of the same objects over R/mn for n ≥ 1 because each of these
conditions holds for P over R if and only if it holds for the base change Pk over k.

By [11] Propositions 15, 16 & 17, there are no non-trivial homomorphisms between étale
and V -nilpotent or between multiplicative and F -nilpotent Dieudonné displays in either di-
rection, moreover for every P there are unique and functorial exact sequences of Dieudonné
displays

0 → PV -nil
→ P → Pet

→ 0(2.1)

0 → Pmult
→ P → PF -nil

→ 0(2.2)

such that Pet, Pmult, PV -nil, PF -nil are of the designated types. The corresponding asser-
tions for p-divisible groups are well-known: Let us call a p-divisible group G over R infinites-
imal if G(k̄) = (0), i.e. if G is infinitesimal as a group over Spf R. Then for every G there is
a unique and functorial exact sequence of p-divisible groups

(2.3) 0 → G
inf
→ G → G

et
→ 0

such that G
et is étale and G

inf infinitesimal, moreover by rigidity there are no non-zero ho-
momorphisms between étale and infinitesimal p-divisible groups over R in either direction.

The equivalence between Dieudonné displays and p-divisible groups in [11] is obtained by
showing that V -nilpotent or étale Dieudonné displays are equivalent to infinitesimal or étale
p-divisible groups, respectively, and by an explicit isomorphism Ext

1
(P,P �

) ∼= Ext
1
(G, G

�
)

if P is an étale and P � a V -nilpotent Dieudonné display and G, G
� are the associated

p-divisible groups. In order to prove Theorem 1.7 we show that the functor BT repro-
duces the given equivalences in the étale and V -nilpotent case and that it induces the given
isomorphism on Ext

1.
As a preparation we define for every Dieudonné display P over R an exact sequence of

complexes in �CR of the following type.

(2.4) 0 → ZN (P) → Z(P) → Z̄(P) → 0.

For S ∈ CR let P̄ (S) = P (Sred) and Q̄(S) = Q(Sred). Then P̄ and Q̄ are sheaves on C
op
R be-

cause for every faithfully flat ring homomorphism S → T in CR the induced homomorphism
Sred → Tred is also faithfully flat (all Sred-modules are flat), and Tred⊗SredTred coincides with
(T ⊗S T )red. Let

Z̄(P) = [Q̄
F1-incl
−−−−→ P̄ ],
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A DUALITY THEOREM FOR DIEUDONNÉ DISPLAYS 247

and let ZN (P) = [QN
F1-incl
−−−−→ PN ] be the kernel of Z(P) → Z̄(P), explicitly

PN (S) = �W (N (S))⊗W(R) P, QN = PN ∩Q.

Note that (2.4) is already exact on the level of presheaves.

2.1. The infinitesimal case

Pʀ����ɪ�ɪ�ɴ 2.1.1. – Theorem 1.7 holds for V -nilpotent Dieudonné displays and in-
finitesimal p-divisible groups. If P is V -nilpotent and G is the associated group, we have a
natural quasi-isomorphism Z(P) � G[−1].

Let us recall the proof of the infinitesimal case in [11]. To a Dieudonné display P over
R one associates a display FP = (P

�
, Q

�
, F

�
, F

�
1), where P

�
= W (R) ⊗W(R) P , and Q

� is
the kernel of the natural map P

� → P/Q. The functor F induces an equivalence between V -
nilpotent Dieudonné displays and V -nilpotent displays. This is tautological if R = k; if the
maximal ideal m is nilpotent, the assertion follows by deformation theory; the general case
by a limit argument.

On the other hand, if P = (P,Q, F, F1) is a display over R and N a nilpotent (non-
unitary) R/mn-algebra for some n, let us write:

“P (N) = �W (N)⊗W (R) P

“Q(N) = Ker(“P (N) → N ⊗R P/Q)

�Z(P, N) = [“Q(N)
F1-incl
−−−−→ “P (N)].

Then by [13] Theorem 81 & Corollary 89, the group H
0 �Z(P, N) vanishes, and the functor

N �→ H
1 �Z(P, N) is represented by a formal group over Spf R that is p-divisible if P is

V -nilpotent. By op. cit. §3.3, the functor P �→ H
1 �Z(P, ) induces an equivalence between

V -nilpotent displays and infinitesimal p-divisible groups over R; more precisely, Corollary
95 and a limit argument reduce this to the case R = k, which is covered by Proposition 102.

If P is a display over R, let Z (P) denote the complex in �CR given by Z (P)(S) =

�Z(P,N (S)) for S ∈ CR. For every Dieudonné display P over R we have an obvious iso-
morphism

ZN (P) ∼= Z (FP).

It follows that H
0
ZN (P) vanishes, and the functor H

1
ZN defines an equivalence between

V -nilpotent Dieudonné displays and infinitesimal p-divisible groups. This is the equivalence
of [11]. Here H

1
ZN (P) in the sense of presheaves or sheaves is the same, i.e. the presheaf

H
1 is already a sheaf.

L���� 2.1.2. – If P is a V -nilpotent Dieudonné display, then Z̄(P) is acyclic.

Proof. – For S ∈ CR the complex [F1-incl : QSred → PSred ] is isomorphic to [id−V :

PSred → PSred ] where V = F
−1
1 . Since V is topologically nilpotent, id−V is bijective.
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For every K ∈ D(�CR) the obvious homomorphisms of complexes

(2.5) Qp/Zp
�
←−− [Z → Z[

1
p ]] −→ Z[1]

(where � means quasi-isomorphism) induce a homomorphism πK : K ⊗L Qp/Zp → K[1].
It is an isomorphism if all local sections of H

∗
K are annihilated by powers of p.

Proof of Proposition 2.1.1. – By the above discussion and Lemma 2.1.2 we have an equiv-
alence P �→ G between V -nilpotent Dieudonné displays and infinitesimal p-divisible groups
such that Z(P) � ZN (P) � G[−1]. The isomorphism πG[−1] then gives BT(P) ∼= G. By
[13] (158) there is a natural isomorphism Lie(G) ∼= P/Q.

E����ʟ�. – The Dieudonné display associated to “Gm is

(2.6) Gm = (W(R), IR, f, v
−1

)

where v
−1 is the inverse of the bijective homomorphism v : W(R) → IR. In fact, for every

nilpotent R/mn-algebra N there is an exact sequence

(2.7) 0 → �W (N)
1−v
−−→ �W (N)

hex
−−→ “Gm(N) → 0

where hex is given by the Artin-Hasse exponential evaluated at t = 1, see [13] p. 108, hence
BT(Gm) ∼= H

1
ZN (Gm) ∼= “Gm.

2.2. The étale case

If G is an étale p-divisible group over R, let TpG = lim
←−

G[p
n
] in �CR. The obvious sequences

0 → TpG → TpG → G[p
n
] → 0 are exact because arbitrary ind-étale coverings exist in CR,

and they give an isomorphism TpG⊗
L Qp/Zp

∼= G.

Pʀ����ɪ�ɪ�ɴ 2.2.1. – Theorem 1.7 holds in the étale case. If G is the étale p-divisible
group associated to an étale Dieudonné display P, we have a natural quasi-isomorphism
TpG � Z(P).

Note that an étale Dieudonné display is the same as a pair (P, F1), where P is a finitely
generated free W(R)-module and F

�
1 : P

(1) → P an isomorphism; we have Q = P and
F = pF1. The complex Z(P) takes the form [F1 − id : P → P ].

Again we have to recall the equivalence P �→ G between étale Dieudonné displays and
étale p-divisible groups from [11]. By op. cit. Theorem 5, étale Dieudonné displays over R and
over k are equivalent. The analogous assertion for étale p-divisible groups and for truncated
étale p-divisible groups is well-known. Hence it suffices to define the equivalence P �→ G

over k; there it is given by the isomorphism of Gal(k̄/k)-modules

(2.8) TpG(k̄) = (W (k̄)⊗W (k) P )
F1=id

.

Let us reformulate this a little. Over every ring A of characteristic p, truncated étale
p-divisible groups of level n are equivalent to pairs (M,Φ), where M is a finitely generated
projective Wn(A)-module and Φ : M

(1) → M is an isomorphism. The group associated to
(M,Φ) is the sheaf that maps an A-algebra B to (M ⊗A B)

Φ=id.
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A DUALITY THEOREM FOR DIEUDONNÉ DISPLAYS 249

Assume now that P �→ G as above and that pR = 0. Then the pair (M, Φ) associated to
the truncated étale group G[p

n
] is naturally isomorphic to (Wn(R)⊗W(R) P, F1). In fact, to

prove this one may pass to k, where the assertion follows from (2.8). For S ∈ CR we get

(2.9) G[p
n
](S) = (Wn(S)⊗W(R) P )

F1=id
.

L���� 2.2.2. – If P is an étale Dieudonné display, then ZN (P) is acyclic.

Proof. – Since F1 : P → P is f -linear, the induced map F1 : PN → PN is elementwise
nilpotent, so F1 − id : PN → PN is bijective.

Proof of Proposition 2.2.1. – If P is an étale Dieudonné display over R and G is the as-
sociated étale p-divisible group, the sheaves H

i
Z̄(P) are computed as follows. For S ∈ CR

we have, using (2.9),

H
0
Z̄(P)(S) = lim

←−
(Wn(Sred)⊗W(R) P )

F1=id

= lim
←−

G[p
n
](Sred) = lim

←−
G[p

n
](S) = TpG(S).

The sheaf H
1
Z̄(P) vanishes because every element of P (Sred) has an inverse image under

F1 − id after passing to an ind-étale covering of Sred, which lifts to an ind-étale covering of
S. By Lemma 2.2.2 we obtain Z(P) � Z̄(P) � TpG, hence BT(P) ∼= G.

2.3. Calculation of extensions

For an étale p-divisible group H over R there is a natural exact sequence in �CR

(2.10) 0 → TpH → TpH ⊗ Z[
1
p ] → H → 0.

If G is another p-divisible group over R, we obtain a connecting homomorphism:

δ : Hom(TpH,G) → Ext
1
(H,G).

R���ʀ�. – We have an isomorphism Hom(TpH,G) ∼= lim
−→

Hom(H[p
n
], G) because TpH

is representable in CR, so every homomorphism TpH → G factors over some G[p
n
], hence

also over H[p
n
]. Using that isomorphism, δ can be defined by the obvious exact sequences

0 → H[p
n
] → H → H → 0 instead of (2.10).

Pʀ����ɪ�ɪ�ɴ 2.3.1. – If H is étale and G is infinitesimal, then δ is bijective.

This is [11] Proposition 19. See Proposition A.1 for a more general statement.
We turn to extensions of Dieudonné displays. Let Pet be an étale and Pnil a V -nilpotent

Dieudonné display over R and let H = BT(Pet
) and G = BT(Pnil

) be the associated
p-divisible groups. For every extension of Dieudonné displays

(2.11) 0 → Pnil
→ P → Pet

→ 0

the resulting exact sequence of complexes

(2.12) 0 → Z(Pnil
) → Z(P) → Z(Pet

) → 0

gives rise to a connecting homomorphism

(2.13) TpH
∼= H

0
Z(Pet

) → H
1
Z(Pnil

) ∼= G
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where the outer isomorphisms are provided by Propositions 2.1.1 & 2.2.1. This construction
defines a homomorphism

γ : Ext
1
(Pet

,Pnil
) → Hom(TpH,G).

Pʀ����ɪ�ɪ�ɴ 2.3.2. – The homomorphism γ is bijective.

This is a reformulation of [11] Proposition 18 and its proof. The equivalence between
Dieudonné displays and p-divisible groups in op. cit. is defined by the composite isomor-
phism δγ : Ext

1
(Pet

,Pnil
) → Ext

1
(H,G).

Proof of Theorem 1.7. – By Propositions 2.1.1 & 2.2.1 we know that BT(P) is a
p-divisible group of the correct height if P is étale or V -nilpotent. The same is true
for general P because the exact sequence (2.1) gives rise to a distinguished triangle
BT(PV -nil

) → BT(P) → BT(Pet
) →+. Similarly we see that BT preserves arbitrary

exact sequences.
The main point to be shown is that for H = BT(Pet

) and G = BT(Pnil
) as above, the

homomorphism Ext
1
(Pet

,Pnil
) → Ext

1
(H,G) induced by BT coincides with the isomor-

phism δγ.
Let us first describe the action of BT on Ext

1. Let T = TpH . If an extension (2.11) is
given, then using the quasi-isomorphisms Z(Pnil

) � G[−1] and Z(Pet
) � T , the corre-

sponding extension (2.12) determines the following distinguished triangle in D(�CR), where g

is the negative of the connecting homomorphism (2.13).

(2.14) G[−1] → Z(P) → T
g
−→ G.

The functor BT applied to (2.11) results in (2.14)⊗L Qp/Zp, which under the identification
πG[−1] : G[−1]⊗L Qp/Zp

∼= G induced by (2.5) takes the following form.

(2.15) G → BT(P) → H
g�
−→ G[1].

Here g
� is the composition

H ∼= T ⊗
L Qp/Zp

g⊗id
−−−→ G⊗

L Qp/Zp
−πG
−−−→ G[1]

because −πG gets identified with πG[−1][1] under the natural isomorphism of G ⊗L Qp/Zp

with G[−1]⊗LQp/Zp[1], the sign arising from the transposition automorphism of Z[1]⊗Z[1],
which is − id.

Consider now δγ. Since the extension (2.10) corresponds to the distinguished triangle

T → T ⊗ Z[
1
p ] → T ⊗Qp/Zp

πT
−−→ T [1]

and since g is the negative of (2.13), the image of (2.11) under δγ corresponds to a triangle
of the form (2.15) with g

�
= −g[1]πT . It remains to show that g[1]πT = πG(g⊗ id), which is

immediate from the definitions.
Finally, the inverse functor of BT preserves exact sequences because this is true over k,

and a short sequence of Dieudonné displays over R is exact if and only if it is exact over k by
Nakayama’s lemma. The existence of a natural isomorphism Lie(BT(P)) ∼= P/Q follows
from the V -nilpotent case since Lie(BT(P)) = Lie(BT(Pnil

)) and P/Q = P
nil

/Q
nil.

A V -nilpotent and F -nilpotent Dieudonné display is called bi-nilpotent.
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C�ʀ�ʟʟ�ʀʏ 2.4. – The group BT(P) is étale or of multiplicative type or bi-infinitesimal
if and only if P is étale or of multiplicative type or bi-nilpotent, respectively.

Proof. – Since a p-divisible group over R is étale or of multiplicative type if and only if its
dimension is equal to zero or its height, the étale and multiplicative cases of the corollary are
a direct consequence of the last assertion of Theorem 1.7. The third case follows because bi-
infinitesimal groups and bi-nilpotent Dieudonné displays are both characterised by having
neither non-trivial sub-objects of multiplicative type nor étale quotients.

R���ʀ�. – The proof of Corollary 2.4 requires only that the functor BT is an equiva-
lence over k, which is classical, because the relevant properties of Dieudonné displays and
p-divisible groups over R depend only on their fibres over k.

We conclude this section with a remark on the topology chosen on C
op
R .

First let us note that p-divisible groups over R form a full exact subcategory of the cat-
egory of sheaves on C

op
R for the étale or (ind-étale) topology, i.e. every short exact sequence

0 → H → E → G → 0 of p-divisible groups gives rise to an exact sequence of étale sheaves.
Indeed, recall that according to [7] Lemma 10.12, every H-torsor is formally smooth. Thus
the sequence admits a set-theoretical section if G is infinitesimal, or if G is étale and H is in-
finitesimal since then it splits over k. By using the functorial decomposition (2.3) if follows
that the sequence of étale sheaves is exact. However, multiplication by p is a surjective endo-
morphism of the étale sheaf given by a p-divisible group only if the group is étale.

For a Dieudonné display P over R let

Y (P) = [Q
F1−1
−−−→ P ]⊗ [Z → Z[

1
p ]]

as a complex of presheaves on Cop
R concentrated in degrees−1, 0, 1. This is in fact a complex

of flat sheaves as P (S) ⊗ Z[
1
p ] = Q(S) ⊗ Z[

1
p ] = W (Sred)[

1
p ] ⊗W(R) P for S ∈ CR, which

clearly is a sheaf. The following refinement of Theorem 1.7 is an immediate consequence of
its proof.

C�ʀ�ʟʟ�ʀʏ 2.5. – The ind-étale cohomology sheaf H
i
(Y (P)) is naturally isomorphic to

BT(P) for i = 0 and vanishes for i �= 0.

3. Duality

Let R, m, k be as before. In order to define the dual of a Dieudonné display we need the
following notion of bilinear forms. Recall the definition of Gm in (2.6). If P and P � are
Dieudonné displays over R, a bilinear form α : P × P � → Gm is by definition a W(R)-
bilinear map α : P × P

� → W(R) such that

v(α(F1x, F
�
1x
�
)) = α(x, x

�
)(3.1)

for x ∈ Q and x
� ∈ Q

�. This also implies for y ∈ P , y
� ∈ P

�, and x, x
� as before:

α(F1x, F
�
y
�
) = f(α(x, y

�
))(3.2)

α(Fy, F
�
1x
�
) = f(α(y, x

�
))(3.3)

α(Fy, F
�
y
�
) = pf(α(y, y

�
)).(3.4)
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Let Bil(P ×P �
,Gm) denote the abelian group of bilinear forms.

D��ɪɴɪ�ɪ�ɴ 3.1. – For every Dieudonné display P over R the contravariant functor
P � �→ Bil(P � ×P,Gm) is represented by a Dieudonné display Pt, called the dual of P.

This is analogous to the case of displays, [13] Definition 19. Let us make the definition of
Pt more explicit, which can also be used to show that Pt exists. For a W(R)-module M let
M

∨ be the module of linear maps M → W(R). Then

Pt
= (P

∨
, ‹Q, F

�
, F

�
1)

where ‹Q = {x ∈ P
∨ | x(Q) ⊆ IR}. If P = L ⊕ T is a normal decomposition, i.e. Q =

L ⊕ IRT , accordingly P
∨

= L
∨ ⊕ T

∨ and ‹Q = IRL
∨ ⊕ T

∨, the formulas (3.1) to (3.4)
determine that the composition

(L
∨
)
(1)
⊕ (T

∨
)
(1) (F �,F �

1)
�

−−−−−→ P
∨ (F �

1 ,F �)∨

−−−−−−→ (L
(1)

)
∨
⊕ (T

(1)
)
∨

is the tautological isomorphism, i.e. when passing from P to Pt, the matrix of (F
�
1 , F

�
) gets

transposed, inverted, and the roles of L, T exchanged.

Since V
�
(F1x) = 1 ⊗ x by definition, (3.2) and (3.3) imply that F

��
= (V

�
)
∨ and

V
��

= (F
�
)
∨, thus dualising interchanges étale and multiplicative as well as V -nilpotent and

F -nilpotent Dieudonné displays.

Definition of the duality homomorphism

In the remainder of this article, let always G = BT(P) and G
�
= BT(P �

) and, by a slight
abuse of notation, Gt

= BT(Pt
). For arbitrary P and P � we want to construct a functorial

homomorphism

ψ : Bil(P �
×P,Gm) → Ext

1
(G

�
⊗

L
G,“Gm).

Given a bilinear form α : P � ×P → Gm let us first define a homomorphism of complexes
γ : Z(P �

) ⊗ Z(P) → Z(Gm), which is equivalent to homomorphisms γ0 and γ1 forming
the following commutative diagram, where ϕ = F1 − id and ϕ

�
= F

�
1 − id.

Q
� ⊗Q

id⊗ϕ+ϕ�⊗id ��

γ0

��

Q
� ⊗ P ⊕ P

� ⊗Q
−ϕ�⊗id + id⊗ϕ ��

γ1

��

P
� ⊗ P

IR
v−1−id �� W(R).

We let γ0 = α, and there are two choices for γ1: either γ1(q
�⊗p+p

�⊗q) = α(q
�
, p)+α(p

�
, F1q)

or γ1(q
� ⊗ p + p

� ⊗ q) = α(F
�
1q
�
, p) + α(p

�
, q). The two resulting maps γ are homotopic via

the homotopy consisting of α : P
� ⊗ P → W(R) in top degree and zero in lower degrees, in

particular the homomorphism in D(�CR)

γ
L

: Z(P �
)⊗

L
Z(P)

can
−−→ Z(P �

)⊗ Z(P)
γ
−→ Z(Gm)
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is independent of the choice. From γ
L we obtain the following morphism in D(�CR) that can

be viewed as an element of Ext
1
(G

� ⊗L
G,“Gm); by definition this is ψ(α).

G
�
⊗

L
G ∼= Z(P �

)⊗
L

Z(P)⊗
L Qp/Zp ⊗

L Qp/Zp

γL⊗id⊗ id
−−−−−−−→ Z(Gm)⊗

L Qp/Zp ⊗
L Qp/Zp

∼= “Gm ⊗
L Qp/Zp

(2.5)
∼= “Gm[1].

A direct computation of G
�⊗L

G yields the following isomorphism, explained in detail in
SGA 7, VIII, 1.3

(3.5) Ext
1
(G

�
⊗

L
G,“Gm) ∼= Hom(G

�
, G

∨
).

D��ɪɴɪ�ɪ�ɴ 3.2. – The duality homomorphism Ψ : G
t → G

∨ is the image of the canon-
ical bilinear form Pt ×P → Gm under ψ composed with (3.5).

R���ʀ�. – The homomorphism Ψ is compatible with base change, see section 4.

Naturality of ψ gives the next commutative diagram, which is just an explication of the
fact that ψ and Ψ are equivalent by the Yoneda lemma.

Hom(P �
,Pt

)
BT �� Hom(G

�
, G

t
)

Ψ∗
��

Bil(P � ×P,Gm)
ψ �� Hom(G

�
, G

∨
).

Here by Theorem 1.7 we know (but shall not use) that BT is bijective.

L���� 3.3. – There is the following anti-commutative diagram:

Bil(P � ×P,Gm)
ψ ��

∼=

Ext
1
(G

� ⊗L
G,“Gm)

(3.5) ��

∼=

Hom(G
�
, G

∨
)

∼=

Bil(P ×P �
,Gm)

ψ ��
Ext

1
(G⊗L

G
�
,“Gm)

−1

(3.5) �� Hom(G, G
�∨

).

−1

Proof. – The right hand square is SGA 7, VIII, Proposition 2.2.11. The left hand square
follows from the definitions, the sign resulting from the transposition automorphism of
Qp/Zp ⊗

L Qp/Zp, which is − id.

In particular, a skew symmetric bilinear form P×P → Gm gives a symmetric biextension
and an anti-symmetric homomorphism G → G

∨.

Tʜ��ʀ�� 3.4. – For every Dieudonné display P over an admissible local ring R the
duality homomorphism Ψ : BT(Pt

) → BT(P)
∨ is an isomorphism.
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By Theorem 1.7 this implies that ψ is an isomorphism as well.

For the proof of Theorem 3.4 we begin with a number of reductions. Using the decompo-
sitions (2.1) and (2.2) we may assume that P is étale or of multiplicative type or bi-nilpotent.
By Lemma 3.3 the assertion for P is equivalent to the assertion for Pt, so the multiplicative
case can be omitted. Since a homomorphism of p-divisible groups over R is an isomorphism
if and only if it is an isomorphism over k̄, we may assume that R is an algebraically closed
field.

Proof of Theorem 3.4 in the étale case. – We may assume that G = Qp/Zp, accordingly
P = (W(R), W(R), pf, f) and Pt

= Gm. In order that Ψ : “Gm → (Qp/Zp)
∨ is an isomor-

phism it suffices that it is not divisible by p. To get Ψ we trace the definition of ψ applied to the
natural bilinear form α : Gm×P → Gm. Under the quasi-isomorphisms Z(Gm) � “Gm[−1]

and Tp(Qp/Zp) � Z(P) the homomorphism γ
L (defined by the first choice for γ1) gets iden-

tified with the tautological isomorphism “Gm[−1] ⊗L
Tp(Qp/Zp)

∼= “Gm[−1]. Hence ψ(α) is
the isomorphism “Gm⊗

L Qp/Zp
∼= “Gm[1] induced by (2.5), in particular ψ(α) is not divisible

by p, so the same is true for Ψ, its image under (3.5). Note that we did not use the definition
of (3.5). We leave it to the reader to determine whether Ψ is the identity or its negative.

The bi-nilpotent case relies on the following theorem of Cartier. For any ring A let �W be
the functor on A-algebras �W (B) = �W (N (B)). Then by [3] the bilinear maps

W (A)×�W (B)
mult
−−−→ �W (B)

hex
−−→ “Gm(B)

induce an isomorphism W (A) ∼= Hom(�W,“Gm), thus an isomorphism of sheaves on C
op
R

(3.6) W ∼= Hom(�W,“Gm)

because passing from functors on all R-algebras to functors on CR makes no difference as �W
is the direct limit of functors that are represented by rings in CR. Let W [f ] be the kernel of
f : W → W . Since f corresponds to the dual of v under (3.6) and the cokernel of v : �W → �W
is “Ga, we deduce an isomorphism

(3.7) W [f ] ∼= Hom(“Ga,“Gm).

L���� 3.5. – The Frobenius homomorphism f : W → W defines a surjective homomor-
phism of flat sheaves on Cop

R .

Proof. – As a functor on rings, W is represented by the ring B = Z[X0, X1, . . . ] and f

by a faithfully flat ring homomorphism f
�

: B → B. In fact, since the truncated Frobenius
fn : Wn+1 → Wn is a group homomorphism which is surjective on geometric points, its
fibres are one-dimensional. Hence f

�
n : Z[X0, . . . ,Xn] → Z[X0, . . . ,Xn+1] is faithfully flat

by [6] Theorem 23.1, so f
�

= lim
−→

f
�
n is faithfully flat. It remains to show that if B → S is a

ring homomorphism with S ∈ CR, then B ⊗f�,B S lies in CR. This can be deduced from the
relation f

�
(Xi) ≡ X

p
i modulo p.
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Proof of Theorem 3.4 in the bi-nilpotent case. – Assume that P is bi-nilpotent. Since Ψ is
a homomorphism of p-divisible groups of the same height, it suffices that Ψ is injective, or
even that ∆ ◦Ψ is injective for some homomorphism

∆ : G
∨
→ Ext

1
(G,“Gm).

Let FPt
= (‹P t

, ‹Qt
, F

t
, F

t
1) be the display associated to Pt and view ‹P t

, ‹Qt as sheaves
on Cop

R . From (3.6) we get an isomorphism u : ‹P t ∼= Hom(PN ,“Gm). We claim that ∆ can be
chosen such that we have the following commutative diagram in �CR with exact rows, where
i : QN → PN denotes the inclusion. The diagram is similar to [13] (223) in a different tech-
nical context.

(3.8) 0 �� ‹Qt
1−F t

1 ��

u◦F t
1

��

‹P t
π ��

i∗◦u
��

G
t ��

∆◦Ψ
��

0

0 ��
Hom(PN ,“Gm)

(F1−1)∗
��
Hom(QN ,“Gm)

δ ��
Ext

1
(G,“Gm).

Before proving the claim, let us apply the snake lemma and deduce that ∆ ◦Ψ is injective
as required. Since u is an isomorphism it suffices that F

t
1 is surjective and u ◦ (1 − F

t
1), or

equivalently u, induces an isomorphism Ker(F
t
1) ∼= Ker(i

∗
). In terms of a normal decompo-

sition P = L⊕T and the induced normal decomposition ‹P t
= �T t⊕ �Lt, the homomorphism

F
t
1 is equal to

IR
�Lt
⊕ �T t

−→ (�Lt
)
(1)
⊕ ( �T t

)
(1) (F t,F t

1 )�

−−−−−→ ‹P t

(v(w1)l, w2t) �−→ (w1 ⊗ l, f(w2)⊗ t)

where (F
t
, F

t
1)

� is an isomorphism. By Lemma 3.5 it follows that F
t
1 is surjective, moreover

Ker(F
t
1) = W [f ]⊗W

�T t. Let “V be the formal completion of the vector group P/Q ∼= T/IRT .
Then Ker(i

∗
) ∼= Hom(“V ,“Gm), and (3.7) finishes the proof.

Let us now look at those parts of (3.8) that do not involve ∆. It is straightforward that the
left hand square commutes, using that hex(v(w)) = hex(w) for w ∈ �W according to (2.7).
Consider the following complexes of sheaves in �CR concentrated in degrees 0, 1.

Z = [QN
F1−1
−−−→ PN ], Z

t
= [‹Qt F t

1−1
−−−→ ‹P t

].

Since Pt is V -nilpotent, Z(Pt
) is quasi-isomorphic to G

t
[−1] by Proposition 2.1.1. Since

Pt is also F -nilpotent, the inclusion Z(Pt
) → Z

t is a quasi-isomorphism by [13] Corollary
82. This gives the exact upper row of (3.8). The lower row arises from the short exact sequence

0 → QN
F1-incl
−−−−→ PN → G → 0,

which exists because P is V -nilpotent. Here Hom(G,“Gm) vanishes because P is
F -nilpotent, thus G unipotent; see Corollary 2.4.
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Finally, let us define ∆ to be the image of idG∨ under the first row of the following com-
mutative diagram, whose horizontal arrows β are given by adjunction (1). The rest of the di-
agram is used to determine the composition ∆ ◦Ψ ◦ π and show that the right hand square
of (3.8) commutes.

Hom(G
∨
, G

∨
)

∼=
(3.5)
��

Ψ∗

��

Ext
1
(G

∨ ⊗L
G,“Gm)

β1 ��

(Ψ⊗id)∗

��

Hom(G
∨
,Ext

1
(G,“Gm))

Ψ∗

��

Hom(G
t
, G

∨
)

∼=
(3.5)

��
Ext

1
(G

t ⊗L
G,“Gm)

β2 ��

(π⊗id)∗

��

Hom(G
t
,Ext

1
(G,“Gm))

π∗

��

Ext
1
(‹P t ⊗L

G,“Gm)
β3 ��

Hom(‹P t
,Ext

1
(G,“Gm)).

By the definition of Ψ, the image of idG∨ in the middle is equal to ψ(α), where α is the natural
bilinear form Pt ×P → Gm.

Because of the quasi-isomorphisms Z → Z(P) and Z(Pt
) → Z

t, in the construction of
ψ(α) we can start with the obvious pairing γ : Z

t ⊗Z → Z(“Gm) � “Gm[−1], defined by the
second choice of γ1 on page 252. Since the double tensor product⊗LQp/Zp results in a shift
by two, ψ(α) gets identified with the composition

G
t
⊗

L
G

�
←− Z

t
[1]⊗

L
Z[1]

can
−−→ Z

t
[1]⊗ Z[1]

γ[2]
−−→ “Gm[1].

Using that π is induced by the obvious homomorphism ‹P t → Z
t
[1], it follows that the com-

position ∆◦Ψ◦π = β3((π⊗ id)
∗
(ψ(α))) is equal to the upper line of the following diagram,

where γ
� is induced by the pairing γ[2], the arrow σ is induced by the quasi-isomorphism

Z[1] → G, and τ is the obvious homomorphism Z → QN .

‹P t
γ� ��

i∗◦u
��▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼ Hom(Z[1],“Gm[1])

σ ��
Ext

1
(G,“Gm)

Hom(QN [1],“Gm[1]).

τ [1]∗

��

δ

��♠♠♠♠♠♠♠♠♠♠♠♠

Since both triangles commute, we obtain ∆ ◦Ψ ◦ π = δ ◦ i
∗ ◦ u as desired.

4. Change of the base ring

Let f : R → R
� be a local homomorphism of local rings which are admissible in the sense

of Definition 1.1. It is no surprise that all preceding constructions are compatible with base
change by f , i.e. for a Dieudonné display P over R we have a natural isomorphism

(4.1) u : BT(PR�)
∼= BT(P)R� ,

(1) A simpler definition of ∆, equivalent to the above according to SGA 7, VIII, Proposition 2.3.11 and its correction
[1] p. 253, is the following: The restriction of ∆ to G∨[pr] = G[pr]∨ is the connecting homomorphism of the
Ext-sequence associated to 0 → G[pn] → G → G → 0. As G is unipotent in our case, it follows that ∆ is an
isomorphism by [7] Theorem 10.2 or by Proposition A.1.
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transitive with respect to triples R → R
� → R

��, such that the following commutes.

(4.2) BT(Pt
R�)

Ψ ��

u

��

BT(PR�)
∨

u

��

BT(Pt
)R�

Ψ �� BT(P)
∨
R� .

If one uses the original construction of the functor BT in [11], the isomorphism u is quite
clear, but for (4.2) we need u in terms of the formulae of Definition 1.6. This is a question
about functoriality of the category CR.

Assume first that the residue extension of R → R
� is algebraic. Then every S ∈ CR� lies in

CR too, and coverings of S in both categories are the same. Hence we have an exact restriction
functor �CR →

�CR� and (4.1) is evident. By construction of ψ, for Dieudonné displays P and
P � over R, the following diagram commutes, which gives (4.2).

Bil(P � ×P,Gm)
ψ ��

��

Hom(BT(P �
)⊗L

BT(P),“Gm[1])

��

Bil(P �
R� ×PR� ,Gm)

ψ ��
Hom(BT(P �

R�)⊗
L

BT(PR�),
“Gm[1]).

In general we have to modify CR in order to apply the same reasoning. Let ER be the
category of all R-algebras S such that the nilradical NS is nilpotent, NS contains mS, and
Sred = S/NS is perfect. Let �ER be the category of abelian sheaves on E

op
R for the topology

where a covering is a faithfully flat homomorphism S → S
� such that Sred → S

�
red is ind-

étale. The last condition is automatic when S and S
� lie in CR; conversely for S ∈ CR and a

covering S → S
� in ER we necessarily have S

� ∈ CR. It follows that coverings of S ∈ CR are
the same in CR or in ER, whence an exact restriction functor �ER →

�CR.

Now it suffices to note that in all constructions we could use ER in place of CR. Then (4.1)
and (4.2) follow as before since every S ∈ ER� lies in ER with the same coverings in both
categories. The only point that might need verification is the fact that p-divisible groups over
R form an exact subcategory of �ER. This follows from the remarks preceding Corollary 2.5
or from:

L���� 4.1. – If H is a finite flat group scheme over R and Spec T → Spec S is an
H-torsor with S ∈ ER then S → T is a covering in ER.

Proof. – We may assume that H is étale or Hk is infinitesimal since any H is an extension
of such groups. The étale case is clear. If Hk is infinitesimal then the torsor Spec T is trivial
over Sred as Sred is perfect, so Tred

∼= Sred.
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Appendix
Infinitesimal extensions of p-divisible groups

For a lack of reference let us mention the following, probably well-known, generalisation
of the deformational duality theorem in [7]. Suppose G, H are p-divisible groups on an arbi-
trary scheme S and S◦ is a closed subscheme of S. Let Hom(TpG, H) = lim

−→
Hom(G[p

n
], H)

with transition maps induced by p : G[p
n+1

] → G[p
n
]. We have a homomorphism

δ : HomS/S◦(TpG, H) → Ext
1
S/S◦(G, H)

induced by the exact sequences 0 → G[p
n
] → G

pn

−→ G → 0, where HomS/S◦ denotes
homomorphisms on S which are trivial on S◦ and Ext

1
S/S◦ denotes isomorphism classes of

extensions on S equipped with a trivialisation on S◦.

Pʀ����ɪ�ɪ�ɴ A.1. – If the quasicoherent ideal I ⊆ OS defining S◦ is nilpotent and anni-
hilated by a power of p, then δ is bijective.

For H = µp∞ this results in an isomorphism G
∨
(S/S◦) ∼= Ext

1
S/S◦(G, µp∞), which is [7]

Theorem 10.2, but the isomorphism given there is the negative of δ by Lemma A.2 below.

Proof of Proposition A.1. – Assume that p
r
I = 0 and I

n
= 0 and let m = nr. The inverse

of δ can be constructed as follows. Assume that e = [H → E → G] is an extension on S

trivialised on S◦, i.e. provided with a section s◦ : G◦ → E◦. Then p
m

s◦ lifts to a unique
homomorphism t : G → E, giving the following morphism of exact sequences.

0 �� H ��

id

��

H ×G ��

(id,t)

��

G ��

pm

��

0

0 �� H �� E �� G �� 0.

The kernel of (id, t) is the graph of a homomorphism f : G[p
m

] → H that is trivial on S◦,
and e �→ −f is the inverse of δ.

L���� A.2. – The natural diagram

HomS/S◦(TpG, H)
δ ��

∼=

Ext
1
S/S◦(G, H)

∼=

HomS/S◦(TpH
∨
, G

∨
)

δ �� Ext
1
S/S◦(H

∨
, G

∨
)

whose vertical isomorphisms are given by Cartier duality is anti-commutative.

Proof. – Let f ∈ HomS/S◦(TpG, H) be given and let 0 → H → E → G → 0 be its
image under δ. For every sufficiently large n so that f is represented by a homomorphism
fn : G[p

n
] → H[p

n
], the truncated extension E[p

n
] is naturally isomorphic to the middle

cohomology of the following complex, denoted by K(fn)

G[p
n
]

(id,−fn)
−−−−−→ G[p

n
]⊕H[p

n
]

(fn,id)
−−−−→ H[p

n
].

Since K(fn)
∨ ∼= K(−f

∨
n ) the assertion follows.
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