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A RIEMANN-ROCH-HIRZEBRUCH FORMULA FOR
TRACES OF DIFFERENTIAL OPERATORS

BY MARKUS ENGELI AND GiovanNI FELDER

ABSTRACT. — Let D be a holomorphic differential operator acting on sections of a holomorphic
vector bundle on an n-dimensional compact complex manifold. We prove a formula, conjectured by
Feigin and Shoikhet, giving the Lefschetz number of D as the integral over the manifold of a differential
form. The class of this differential form is obtained via formal differential geometry from the canonical
generator of the Hochschild cohomology HH?"(D,,, D}) of the algebra of differential operators on
a formal neighbourhood of a point. If D is the identity, the formula reduces to the Riemann-Roch-
Hirzebruch formula.

RESUME. — Soit D un opérateur différentiel holomorphe opérant sur les sections d’un fibré vectoriel
holomorphe sur une variété complexe de dimension n. Nous démontrons une formule, conjecturée par
Feigin et Shoikhet, donnant le nombre de Lefschetz de D comme intégrale d’une forme différentielle
sur la variété. La classe de cette forme différentielle est obtenue, via la géométrie différentielle formelle
du générateur canonique de la cohomologie de Hochschild H H?"(D,,, D};) de I’algébre des opérateurs
différentiels sur un entourage formel d’un point. Si D est I'identité, la formule se réduit a la formule de
Riemann-Roch-Hirzebruch.

1. Introduction

Let E — X be a holomorphic vector bundle of rank r on a compact connected com-
plex manifold X of complex dimension n. Let Dg be the sheaf of holomorphic differential
operators acting on sections of E.

Global differential operators D € Dg(X) = I'(X,Dg) act on the sheaf cohomology
groups H’ (X, E) of E and thus we have algebra homomorphisms

HI :Dp(X) — End(H’ (X, E)).
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624 M. ENGELI AND G. FELDER

Since the cohomology of E is finite dimensional, we can consider the Lefschetz number (or
supertrace) L: Dg(X) — C,
D L(D) =Y (-1)Ytr(H(D)).
j=0

If D = 1d is the identity then L(Id) is the holomorphic Euler characteristic of E; it is given by
the Riemann—Roch-Hirzebruch theorem as the integral over X of a characteristic class. Our
aim is to generalize this formula to the case of a general differential operator D by writing
the Lefschetz number as the integral over X of a differential form xo(D) whose value at a
point z € X depends on finitely many derivatives of the coefficients of D at z.

The formula for the differential form x, depends on the choice of a connection on the
holomorphic vector bundles 73'°X and E and is similar to the formula written in [6] for
the canonical trace of the quantum algebra of functions in deformation quantization of
symplectic manifolds. Its ingredients are the Hochschild cocycle of [6] and formal differ-
ential geometry. Let D,, = M,(D,) be the algebra of r by r matrices with coefficients
in the algebra of formal differential operators D, = C[[y1,...,yn]|[0y;,--,0y.]. By [8],
the continuous Hochschild cohomology HH®(D,, ., D}, ) is one-dimensional, concentrated
in degree 2n and is generated by a 2n-cocycle 73, : p2Entl) _, ¢ given in [0] by an ex-
plicit integral formula. Formal differential geometry, see [3], gives a realization of Dg(X)
as the algebra of horizontal sections for a flat connection V on the bundle of algebras
Dg = LE x¢g D, , — X with fibre D, ,. Here J1E — X denotes the extended frame
bundle, whose fibre at z € X consists of pairs of bases, one of T° X and one of E,; itis a
principal bundle for the group G = GL, (C) x GL,(C). More generally, let J, E be the com-
plex manifold of p-jets at 0 of local bundle isomorphisms C* x C" — E. These manifolds
come with holomorphic G-equivariant submersions J,+1 — J, with contractible fibres.
The flat connection depends on the choice (unique up to homotopy) of a G-equivariant
section ¢: J1E — Joo E = lim J, E. Such sections can be constructed out of connections on
J1E. Upon local trivialization of J; E the flat connection has the form V(D) = dD + [w, D]
for some 1-form w on X with values in the first order differential operators in D,, , and the
isomorphism Dy (X) — Ker(V) sends D to its Taylor expansion D = ¢, D with respect to
the local coordinates and trivialization of F given by ¢.

With these notations the formula for xo(D) in terms of the horizontal section D associ-
ated with D is

Xo(D) = T;n(b,w, ce,w).

The multilinear form 73, on D,, , is extended to differential forms with values in D,, ,, by
linearity: if w = > w;dx; in terms of local real coordinates z;, j = 1,...,2n,

Xo(D) = ZT;n(D,le,. .. ,wj%)da;jl VANEERIAN dszn'

The local objects D and w depend on a choice of a local trivialization of J; E, but the differ-
ential form X, is globally defined as a consequence of the fact that 77, is basic for the action
of G. Our main result is
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THEOREM 1.1. — Forany D € Dg(X),

L(D) = G [ xolD).

Moreover, for the identity differential operator, it is known [8, 17] that the class of x((Id)
is the component of degree 2n of the Hirzebruch class td(T'x )ch(E) and thus we recover the
Riemann—Roch-Hirzebruch theorem. Also, the direct calculation of [6] shows that x((Id)
is the representative of the Hirzebruch class given by the Chern—Weil map in terms of the
curvature of the connection on T1°X @ E canonically associated with ¢.

The proof of the theorem is obtained by showing that the linear functions 7y = L and
Ty=[ « Xo on the Hochschild 0-th homology

HH(Dg (X)) = De(X)/[Pr(X), Dr(X)]

are proportional to a third linear function T3 constructed essentially in [4, 21]: a global dif-
ferential operator D € Dg(X) defines a global O-cycle in the complex of sheaves Co(Dg)
of Hochschild chains of Dg, which is quasi-isomorphic to the complex of sheaves Cx[2n]
of locally constant continuous functions concentrated in degree —2n. Thus there is a map
Ts: HHo(Dg(X)) — H°(X,Cx[2n]) = H>*(X,C) ~ C.

The statement of Theorem 1.1 was conjectured around 2001 by B. Feigin and B. Shoikhet.
In the case of curves a formula for L(D) in terms of residues had been found by A. Beilin-
son and V. Schechtman (Lemma 2.2.3 in [1], see also [19]). A formula for the normalized
trace in deformation quantization of a symplectic manifold, analogous to the one of Theo-
rem 1.1 was proposed in [6]. The proof of that formula is simpler since the space of traces
is one-dimensional in that situation, so one just has to check the normalization. The diffi-
culty here is that HH o(Dg (X)) is not one-dimensional in general. An indirect approach to
proving that T; = T3, proposed in [7], is to embed Dg(X) in a suitable complex of alge-
bras with one-dimensional cohomology and show that both T} and T3 extend to chain maps
on this complex. If the Euler characteristic of E' does not vanish one can then deduce from
the classical Riemann—Roch—Hirzebruch theorem that 7) = C - T3 for some C. The rigor-
ous completion of this programme presents some technical difficulties but it should lead to a
proof of Ty = T3 if E has non-vanishing Euler characteristic. In a very recent preprint [18],
A. Ramadoss shows that the approach of [7] could be extended to the much more general
case where X admits a vector bundle with non-vanishing Euler characteristic.

Our result gives in particular a different direct proof of the fact that 73 = T3, without
assumptions on X or F. It does not use the Riemann—Roch—Hirzebruch theorem.
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626 M. ENGELI AND G. FELDER

2. Hochschild homology of the algebra of differential operators

2.1. Hochschild homology

Let A be an algebra over C with unit 1 and set A = A/C1. We denote a the class in A of

a € A. The Hochschild homology HH.(A) of A with coefficients in the bimodule A is the

homology of the (normalized) Hochschild chain complex - - - LA Cy(4) 2, —1(4) LA

with

Cq(A) =A@ A%, ¢>0,
and differential
1

Q

(1) blag,...,aq) = (—1)(ao,.--,ajajq1,...,aq)

§=0

+(—1)%(aqa0,a1,...,aq-1)-
Here ay, . ..,aq € A and we write (ao, . .., aq) instead of ap ® @1 ® - - - ® @4. For topological
algebras one has to take the projective tensor product, as explained in [5], Ch. II.

Let O,, = C|[y1, - - ., yn]] be the algebra of formal powers series in n variables and D,, =

Onl8y,,- - -, 0y, ] the algebra of formal differential operators. Let also O°! = Clyy, . . -, Yn],
Drol = Orel[g,,,...,08,,] be the subalgebras of polynomial functions and differential

operators. As shown by Feigin and Tsygan [8], the Hochschild homology of DP°! is one-
dimensional and concentrated in degree 2n. A representative of a generator of HH o, (D,,)
in the normalized Hochschild chain complex is

€an = Z sgn(m) 1 ® Ur(1) @ -+ @ Ur(2n), Uzj-1 = ayj, U2 = Yj-
TE€San
Thus there is a unique linear form on Hochschild homology whose value on ca,, is one. This
linear form is the class of a cocycle in the complex dual to the Hochschild complex. An ex-
plicit formula for such a cocycle 7o,, was found in [6]. It has the following properties.

(i) 7o, extends to a linear form on DE (2n+1) obeying the cocycle condition 19, o

b = 0, where b is the Hochschild differential, and the normalization condition:
Ton(Do, ..., Dan) = 0if D; = 1 for some j > 1.
(ii) T2, is invariant under the action of GL,(C) on D,, by linear coordinate transforma-
tions. Moreover, if a = 3 a;,yx0y, + b, ajx,b € C, then
7 (1Y 7 (Do, ..., Dj_1,a,Dj, ..., Dap_1) = 0.
(111) TQn(CQn) = 1
More generally, let M,.(A) ~ M, (C)® A denote the algebra of r by r matrices with entries in
an associative algebra A. Since Hochschild homology is Morita invariant, HH o (M, (D,,)) =~
HH ,(D,,) is also one-dimensional and is spanned by ¢, where we view D,, as a subalgebra
of M, (D,,) via D — Id ® D. Define a cocycle 735,, by

TZTn(AO ® Dg,..., A2, ® Dzn) = tI‘(AO e Azn)Tgn(Do, cey Dzn),
A; € M,.(C), D; € D,,. As a consequence of the properties of 7o, 73,, obeys:

() 74, is a linear form on M,.(D,,)®("+1) obeying the cocycle condition 75, o b = 0 and
Ton (Do, - - ., Dayn) = 0if, for some j > 1, D; is the multiplication by a constant matrix.
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(i) 73, is invariant under the action of G = GL,(C) x GL,(C) where GL,(C) acts on
M,.(D,,) by conjugation. Moreover, if a = )" a;xyr0y, + b, aji € C, b € M, (C) then

2n
Z(_l)jTgn(D07 .. 7Dj—l7a7Dja .. -aD2n—1) =0.

j=1

(iil) 75, (con) = .

REMARK 2.1. — For any associative algebra A, denote by Ap;. the Lie algebra A with
bracket [a, b] = ab — ba. Then Ape acts on Cp,(A) via

p

Lo(ag,...,ap) = Z(ao, cola,agl, . ap), a € Arie
§=0

and we have a Cartan formula L, = bo ¢, + t4 © b with

/4
tolag, ... ap) = Z(—1)7+1(a0, e Q1, Gy Ay ).
j=1

It follows that Ay, acts trivially on the cohomology. The property (ii) may be rephrased as
saying that 7, is G-basic, namely G-invariant and obeying 73, o ¢, = 0, for a in the Lie
algebra of G embedded in D,, - as a Lie algebra of first order operators.

It also follows that the cohomology class of 73, is invariant under coordinate transforma-
tions.

2.2. Hochschild chain complex of the sheaf of differential operators

Let Dg be the sheaf of differential operators on E. In terms of holomorphic coordinates
and a local holomorphic trivialization of E, a local section of Dg has the form

ZaI(zlw-'yzn)aill'”ai:v I:(ila"'ain)ezg07
I

with holomorphic matrix-valued coefficients a;, vanishing except for finitely many multi-
indices I. The sheaf Dg is a sheaf of locally convex algebras: for any open set U C X, the
locally convex subalgebra D (U)<F of operators of order at most k is the space of sections
of some vector bundle over U and has the topology of uniform convergence on compact sub-
sets. Then the inductive limit Dg(U) = UDg(U)S* with the inductive limit topology is a
complete locally convex algebra. This is the topology considered in [4]. Then one has the
following result:

THEOREM 2.2 ([4, 21]). — Every point of X has a coordinate neighbourhood U such that
HH,(Dg(U)) = 0 for p # 2n and HH 4, (Dg(U)) is one-dimensional generated by the class

of
CE(U) = Z Sgn(ﬂ-)(L Tr(1),--- 7$1'r(2n))7

TESan
where xo5_1 = 0,22 = z;. Here we identify x € D(U) with the multiple of the identity
Id, ® z € M, @ D(U) ~ Dg(U), with respect to some trivialization of E.
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628 M. ENGELI AND G. FELDER

2.3. Formal differential geometry

We recall some notions of formal differential geometry [9, 10, 11], following [3].

Let W,, = @,0,,0,, be the Lie algebra of formal vector fields and ¢l,.(O,,) denote M,.(O,,)
viewed as a Lie algebra, with commutator bracket. The Lie algebra W,, acts on g¢l,.(0,,) by
derivations and we can thus define the semidirect product

Wy = Wy x gl (O).

This Lie algebra is embedded in M,.(D,,) (viewed as Lie algebra with commutator bracket) as
a Lie subalgebra of first order differential operators. It should be regarded as the Lie algebra
of infinitesimal automorphisms of the trivial bundle of rank r over a formal neighbourhood
of 0 € C™.

A local parametrization of E is a holomorphic bundle isomorphism U x C" — E|y from
the trivial bundle over some neighbourhood U C C” of 0 to the restriction of E to some
open set V. Let J,E be the complex manifold of p-jets at 0 € C™ of local parametrizations.
In particular, J; F is the extended frame bundle, whose fibre at € X is the space of pairs of
bases of the holomorphic tangent space at x and the fibre of F at x respectively. The group
G = GL,(C) x GL,(C) acts freely on the right on each J,E, p = 1,2, ... by linear transfor-
mations of C* x C" and J; E is a principal G-bundle over X. The complex manifolds J,E
form a projective system with surjective G-equivariant submersions J,E — J,E,p > q. The
projective limit J E is, in the language of [3], a holomorphic principal W, ,.-space. Namely,
thereis a Lie algebra homomorphism W, , — V(JsE) from W, . to the Lie algebra of holo-
morphic vector fields on Jo E, which is an isomorphism W,, , — T(;’OJOOE at each point
¢ € JooE. The inverse map defines a holomorphic one-form Qyc € QV0(Joo E, W, ) with
values in W), , and the homomorphism property is equivalent to the Maurer—Cartan equa-
tion .

dQwvc + i[QMC’ QMC] =0.

Moreover, the fibres of the bundle J..E/G — J1E/G = X are contractible and therefore
there exists a smooth section (unique up to homotopy) ¢ : X — JE/G or, equivalently,
a smooth G-equivariant section (13 : J1E — JyE. The Maurer—Cartan form Qy;c¢ pulls
back to a G-equivariant 1-form ¢*Qyc on Ji E obeying the Maurer—Cartan equation. This
induces a flat connection on the associated bundle

Dp = J1E xg M,(D,) — X.

The horizontal sections are in one-to-one correspondence with global differential operators:
to D € Dp(X) there corresponds the horizontal section D. Its value at z € X is the Taylor
expansion at 0 of D with respect to the coordinates and the trivialization defined by ¢ at the
point z. Conversely, every horizontal section comes from a differential operator. In explicit
terms, let us choose a local trivialization of J1E = U x G over U C X. Then the restriction
of ptoUisgivenbyamap ¢V : U — JE|y andw = ¢*Quc isa W, -valued 1-formon U.
The Taylor expansion D is given on U by a map U — M, (D,,), z — D, obeying

dD + [w, D] = 0.

A change of trivialization is given by a gauge transformation g: U — G. The section changes
as Dy +— g, - Dy andw asw +— g -w — dgg~"! and dgg~* is a 1-form with values in the Lie
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algebra of G, embedded in M, (D,,) as the Lie algebra of first order operators of the form
Zajkyka%j + b, a5, € C,be M, (C).

PROPOSITION 2.3. — Let Q° be the complex of sheaves of complex-valued smooth dif-
ferential forms on X with de Rham differential and let C(Dg) be the complex of sheaves of
Hochschild chains of Dg. There is a homomorphism of complexes of sheaves

Xo: Co(Dg) — Qn-e

depending on a choice of section of Joo E/G — X, inducing an isomorphism of the cohomology
sheaves. The map xo: Dr(X) — Q2"(X) on global differential operators is the map appearing
in Theorem 1.1 and x 2, maps (Do, ..., Day,) € Capn(U) to the function Tgn(f)g, e f)%) on
the open set U.

The rest of this section is dedicated to the construction of x, and the proof of Proposi-
tion 2.3,

2.4. Shift by a Maurer—Cartan element

We start by a general construction on the chain complex of an arbitrary differential graded
algebra. Let A = @,z A7 be a differential graded algebra with unit and with differential
d: A9 — AJT1. We denote by |a| = j the degree of a homogeneous element a € A7. The
Hochschild chain complex of A is C*(A) = ®,ezC?(A) with

CP(A) = szr_quAjO QAN @ ... ® A,
The differential of the Hochschild complex is defined as the total differential 6 = b+ (—1)Pd
on CP(A)."Y The Hochschild differential b is defined as in (1) except that the last term has

an additional sign (—1)lerl(leol++lar—11) and the differential d is extended as a derivation of
degree 1 for the tensor product:

14
d(ao, ... ap) = Y (=)l Haimil(ay . daj, ... a,).
§=0
A Maurer—Cartan element of Ais an element w € A' of degree 1 obeying the Maurer—Cartan
equation
dw +w? = 0.

The Maurer—Cartan equation implies that the linear endomorphism d,, of A given by d,,a =
da+wa—(—1)%law is a differential. Moreover d,, is a derivation of degree 1 of the algebra A
and therefore the algebra A with differential d,, is a differential graded algebra. We call this
differential graded algebra the twist of A by w and denote it A4,,,.

The symmetric group S, acts on A ® AP by permutations of the last p factors with signs:

the transposition of neighbouring factors a and b is accompanied by the sign (—1)!2I'®!, Re-
call that the shuffle product C,(A4) ® Cy(A) — Cpy4(A) is defined by

(a0, -, ap) X (bo, ..., bg) = (—1)1P1 22 193lsh, (agbo, ay, ... ap, b1, ... by),

() We introduce the upper index notation C? to have a differential of degree one as d is. Thus in the ungraded case
we have C1(A) = C_4(A), concentrated in negative degrees.
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where shy, gz = Y7 g sgn(m)7 - z, with sum over (p, ¢)-shuffles in S, 4, namely over the
permutations that preserve the ordering of the first p and of the last ¢ letters. The shuffle
product is associative and if A is Abelian (which we do not assume) it is a homomorphism
of complexes, see [16, 14].

PROPOSITION 2.4. — Let A, be the twist of A by a Maurer—Cartan element w € Al. Let
(Wi =Q,w,...,w) with k factors of w. Then the map

(a0, ap) = > _(—1)¥(ag, ..., ap) x (W)

k>0

is an isomorphism of complexes C(A,,) — C(A).
We split the proof into a few steps.
LEmMMA 2.5. — b(w)o = 0and, for k > 1, b(w) = d(w)g—1-

Proof. — The first statement is obvious. Let & > 1. Then
b(wi =b1,w,...,w)

k—1
= (w,...,w)+ Z(—l)j(l,w,...,wz,...,w) + (D=1 Hw,...,w)
k—1 "
==Y (1Y (1w,...,dw,...,w) = dw)k-1. O

LEMMA 2.6. — Let a € CP(A).Then
b(ax (W) =bax (w+ (—1)Pa x b(w)g
P

—(=1)P > (=)leoltHlaal(ay, L w, k. ap) X (@)k-1,
k=0

where [a,a'] = aa’ — (—=1)19I9" |/ q is the graded commutator.

Proof. — For simplicity, we give the proof in the case where all a; are of degree 0, which
is the case appearing in our application. The additional signs appearing in the general case
can be treated easily.

If we write out the sum over shuffles we see that there are four types of terms appearing
on the left-hand side: those containing the products a;a 1, w?, wa; and ajw. The terms of
the first and of the second type combine to give the first two terms on the right-hand side.
The proof that the signs match is the same as in the proof of the homomorphism property
for commutative algebras, see [14], Proposition 4.2.2, so we consider only the last two types.
Consider a shuffle 7 appearing on the left-hand side such that [ out of the k factors w have
been shuflled to the left of a;. Then the term containing the product wa; comes with a sign
sgn(m)(—1)?~1*!. The same term occurs for a shuffle 7’ in (aq, . . ., [w, a;], . . ., ap) X (W)k—1
with a sign equal to sgn(7’)(—1)!~1, where (—1)!~! is the Koszul sign coming from the fact
that { — 1 factors w are permuted by 7’ to the left of the odd element [w, a;]. The signs of
the shuffles are related by sgn(w) = sgn(n’)(—1)P~7*1. The ratio of signs is thus (—1)P~1,
as claimed. The same reasoning can be applied to a;w. O
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LEmMMA 2.7. — Let a € CP(A) and set §,a = ba + (—1)Pd,a. Then
83 (e x @)k =Y (-1)*0ua x (@)

k>0 k>0
Proof. — This follows from the previous lemma by inserting the definitions and summing
over k. O

LEmMA 2.8. — The map C(A,) — C(A) of Proposition 2.4 is an isomorphism.

Proof. — The map is the shuffle multiplication by ¢ = 3(—1)*(w);. We claim that the
inverse map is the shuffle multiplication by ¢ = 3" (w). To prove this, we use that the shuffle
product is associative, so that it suffices to show that ¢ x 1) = 1. This follows from

(w)k X (W)l = Z (W)k+l = (k + l) (w)k_H. O

TESk,1 k

Proposition 2.4 follows from the last two lemmata.

2.5. Hochschild and de Rham cohomology
We construct a homomorphism of complexes of sheaves
Xo: Co(Dp) — Q*—°

from the Hochschild chain complex of the sheaf D to the sheaf of smooth de Rham forms.
It is based on formal geometry and thus depends on a choice of section of J., E/G (but the
map induced on homology is canonical). The map xo: Pr(X) — Q2*(X) on global differ-
ential operators is the one appearing in Theorem 1.1.

To do this we apply the previous constructions to the smooth de Rham complex A =
Q(U, Dg) with values in the vector bundle Dy on some open subset U C X. Let D € A°
denote the horizontal section corresponding to a differential operator D € Dg(U). Locally,
upon trivialization of 7%°X and E, the condition of horizontality is dD + [w, D] = 0 for
some Maurer—Cartan element w.

PROPOSITION 2.9. — Let U be a sufficiently small open neighbourhood of any point in X.
Let Dy, ...,D, € Dg(U) be differential operators on U and D, ..., D, € A° be the corre-
sponding horizontal sections of Dg on U. Then the differential (2n — p)-forms on U

) Xp(Do, -, Dp) =15, (shpan—p(Do, D1, ..., Dp,w, ... w)),

are well-defined (i.e., independent of the trivialization of J\E ), continuous, and obey the rela-
tions

dox, = (=1)P"'xp-10b.

Proof. — If we change trivialization of the extended frame bundle J; E, then D, w change
by the action of an element of G, under which 73, is invariant, and the shift of w by a one-
form with values in the Lie algebra of G embedded in A. By property (ii) of 73,,, see 2.1, the
right-hand side of (2) is unaffected by such a shift. The continuity is clear: since 73,, depends
non-trivially only on finitely many Taylor coefficients of its arguments, the C*-norms on com-
pact subsets of x, (Do, ..., D,) are estimated by C* -norms of the coefficients of Dy,...,D,
which by analyticity are in turn controlled by sup norms on (slightly larger) compact subsets.
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In the notation of Proposition 2.4,
Xp(D(]v R Dp) = Tgn ((D07 e 7Dp) X (w)2n—p) .

The cochain a = (D, ... ,f)p) obeys d,(a) = 0, thus the homomorphism property of
Proposition 2.4 reduces to

5 (-DFax (W)=Y (-Dfbax (Wi, =b*d.
k>0 k>0

The component of Hochschild degree 2n is
(_l)p_lb(a X (w)2n—p+1) + (=1)P(=1)Pd(a X (w)2n—p) = (_l)p_lba X (wW)2n—p+1-

If we apply 73,, the first term vanishes and we obtain the claim. O

Since the expressions on the right-hand side of (2) are local, it is clear that x, are com-
patible with the inclusion of open sets and thus define maps of sheaves. Moreover, by the
normalization of 7, , we see that x2,(cg(U)) = r, where cg(U) is the generator of Theo-
rem 2.2. Thus x, induces a non-trivial map on homology. By Theorem 2.2 this map is an
isomorphism. This concludes the proof of Proposition 2.3.

3. The third trace

The idea of the proof of Theorem 1.1 is to show that the two traces 77 (D) = L(D) =
S (—1)tr(H’ (D)) and T5(D) = [ xo(D) are both proportional to a third linear form
T5: Dr(X) — C constructed via Theorem 2.2 with the help of a finite open cover i = (U,).
Consider the Hochschild complex of sheaves Co (Dg):
.+ > DD ®Dr — Dg D — Dy — 0.

Let U = (U,) be a sufficiently fine open cover of X. Let CP¢ = C9(U,C_,(Dg)),
(¢ > 0,p < 0), where CIU, F) = @ag<..cayF(Uag N+ N Ua,) be the Hochschild-Cech
double complex. Global differential operators D € Dg(X) define cocycles in C%°. The
restriction D|y, of D to a sufficiently small open set is a Hochschild boundary by Theorem
2.2. Thus D]y, = bDS” for some DV € C~19. Since b and the Cech differential commute,
(6DM) 5 = D(ﬂl) — DY isa Hochschild cycle for the algebra Dg (U, NUg) and is thus exact.
Continuing in this way we can “climb the staircase”, see Fig. |, and find D) e C—77—1,
j=1,...,2n, such that

(3) b»DM) = D, $pYU) =ppU+D =1 ... 2n—1.

Finally we get to the point where the Hochschild homology is nontrivial and we obtain

(4) SDCM = 5 4 pDE D),

where s € C?™~2" has the form

(5) Sag,...,02n = AO‘OV“VO‘QTL (D)CE(Uao n---N Uazn)7

for some Cech cocycle \(D) € C?"(U, C) with values in the locally constant sheaf Cx. Its
class [\(D)] € H?>"(X,C) ~ C is (up to sign) T3(D).
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S 2n
)
D@n) on —1
T
D@ — 1
7
DM - Do
—2n -1 0

FIGURE 1. The Hochschild—Cech double complex

4. The first trace is proportional to the third...

Here we study the first trace 73 = L and describe it in terms of local Cech data. Let
(Q©*) (X, E),d) be the Dolbeault complex with values in the holomorphic vector bundle
E. We fix hermitian metrics on Tx and on E. These metrics induce an L? inner product { , )
on the Dolbeault complex and a self-adjoint positive semidefinite Laplace operator Az =
00* + 0*0, with discrete spectrum. By Hodge theory, the cohomology group H?(X, E) is
isomorphic to the space of harmonic forms Ker(A5). Moreover we have the following stan-
dard fact.

PROPOSITION 4.1. — For any D € Dg(X) andt > 0, De™*25 is a trace class operator on
the Hilbert space of square integrable Dolbeault forms. The expression

n

Z(—l)jtfmovf)(x,}s) (De~"2)

=0

is independent of t and is equal to Ty (D) = L(D).

Proof. — Werefer, e.g., to[2] for the trace class property. The independence of ¢ is checked
by differentiation:

d 5 - 5(99%* % O
dt trQ(O,J')(X,E)(De_tAB) = _trQ(OJ)(X,E)(De ths (00" + 0709))

= —trgo.) (x,E) (DeitAé 55*) — troo.s-1(x,E) (éDeitAéé*)

= _trQ(O,j) (X,E) (De_tAé 55*) — trQ(O,j—l) (X,E) (De_tAééé* ) .
Here we use the fact that 0 commutes both with D (since D is holomorphic) and with the
Laplacian. Taking the sum with alternating signs yields the claim.

Thus we can evaluate the sum in the limit ¢ — oo. Since 0 is an isolated eigenvalue of
the positive semidefinite operator Az we obtain the alternating sum of traces on harmonic
forms, namely L(D). O
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4.1. The o-cocycle

We introduce our main technical tool, a cocycle in a double complex associated to an open
set U. Here we describe its properties and postpone its construction by heat kernel methods
to Section 6.

Let U be a sufficiently small open neighbourhood of an arbitrary point in X. Let A =
Dg(U) and let B = C*°(U) be the algebra of smooth complex valued functions on U. Con-
sider further C,(A4) = A ® A®P with Hochschild differential b of degree —1 and C,,(B) =
B ® B®? with differential s of degree +1 given by

s(p0®...®pp):1®p0®...®pp.

Let Cp(B) be the subcomplex spanned by (po, - -.,pp) With compact common support
Nisupp(p;). Let us denote by [f(t)]- = a_nt™N + -+ +a_1t~1 + ag the non-positive part
of an asymptotic Laurent series f(t) ~ > ;5 _y a;t/ int.

PrROPOSITION 4.2. — Let U C X be an open set. Let A = Dg(U), B= C>®(U). For each
choice of hermitian metrics on Tx and E, there exist linear maps

ap: Cp(4) ® Cp(B) — C[t71],
such that the coefficients of o,(Do, . .. Dp; po, - - . , pp) are continuous in (Do, . . ., D,) and sat-
isfy the following
() Let CZ(B) be the subcomplex spanned by (po, ..., pp) with empty common support
Ni_osupp(p;). Then o, vanishes on Cp(A) ® C(B).
(ii) Forany D € Cpy1(A) and p € Cg(B),

op(bD ® p) = op11(D®sp),  p=0,

(i) 00(D, p) = [ 7—o(~1) tr0w.0 0,m (pDe22)] , (n = dime(X)).

(iv) Suppose that U is some coordinate neighbourhood of a point and let cg(U) be the cocycle
appearing in Theorem 2.2. Assume further that pg, . . ., pan € C°(U) are functions such
that the metrics on Tx and E are flat on some neighbourhood of 2" supp(p;). Then

r
oon(ce(U);po,-- -, pan) = (27”)”/ podp1 - - dpan,
U
where r is the rank of E.

The proof is contained in Section 6. We first show how to use it to prove that T} is pro-
portional to T3.

4.2. A local formula for the Lefschetz number

Here it is useful to replace the open cover considered in Section 3 by a refinement obtained
from a triangulation of X. Then the Hochschild—Cech cochains (D¥), constructed in Sec-
tion 3 out of a global differential operator D, define cochains, still denoted by (D¥)) for the
refinement. Choose a smooth finite triangulation |K| — X of X, with underlying simpli-
cial complex K, with fixed total ordering of its vertices. The open star of the triangulation
is the open cover U = (U, )ack, of X labeled by the set of vertices of the triangulation,
such that U,, is the complement of the simplices not containing «. By construction, for all
ap < - < Qp,
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(@) Uy, N-+-NU,, is empty or contractible.
(b) If p > 2n, then Uy, N --- N U,, is empty.

LEMMA 4.3. — Let (po) be a partition of unity subordinate to the open covering (Uy). Let
D € Dg(X) and s € C*™(U,Can (D)) be the cocycle (5). Then

2n

Z(_l)ptr(Hp(D)) = Z 0'271(3&0,4..,&2";pao,.“,agn)-

p=0 o< <aap
Here we use the abbreviation

pOéOr'-yO‘q = Z Sgn(ﬂ-)paw(o) Q- ® paﬂ(q)'

FES(I+1

Proof. — Out of D we construct the cochains DU) obeying (3).

n

TI(D) = Z(_l)j [trQ(O,j)(X,E) (De_tAé)]

j=0
= Z Z(_l)j [trﬂ(ov”(X,E)(PaDe_tAé)] )
a j=0
= ZUO(Da;pa)a D, = D|U(, c DE(UQ)~

Now D, = »D and Proposition 4.2 (ii) implies

ZUI ,]-,pa)
= Zal &5 pg, pa)

= ZUI D(l)apﬂapa +ZUI D,gl);pﬁapﬁ)

a#B B

1
=" a1(DY - DY; 05, pa).
oy,

In the last step we have replaced the last occurrence of pg by — 3, .5 po mod C1. We
see that (6D™M) 4 , appears. Thus we can iterate the procedure. At the g-th step we obtain
similarly for ¢ < 2n,

Z (6Do¢qo), aq;paoa-~»7aq) = Z (ngxqgjl)aq’pao aq)

ap<--<ag ap<-<ag
— E (g+1)
- UQ+1(Da0, Sag)? 1®p0¢0> :th)
ap<--<ag

= Z Uq—&-l((sD((xqo-j_l)aq_,_lapao, 1aq+1)

o< <Qg41
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If ¢ = 2n we have an additional term containing s and we obtain

Tl(D) = Z UQ“(SQO,M’QM;pao,uann)

ap<--<Q2n
(2n+1) .
+ E 0’2n+1(6Da0,...,a2n+17pao,--~,a2n+1)'
ap<-<Qap+41

Since there are no non-empty (2n+2)-fold intersections, (pa,,- - - , P2n+1) belongs to C?(B)
and therefore, by Proposition 4.2, (i), the second term vanishes. O

Let us now choose the hermitian metrics so that they are flat on the disjoint closed sets
ﬂ?iosupp(pai), ap < -+ < (2. By Proposition 4.2, (iv), we then obtain

> (=1)Per(H?(D))
p=0
= (27’L + 1)' (27:;)” Z )‘ao,m,azn (D) /X paodpoq e dpazn'

ap<---<azn

Now the common support of the functions p,, in each summand is contained in a sim-

plex oqy,....as,- Moreover each of the functions vanishes on the corresponding face and
2 Pa; = 1 on some neighbourhood of the simplex. Therefore the integral may be

evaluated as follows.

LEMMA 4.4. — Let H, € RPT! be the hyperplane S°F_t; = 1 and A, = H, N [0,1]PT!
the standard simplex, with (standard) orientation given by the ordered basis 0y, , . .., 0y,. Let
P0, - - -, Pp be smooth functions defined on some open neighbourhood U C H, of Ay, such that
po+ -+ pp=1andp;(t) =01ift; <0. Then

1
dot -+ -dp, = ———.
/Appo /)1 pp (p+1)'

Proof. — We prove by induction in p the more general formula
k!
k
podp1 - -dpy, = ———, k=0,1,2,...
/A TR T (k)
This formula trivially holds for p = 0. By the Stokes theorem,
/ pedpy -+ - dp, = —/ pedp1 -+ - dpp—1dpo

Ap Ap

(=1)”

p

1
E+1

1
=0 /E)A pe T dpy - dpp_y

Since p; vanishes on the j-th face of A,, only the p-th face (where ¢, = 0) contributes. This
faceis A,_1 and the restriction of py, . .., pp—1 obeys the assumptions of the lemma. Taking
into account the sign (—1)P relating the orientation of A,_; to the induced orientation, we
obtain

/A d(pt T dpy -+ dpp_1)

1
k k+1
pedpy -+ -dp _7/ P dpy---dpp—_1,
~/Ap 0 b k 1 Ap_1 0 b
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proving the induction step. O
COROLLARY 4.5. — Let €(ag,...,a2,) € {—1,1} be the orientation of the simplex
Oao,...,ann Felative to the canonical orientation of X. Then
T
Tl(D) = (271-2)" Z )\a[]’_,,yam(D)e(ao,...,a2n).

ap<--<azn

5. ...and so is the second

Let T3(D) = [ xo(D) be the second trace. Let C' be the cell decomposition of X dual
to the triangulation of subsection 4.2. Its cells are in one-to-one correspondence with the
simplices of the triangulation. We denote by Cly, ... o, the (2n — p)-cell corresponding to
the simplex 04,,...,a, With vertices ao, ..., a;,. We orient the dual cells by the condition that

Ca,...,ap * Oaq,...,a, = 1 0on the intersection index (see Appendix A).
PROPOSITION 5.1. — Let s = s(D) be the cocycle (5). Then
T2(D) = Z / X2n(3ao,‘.-,a2n)7

ap<---<azn Ca

where Xay, is defined in Proposition 2.9 for the open set Uy, N --- N U,

Q2n

Proof. — We first prove by induction that forallp =0,...,2n — 1,
© L= Y [ el
ap<---<ap Ca

and then deduce the claim by doing a further induction step. For p = 0, Equation (6) follows
from

and D|y, = bDLY. Assume that the claim is proved up to some p < 2n — 1. Then, by
Proposition 2.3 and the Stokes theorem (the signs are discussed in the appendix, see (15)),
we get

o= Y [ w008,

ap<---<ap Cao »»»»» p
S D DN R C AL
ap<-- <o Cag,..., “p

— ey Y /C Xpi1 (D& )

ap<---<apt1

Since D@+ = pDP+2) if p < 2n — 1 the induction step is complete.
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Now we do this step once more for p = 2n — 1. The calculation is the same but the con-
clusion is different since 6 D™ = s + bD("+1) We obtain

D)=} / Xan((s + 0D V)ag as,).

Moreover, 2, coincides with 7, composed with the Taylor expansion and thus is a cocycle,
i.e., it vanishes on exact chains such as bD27+1)

The integral over the 0-dimensional cycle Cy,,. .. «,, is the evaluation of the integrand
times the sign of the orientation, that is the sign e(ay, . . ., 2y, ) of the orientation of 0. oy,
relative to the orientation of X. O

COROLLARY 5.2. — We have

TD)=7 > Aag.as, (D)e(n, ..., 02).

ap<-<ozn

5.1. Proof of Theorem 1.1

Recall that T3 (D) = L(D) and that T5(D) = [ xo(D). Theorem 1.1 follows from Corol-
lary 4.5 and Corollary 5.2. The missing step is the proof of Proposition 4.2, which appears
in the next section.

6. Asymptotic topological quantum mechanics

In this section we prove Proposition 4.2 and give in particular the construction of op,.
Roughly speaking, oy, is the cup product of a cochain ¥, constructed using topological quan-
tum mechanics and a cochain Z taking care of the partition of unity. The formula for ¥ is a
version of the JLO cocycle [12] and is a regularized version of a cocycle appearing in “topo-
logical quantum mechanics” [15, 7]. Itis constructed with heat kernel methods. Here we need
only the asymptotic behaviour of these objects as time (or inverse temperature [12]) tends to
zero, which allows us to replace the heat kernel by a better behaved parametrix with support
in a neighbourhood of the diagonal.

We work in the context of Section 4 and fix in particular hermitian metrics on the holo-
morphic vector bundles T71°X and E.

6.1. A parametrix for the heat equation

We summarize here what we need about the heat kernel and refer to [2] for more details
and proofs. The heat operator e *24 is an integral operator with kernel k; € ®,I'(X x X,
E%P X (E%P)*), where EOP = AP(T%1X)* ® E: for any smooth section ¢ € Q%*(X, E),

e tRap(z) = / ki(z,2") - ¢(2')|d7'|, t>0,
X

is the solution of the heat equation d;u + Azu = 0 with initial data ¢. Here |dz’| denotes
the Riemannian volume form. Let d(z, z’) denote the geodesic distance between z, 2’ € X.
Then the heat kernel has an asymptotic expansion as ¢t — 0,

1 _d(z,2)?
e

(7 ki(2,2") ~ ()" T (Po(z,2)) +t@1(2,2") + t2®y(2,2') + - .
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The smooth kernels ®;(z, z’) can be chosen to vanish except on an arbitrary small neigh-
bourhood d(z,2') < e of the diagonal. The precise meaning of the expansion is that if k¥
is the truncation of the series at the N-th term and || - ||, denotes the C*-norm on sections
of the hermitian bundle E%P X (E%P)* on X x X; then for all £, j,« > 0 and N sufficiently
large, depending on ¢, j, v,

®) 107 (ke = kM)l = O@), 110 + Ag)k{ [le = O(t).
Also, with the same hypotheses, for any smooth section ¢,
) lim [|K{Y¢ — ¢le =0,

t—0t

where KN denotes the integral operator with kernel k7" .

6.2. Hochschild cohomology

Let A be an associative algebra with unit and let (M = ©M7,dys) be a complex of
A-bimodules such that M7 = 0 for all but finitely many j. Recall that the Hochschild
cochain complex C*(A, M) with values in M is the total complex of the double complex

CP9( A, M) = Hom(A®P, M?)
and differential § = dg + (—1)Pdps: CP9 — CPTH9 @ CP9+! with

drp(ai,...,apt1) = a1¢(az, ..., apt1)

p
+ Z(—l)lSO(al, e QAL Qpt)
=1

+(=1)**p(ay,...,ap)apt1.
The complex of A-bimodules dual to M is (M* = &(M*)?,dps+) with (M*)? = (M~7)*,
dy-p = (—1)7p o dy for ¢ € (M?)* and action of A defined by a - ¢(z) = ¢(za),p -
a(z) = p(az),a € A,x € M. With these definitions, C*(A, A*) is the complex dual to the
Hochschild chain complex C,(A).
With any homomorphism e: M; ® 4 My — Mj of complexes of A-bimodules is associated
a chain map, the cup product U: CP9(A, My) ® CP9 (A, My) — CPraor'+d (A Ms),

pUY(ar,...,0pq) = (—1)qplcp(a1, ceyGp) @ Y(Apy1, .., Gpig)-
We will use this construction in two special cases: (a) M; = My = M3 = M is a dif-
ferential graded algebra whose product factors through M ®4 M defining thus a map
o: M ®a M — M. (b) My = M is a complex of A-bimodules, My = M*, M3 = A* with
zero differential and e: M* ® 4 M — A* is the map (¢, z) — (y — ¢(zy)).

6.3. A JLO-type cocycle in the Hochschild—Dolbeault double complex

Let U be an open subset of X and A = Dg(U) be the algebra of differential operators on
the restriction of E to U. The Dolbeault complex (M. (U) = Q2*(U)®o @) Pe(U), d®id)
with compact support and values in Dg is a locally convex differential graded algebra and
an A-bimodule. In local coordinates it is the graded algebra generated by M,.(C°(U)) of
degree 0, dz; of degree 1 and 9,, of degree zero. The algebra M.(U) is the inductive limit
over j and K of the locally convex subalgebras My ; of operators of order at most j and
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with support on a compact subset K C U. The space M ; is the space of sections z — D,
of some vector bundle on U with support in K, and has the topology defined by the system
of seminorms given by the C*-norms, for all £.

PROPOSITION 6.1. — Let U C X be an open subset, A = Dg(U) and M, = M.(U) be
the Dolbeault complex with values in A and compact support. Let kY be a parametrix, with
support in some small neighbourhood of the diagonal, obtained by truncating the formal series
(7) at the N-th term. Suppose that Dy € MP?, D1,...,D, € A. Then, for any sufficiently
large N,

U,(Do,...,Dyp)

LICR ] x -
=(=1)"> Um Str(DoK [\ [0, D1]KY ---[0%, Dy KN )dsy - - dsp |

where Str denotes the alternating sum of traces over the Hilbert space of square integrable sec-
tions of N(T®'U)* ® E|y, is independent of N for large N and defines a continuous cocycle

¥ =30, c @p_ Hom(M? ® A%, C)[t™"] =~ C°(A, M7)[t™].
P

Proof. — The alternating trace Str(DoKJy[0%, Di]KJ ---[0%, Dp]K}Y) is the integral
I opldz| of some function a,, € C*°(X x A,) with support in some neighbourhood of the
support of Dgy. This function has the form

P P
ap(z,s) = /X str (DO H[é*,Dj]kg(mj,xjH)) H |dz;|, z0=2pt1 =2,
P =0 j=1

where the differential operators [0*, D;] act with derivatives with respect to z ; (the product is
the composition of linear maps in the conventional order). The supertrace str is the alternat-
ing sum of traces over the fibres NV TO! X*® E, at x € U. The integral is actually over a small
neighbourhood of (z,...,x) € XP. Since kN (2, 2’) is a smooth kernel, a,(z, s) is smooth
for s in the interior of the simplex tA,. It is also continuous on its boundary for any fixed ¢,
uniformly in z, as can be seen using (9). By rescaling s = ts’ we see that |, A, ap(z,s) ] ds;
has an asymptotic expansion as a Laurent series in ¢ whose singular part is not affected by
corrections of order s to kX for large enough N. Thus the expression for ¥, is indepen-
dent of N for N large enough. For further details see appendix B.

The proof of the cocycle relation is similar to the proofin [12]. The Hochschild differential
d iV, can be written as the alternating sum of integrals of a differential form on X xt0;Ap4 1,
where 0;A, 1 is the i-th face s; = 0 of the simplex A, ;. Using the Stokes theorem and heat
equation for ké\i’ (which holds up to terms we can neglect by (8)) to compute the differential
with respect to s we obtain
V,(DoD1,...,Dpy1) = Vp(Do,D1Do, ..., Dpi1) + -
+ (_1)p+1\11p(Dp+1D07 ceey Dp) = \Ilp-l-l([ga DO]a RS Dp+1)a

which is the claim. O
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6.4. Construction of o,

Let now po, ...,pp € C°(U). View C*(U) as a subalgebra of M = Q%*(U) ®o, (1)
Dg(U) embedded as C*°(U) ®id. Since C°(A, M) = M, we may consider p; as a 0-cochain
and define

Zp(pov"'7pp) = Po U(SPI U--- Uapp € CP(A7M)a

where the cup product is defined using the product M ® 4 M — M. Clearly

(10) 5ZP(P07---,P1J) :Zp+1(17p0a"-app)'

If N;supp(p;) is compact, then ZP(po, . . ., pp) takes values in differential operators with com-
pact support and therefore is a cochain in C?(A, M..).

Let U: C*(A,M}) ® C*(A,M.) — C*(A, A*) be the cup product associated with the
map M} ®4 M. — A* sending ¢ @ z to the linear form a — p(za). We set

op(poy- -, pp) = YU ZP(po,...,pp) € CP(A, A¥)[t™].

6.5. Proof of Proposition 4.2

Claim (ii) follows from the fact that ¥ is a cocycle and Equation (10). To prove the re-
maining claims let us write o, more explicitly:

(11) Up(DU"' 'aDp;p07- e )p;D)
P
= (—1)](p_])\Ifj(Z£_j(Dj+17 .. .,Dp;po, ce ;pp)DO,Dla PN ,Dj).

Jj=0

The component Z;_; in Hom(A®P~7, M7) of Z is given by

ZE (Djs1,--Dpipos--pp) = Y s80(m)poBr1y(p1) +* By (p),

mESp_j,j

where B;(p) = [Djii,p] fori = 1,...,p — j,and B;(p) = [0,p] fori =p—j+1,...,p.
From these expressions it is clear that (i) and (iii) hold. For (iii) see also Appendix B, Re-
mark B.2. Let us turn to (iv). We need to evaluate oo, (cg(U); po, - - . , p2n ). By multiplying
po by a partition of unity we may assume that the support of pg is contained in a small coor-
dinate neighbourhood of a point. We have to compute a sum of (2n)! terms of the form (11)
where Dy = 1 and the remaining Dy, are partial derivatives 0,, or operators of multiplica-
tion by z;. The arguments Dy, occurring in Z37_ ; appear in the combination [Dy, p;] which
vanishes if Dy, = z;. Therefore the only non-vanishing terms in the sum (11) have j > n and
Dji1,..., Dy, are all derivatives 9,,. On the other hand, if j > n then Z%{j_ j vanishes since
a product of more than n (0, 1)-forms is zero. Thus only the term with j = n survives and
we have (setting 0; = 0,,)

gg:l ...gZ:aanrl...apzn+...

where the dots denote the remaining shuffies. Therefore

(12) o2 (ca(U);po, -, p2n) = (=1)"™FV2(=1)" >~ sgn(m)Wn(B, 2a(1), - - - Za(m));
T(ESn

Zran(aiw"-aain390a-'-ap2n) = Po
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where B is the multiplication operator

0px 0P (n) OPx 0px
B— Z sgn () Pr1)  9Px(n) p(f“)... p_(zn)dzl/\“

-ANdz,.
po 0z Oz, 0z 0zn, ‘

TES2n
The sign (—1)™(»+1)/2 is the sign of the permutation mapping (81,21, ...,0n,2,) to
(#1,--+,%n,01,...,0n); the sign (—1)" is the sign appearing in (11) for j = n, p = 2n.
Note that since B is the operator of multiplication by a (0, n)-form, the only trace appearing
in the alternating sum defining ¥,, is the trace over Q%" and it comes with a sign (—1)".
Let us calculate ¥,,(B, z1, . . ., 2z, ). The calculation for all other permutations is similar and
gives the same contribution to the sum over S,,.

U, (B,21,...,2n)

= (_1)n(_1)n<"+1>/2/ trgon (BK, [0%, 21Ky, - - - [0, 20) K5, ) ds1 - - - dsy,.
tA,

With our assumption on the metrics, the heat kernel is the standard heat kernel on C”. In
this case

E—de-i 5*——2 4 L_a A*——iLQ
- 182/ - 0z; oz o 182j(9§j’

where ¢ denotes interior multiplication. Thus Ay is —4 times the standard Laplacian and the
kernel of K, is

CORN

Now [0*,2z;] = —tp/95,, which commutes with K;. The heat operators combine to
Ky, ---Ks, = Ky, since Y s; = tontA,. The product (—iy/sz,) - (—ta/0z,) acting
on the basis dz; A - - - A dZ, gives (—1)"(—=1)""=1/2 Let us write B = b(2)dz; A - - - A dZ,,.
Then we obtain

U, (B,z1,...,2n) = (—1)"/ b(z)trerki(z, 2)|dz| / dsy---dsy,
U tAn

_ (_1)""/[]b(z)|dz|.

nlo™

kt(zv Z/) =

The standard volume form |dz| is
|dz| = (—2i)"dzy AdZ A -+ AN dzy A dZ,
= (=2))7" (=)™ D24z A Adzy AdE A A dE.

Thus b(z)|dz| = (2i) " (=1)"**Y/2podp; - - - dpay,. Inserting this in the formula (12) gives
the formula that had to be proved.

Appendix A

Triangulations and signs

Let T be a smooth finite triangulation of the oriented d-dimensional manifold X. Let

Tap,...,a, C X denote the simplex with vertices ay, . .., a,. Itis the image of the standard
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oriented simplex A, = {¢ € [0,1]P"| S"¢; = 1} sending the i-th vertex with ¢; = 1 to a;
and thus it comes with an orientation, for which

p
(13) ao-a()a“'vap = Z(_l)JO-Oéo,m,&jy---vap'
j=0

The cells of the dual cell decomposition T* of X (see [13]) are in one-to-one correspondence
with the simplices of the triangulation. The (d—p)-cell Cq,,... o, intersects only the p-simplex
Tay,...,a, and meets it transversally in exactly one interior point. Let us orient the cells by the
condition that the intersection index is one:

(14) Cag,...a

p  Tag,..,ap = L

This means in particular that the top-dimensional cells C, have the same orientation as X.
With this convention both Cy,, .. o, and 04,,... o, change their orientation under permuta-
tion of the indices according to the sign of the permutation.

If ¢y isap-cellof T* and ¢, is a (d—p-+1)-cell of T', we have

/ _ D /
dcp - Cqpi1 = (—1)Pcp - 0Cy_pi1-

By combining this equation with (13) and (14) we obtain the formula for the boundary of
dual cells:

(15) 0Cap,..ap = (D)™ D" Cpa0,...as
B
with summation over all § such that 3, ao, . . ., ap are the vertices of a simplex of the trian-
gulation.
Appendix B

Heat kernel estimates and asymptotic expansion

In this section, we show the existence of the asymptotic expansion in the definition of the
JLO-cocycle (see Proposition 6.1). In the first subsection, it is shown that the integrand in
the definition of the JLO-cocyle is smooth for s € [0, 1]7! \ {0}. In the second subsection,
we apply this result to compute the asymptotic expansion. In particular it will follow from
this computation that ¥, is well defined and continuous in the operators Dy, ..., D,.

B.1. Heat kernel approximation

In order to show that the integrand f(s) in the formula for ¥,, is smooth for s € [0, 1]P*1\ {0},
we need some estimates for the approximated heat kernel. We recall from [2] the notions
of a generalized Laplacian and the corresponding heat kernel. A generalized Laplacian
H acting on sections of a vector bundle £ over a d-dimensional Riemannian manifold
(X, g) is a second-order differential operator, which in local coordinates can be written as
H=-%9._,9"8,0;+ first order terms. Itis easy to verify that Ay = 98" +5*9 is 4 times
such a Laplacian if we set £ = E ® A*T*(1) X . Therefore we may directly use the results
about the heat kernel from [2] considering X as a smooth 2n-dimensional Riemannian
manifold.
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We write D¢ (X) for the space of smooth differential operators acting on smooth sections
[(X,€) = ®N%(X). T(X, &) is a locally convex space where the norms are the C*-norms.
These norms can be constructed by choosing a finite open cover of coordinate neighbour-
hoods of X. We then consider a cover of X of compact sets that are slightly smaller than the
previous open sets. The C*¥-norms are then defined by the sum of the C*¥-norms on the com-
pact sets and with respect to the corresponding coordinates. Furthermore we can assume
that the C*-norms on I'(X, £) are increasing, i.e. ||¢||x < ||#]|¢ for k < £.

The spaces @%(X ) C ®gr(X) of differential operators of order j are spaces of sections
of a certain hermitian vector bundle over X, and so one can define increasing C*-norms on
them in a similar way as above. Then D¢ (X) is an LF-space which is the strict inductive limit
of C‘Dé(X), see, e.g., [20].

For two vector bundles £; and &, over the manifold X, we denote by £; X &, the external
tensor product which is a vector bundle over X x X. The heat kernel k:(x,y) is a family of
sections k; € T'(X x X, E X £*) defined for ¢ > 0 which is C* with respect to t and C? with
respect to « and solves the equation

Otki(z,y) + Agki(z,y) =0

with initial condition %in% k:(z,y) = d(z — y) where 4 is the Dirac distribution with respect

to the Riemannian density on X. The heat kernel exists and is unique. There is an approxi-
mation to the heat kernel k¥ (z, y) of the form

N
kY (z,y) = (wt) e @Y 802, y)
1=0

where d(z,y) is the geodesic distance and V¥;(z,y) are linear maps £, — &, depending
smoothly on (z,y) and with support in the set where d(z,y) < ¢ for some fixed € which can
be chosen arbitrarily small. Furthermore ¥y (z,x) is the identity and the maps ¥, can be
chosen so that the following theorem holds:

THEOREM B.1. — Let here || . ||o be C*-norms for sections in the bundle £ X £*.
() kY approximates the heat kernel ky in the sense that
105" (ke — k) |e = O@EN—"=27™) fort — 0.

(ii) kYN is an approximate solution of the heat equation such that the remainder v (z,y) :=
(0: + Ag)kY (x,y) satisfies the estimates

|9k e < CeN At

for some constant C depending on £ and k.
Proof. — See [2], theorem 2.23 or 2.30 for part (i) and theorem 2.20 for part (ii). O

REMARK B.2. — For any Dy € M? we have
Wo(Dy) := [Str(DoK}N)]- = [Str(DoKy)] - -

This follows directly from the estimates about the approximated heat kernel in part i) of the
above theorem. This remark will be generalized for ¥,,, p =0, ..., 2n in remark B.12.
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We define the operator K; on smooth sections ¢ € I'(X, £) by

(16) (Kep)@) = [ ke w)ow)ldsl,

X
where |dy|, is the Riemannian density on X. ¢; := Ky is a solution of the heat equation
Orpt + Azp: = 0 with initial condition tlin% p: = . In the same way, we also define the oper-
ators KN that correspond to the approximated heat kernel £¥. We also set Ky = K = Id.

The operator K, satisfies the following estimates:

LEMMA B.3. — We write ||.||¢, £ > 0 for the C*-norms onT'(X, ) or Dg(X). Fixad >0
small enough. Then for each ¢ and each of the following inequalities there is a constant C so
that for all s,s' € [6,1] and t € [0,1],

@) 1K e —¢lle < Cllgllers Vi
(@) 1KY o —KYlle < Cllgllo]s — 5|
(i) K ¢lle < Clello
() IDKg ¢lle = | D¢lle < C|IDlle ll¢lle+a
for every differential operator D € Dg(X) of degree d.

Proof. — (i) The proof is essentially the same as for the first part of Theorem 2.29 in [2].
We consider the formula (16) for K}V ¢, change to exponential coordinates for y (y +— exp,, )
and write p(z,y) := @(exp, y) and ¥;(z,y) = ¥,(x, exp, y), in the latter case with a slight
abuse of the notation. We may assume that ¢ in the definition of k7" is smaller than the injec-
tivity radius of the exponential map, so that the previous change to exponential coordinates
in well defined. The substitution y = Vtv leads to

N
(Ko- o) = [ P (Z O, (@, Viv)pla, Viv)o(a, Viv) = ¢(a. o>> v

T.X =0
where we used - mex e=IPI* = 1, and p(z,y) = det(exp? g(y)) is the factor com-
ing from the Riemannian density. As ¥;(z,y) = 0 for ||y|| > ¢, it is a compactly sup-

ported function on T'X. For j > 0, it is therefore clear—by taking the supremum over y—
that ¥, (z, y)¢(z, y)p(x,y) is bounded by a constant times v/#|¢||o. For j = 0, we write
flz,y) = Vo(z,y)e(z,y)p(z,y). As f(z,0) = ¢(z,0), we get by the mean value theorem

for the t°-term .
— velIvI® Oy f(z, Vit'v)Vidv

™ Jr,x
for some ¢ € [0,¢]. This expression is bounded by a constant times v/#||¢||; and the claim
follows in the case £ = 0. For £ > 0, we use the same arguments, but the function f(z,y) is
replaced by 9% f(x,y) where |a| < £.
(ii) K is an integral operator with kernel with C'*-dependence on s for s > 0. Therefore
the mean value theorem tells us that

|05k (2, y) — 85k (2,y)| < sup 10505k, (z,y)| s — 5|
s€|o,

from which the claim follows.
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(iii) Is obvious as the kernel is smooth in z for all s € [4, 1].
(iv) Also obvious. O

By iterating the above lemma, we find the following estimate:

LEMMA B.4. — Let D; € Dg(X) be differential operators of degree d;, i = 1,...,m. Fix
ad>0andasetI C{1,...,m}. Lets; €[0,1],s; =0fori € I ands;,s; € [6,1] fori ¢ I.
Then there is a constant C andan L < £ +m + > i, d; so that

IDIKY DoKy -+ DKy 0 = D1K) DoK - D K |l

k
< Clielr <Z VEi D lsi— SQI) IT1D50z
j=1

iel il
Proof. — Using the triangle inequality and Lemma B.3, we find
IDKY o1 — DEJ palle < (DK — DEY)gulle + | DK (01 — @2) e

’

=0
< COVslleallerarilDlle + Clier = pallerall Dlle
s'>6
< Cls = s Dlellerllo + Clier = p2llol Dlle -

The proof is straightforward by induction on m. O

LemMA B.5. — The function f(s), which is the integrand in the definition of ¥, is
continuous for s € [0,1]PT1 \ {0}. In particular the integral over tA, in the definition of
U, (see Proposition 6.1) is well defined for t € (0, 1].

Proof. — An operator D on I'( X, £) with continuous kernel D(z,y) € T'(X x X,EKEX)
is of trace class, and the supertrace can be written as

Str(D) = > (=1)* Trgox(x,m) (D)
k=0

:Z(—l)k/ trEz®Aka(TzX) D(:L',.’E)|d$|g
k=0 X

For the integral over tA,, in the definition of ¥, to be convergent, it is sufficient to show
that the function f(s) := Str(DoKJ[0%, D1]KJ - --[0%, Dp]K})) is continuous in s for s €
tA,. As the heat kernel k2 is C* with respect to s; for s; > 0, this is clear except for points
on the boundary of tA,. For a point s € t0A,, let I be the subset of {1,...,n} so that
si=0«<ieclandtakead > 0sothats, > 6 Vi ¢ I. Asthereis at least one ¢ ¢ I and
as the trace is cyclic, we can w.l.o.g. assume that p ¢ I. To simplify the notation, we set
Ago. sy s = DoKJ[0*, D1]K -+ [0, Dy 1]KY | and B, = [0, Dp]K}. We write the
supertrace as

Str(DoKY -+ 107, DK = 3 (<0 [ (@b, 0By (0,2) ) oy

k=0...n
i=1...ip, XxX

4¢ SERIE — TOME 41 — 2008 — N° 4



RRH FORMULA FOR TRACES 647

where {vF} for fixed k and i = 1,...,4 is a basis for E ® A%*(T,,X). Now we consider
Asq...s,_, as operator acting on ¢, := B (-,z)v where z € X and v € &, are considered
as parameters. Then we get by the triangle inequality and Lemma B.4 that

||Aso...sp71905p - Asg...s;_l(pséuo
< ||(As0.‘.sp,1 - As{)..‘s;_l)(psp”O + ||Asé‘..s;_l(§0sp - 308;)”0

<C Z \/g—i_ Z |8;—Si| ||Sosp||L+Cf||Sosp — Ps!

iel\{p} i¢Iu{p}
where C = C||DollL Hé’;i [0*, D;]|| .- We use the mean value theorem and find

los = ol <ls =51 swp Bu(-so)vlie
(I’”f:[g”fj”sl

< Cls = 110", Dylll 41 -

As the integral of the trace is over a compact set, we have shown that f is continuous in s for
s € tA and

(17) If(s) — f(s)| < C (Zﬁﬁleé—sﬁ) 1T1IDjl 42 m

iel i¢I =0

PROPOSITION B.6. — The function f(s) (see Lemma B.5) is k-times continuously differen-
tiable for s € [0,1]P™1\ {0} and N = Ny, large enough.

Proof. — The proof works in exactly the same way as in the previous lemmata (B.3, B.4,
B.5). We generalize the estimates in Lemma B.3 by adding time derivatives: Fix a 6 > 0 and
assume s, s’ € [§,1] and ¢ € [0, 1]. Then for each £, m and each of the following inequalities
there is a constant C so that

@ 0K o = (=A85)™¢lle < Cllllzmrer1 Vi
(@) 07Ky — 07K ¢lle < Cllellols — &'l
(id) 07K elle < Cliello
(@) [[(=25)"DKg ¢lle = [I(=25)"Delle < C | @lle+a+om
where ||.||¢, £ > 0 are C*-norms on T'(X, £), D¢ (X) respectively. We only prove the first es-
timate as the others are easy to show (see Lemma B.3). Recall from Theorem B.1 that the

remainder ¥ = (0; + Ag)k} satisfies ||0Fr ||, < CtN—Fk—(n+0/2 By the iterated applica-
tion of ;kY = —AzkN + N, we find

m—1
OPKY = (~80)" kY + 30 (~8g)" T 0]rY
j=0
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and hence the estimate

107 KN o — (—25)" KN ¢lle < Z IAZ 98] rN ol
7=0

m—1
11— i _ _
<Y NAT TN N lesaim-1-pllello < CllpllotN = HO2,
7=0

We require N to be large enough, namely N > %H + m. On the other hand we have the
estimate

I(=25)™ K o — (=25)"¢lle < CIAR I K ¢ = @llerom < CllgllzmeerVE.

The estimate (¢) then follows by the triangle inequality.

Using the above estimates, it is now straightforward to generalize Lemma B.4 to

| D107 K D02 KLY - Dpanggw—DlaglKgDQagle;Y Dy, a *KY rolle

< Cllele <Z Vit Y lsi— sél)
iel igl
which is true for some L < ¢+ >".(d; + 2m;) + 1. Then we see as in Lemma B.5 that the
partial derivatives of f(s) up to degree k are continuous. O

B.2. Computation of ¥, and power counting

In this subsection, we explain an algorithm to compute ¥, which will lead to the result
summarized in the following proposition:

PropPoOSITION B.7. — Let n be the complex dimension of X. Tuke the operators Dy,
Dy, ..., D, as in Proposition 6.1. We write d for the sum of the degrees of the differential
operators Dy, [0%, D1, . ..,[0%, Dp] which are defined on a small (see remark below) open set
U C X. Recall that the approximated heat kernel depends on the constants N and e. Then for
N big enough and e small enough, ¥,(Do, ..., D,) is well defined and a polynomial in t=* of
degreen —p+ | 2]. More precisely, for N > n—p+ |4] ande < ﬁ dist(X \ U, supp(Dy)),
where dist means the geodesic distance, it is independent of N and € > 0. Furthermore,
U, (Dy,...,D,) depends continuously on Dy, D1, ..., D,.

REMARK B.8. — The set U in the above proposition has to be small in the sense that
Lemma B.10 holds for any compact subset K C U. For larger U the above proposition
would still be true with the exception that the upper bound for € would need a more careful
definition.

The main idea of the computation is to “move” the operators [0*, D;] in the formula for
¥, (see Proposition 6.1) to the left and to use a saddle point approximation for the heat kernel
integrals. As a preparation for this computation, we formulate the following three lemmata:
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LeEmMMA B.9. — Let U C X be an open subset of X so that the exponential map w.r.t. any
point in U and restricted to the preimage of U is a diffeomorphism. Assume that x1,x9 € U;
then (in local coordinates) there is a smooth matrix valued function a(zx1, z2) so that

0
de(xlvﬂfz)Q = a($1,$2)67md($17$2)2~

Proof. — We construct such a map explicitly: We introduce the coordinates (z,£) =
(w1,log,, x2) and (y,n) = (w2,log,, x1). Obviously |£| = d(z1,22) = |n|. Therefore we
find

0 ¢ 0 0¢ on 0 0¢ Ondx, 0O
7d 2 = — 2 = — 2 = 2 .
9, 022 = 55 = By ag an T Bas 9 am 9y 0172
As the exponential coordinates are smooth coordinates, the lemma follows. O

LemmA B.10. — Let K C X be a sufficiently small compact neighbourhood of any point, so
that the exponential map w.r.t. any point in K and restricted to the preimage of K is injective.
Take x1,22,23 € K and s1, so € (0, 1], then for fixed x1,x3, s1, s2 the function

f(xz) _ d(1‘1,$2)2 + d($2,$3)2
S1 82
has a unique minimum in the point T that lies on the geodesic through x1 and xs and satisfies
d(z1,Z)/s1 = d(zs,Z)/s2. We choose exponential coordinates & = logz x2 and expand f in
the point . This leads to the following expressions for f:
2
d(xl,xg) + (i 1

— ) Gii(s1,82,21, % L w3)Eled
S1+ 5 51+32> ij (81, 82, 71, 22(§), 73)§"E

f(z2) =

d 2 1 1 o
= M + <* + *> Gij(81782ax17iax3)§1€7

81 + S2 S1 So
+ Gijk(sh52’x17x2(§)ax3)5i§j§k

Sfor smooth functions G;; and G,;i. The matrix G,;(s1, S2, 1, T2, x3) defined and bounded on
([0,1)2.{0}) x K3 is positive definite and there is a constant C > 0 so that the smallest eigen-
value of the matrix is greater than C for all 1, x2,x3 € K and s1, so € [0, 1]. Furthermore G;
is homogeneous of degree 0 in s1, s and we have G (s1, s2, 1, T, x3) — ;5 for |z1 —x3| — 0.

Proof. — If x5 is not on the geodesic between z; and x3, it is easy to see that there is al-
ways a point on the geodesic for which one term of f has the same value and the other one
is smaller. For zo on the geodesic we have d(z1, z2) + d(z2,2z3) = d(z1,z3) from which
d(z1,%)/s1 = d(zs,%)/s2 follows. The critical point Z of the smooth function s1s2f(z2) is
a smooth function of z1, z3, s1, s3, homogeneous of degree zero in s1, s2, as long as the Hes-
sian is nondegenerate, which is the case if K is small enough and s1/(s1+s2) € (—€1,14¢1)
for some £; > 0. The expansion of f is just the Taylor expansion (with remainder) in the
point z3 = Z. This gives

GZ] (817 S2,T1, $2(§)a 33'3)
2

1 ! 9 > 5
= | 0 g (e expa () + ssd(exa (), ) e
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From this expression we see that G;; is homogeneous in s and is smooth for s1/(s1 + s2) €
(—e1,1+¢€1),z— 1,73 € K. In particular it is a bounded continuous function on ([0, 1]
{0}) x K2.

For a Euclidean metric it is an application of the law of cosines to show that G;; = d;;.
By rescaling ; — Az; and taking into account that d(Az;, Az;)/A — |z; — x| for A — 0,
we see that Gy;(s1, s2,21,%2,23) — 0;; if |£1 — 22| + |2 — x3)| — 0. Therefore also
Gij(s1,82,%1,%,23) — 0;; for |[z1 — x3] — 0. As K is small, we are still close to the
Euclidean case and therefore G;; — ;5 is small, from which the existence of C follows. [

LEMMA B.11 (Asymptotic expansion under the integral). — We write [f(t)]; for the
asymptotic expansion of the function f in the variable t int = 0. In the following cases we are
allowed to interchange the asymptotic expansion and the integration.:

(i) Let f : [0,1]P*1\ {0} — C be a smooth function and assume that there is ann € N so

that F(s,t) := t™ f(st) can be continued to a function in C>=(A, x [0,1]) ?). Then

[/Ap f(st)dsL :/Ap[f(St)]tdS.

(i) Let K,Gij,Gijk, T, 72(€) be as in Lemma B.10. Let H : R*™ — C be a smooth
Sunction with support in a small neighbourhood of the origin. We abbreviate G;; :=
Gij(sl,SQ,.’El,i‘,.’l}g), G”(f) = Gij(Sl,SQ,ml,xQ(g),zg) and Gmk(f) =
Gijk(sl, 89,1, .’Eg(g), ZL‘3). Then

|: H(\/Ef)efaGij(\/ZE)figj dé‘}
R2n Vit

= /2 [H (ViE)e—0Cun(VIOEEEVE - o—aGii'e? e
R n
where a is any positive constant.

Proof. — (i) As [f(st)]y = ¢t~ "[F(st)];, it suffices to show that we can interchange the
integral and the asymptotic expansion for F'. Because F' is smooth, its asymptotic expansion
is given by the Taylor series and we have to show that in the following expression the limit
and the integral are interchangeable:

F — S _ OFF k [k
lim/ (s,t) Ek_eoat (s, 0)t" [k ds |
t—0 A t+1

P

This is true because the integrand is dominated by sup |8/ F(s,t)|/(£ + 1)
te(0,1]

(i1) As in part (i), we consider the remainder of the Taylor expansion:

(a/a\{g)mH(\/Eg)efaGw(\/zf)flgj
m:

= Z §aaiH(n)e—aGijk(n>n%J§k e—aGiE'E
a! n=vt¢

lee|=m

@) By “C® on a closed set” we mean that every derivative exists in the interior and extends continuously to the
boundary.
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As H has compact support, we can estimate this by
i L aG T _aQ i Eigi R
L (m)Gigre ()i | (1 4+ [[€]2) et & —aGune €€0VE,
According to Lemma B.10, there is a constant C, so that
Gi€'€ + Qi (VIOEEF RVt = Gy (VIOEE > CJé|?,

for all £ such that v/#¢ is in the support of H. Thus it follows again by the dominated con-
vergence theorem that the asymptotic expansion and the integral commute. O

Proof of Proposition B.7. — We write Latin letters for indices in Ny and Greek letters for
multiindices in N2,

We consider again the function f(s) := Str(DoKyy (0%, D1]KJ) ---[9%, Dp]K.Y). As we
are going to show, the asymptotic expansion of f(st) w.r.t. ¢ in ¢ = 0 exists, has lowest or-
der —n — | 4] and the coefficients are smooth functions of s € A,,. Therefore the function
F(s,t) := t"TL8] f(st) is smooth ® and we can apply Lemma B.11 (i):

U, (Do,...,D,) = (—1)”"’2“’/A [t7 F (st)]_ds .

P

To compute the asymptotic expansion of f(st), we consider the kernel
(DOKSIX[g*v Dl]Ks]\ll o [5*) D;D]Ké\;)(x()v x;D+1) .

Recall that Dy has compact support K C U C X where U is an open set (see also Proposi-
tion 6.1). As Kg(xi, Z;+1) vanishes for d(z;, z;41) > €, thereisae > 0 so that (p + 1)e is
smaller than the geodesic distance between K and X \ U. Then in the above kernel only the
values of terms inside a compact subset K. of U play a role and therefore it is well defined.
We assume that K is small enough to apply Lemma B.10.

We want to “move” the operators [0*, D;] to the left. First just consider a term K DK Y.
We may assume that D in local coordinates has the form p(x)9* where suppp C K.. Ex-
plicitly, the above term is given by the integral

; e—d(xl,x2)2/sl e—d(x27z3)2/32
2 (e
Z s1s3Vi(x1, $2)Wp(x2)3m2 V;(w2, wS)W LEAPR
X 0<ig<N
We write |dz2|q = o(x2)dzs and integrate by parts to bring the 9, -operator to the left. Then
we make repeatedly use of Lemma B.9 to "replace" the zo-derivatives by x-derivatives, i.e.
we use an identity of the form

2 2
3:267(1(1‘1’“) /81 — Z h (21, 2)0, e~ d(@1,22)? /51 7
Bt+y=a
which holds for some smooth functions hg . Writing down again the integral, we find an
expression of the form

, e—d(ﬂhy$2)2/31—d(w2,$3)2/82

Z Z si83H; j o (1, 22, 73)02 dzo
X 0<i,j<N o'<a Y o (ms1)™(ms2)™

®) From Proposition B.6 follows that F' is smooth for (s, ) € Ap x (0, 1]. The existence of the asymptotic expan-
sion shows that its derivatives can be continued to ¢t = 0. Hence F' € C*° (A, x [0,1])
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where H; ; o+ are smooth functions. If we apply the above procedure to shift all derivatives
in the expression DoKJ) ... [0%, D] K\ to the left, we get

e 25:0 d(zj,2541)% /55
18 TH - o dry...dz,.
(13) /XP Z Z S 'y,a(IOa 7xp) o (71’80)”...(7T8p)” L1 Lp

[VISN |af<d

We omitted the terms for which |v| := Z?;} v; > N, but we will see later that they would

only produce (irrelevant) terms of higher order in t. We rewrite the exponent in the above
expression using Lemma B.10 repeatedly:

i d(xj7$j+1)2 _ d(mo,xp+1)2
j=0 8j sot+ -+ sp
P 1 1 |
- - _ G _1, , , ; ) _]’
+;<80+"'+85_1+52) z](80+ + S¢—1,S¢,T0, Ty wé—&-l)fzﬁg

where £, = Inz, x¢, Z¢ = Te(zo—1,%0+1). Now we change to the variables £ in the integral
and rescale £ — /¢ as well as s; — ts; so that (so,...,s,) € A,. We temporarily forget
the last term in the exponent and suppress the arguments of G;;:

D (vt & ) Gustie]

(mso)™. .. (mwsp)™

(19) tp—"/ D SH, (@0, Tpr1) 00, de, ... dg,

(TzX)P ‘|1|\§gl[\17
where the Jacobi determinant has been absorbed in H, ,. Due to Lemma B.11 ii) we
are allowed to expand asymptotically w.r.t. /¢t under the integral. Keep in mind that
Ty = expie(\/ifg) so that the arguments of H., , as well as of G;; depend on v/. In the
expansion of the exponent, there will be singular terms in s, namely powers of the factor

1 1 So+ -+ Sy

so T ee st (ot Tee)se

but as these factors only appear paired with f}_;fg, the singularities cancel as we see in the
following computation. After the expansion we have to compute integrals of the form

s+ +s

_ y4 G, €8 J
e T T O g, = (s, ) (

8,
(80+"'+8,€_1)8€> 5+

T X (so+ -+ +s¢)

where Cg(s,z) is a smooth function, homogeneous of degree 0 in s, vanishing unless
|B] = > Bi is even. Terms with | 3| even correspond to even terms in the asymptotic expan-
sion in powers of v/t. Therefore we actually have an asymptotic series in .

We repeat the above steps for &5, ..., &,. As

)

ﬁ(so—i-sl—f—u‘—l—s@,l)s@_ 5081 ---Sp

et So+s1+---+s¢ _80+S1+"'+8p
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the singularities from the denominator in equation (19) disappear, and we get
(DOKtJ\sfo T DpKtIgp)(foa Tpt1)

N d(zg,x )2
- Z Ztkfk(S,wo,prrl)a?Oe_io P L ot N+

loe|<d k=0

for smooth functions f; : A, x K x K. — C. Remember that

f(S, t) = / (DOKtJ\s]O e DpKt]Zp)(l‘o, x(])dl‘o .
K

The integral over zy € K and the asymptotic expansion commute for the same reason as in

Lemma B.11. We see in the above formula that the negative powers in ¢ are only produced by

the derivative 9. As lim 9% d(zo,x,)? = 0 for |a| = 1, we need at least two derivatives
Tp—To

to get a negative power in ¢. Thus the negative power is at most L%J .

In formula (18), the coefficient functions of the operators Dy, D1, ..., D, have been ab-
sorbed in the function H, . Itis easy to check that they enter linearly and with derivatives of
order at most d, which is the sum of the degrees of the differential operators, in this function.
After formula (19) when we do the expansion, we get an additional derivative for every order
of v/t. Therefore the coefficients of ¥,, only depend on finitely many derivatives of the oper-
ators Dy, D1, ..., D, restricted to the compact set K. that was mentioned in the beginning
of the proof. This means that we can estimate ¥,, by a product of C*-norms over the com-
pact set K. of the operators D;. As the operators Dy, ..., D, are holomorphic and actually
defined on an open set containing K., we can use the Cauchy integral formula to estimate
their C*-norms by the sup-norms over a compact set that is slightly bigger than K. This
shows that W, is continuous in the operators Dy, ..., D,. O

REMARK B.12. — If we replace in the formula for ¥,, one of the approximated heat ker-
nels £V by the exact heat kernel k, the dz-integral still is over a compact set. Thus we can
choose € small enough so that the formula for ¥, is still well defined. From the above proof
it is also clear that this procedure does not change the value of ¥,,.
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