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Dedicated to Prof. Gregory Margulis on the occasion of his sixtieth birthday

Aʙ��ʀ���. – Let X be the wonderful compactification of a connected adjoint semisimple group G

defined over a number field K. We prove Manin’s conjecture on the asymptotic (as T →∞) of the num-
ber of K-rational points of X of height less than T , and give an explicit construction of a measure on
X(A), generalizing Peyre’s measure, which describes the asymptotic distribution of the rational points
G(K) on X(A). Our approach is based on the mixing property of L2(G(K)\G(A)) which we obtain
with a rate of convergence.

R�����. – Soit X la compactification merveilleuse d’un groupe semi-simple G, connexe, de type
adjoint, algébrique défini sur un corps de nombre K. Nous démontrons l’asymptotique conjecturée par
Manin du nombre de points K-rationnels sur X de hauteur plus petite que T , lorsque T → +∞, et
construisons de manière explicite une mesure sur X(A), généralisant celle de Peyre, qui décrit la répar-
tition asymptotique des points rationnels G(K) sur X(A). Ce travail repose sur la propriété de mélange
de L2(G(K)\G(A)), qui est démontrée avec une estimée de vitesse.

1. Introduction

Let K be a number field and X a smooth projective variety defined over K. A fundamen-
tal problem in modern algebro-arithmetic geometry is to describe the set X(K) in terms of
the geometric invariants of X. One of the main conjectures in this area was made by Manin
in the late eighties in [1]. It formulates the asymptotic (as T → ∞) of the number of points
in X(K) of height less than T for Fano varieties (that is, varieties with ample anti-canonical
class).

∗The first and the third authors are partially supported by DMS-0400631, and DMS-0333397 and DMS-
0629322 respectively. The second author would like to thank Caltech for the hospitality during his visit where the
work was first conceived.
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386 A. GORODNIK, F. MAUCOURANT AND H. OH

Manin’s conjecture has been proved for flag varieties ([26], [41]), toric varieties ([3], [2]),
horospherical varieties [52], equivariant compactifications of unipotent groups (see [13], [49],
[47]), etc. We refer to survey papers by Tschinkel ([56], [57]) for a more precise background on
this conjecture. Recently Shalika, Tschinkel and Takloo-Bighash proved the conjecture for
the wonderful compactification of a connected semisimple adjoint group [48]. In this paper,
we present a different proof of the conjecture, as well as describe the asymptotic distributions
of rational points of bounded height as conjectured by Peyre. Our proof relies on the compu-
tation of the volume asymptotics of height balls in [48]. We refer to [53] for the comparison
of these two approaches.

Although our work is highly motivated by conjectures in arithmetic geometry, our ap-
proach is almost purely (algebraic) group theoretic. For this reason, we formulate our main
results in the language of algebraic groups and their representations in the introduction and
refer to section 7 for the account that how these results imply the conjectures of Manin and
Peyre.

1.1. Height function

We begin by defining the notion of a height function on the K-rational points of the pro-
jective n-space Pn. Intuitively speaking, the height of a rational point x ∈ Pn

(K) measures
an arithmetic size of x. In the case of K = Q, it is simply given by

H(x) = max
0≤i≤n

|xi|

where (x0, . . . , xn) is a primitive integral vector representing x. To give its definition for a
general K, we denote by R the set of all normalized absolute values x �→ |x|v of K, and
by Kv the completion of K with respect to | · |v. For each v ∈ R, choose a norm Hv on
Kn+1

v which is simply the max norm Hv(x0, . . . , xn) = max
n
i=0

|xi|v for almost all v. Then
a function H : Pn

(K) → R>0 of the following form is called a height function:

H(x) :=

�

v∈R

Hv(x0, . . . , xn)

for x = (x0 : · · · : xn) ∈ Pn
(K). Since Hv(x0, . . . , xn) = 1 for almost all v ∈ R, we have

H(x) > 0 and by the product formula, H is well defined, i.e., independent of the choice of
representative for x.

It is easy to see that for any T > 0, the number

N(T ) := #{x ∈ Pn
(K) : H(x) < T}

is finite. Schanuel [45] computed the precise asymptotic in 1964:

N(T ) ∼ c · T
n+1 as T →∞

for some explicit constant c = c(H) > 0.
Unless mentioned otherwise, throughout the introduction, we let G be a connected

semisimple adjoint group over K and ι : G → GLN be a faithful representation of G

defined over K with a unique maximal weight. Consider the projective embedding of G

over K induced by ι:
ῑ : G → P(MN )
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RATIONAL POINTS AND ADELIC MIXING 387

where MN denotes the space of matrices of order N . We then define a height function Hι

on G(K) associated to ι by pulling back a height function on P(MN (K)) via ῑ. That is, for
g ∈ G(K),

(1.1) Hι(g) :=

�

v∈R

Hv(ι(g)),

where each Hv is a norm on MN (Kv), which is the max norm for almost all v ∈ R.

We note that Hι is not uniquely determined by ι, because of the freedom of choosing Hv

locally (though only for finitely many v).

1.2. Asymptotic number of rational points

For each T > 0, we introduce the notation for the number of points in G(K) of height
less than T :

N(Hι, T ) := #{g ∈ G(K) : Hι(g) < T}.

Tʜ��ʀ�� 1.2. – There exist aι ∈ Q+, bι ∈ N and c = c(Hι) > 0 such that for some δ > 0,

N(Hι, T ) = c · T
aι(log T )

bι−1
· (1 + O((log T )

−δ
)).

The constants aι and bι can be defined explicitly by combinatorial data on the root system
of G and the unique maximal weight of ι. Choose a maximal torus T of G defined over K

containing a maximal K-split torus and a set ∆ of simple roots in the root system Φ(G,T).
Denote by 2ρ the sum of all positive roots in Φ(G,T), and by λι the maximal weight of ι.
Define uα, mα ∈ N, α ∈ ∆, by

2ρ =

�

α∈∆

uαα and λι =

�

α∈∆

mαα.

The fact that mα ∈ N follows since G is of adjoint type. Consider the twisted action of the
Galois group ΓK := Gal(K̄/K) on ∆ (for instance, if the K-form of G is inner, this action
is just trivial). Then

(1.3) aι = max
α∈∆

uα + 1

mα

and bι = #

ß
ΓK .α :

uα + 1

mα

= aι

™
.

Note that the exponent aι is independent of the field K, and bι depends only on the quasi-
split K-form of G. Therefore, by passing to a finite field extension containing the splitting
field of G, bι also becomes independent of K.

R���ʀ� 1.1. – When G is almost K-simple or, more generally, when Hι is the product
of height functions of the K-simple factors of G, we can improve the rate of convergence in
Theorem 1.2: for some δ > 0,

N(Hι, T ) = c · T
aιP (log T ) ·

�
1 + O

�
T
−δ

��

where P (x) is a monic polynomial of degree bι − 1.
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388 A. GORODNIK, F. MAUCOURANT AND H. OH

1.3. Distribution of rational points

For each v ∈ R, denote by Xι,v the closure of ῑ(G(Kv)) in P(MN (Kv)), and consider the
compact space Xι :=

�
v∈R Xι,v. In section 6, we construct a probability measure µι on Xι

which describes the asymptotic distribution of rational points in G(K) in Xι with respect to
the height Hι. To keep the introduction concise, we give the definition of µι only when ι is
saturated. A representation ι : G → GLN is called saturated if the set

ß
α ∈ ∆ :

uα + 1

mα

= aι

™

is not contained in the root system of a proper normal K-subgroup of G. In particular, if G

is almost K-simple, any representation of G is saturated.

Let τ denote the Haar measure on G(A) such that τ(G(K)\G(A)) = 1. Denote by Λ the
set of all automorphic characters of G(A) (cf. section 2.4) and by Wι the maximal compact
subgroup of the group G(Af ) of finite adeles, under which Hι is bi-invariant (see Definition
2.7). Then the following is a positive real number (see Propositions 4.6 and 4.11 (3), noting
rι = γWι(e) in the notation therein):

(1.4) rι :=

�

χ∈Λ

lim
s→a

+

ι

(s− aι)
bι

�

G(A)

Hι(g)
−s

χ(g) dτ(g).

For ι saturated, the probability measure µι on Xι is the unique measure satisfying that for
any ψ ∈ C(Xι) invariant under a co-finite subgroup of Wι,

(1.5) µι(ψ) = r
−1

ι ·

�

χ∈Λ

lim
s→a

+

ι

(s− aι)
bι

�

G(A)

Hι(g)
−s

χ(g) ψ(g) dτ(g)

(see Theorem 4.18). We refer to (6.16) for the definition of µι for a general ι:

Tʜ��ʀ�� 1.6. – For any ψ ∈ C(Xι),

lim
T→∞

1

N(Hι, T )

�

g∈G(K) : Hι(g)<T

ψ(g) =

�

Xι

ψ dµι.

R���ʀ� 1.7. – 1. For ι saturated, the measure µι coincides with the measure µ̃ι

which describes the distribution of height balls in G(A) (see Proposition 4.27).
2. Although the projection µι,S of µι to Xι,S =

�
v∈S Xι,v is always equivalent to a Haar

measure on GS =
�

v∈S G(Kv) (Proposition 4.22), it is GS-invariant, only when the
height Hι,S =

�
v∈S Hv ◦ι is GS-invariant.

3. The space Xι,S is a compactification of GS which is an analog of the Satake compact-
ification defined for real groups (see, for example, [7]). Theorem 1.6 implies that the
rational points G(K) do not escape to the boundary Xι,S − GS . It is interesting to
compare this result with the distribution of the integral points G(Z) of bounded height
in the Satake compactification of G(R) where the limiting distribution is supported on
the boundary (see [29] and [38] for more details).
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1.4. Counting and volume heuristic

To explain our strategy in counting K-rational points of G, we first recall the analogous
results in counting integral points in a simple real algebraic group. Let G ⊂ GLN be a con-
nected non-compact simple real algebraic group and Γ be a lattice in G, i.e., a discrete sub-
group of finite co-volume. Fixing a norm � . � on MN (R), set BT := {g ∈ G : �g� ≤ T}. By
Duke-Rudnick-Sarnak [22] and Eskin-McMullen [23] independently, it is well known that

(1.8) #Γ ∩BT ∼

�

BT

dg as T →∞,

where dg is the Haar measure on G such that
�
Γ\G

dg = 1.

Coming back to the question of counting rational points G(K), we recall that G(K) is
a lattice in the adele group G(A) when embedded diagonally and that the height function
Hι =

�
v∈R Hv ◦ι on G(K) extends to G(A).

If we set

BT := {g ∈ G(A) : Hι(g) < T},

then BT is a relatively compact subset of G(A) (Lemma 2.5) and we have the equality

N(Hι, T ) = #G(K) ∩BT .

In view of (1.8), one naturally asks whether the following holds:

(1.9) #G(K) ∩BT ∼ τ(BT ) as T →∞.

It turns out that the group G(A) is too big for (1.9) to hold in general, due to the presence
of non-trivial automorphic characters of G(A). For a compact open subgroup Wf of G(Af ),
denote by Λ

Wf ⊂ Λ the set of all Wf -invariant characters in Λ. We set

GWf := ker(Λ
Wf ) = ∩

�
kerχ ⊂ G(A) : χ ∈ Λ

Wf
�

.

The subgroup GWf is a normal subgroup of G(A) with finite index (see Lemma 4.7), and
hence G(K) is a lattice in GWf . Denote by τWf the Haar measure on GWf normalized so
that τWf (G(K)\GWf ) = 1.

Tʜ��ʀ�� 1.10. – Assume that ι : G → GLN is saturated. Then for any compact open
subgroup Wf of G(Af ) under which Hι is bi-invariant,

#G(K) ∩BT ∼T τWf (GWf ∩BT ).

We remark that one cannot in general replace GWf by G(A) (see example 4.24), and
Theorem 1.10 does not hold for ι non-saturated.

As in the proof of Eskin-McMullen of (1.8), our key ingredient in proving Theorem 1.10
is the mixing theorem on L2

(G(K)\GWf ).
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390 A. GORODNIK, F. MAUCOURANT AND H. OH

1.5. Adelic mixing

Let L2

00
(G(K)\G(A)) denote the orthogonal complement in L2

(G(K)\G(A)) to
the direct sum of all automorphic characters. In the case when G is simply connected,
L2

00
(G(K)\G(A)) coincides with the orthogonal complement L2

0
(G(K)\G(A)) to the

constant functions.
Set G∞ :=

�
v∈R∞ G(Kv) where R∞ is the subset of R of all archimedean valuations.

Tʜ��ʀ�� 1.11 (Automorphic bound for G). – Let G be a connected absolutely almost
simple K-group. Let U∞ be a maximal compact subgroup of G∞ and Wf a compact open
subgroup of G(Af ). Then there exist cWf > 0 and r0 = r0(G∞) > 0 such that for any U∞-
finite and Wf -invariant functions ψ1, ψ2 ∈ L2

00
(G(K)\G(A)),

|�ψ1, g.ψ2�| ≤ cWf · (dim�U∞ψ1� · dim�U∞ψ2�)
r0 · ξ̃G(g) · �ψ1�2 · �ψ2�2 for all g ∈ G(A).

Here, ξ̃G : G(A) → (0, 1] is an explicitly constructed proper function which is Lp-integrable
for some p = p(G) < ∞. (see Def. 3.20).

Using the restriction of scalars functor, we extend this theorem to connected almost K-
simple adjoint (simply connected) groups (Theorem 3.22). The above bounds on matrix co-
efficients can also be extended to smooth functions in certain Sobolev spaces (see Theorem
3.27). We also mention a paper of Guilloux [30] where an application of Theorem 1.11 was
discussed in local-global principle problems.

C�ʀ�ʟʟ�ʀʏ 1.12 (Adelic Mixing). – Let G be a connected absolutely simple K-group, or
a connected almost K-simple adjoint (simply connected) K-group. Then for any ψ1, ψ2 ∈

L2

00
(G(K)\G(A)),

�ψ1, g.ψ2� → 0

as g ∈ G(A) tends to infinity.

Any Wf -invariant function in L2
(G(K)\GWf ) orthogonal to constants belongs to

L2

00
(G(K)\G(A)) (see Lemma 4.12). Hence Corollary 1.12 implies that if ψ1 and ψ2 are

Wf -invariant functions in L2
(G(K)\GWf ), then as g →∞,

�

G(K)\GWf

ψ1(x)ψ2(xg) dτWf (x) →

�
ψ1 dτWf ·

�
ψ2 dτWf .

For each v ∈ R, denote Ĝ
Aut

v ⊂ Ĝv the automorphic dual of G(Kv), i.e., the subset of
unitary dual of G(Kv) consisting of representations which are weakly contained in the repre-
sentations appearing as G(Kv) components of L2

(G(K)\G(A))
Of for some compact open

subgroup Of of G(Af ). The proof of Theorem 1.11 goes roughly as follows: if ξ̃v is a uni-
form bound for the matrix coefficients of infinite dimensional representations in Ĝ

Aut

v , ξ̃G is
defined to be the product

�
v∈R ξ̃v. This can be made precise using the language of direct in-

tegral of a representation (cf. proof of Theorem 3.10). For those v ∈ R such that the Kv-rank
of G is at least 2, the uniform bounds, say ξv, of matrix coefficients of all infinite dimensional
unitary representations of G(Kv) were obtained by Oh [40]. For these cases, one can sim-
ply take ξ̃v = ξv. In particular, if K-rank of G is at least 2 and G(Kv)

+ denotes the closed
subgroup of G(Kv) generated by all unipotent elements in G(Kv), we have ξ̃G =

�
v∈R ξv
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and ξ̃G works as a uniform bound for all unitary representations of G(A) without G(Kv)
+-

invariant vectors for each v ∈ R (see Theorem 3.10 for a precise statement). Moreover ξ̃G

is fairly sharp in these cases. For instance, one can show that ξ̃G is optimal for G = SLn

(n ≥ 3), or Sp
2n (n ≥ 2) by [16, 5.4].

When there is v ∈ R with Kv-rank of G one, finding an automorphic bound ξ̃v is essen-
tially carried out by Clozel [15]. In particular, several deep theorems in automorphic the-
ory were used such as the Gelbart-Jacquet bound [28] toward Ramanujan conjecture, the re-
sults of Burger-Sarnak [11] and Clozel-Ullmo [17] on lifting automorphic bounds, the base
changes by Rogawski [44] and Clozel [14], and Jacquet-Langlands correspondence [33].

1.6. Organization of the paper

In section 2 we list some notations and preliminaries which will be used throughout the
paper. In section 3, we discuss adelic mixing and prove Theorem 1.11. We also extend a
theorem of Clozel-Oh-Ullmo on the equidistribution of Hecke points [16] in this section as
an application of adelic mixing. In section 4, we deduce the volume asymptotics of height
balls from the results in [48] and construct in subsection 4.4 the probability measure µ̃ι on Xι

which describes the asymptotic distribution of height balls in G(A). The main theorem in
section 5 is Theorem 5.2 on the equidistribution of rational points with respect to µ̃ι for the
case when ι is saturated. Theorems 1.6 (saturated cases) and 1.10 follow from this theorem.
In section 6, we prove Theorem 1.6 for general cases (Theorem 6.2) as well as Theorem 1.2
(Theorem 6.17). In section 7, we restate our main theorems in the context of Manin’s and
Peyre’s conjectures.

1.7. Acknowledgments

We would like to thank Wee Teck Gan, Emmanuel Peyre and Yehuda Shalom for helpful
conversations. We thank Ramin Takloo-Bighash for the useful comments on our preliminary
version of this paper. We are also deeply grateful to the referee for many detailed comments
on the submitted version.

2. Notations and Preliminaries

We set up some notations which will be used throughout the paper. Let K be a number
field and G a connected semisimple group defined over K. We denote by RK , or simply by
R, the set of all normalized absolute values on K. We keep the same notation R,Rf , Kv as
in the introduction.

2.1. – Let O denote the ring of integers of K and Ov the valuation ring of Kv. Set R∞ =

R−Rf . For v ∈ Rf , let qv denote the order of the residue field ofOv. We choose an absolute
value | · |v on Kv normalized so that the absolute value of a uniformizer of Ov is given by
q−1

v . Denote by A the adele ring over K and by G(A) the adele group associated to G.
Denote by G(Af ) (resp. G∞) the subgroup of finite (resp. infinite) adeles, i.e., ((gv)v) ∈

G(A) with gv = e for all v ∈ R∞ (resp. for all v ∈ Rf ). Then

G(A) = G∞ ×G(Af ).
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392 A. GORODNIK, F. MAUCOURANT AND H. OH

2.2. – We fix a smooth model G of G over O[k−1
] for some non-zero k ∈ Z. There exists a

finite subset S0 ⊂ Rf such that for any v ∈ Rf − S0, G is unramified over Kv and G(Ov) is
a hyperspecial compact subgroup (cf. [55]). We set Uv = G(Ov) for each v ∈ Rf −S0. Then
for each v ∈ Rf − S0, one has the group Av of Kv-rational points of a maximal Kv-split
torus of G so that the following Cartan decomposition holds:

(2.1) G(Kv) = UvA
+

v Uv

where A+

v is a closed positive Weyl chamber of Av. More precisely, one can choose a system
Φ

+

v of positive roots in the set Φv = Φ(G(Kv), Av) of all non-multipliable roots of G(Kv)

relative to Av so that

A
+

v = {a ∈ Av : α(a) ≥ 1 for each α ∈ Φ
+

v } for v archimedean

A
+

v = {a ∈ Av : |α(a)|v ∈ q
N
v for each α ∈ Φ

+

v } otherwise.

For v ∈ S0 ∪ R∞, there exists a good maximal compact subgroup Uv (cf. [40, 2.1] for
definition) of G(Kv) such that

G(Kv) = UvA
+

v ΩvUv

where Ωv is a finite subset in the centralizer of Av in G(Kv).
In particular for any g ∈ G(Kv), there exist unique av ∈ A+

v and dv ∈ Ωv such that
g ∈ UvavdvUv. For v ∈ R∞, any maximal compact subgroup of G(Kv) is a good maximal
compact subgroup and Ωv = {e}.

2.3. – For a finite subset S of R, let G
S denote the subgroup of G(A) consisting of (gv),

with gv = e for all v ∈ S, and set GS :=
�

v∈S G(Kv). Note that G(A) = GSG
S . For

each v ∈ R, let τv, or dgv, denote a Haar measure on G(Kv) such that τv(Uv) = 1 whenever
v ∈ Rf . Then the collection {τv : v ∈ R} defines a Haar measure, say τ , on G(A) (cf. [43,
3.5]). We will assume that τ(G(K)\G(A)) = 1. This is possible by replacing τv, v ∈ R∞
with a suitable multiple of it, since G(K) is a lattice in G(A) (cf. [43, Theorem 5.5]).

We denote by τS the product measure
�

v∈S τv on GS and by τS the Haar measure on
G

S for which τ, τS , τS are compatible with each other, i.e., τ = τS × τS locally.

2.4. – An automorphic character of G(A) is a continuous homomorphism from G(A) to
the unit circle {z ∈ C : zz̄ = 1} which contains G(K) in its kernel. Each automorphic
character χ of G(A) can be considered as a function on the quotient G(K)\G(A), and since
τ(G(K)\G(A)) = 1, χ belongs to L2

(G(K)\G(A)) and �χ�2 = 1. Let Λ denote the set of
all automorphic characters of G(A). Note that any two distinct elements of Λ are orthogonal
to each other. We then have an orthogonal decomposition

L
2
(G(K)\G(A)) = L

2

00
(G(K)\G(A))⊕

�̂
χ∈Λ

Cχ.

where
�̂

χ∈Λ
Cχ is the closure of the direct sum of Cχ’s, and L2

00
(G(K)\G(A)) denotes its

orthogonal complement in L2
(G(K)\G(A)).

If G is simply connected, it follows from the strong approximation property that the only
automorphic character of G(A) is the trivial one and hence that L2

00
(G(K)\G(A)) is the

orthogonal complement to the space of constant functions (cf. Lemma 3.24).
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2.5. – For any compact open subgroup Wf of G(Af ), we denote by Λ
Wf ⊂ Λ the set of all

Wf -invariant characters in Λ, i.e., Λ
Wf = {χ ∈ Λ : χ(w) = 1 for all w ∈ Wf}. We set

(2.2) GWf := ker(Λ
Wf ) = ∩{kerχ ⊂ G(A) : χ ∈ Λ

Wf }.

The subgroup GWf is a normal subgroup of G(A) with finite index (see Lemma 4.7), and
hence G(K) is a lattice in GWf . Denote by τWf the Haar measure on GWf normalized so
that τWf (G(K)\GWf ) = 1.

2.6. – For a group G of adjoint type, let ι : G → GLN be a faithful representation defined
over K. We give a definition of a height function Hι on G(A) associated to ι which is slightly
more general than those considered in the introduction. It is this class of the functions for
which we prove our main theorems.

D��ɪɴɪ�ɪ�ɴ 2.3. – A height function Hι : G(A) → R+ is defined by the product�
v∈R Hι,v where Hι,v is a function on G(Kv) for v ∈ R satisfying the following:

1. there exists a finite subset S ⊂ R such that

Hι,v(g) = max
ij

|ι(g)ij |v for all v ∈ R− S;

2. for v ∈ S, there exists C > 0 such that

C
−1

·max
ij

|ι(g)ij |v ≤ Hι,v(g) ≤ C ·max
ij

|ι(g)ij |v;

3. for any v ∈ S ∩R∞, there exists b > 0 such that for any small ε > 0,

(1− b · ε) Hι,v(x) ≤ Hι,v(gxh) ≤ (1 + b · ε) Hι,v(x)

for any x ∈ G(Kv) and any g, h in the ε-neighborhood of e in G(Kv) with respect to a
Riemannian metric;

4. for any v ∈ S ∩Rf , Hι,v is bi-invariant under a compact open subgroup of G(Kv).

Note by (1) that for (gv) ∈ G(A), since gv ∈ G(Ov) for almost all v ∈ Rf , Hι,v(ι(gv)) = 1

for almost all v, and hence the product
�

v∈R Hι,v(gv) converges.
Note also that the class of height functions defined above does not depend on the choice

of a basis of KN .
We will need the following observation on heights:

L���� 2.4. – Suppose that ι has a unique maximal weight. Let G1 and G2 be connected
normal algebraic K-subgroups of G with G = G1G2 and G1∩G2 = {e}. There exists κ > 1

such that for any g1 ∈ G1(A) and g2 ∈ G2(A),

κ
−1

·Hι(g1)Hι(g2) ≤ Hι(g1g2) ≤ κ ·Hι(g1)Hι(g2).

Proof. – Let λι denote the highest weight of ι. Then there exists a finite subset S ⊂ R

such that for any v ∈ R− S,

G(Kv) = UvA
+

v Uv and Hv(ι(g)) = |λι(a)|v for g = u1au2 ∈ G(Kv)

where Uv and A+

v are defined as in (2.2). In particular, it follows that for each v ∈ R − S,
and for any g1 ∈ G1(Kv) and g2 ∈ G2(Kv),

Hv(ι(g1g2)) = Hv(ι(g1))Hv(ι(g2)).
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On the other hand, for v ∈ S, Hι,v is equivalent to λι in the sense that there exists κv > 1

such that

κ
−1

v · |λι(a)|v ≤ Hι,v(g) ≤ κv · |λι(a)|v for g = u1adu2 ∈ UvA+

v ΩvUv = G(Kv).

This implies the lemma.

For T > 0, set
BT := {g ∈ G(A) : Hι(g) < T}.

L���� 2.5. – 1. We have

(2.6) δ0 := inf
g∈G(A)

Hι(g) > 0.

2. For each T > 0, BT is a relatively compact subset of G(A). In other words, the height
function Hι : G(A) → [δ0,∞) is proper.

Proof. – By Definition 2.6, there exists a finite subset S such that for all v ∈ R − S,
Hv(ι(g)) ≥ 1 for any g ∈ G(Kv). Let 0 < δ ≤ 1 be such that Hv(ι(g)) ≥ δ for v ∈ S and
δ1 = δ#S . Then Hι(g) ≥ δ1 for all g ∈ G(A). Hence δ0 ≥ δ1 > 0.

Note that
BT ⊂ G(A) ∩

�

v

{gv ∈ G(Kv) : Hv(ι(gv)) ≤ δ
−1

T}.

Since for almost all v ∈ Rf , Hv(ι(gv)) ≥ qv whenever gv /∈ G(Ov), it follows that for some
finite subset S1 ⊂ R, we have

BT ⊂ {(gv)v ∈ G(A) : Hv(ι(gv)) ≤ δ
−1

0
T for v ∈ S1, gv ∈ G(Ov) otherwise}.

Since the set {gv ∈ G(Kv) : Hv(ι(gv)) ≤ b} is compact for any b > 0, it follows that BT is a
relatively compact subset of G(A).

D��ɪɴɪ�ɪ�ɴ 2.7. – For a height function Hι of G(A), define WHι , or simply Wι, to be

Wι = {w ∈ G(Af ) : Hι(wg) = Hι(gw) = Hι(g) for all g ∈ G(A)}.

It is easy to check that Wι is a subgroup of G(Af ), and is compact by the above lemma.
Hence Wι is the maximal compact open subgroup of G(Af ) under which Hι is bi-invariant.

3. Adelic Mixing

3.1. Definition and properties of ξG

Let G be a connected semisimple algebraic group defined over a number field K. Let T
denote the set of v ∈ R such that G(Kv) is compact, that is, Uv = G(Kv). It is well known
that T is a finite set.

Denote by Φ
+

v the system of positive roots in the set of all non-multipliable roots of G(Kv)

relative to A+

v and choose a maximal strongly orthogonal system Sv in Φ
+

v in the sense of [40]
(where an explicit construction is also given). For v ∈ R−T and Kv �= C, define the bi-Uv-
invariant function ξv = ξG(Kv) on G(Kv) (cf. [40]): for each g = ka dk� ∈ UvA+

v ΩvUv,

ξv(g) =

�

α∈Sv

ΞPGL2(Kv)

�
α(a) 0

0 1

�
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where ΞPGL2(Kv) is the Harish-Chandra function of PGL2(Kv). If Kv = C, set

ξv(g) =

�

α∈Sv

ΞPGL2(C)

�
α(a) 0

0 1

�nα

where nα = 1/2 if α is a long root of G, when G is locally isomorphic to Sp
2n(C), and

nα = 1 for all other cases. We set ξv = 1 for v ∈ T .
Since 0 < ξv(gv) ≤ 1 for all v ∈ R and ξv(gv) = 1 for almost all v, the following function

ξG is well defined:

D��ɪɴɪ�ɪ�ɴ 3.1. – Define the function ξG : G(A) → (0, 1] by

ξG(g) =

�

v∈R

ξv(gv) for g = (gv)v ∈ G(A).

Set

(3.2) Uf =

�

v∈Rf

Uv, U∞ =

�

v∈R∞

Uv, and U = Uf × U∞.

Note also that ξG is bi-U -invariant.
For v ∈ R− T , we set

ηv(ka dk
�
) :=

�

α∈Sv

|α(a)|v

where ka dk� ∈ UvA+

v ΩvUv for all v with Kv �= C. As in the case of the definition of ξv, if
Kv = C and for kak� ∈ UvA+

v Uv, we set

ηv(kak
�
) =

�

α∈Sv

|α
nα(a)|v

with the same nα defined as before. If v ∈ T , we set ηv = 1.

L���� 3.3. – For any ε > 0, there is a constant Cε > 0 such that for any g = (gv)v ∈

G(A),

(3.4)
�

v∈R

ηv(gv)
−1/2

≤ ξG(g) ≤ Cε ·

�

v∈R

ηv(gv)
−1/2+ε

.

In particular,
ξG(g) → 0 as g →∞ in G(A).

Proof. – For v ∈ R−T , it follows from the explicit formula for Ξv (cf. [40, 3.8]) that for
any ε > 0, there is a constant Cv,ε > 0 such that for any gv ∈ G(Kv),

ηv(gv)
−1/2

≤ ξv(gv) ≤ Cv,ε · ηv(gv)
−1/2+ε

.

Moreover one can take Cv,ε = 1 for almost all v. This implies (3.4).
To see the second claim, first note that for any g ∈ G(A),

(3.5) ξG(g) ≤ ξv(gv) ≤ Cv,ε · ηv(gv)
−1/2+ε

.

Now suppose on the contrary that there exists a sequence {gi ∈ G(A)} such that gi → ∞

and ξG(gi) � 0. Then by passing to a subsequence we may assume either that there is a place
v ∈ R such that gi,v →∞ in G(Kv) or that there exists a sequence {vi ∈ Rf −S0} such that
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gi,vi /∈ Uvi and qvi → ∞. If gi,v → ∞ as i → ∞, then |ηv(gi,v)| → ∞ as i → ∞ and hence
ξG(gi) → 0 by (3.4). Therefore the first case cannot happen.

In the second case, note that since gi,vi /∈ Uvi and Ωvi = {e}, we have ηv(gi,vi) ≥ qvi for
each i. Hence by (3.5) for all i big enough,

ξG(gi) ≤ Cvi,ε · q
−1/2+ε

vi
≤ q

−1/2+ε

vi
.

This gives a contradiction since qvi →∞.

L���� 3.6. – Let ι : G → GLN be a faithful representation defined over K with a unique
maximal weight and Hι be a height function on G(A) associated to ι. Then there exist m ∈

N− {0} and C > 0 such that

ξG(g) ≤ C ·H
−1/m

ι (g) for any g ∈ G(A).

Proof. – Let χ denote the highest weight of ι. Let l ∈ N − {0} be such that χ|
A

+

v
≤

l · logqv
ηv for each v ∈ R. Here qv = e if v ∈ R∞. Without loss of generality, we may

assume
Hv(ι(av)) = q

χ(av)

v for each av ∈ A
+

v and v ∈ R.

Since ηv(av) = q
logqv

|ηv(av)|
v for av ∈ A+

v , we have for each v ∈ R,

ηv(av)
−l
≤

�

v

H
−1

v (ι(av)) for av ∈ A
+

v .

By the continuity of Hv and the Cartan decomposition G(Kv) = UvA+

v ΩvUv, there exists
rv ≥ 1 such that

r
−1

v Hv(ι(av)) ≤ Hv(ι(gv)) ≤ rv Hv(ι(av))

for gv = kvavdvk�v ∈ UvA+

v ΩvUv. Since Hι is invariant under a compact open subgroup of
G(Af ) and hence Hv ◦ι is invariant under Uv for almost all v ∈ Rf , we can take rv = 1 for
almost all v ∈ Rf .

Therefore if g = (gv) ∈ G(A) with gv = kvavdvk�v ∈ UvA+

v ΩvUv,
�

v

ηv(gv)
−l

=

�

v

ηv(av)
−l
≤

�

v

H
−1

v (ι(av))

≤ r0

�

v

H
−1

v (ι(gv)) ≤ r0 ·H
−1

ι (g)

where r0 =
�

v rv < ∞.
Hence using Lemma 3.3, there exists c1 > 0 such that for any g = (gv) ∈ G(A),

ξ
4l

G
(g) ≤ c1 ·

�

v

ηv(gv)
−l
≤ c1 · r0 ·H

−1

ι (g).

This proves the claim.

Theorem 7.1 in [48] shows that for any representation ι of G over K with a unique maxi-
mal weight, the height zeta function

Z(s) :=

�

G(A)

Hι(g)
−s

dτ(g)
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converges for �(s) > aι where aι is defined as in (1.3). In particular H
−1

ι belongs to
Lp

(G(A)) for any p > aι. Hence as a corollary of [48, Theorem 7.1] using Lemma 3.6, we
obtain the following:

C�ʀ�ʟʟ�ʀʏ 3.7. – There exists 0 < p = p(G) < ∞ such that ξG ∈ Lp
(G(A)).

3.2. Restriction of scalars functor

We prove certain functorial properties of ξG for the restriction of scalars functor intro-
duced by Weil [59], which we will need later to reduce the dicussion on general almost K-
simple groups to that on absolutely simple K-groups. We refer to [36, I. 3.1.4] and [8, Ch. 6]
for the properties of the restrictions of scalar functor RK/k used in the following discussion.
Suppose that k is a finite extension field of K and G

� is a connected semisimple k-group.
Then G = Rk/KG

� is a connected semisimple K-group.

Denote by {1 = σ1, . . . , σd} the set of all distinct embeddings of k into the algebraic clo-
sure of K. Then there is a K-morphism µ : G → G

� such that the map

(3.8) µ
◦

= (
σ1µ, . . . ,

σdµ) : G →
σ1G

�
× · · · ×

σdG
�

is a K-isomorphism. If R◦
k/K

denotes the inverse map to µ|G(K), then R◦
k/K

: G
�
(k) →

G(K) is a group isomorphism.

For each v ∈ RK , denote by Iv the set of all valuations of k extending v. Then there is a
natural Kv-isomorphism fv : G →

�
w∈Iv

Rkw/Kv
G
� and the isomorphisms f−1

v ◦R◦
kw/Kv

:�
w∈Iv

G
�
(kw) → G(Kv), v ∈ RK , w ∈ Iv, induce a topological group isomorphism, say,

j, of the adele group G
�
(Ak) to G(AK).

L���� 3.9. – Let ε > 0. Then there are constants Cε ≥ 1 such that for any g ∈ G
�
(Ak),

C
−1

ε · ξG(j(g))
1+ε

≤ ξG�(g) ≤ Cε · ξG(j(g))
1−ε

.

Proof. – Fix v ∈ RK . The set Iv parametrizes the set, say, of all distinct embeddings σ

of k into K̄v which are non-conjugate over Kv, in the way that w ∈ Iv corresponds to σ with
kw = σ(k)Kv. For each embedding w ∈ Iv, we denote by Jw the set of all embeddings τ

of k into K̄v such that kw = τ(k)Kv. Fix w ∈ Iv. Let A�w be the group of kw-points of a
maximal kw-split A� torus of G�, Φ(G

�
(kw), A�w) the set of non-multipliable roots, and Sw ⊂

Φ(G
�
(kw), A�w) be a maximal strongly orthogonal system used in the definition of ξG� . Then�

w∈Iv
(Rkw/Kv

A�) is a maximal Kv-torus of G and its maximal Kv-split subtorus is a maxi-
mal Kv-split torus of G [8, Ch. 6]. For each w ∈ Iv, let B(w) denote the group of Kv-points
of the maximal Kv-split torus of Rkw/Kv

A� and set Av =
�

w∈Iv
B(w). We can identify

each B(w) with {(τaw)τ∈Jw : aw ∈ A�(Kv)}, and Ψw := Φ((Rkw/Kv
G
�
)(Kv), B(w)) with

{αw : α ∈ Φ(G
�
(kw), A�w)} where αw((

τaw)τ∈Jw) =
�

τ∈Jw

τα(aw). Hence {αw : α ∈ Sw}

is a maximal strongly orthogonal system of Ψw.

On the other hand, for any α ∈ Sw,

|α(aw)|w =

������

�

τ∈Jw

τ
α(aw)

������
v

.
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Since
�

w∈Iv
Sw is a maximal strongly orthogonal system for Φ(G(Kv), Av), if a =

((
τaw)τ∈Jw)w∈Iv ∈ Av,

ηG(Kv)(a) =

�

(αw)w∈Iv∈
�

w∈Iv
Sw

|αw((
τ
aw)τ∈Jw)|v =

�

w∈Iv

�

αw∈Sw

|α(aw)|w =

�

w∈Iv

ηG�(kw)(aw).

Hence for all g ∈ G
�
(Ak),

�

v∈RK

ηG(Kv)(j(g)) =

�

w∈Rk

ηG�(kw)(g).

By Lemma 3.3, this proves the claim.

3.3. Uniform bound for matrix coefficients of G(A)

Let Wf ⊂ G(Af ) be a compact open subgroup. Write Wv = Wf ∩G(Kv) for each v ∈ R.
Then Wv = Uv for almost all v ∈ Rf . For each v ∈ Rf , by [5], there exists dWv < ∞ such
that for any irreducible unitary representation ρ of G(Kv), the dimension of Wv-invariant
vectors of ρ is at most dWv . Moreover dWv = 1 for almost all v ∈ R by [55, 3.3.3] and [25,
Corollary 1]. Hence the following number is well-defined:

dWf :=

�

v∈Rf

dWv < ∞.

The notation G(Kv)
+ denotes the normal subgroup of G(Kv) generated by all unipotent

subgroups of G(Kv).

Tʜ��ʀ�� 3.10. – Let G be a connected absolutely almost simple K-group with K-rank at
least 2. Let Wf be a compact open subgroup of G(Af ). Let π be any unitary representation of
G(A) without no non-trivial G(Kv)

+-invariant vector for every v ∈ R. Then for any U∞-finite
and Wf -invariant unit vectors x and y,

(3.11) |�π(g)x, y�| ≤ d0 · cWf · (dim�U∞x� · dim�U∞y�)
(r+1)/2

· ξG(g) for all g ∈ G(A)

where cWf := dWf ·
�

v[Uv : Uv ∩Wv] · (maxd∈Ωv [Uv : dUvd−1
]) and d0, r ≥ 1 depend only

on G. Moreover if G(Kv) � Sp
2n(C) locally for any v ∈ R∞, d0 = 1 and r = 1.

If G is a connected almost K-simple adjoint (simply connected) K-group with K-rank at
least 2, and π has no non-trivial L(Kv)

+-invariant vectors for any connected Kv-normal sub-
group L of G, then (3.11) holds with ξG replaced by ξ

1−ε

G
for any ε > 0.

As a corollary, we obtain the adelic version of Howe-Moore theorem [32] on the vanishing
of matrix coefficients:

C�ʀ�ʟʟ�ʀʏ 3.12. – Let G and π be as in Theorem 3.10. Then for any vectors x and y,

�π(g)x, y� → 0 as g →∞ in G(A).

Proof. – It is easy to see that it suffices to prove the claim for a dense subset of vectors in
the Hilbert space V associated to π. Considering the restriction π̃ := π|U to U , V decom-
poses into a direct sum of irreducible unitary representations of the compact group U each of
which is finite dimensional by the Peter-Weyl theorem. Hence the set V0 of U -finite vectors
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is dense in V . Now if x, y ∈ V0, then x and y are invariant under a finite index subgroup Wf

of Uf . Hence by applying the above theorem, we obtain that for some constant c0 > 0,

|�π(g)x, y�| ≤ c0 · ξG(g) for all g ∈ G(A).

Since ξG(g) → 0 as g →∞, this implies the claim.

The proof of Theorem 3.10 is based on theorems in [40]. More precisely, recall:

Tʜ��ʀ�� 3.13 ([40, Theorem 1.1-2]). – Suppose that the Kv-rank of G is at least 2. Let
πv be a unitary representation of G(Kv) without any non-trivial G(Kv)

+-invariant vectors.
Then for any Uv-finite unit vectors x and y,

|�πv(g)x, y�| ≤ dv · cv · (dim�Uvx� · dim�Uvy�)
rv/2

· ξv(g) for any g ∈ G(Kv)

where cv = maxd∈Ωv [Uv : dUvd−1
] and dv, rv ≥ 1 depend only on G(Kv). Moreover whenever

G(Kv) � Sp
2n(C) locally, dv = 1 and rv = 1.

In the case when G(Kv) ∼= Sp
2n(C) locally, the above theorem was stated only for Uv-

invariant vectors in [40]. However if we replace Proposition 2.7 in [40] by the remark follow-
ing it, the same proof works for the above claim.

Proof of Theorem 3.10. – We first assume that G is absolutely almost simple. For g =

(gv)v ∈ G(A), choose a finite subset Sg of places containing

{v ∈ Rf : gv /∈ Uv} ∪R∞.

Note that for v ∈ R − Sg, we have gv ∈ Uv and hence ξv(gv) = 1. Therefore for g =

(gv)v ∈ G(A),

ξ(g) =

�

v∈Sg

ξv(gv).

Let Gg =
�

v∈Sg
G(Kv) and Wg =

�
v∈Sg∩Rf

Wv. As a Gg representation, π has a Hilbert
integral decomposition:

π =

�

z∈Zg

⊕
mzρz dν(z)

where Zg is the unitary dual of Gg and ρz is irreducible, mz is a multiplicity for each z ∈ Zg

and ν is a measure on Zg (see [21] or [61, Section 2.3]). We may assume that for all z, ρz has
no G(Kv)

+-invariant vector (see [61, Prop. 2.3.2]).
If we write Lz = ⊕mzρz, x =

�
xzdν(z) and y =

�
yzdν(z) with

xz =

mz�

i=1

xzi and yz =

mz�

i=1

yzi ∈ Lz,

we have

�x, y� =

�

Zg

mz�

i=1

�xzi, yzi� dν(z).

It follows from the definition of a Hilbert direct integral that

dim�U∞xzi� ≤ dim�U∞xz� ≤ dim�U∞x�,
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xzi is Wg-invariant for almost all z and all i, and similarly for y. Without loss of generality,
we assume the above holds for all z. We claim that

|�ρz(g)xzi, yzi�| ≤ cWf · d0 · ξG(g) · (dim�U∞x� · dim�U∞y�)
(r+1)/2

· �xzi� · �yzi�(3.14)

where r = maxv rv and c0 = dWf

�
v(cv · [Uv : Uv ∩ Wv]) < ∞, d0 =

�
v dv < ∞ with

cv, dv, rv as in Theorem 3.13. By [5], we may write ρz = ⊗v∈Sgρz(v) where ρz(v) is an ir-
reducible representation of G(Kv) without no non-trivial G(Kv)

+-invariant vectors. Since
the finite linear combinations of pure tensor vectors are dense, it suffices to prove (3.14) as-
suming xzi and yzi are finite sums of pure tensors. Hence we can write

xzi =

�

j

�

v∈Sg

xzij(v) ; yzi =

�

k

�

v∈Sg

yzik(v)

where for each v ∈ Sg, xzij(v) (resp. yzik(v)) are mutually orthogonal and the number of
summands for xzi (resp. yzi) is at most dim�U∞x� · dWf (resp. dim�U∞y� · dWf ). Hence by
Cauchy-Schwarz inequality, for xzij =

�
v∈Sg

xzij(v) and yzij =
�

v∈Sg
yzij(v),

�

j

�xzij� ≤ (dim�U∞x� · dWf )
1/2
�xzi�; and

�

k

�yzik� ≤ (dim�U∞y� · dWf )
1/2
�yzi�.

Since for v ∈ Rf

dim�Uvx� ≤ [Uv : Wv ∩ Uv] and dim�Uvy� ≤ [Uv : Wv ∩ Uv],

by Theorem 3.13, we have for c0 =
�

v cv,

|�ρz(g)xzi, yzi�| ≤

�

j,k

�

v∈Sg

|�ρz(v)(gv)xzij(v), yzik(v)�|(3.15)

≤ c0 · d0 ·

�

v∈Sg

ξv(gv) · (dim�U∞x�(3.16)

· dim�U∞y�)
r/2

Å �

v∈Rf

[Uv : Wv ∩ Uv]

ã
·

Å�

j,k

�xzij� · �yzik�

ã

≤ c0 · d0 · ξG(g) · (dim�U∞x�(3.17)

· dim�U∞y�)
(r+1)/2

·

Å �

v∈Rf

[Uv : Wv ∩ Uv]

ã
· dWf (�xzi� · �yzi�)

= cWf · d0 · ξG(g) · (dim�U∞x� · dim�U∞y�)
(r+1)/2

· (�xzi� · �yzi�)

proving (3.14). Therefore again by Cauchy-Schwarz inequality,

|�(⊕
mzρz)(g)(xz), yz�| ≤

�

i

|�ρz(g)xzi, yzi�|

(3.18)

≤ cWf · d0 · ξG(g) · (dim�U∞x� · dim�U∞y�)
(r+1)/2

· �xz� · �yz�.

By integrating over Zg, we obtain (3.11).
Since G is adjoint (resp. simply connected), there exist a finite separable extension

k of K and a connected adjoint (resp. simply connected) absolutely almost simple k-
group G

� such that G = Rk/KG
� by [54, 3.1.2]. Then the topological isomorphism

j−1
: G(AK) → G

�
(Ak) described prior to Lemma 3.9 maps G(Kv) and G(Kv)

+ to
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�
w∈Iv

G
�
(kw) and

�
w∈Iv

G
�
(kw)

+ respectively. Let π be a representation on G(A) sat-
isfying the hypothesis. Then the representation, say, π�, on G

�
(Ak) induced by π has no

G
�
(kw)

+-invariant vectors for each w ∈ Rk. Since the k-rank of G
� is equal to the K-rank

of G and hence is at least 2, by the assertion already proved for G
�
(Ak), we deduce that for

any U∞-finite and Wf -invariant x, y,

|�π(g)x, y�| = |�π
�
(j
−1

(g))x, y�|

≤ d0 · cWf · (dim�U∞x� · dim�U∞y�)
(r+1)/2

· ξG�(j
−1

(g)) for all g ∈ G(A).

By (3.21), we may replace ξG�(j−1
(g)) by ξG(g)

1−ε, finishing the proof.

3.4. Automorphic bound for G(A)

If G has K-rank at most one, the analogue of Theorem 3.10 does not hold in gen-
eral. However if we look at those infinite dimensional representations occurring in
L2

(G(K)\G(A)), we still obtain a similar upper bound.
We first state the following conjecture:

C�ɴ�����ʀ� 3.19. – Let G be a connected absolutely almost simple K-group. Let Wf

be a compact open subgroup of G(Af ). Then for any U∞ ×Wf -invariant unit vectors f, h ∈

L2

00
(G(K)\G(A)),

|�f, g.h�| ≤ cWf · ξG(g) for all g ∈ G(A)

where cWf > 0 is a constant depending only on G and Wf .

The above holds for groups of K-rank at least 2 by Theorem 3.10. For G = PGL2, Con-
jecture 3.19 is essentially equivalent to the Ramanujan conjecture. We will prove a weaker
statement of Conjecture 3.19 where the function ξG is replaced by a function ξ̃G with slower
decay such that ξG ≤ ξ̃G ≤ ξ

1/2

G
.

D��ɪɴɪ�ɪ�ɴ 3.20. – Let G be a connected almost K-simple group. For each v ∈ R, write
G as an almost direct product G1

vG
2

v where G
1

v is the maximal semisimple normal Kv-subgroup
of G such that every simple normal Kv-subgroup of G

1

v has Kv-rank one. Note that G
2

v is then
the maximal semisimple normal Kv-subgroup of G without any Kv-normal subgroup of rank
zero or one. We define a function ξ̃G : G(A) → (0, 1] by

ξ̃G :=

�

v∈R

Ä
ξ
1/2

G1
v(Kv)

· ξG2
v(Kv)

ä
.

If G is absolutely almost simple and R1 := {v ∈ R : rankKv (G) = 1}. then

ξ̃G =

�

v∈R1

ξ
1/2

G(Kv)
·

�

v∈R−R1

ξG(Kv).

If G = RK/kG
� for some finite extension field k and for a connected absolutely almost simple

k-group G
�, then, for any w ∈ Rk extending v ∈ RK , the kw-rank of a connected simple

kw-subgroup H
� of G

� is equal to the Kv-rank of the Kv-subgroup Rkw/Kv
H
� of G (cf. [36,

Ch I, 3.1]). Using this, the proof of Lemma 3.9 also shows that there is Cε > 1 such that for
any g ∈ G

�
(Ak)

(3.21) C
−1

ε · ξ̃G(j(g))
1+ε

≤ ξ̃G�(g) ≤ Cε · ξ̃G(j(g))
1−ε

,
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where j denotes the topological group isomorphism from G
�
(Ak) to G(A) described prior

to Lemma 3.9.

Tʜ��ʀ�� 3.22 (Automorphic bounds). – Let G be a connected absolutely almost simple
K-group. For a compact open subgroup Wf of G(Af ), there exist r = r(G) ≥ 1 and cWf > 0

such that for any U∞-finite and Wf -invariant unit vectors x, y ∈ L2

00
(G(K)\G(A)),

|�x, g.y�| ≤ cWf · (dim�U∞x� · dim�U∞y�)
(r+1)/2

· ξ̃G(g) for all g ∈ G(A).

One can take r = 1 provided for any v ∈ R, G(Kv) has no subgroup locally isomorphic to
Sp

2n(C) (n ≥ 2) locally.

If G is a connected almost K-simple adjoint (simply connected) K-group, then the above
inequality holds with ξ̃G replaced by ξ̃

1−ε

G
for any ε > 0.

Recall that for unitary representations ρ1 and ρ2 of G(Kv), ρ1 is said to be weakly con-
tained in ρ2 if every diagonal matrix coefficient of ρ1 can be approximated uniformly on com-
pact subsets by convex combinations of diagonal matrix coefficients of ρ2. For each v ∈ R,
denote by Ĝv the unitary dual of G(Kv) and by Ĝ

Aut

v ⊂ Ĝv the automorphic dual of G(Kv)

as defined in the introduction. The following theorem was first obtained by Burger and Sar-
nak for v archimedean [11, Theorem 1.1] and generalized by Clozel and Ullmo to all v [17,
Theorem 1.4].

Tʜ��ʀ�� 3.23. – Let G be a connected absolutely almost simple K-group. Let H ⊂ G

be a connected semisimple K-subgroup. Then for any v ∈ R and for any ρv ∈ Ĝ
Aut

v , any
irreducible representation of H(Kv) weakly contained in ρv|H(Kv)is contained in Ĥ

Aut

v .

L���� 3.24. – For any v ∈ R such that G(Kv) is non-compact, L2

00
(G(K)\G(A)) has

no non-zero G(Kv)
+-invariant function.

Proof. – Let Lv denote the set of f ∈ L2

00
(G(K)\G(A)) fixed by G(Kv)

+. We need to
show that Lv = {0}. Let G

{v} denote the subgroup of G(A) consisting of elements whose
v-component is trivial. Consider the family of continuous functions f ∈ Cc(G

{v}
) of the

form f =
�

w∈R−{v} fw where each fw is a continuous function of G(Kw) such that fw|Uw =

1 for almost all w. By considering the convolutions with these functions, we obtain a dense
family of the continuous functions belonging to Lv. Hence it suffices to show that any con-
tinuous function f ∈ Lv is trivial. Let f ∈ Lv be continuous. Let G̃ be the simply connected
cover of G and denote by pr : G̃ → G the covering map. Consider the projection map

G̃(K)\G̃(A) → G(K)\G(A).

Let f̃ be the pull back of f . Since the image of G̃(Kv) under the map pr is G(Kv)
+, the

function f̃ is left G̃(K)-invariant and right G̃(Kv)-invariant. On the other hand, the strong
approximation property implies that G̃(K)G̃(Kv) is dense in G̃(A) (cf. [43, Theorem 7.12]).
Therefore f̃ is constant, and hence f factors through the image of G̃(A) in G(A). Since
G(A)/G̃(A) is abelian, L2

(G(K)G̃(A)\G(A)) is a sum of automorphic characters of G(A).
Since f is orthogonal to Λ, f = 0.
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Proof of Theorem 3.22. – We first treat the case when G is absolutely almost simple. The
case when K-rank is at least 2 follows from Theorem 3.10 and Lemma 3.24. Suppose first
that G has K-rank one. By [16, Theorem 3.4], for v ∈ R1, any infinite dimensional ρv ∈

Ĝ
Aut

v , and Uv-finite vectors xv, yv,

(3.25) |�ρv(g)(xv), yv�| ≤ cv · ξv(g)
1/2

· (dim�Uvxv� · dim�Uvyv�)
1/2

for any g ∈ G(Kv). Combining this with Theorem 3.13, we can derive the desired bound by
the same argument as in the proof of Theorem 3.10.

Now suppose G is K-anisotropic. For v ∈ R1, we claim (3.25) holds. In [15], it is ana-
lyzed what kind of ρv occurs in this situation, and this is the main case which was not known
before Clozel’s work. We give a brief summary. If R1 �= ∅, it follows from the classification
theorem by Tits [54] that G is of Dynkin typeA. [15, Theorem 1.1] says that there exists a K-
embedding of K-subgroup H of type A such that H has Kv-rank one whenever v ∈ R1. Let
v ∈ R1. Then up to isogeny, one has either that H = PGL1(D) for a quaternion algebra D

over K and H = PGL2 over Kv, or H = PGU(D, ∗) for a division algebra D of prime degree
d over a quadratic extension k of K with a second kind involution ∗, and H = PGU(n−1, 1)

over Kv (with n ≥ 3). In the former case one uses the Jacquet-Langlands correspondence
[33] to transfer the Gelbart-Jacquet automorphic bound of PGL2 to H(Kv) via Theorem
3.23. In the second case which is the hardest, by the base changes obtained by Rogawski [44]
and Clozel [14], we can use the bound of PGLn(Fw) given by Theorem 3.13 to get a bound
for H(Kv) where w is a place of k lying above v and kw is a quadratic extension of Kv. This
proves the claim. Combining with Theorem 3.13 for those places v ∈ R− (R1 ∪T ) as in the
proof of Theorem 3.10, we obtain the desired bound.

Now for the case when G is adjoint (resp. simply connected) almost K-simple, the same
argument used in the proof of Theorem 3.10 applies, since (in the notation therein) the
topological isomorphism j : G(AK) → G

�
(Ak) induces an equivariant isometry between

L2

00
(G(K)\G(A)) and L2

00
(G

�
(k)\G�

(Ak)).

3.5. From U∞-finite vectors to smooth vectors

In Theorem 3.22, we can relax U∞-finite conditions to smooth conditions provided we
replace the L2-norms by L2-Sobolev norms. For a precise formulation, let X1, . . . ,Xm be an
orthonormal basis of the Lie algebra Lie(U∞) with respect to an Ad-invariant scalar product.
Then the elliptic operator

(3.26) D := 1−

m�

i=1

X
2

i

lies in the center of the universal enveloping algebra of Lie(U∞). We say a function f on
G(K)\G(A) is smooth if f is invariant under some compact open subgroup of G(Af ) and
smooth for the action of G∞.

Tʜ��ʀ�� 3.27. – Let G be a connected almost absolutely simple K-group. and Wf be a
compact open subgroup of G(Af ). Then there exist an explicit l ∈ N and cWf > 0 such that
for any Wf -invariant smooth functions ϕ, ψ ∈ L2

00
(G(K)\G(A)) with �Dl

(ϕ)� < ∞ and
�Dl

(ψ)� < ∞,

|�ϕ, g.ψ�| ≤ cWf · ξ̃G(g) · �D
l
(ϕ)� · �D

l
(ψ)� for all g ∈ G(A).
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If G is a connected almost K-simple adjoint (simply connected) K-group, then the above
inequality holds with ξ̃G replaced by ξ̃

1−ε

G
for any ε > 0.

Proof. – Deducing this from Theorem 3.22 is quite standard in view of the results of
Harish-Chandra explained in [58, Ch. 4]. We give a sketch of the proof. Denote by π

the representation L2

00
(G(K)\G(A)). Then π = ⊕

ν∈Û∞
πν where πν is the ν-isotypic

component of π and D acts as a scalar, say, cν on each πν . We write ϕ =
�

ν∈Û∞
ϕν and

ψ =
�

ν∈Û∞
ψν . One has �ϕν� = c−l

ν �D
lϕν� and similarly for ψ. Then

|�ϕ, g.ψ�| ≤

�

(ν1,ν2)∈Û∞×Û∞

|�ϕν1
, g.ψν2

�|.

Using Theorem 3.22, we then obtain

|�ϕ, g.ψ�| ≤ cWf · ξ̃G(g)

Å �

ν∈Û∞

�ϕν�dim�U∞ϕν�
(r+1)/2

ãÅ �

ν∈Û∞

�ψν�dim�U∞ψν�
(r+1)/2

ã

≤ cWf · ξ̃G(g) · �D
l
(ϕ)� · �D

l
(ψ)� ·

�

ν∈Û∞

cν
−2l

dim(ν)
r+1

.

Now if l ∈ N is sufficiently large, then
�

ν c−2l
ν dim(ν)

r+1 < ∞ [58, Lemma 4.4.2.3]. This
proves the claim.

3.6. From K-simple groups to semisimple groups

If G is a connected semisimple K-group, we say that a sequence {gi ∈ G(A)} tends to
infinity strongly if for any non-trivial connected simple normal K-subgroup H of G, pH(gi)

tends to ∞ as i →∞, where pH : G(A) → G(A)/H(A) denotes the canonical projection.

Tʜ��ʀ�� 3.28 (Mixing for L2
(G(K)\G(A))). – Let G be a product of connected almost

K-simple K-groups. Then for any ϕ, ψ ∈ L2

00
(G(K)\G(A)),

�ϕ, g.ψ� → 0

as g ∈ G(A) tends to infinity strongly.

Proof. – Write G = G1×· · ·×Gm where each Gi is a connected absolutely almost simple
K-group. By Theorem 3.22 and Peter-Weyl theorem (cf. Corollary 3.12), for each 1 ≤ i ≤ m,
and for any ϕi, ψi ∈ L2

00
(Gi(K)\Gi(A)),

(3.29) �ϕi, gi.ψi� → 0

as gi →∞ in Gi(A).
Consider⊗m

i=1
L2

(Gi(K)\Gi(A)) as a subset of L2
(G(K)\G(A)). The finite sums of the

functions of the form ψ = ⊗m
i=1

ψi ∈ L2
(G(K)\G(A)), where ψj ∈ L2

(Gj(K)\Gj(A)) and
such that for at least one j, ψj ∈ L2

00
(Gj(K)\Gj(A)), form a dense subset of the space

L2

00
(G(K)\G(A)). Hence it suffices to prove the claim for ϕ = ⊗m

i=1
ϕi and ψ = ⊗m

i=1
ψi of

such type. Suppose ψj ∈ L2

00
(Gj(K)\Gj(A)) for some 1 ≤ j ≤ m. If g = (g1, . . . , gm) with

gi ∈ Gi(A), then

|�ϕ, g.ψ�| =

m�

i=1

|�ϕi, gi.ψi�| ≤ |�ϕj , gj .ψj�| ·

Ñ
�

i �=j

�ϕi� · �ψi�

é
.
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If ϕ�
j

denotes the projection of ϕj to L2

00
(Gj(K)\Gj(A)), then

�ϕj , gj .ψj� = �ϕ
�
j , gj .ψj�.

Since g →∞ strongly and hence gj →∞, we obtain �ϕ�
j
, gj .ψj� → 0 by (3.29). This proves

the claim.

By the following proposition, the above theorem applies to connected semisimple adjoint
(simply connected) K-groups.

Pʀ����ɪ�ɪ�ɴ 3.30 ([54, 3.1.2]). – Any connected semisimple adjoint (resp. simply con-
nected) K-group decomposes into a direct product of adjoint (resp. simply connected) almost
K-simple K-groups.

3.7. Equidistribution of Hecke points

In this subsection which is not needed in the rest of the paper, we explain applications of
the adelic mixing in the equidistribution problems of Hecke points considered in [16]. Let
K = Q. Let S be a finite set of primes including the archimedean prime ∞. If Γ is an
S-arithmetic subgroup of GS (here Q∞ = R) and a ∈ G(Q), then the Hecke operator Ta

on L2
(Γ\GS) is defined by

Ta(ψ)(g) =
1

deg(a)

�

x∈Γ\ΓaΓ

ψ(xg)

where deg(a) = #Γ\ΓaΓ. Theorem 1.11 extends the main result in [16] where some cases of
Q-anisotropic groups were excluded (see [24]). In fact, the following corollary immediately
follows from Theorem 3.22 and Proposition 2.6 in [16]:

C�ʀ�ʟʟ�ʀʏ 3.31. – Let G be a connected simply connected almost Q-simple Q-group and
S a finite set of primes including ∞. Suppose that GS is non-compact. Let Γ ⊂ G(Q) be an
S-congruence subgroup of GS . For any ε > 0, there exists a constant c = c(Γ, ε) > 0 such
that

�Ta � ≤ c · ξ̃
1−ε

G
(a) for any a ∈ G(Q).

This corollary in particular implies that for any sequence ai ∈ G(Q) with deg(ai) →∞,
and for any ψ ∈ Cc(GS),

lim
i→∞

1

deg(ai)

�

x∈ΓaiΓ

ψ(x) =
1

τS(Γ\GS)

�

GS

ψ(g) dτS .

It is interesting to note that unlike the rational points G(Q) of bounded height (Theorem
1.6), the Hecke points are equidistributed in GS with respect to the invariant measure.

The following corollary presents a stronger version of property (τ) of G proved by Clozel
[15]:

C�ʀ�ʟʟ�ʀʏ 3.32. – Let G be a connected simply connected almost K-simple K-group.
Let π denote the quasi-regular representation of G(A) on L2

0
(G(K)\G(A)). Let W be a max-

imal compact subgroup of G(A). Then there exists an explicit p = p(G) < ∞ such that any
W -finite matrix coefficient of π is Lp

(G(A))-integrable.
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4. Volume asymptotics and construction of µ̃ι

4.1. Analytic properties of height zeta functions

Let G be a connected adjoint semisimple algebraic group over K. Let ι : G → GLN be a
faithful representation defined over K which has a unique maximal weight. Recall the con-
stants aι and bι defined in the introduction (1.3): Choosing a maximal torus T of G defined
over K containing a maximal K-split torus and a set of simple roots ∆ of the root system
Φ(G,T), denote by 2ρ the sum of all positive roots and λι the unique maximal weight of ι.

If
2ρ =

�

α∈∆

uαα and λι =

�

α∈∆

mαα

then

(4.1) aι = max
α∈∆

uα + 1

mα

and bι = #

ß
ΓK .α :

uα + 1

mα

= aι

™

where ΓK is the absolute Galois group over K.
We fix a height function Hι =

�
v∈R Hι,v as defined in (2.6) in the rest of this section.

Recall the notation
BT := {g ∈ G(A) : Hι(g) ≤ T}.

Given an automorphic character χ, we consider the following functions:

ZS(s, χ) :=

�

GS

Hι(g)
−s

χ(g) dτS(g); Z
S
(s, χ) :=

�

GS

Hι(g)
−s

χ(g) dτ
S
(g).

L���� 4.2. – There exists ε > 0 such that the following hold for any finite S ⊂ R:

1. ZS(s, χ) absolutely converges for �(s) ≥ aι − ε.
2. τS(BT ∩GS) = O(T aι−ε

) where the implied constant depends on S.

Proof. – For (1), recall the Cartan decomposition for each v: G(Kv) = UvA+

v ΩvUv (2.2).
Since the definition of aι does not depend on a particular choice of T, we may assume Av ⊂

T(Kv). Choose the set of simple roots ∆v = {α1, . . . , αr} in the root system Φ(G(Kv), Av)

so that the restriction of ∆ to Av is contained in ∆v ∪ {0}.
If 2ρv denotes the sum of all positive roots in Φ(G(Kv), Av) and u�

i
denotes the sum of

all uα’s for those α such that α|Av = 1, i.e., u�
i
=

�
{uα : α|Av = αi}, then 2ρv = 2ρ|Av =�r

i=1
u�

i
αi. Similarly, if λι,v := λι|Av and m�

i
=

�
{mα : α|Av = αi}, we have λι,v =�r

i=1
m�

i
αi.

Observe that

av := max
1≤i≤r

u�
i

m�
i

≤ max
α∈∆

uα

mα

< aι.

Since λι is the unique maximal weight of ι, we may assume, without loss of generality, that

Hι,v(kadk
�
) = q

logqv
|λι(a)|

v

where k, k� ∈ Uv, a ∈ A+

v , d ∈ Ωv and qv = e if v ∈ R∞.
For v ∈ R∞, it is well known (cf. Prop. 5.28 in [34]) that dgv = δ(X) dk1 dX dk2 where

for any ε > 0, there exists Cε > 0 such that

δ(X) < Cε exp((1 + ε)2ρv(X)) for all X ∈ log(A
+

v ) .
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Hence if σ > 0,
�

G(Kv)

Hι,v(gv)
−σ

dgv ≤ Cε

�

log A
+

v

exp(−σ(λι,v(X) + (1 + ε)2ρv(X))) dX

≤ Cε

r�

i=1

� ∞

xi=0

exp(−xi(σm
�
i − u

�
i(1 + ε))) dxi.

Hence the above converges for any σ > av, proving the claim for v ∈ R∞.

Let v ∈ Rf . Without loss of generality, we may assume that Hι,v is bi-Uv-invariant, and
hence �

G(Kv)

Hι,v(gv)
−σ

dgv =

�

ad∈A
+

v Ωv

Hι,v(ad)
−σ

τv(UvadUv).

By [50, Lemma 4.1.1], there exists c1 > 0 such that τv(UvadUv) ≤ c1 · q
2ρv(a)

v for all ad ∈

A+

v Ωv. Hence for some constant c > 0,
�

G(Kv)

Hι,v(gv)
−σ

dgv ≤ c ·

�

a∈A
+

v

q
−σλι,v(a)+2ρv(a)

v = c

r�

i=1

∞�

j=0

q
−(σm

�
i−u

�
i)j

v ,

where the last term converges for any σ > av. Put

ε =
1

2

Å
aι −max

α∈∆

uα

mα

ã

so that aι − ε > av for all v ∈ R. The above argument proves the claim (1) for this choice of
ε. Also, if v(t) := τS({g ∈ GS : Hι,S(g) ≤ t}), and σ > aι − ε,

� ∞

0

t
−σ

dv(t) =

�

GS

Hι,S(g)
−σ

dτS(g) < ∞.

Now the second claim follows from the properties of Laplace-Mellin transform (see, for
example, [60, Ch. II, § 2]).

One of the main contributions of the paper by Shalika, Takloo-Bighash and Tschinkel
[48] is the regularization of ZS

(s, χ) via the Hecke L-functions. Their result stated as [48,
Theorem 7.1], together with the results in Tate’s thesis on the meromorphic continuation of
Hecke L-functions and their boundedness on vertical strips (cf. [10, Prop. 3.16]), implies the
following:

Tʜ��ʀ�� 4.3. – Let S be a finite subset of R and aι, bι as in (4.1). Then ZS
(s, χ) con-

verges absolutely when�(s) > aι, and there exists ε > 0 such thatZS
(s, χ) has a meromorphic

continuation to �(s) > aι − ε with a unique pole at s = aι of order at most bι. The order of
the pole is exactly bι for χ = 1. Moreover, for some constants κ ∈ R and C > 0,

����
(s− aι)

bιZS
(s, χ)

sbι

���� ≤ C · (1 + | Im(s)|)
κ

for �(s) > aι − ε.
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In [48], it is assumed that Hι,v is smooth for v ∈ (R−S)∩R∞ which is stronger than the
condition (3) in Definition 2.6. This implies Theorem 4.3 for any S including R∞. On the
other hand, by Lemma 4.2, for any finite S1 ⊂ R, there exists ε > 0 such that the product
ZS1

(s, χ) :=
�
GS1

Hι(g)
−sχ(g) dτS1

(g) absolutely converges for all�(s) > aι−ε. Therefore,

for any S2 ⊂ S, the product ZS2 = ZS−S2
ZS satisfies the properties listed in Theorem 4.3,

provided ZS does. Therefore Theorem 4.3 holds for any finite S ⊂ R.

We use the following version of Ikehara Tauberian theorem to deduce the volume asymp-
totics from Theorem 4.3.

Tʜ��ʀ�� 4.4. – Fix a > 0 and δ0 > 0. Let α(t) be a non-negative non-decreasing function
on (δ,∞) such that

f(s) :=

� ∞

δ0

t
−s

dα

converges for �(s) > a. Suppose that for some ε > 0,

– f(s) has a meromorphic continuation to the half plane�(s) > a−ε > 0 and has a unique
pole at s = a with order b;

– For some κ ∈ R and C > 0,
����
f(s)(s− a)

b

sb

���� ≤ C · (1 + | Im(s)|)
κ

for �(s) > a− ε.

Then for some δ > 0,
� T

δ

dα = α(T )− α(δ) =
c

a(b− 1)!
· T

a
P (log T ) + O(T

a−δ
) as T →∞

where c = lims→a(s− a)
bf(s) and P (x) is a monic polynomial of degree b− 1.

Proof. – This can be proved by repeating the same argument as in the appendix of [12]
simply replacing the sum

�
n n−sαn by the integral

�∞
δ0

t−s dα(t).

4.2. Definition of γS

Wf

Recall from (2.7) that Wι denotes the maximal compact subgroup of G(Af ) under
which Hι is bi-invariant. For any co-finite subgroup Wf of Wι, recall from (2.5) the def-
inition GWf := ker(Λ

Wf ) where Λ
Wf is the subset of Wf -invariant characters in Λ. We

will deduce the asymptotic volume of the intersection BT ∩ GWf , more generally, that of
BT ∩ gGWf ∩G

S for any g ∈ G(A) and any finite S ⊂ R. In this subsection, we will define
a function γS

Wf
: G(A) → R>0 which appears in the main asymptotic of these volumes.

D��ɪɴɪ�ɪ�ɴ 4.5. – For a finite S ⊂ R and a co-finite subgroup Wf of Wι, define a function
γS

Wf
: G(A) → R>0 by

γ
S

Wf
(g) :=

�

χ∈Λ
Wf

c
S

χ · χ(g) with c
S

χ := lim
s→aι

(s− aι)
bιZ

S
(s, χ).

For simplicity, when S = ∅, we set γWf = γ
∅
Wf

and cχ = c∅
χ .
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By Theorem 4.3, the limits appearing in the definition of γS

Wf
exist. To show γS

Wf
is well-

defined, it remains to show the following:

Pʀ����ɪ�ɪ�ɴ 4.6. – For any S ⊂ R and any co-finite subgroup Wf of Wι, γS

Wf
(g) > 0

for any g ∈ G(A).

We need some preliminaries to prove this proposition.

L���� 4.7. – The following statements hold for any compact open subgroup Wf of
G(Af ):

(1) If G
◦
∞ denotes the identity component of G∞,

G(K)G
◦
∞Wf ⊂ GWf .

(2) #Λ
Wf = [G(A) : GWf ] < ∞.

(3) For any g ∈ G(A),

�

χ∈Λ
Wf

χ(g) =

�
#Λ

Wf if g ∈ GWf

0 otherwise
.

Proof. – Since G
◦
∞ is a connected semisimple group, G

◦
∞ ⊂ ker(χ) for any χ ∈ Λ. On

the other hand, χ(G(K)) = 1 for any χ ∈ Λ, by the definition of an automorphic character.
Hence (1) follows. Since G

◦
∞ has a finite index in G∞, it follows from [43, Theorem 5.1] that

there exist finitely many u1, . . . , uh ∈ G(A) such that

G(A) = ∪
h

i=1
G(K)uiG

◦
∞Wf .

It follows by (1) that [G(A) : GWf ] < ∞. Now the quotient GWf \G(A) is a finite abelian
group. In particular, GWf is an open subgroup of G(A) and hence any character of the
group GWf \G(A) can be considered as a continuous character of G(A) which is trivial on
GWf , that is, an element of Λ

Wf . Conversely, any element of Λ
Wf defines a character of

GWf \G(A).

Now consider the scalar product on the space functions of GWf \G(A) given by

�ψ1|ψ2� :=
1

[G(A) : GWf ]

�

x∈GWf
\G(A)

ψ1(x)ψ2(x).

We claim that Λ
Wf forms an orthonormal set with respect to this scalar product. For χ, χ� ∈

Λ
Wf , observe that

�

x∈GWf
\G(A)

χ(x)χ�(x) = τ(G(K)\GWf )
−1

�

g∈G(K)\GWf

Å �

x∈GWf
\G(A)

χ(gx)χ�(gx)

ã
dτ(g)

= τ(G(K)\GWf )
−1

�

G(K)\G(A)

χ(x)χ�(x) dτ(x).
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Therefore we have

�χ|χ
�
� =

1

[G(A) : GWf ]
τ(G(K)\GWf )

−1

�

G(K)\G(A)

χ(x)χ�(x) dτ(x)

= τ(G(K)\G(A))
−1
�χ, χ

�
�L2(G(K)\G(A))

= �χ, χ
�
�L2(G(K)\G(A))

since τ(G(K)\G(A)) = 1. Since Λ is an orthonormal subset of L2
(G(K)\G(A)), the claim

follows. Now (2) and (3) follow from the duality of finite groups.

L���� 4.8. – Fix a finite subset S ⊂ R. Let U ⊂ G
S be an open subset such that G

S
=

FU for some finite subset F of G
S . Then for (σ ∈ R)

lim inf
σ→aι

(σ − aι)
bι

�

U

Hι(h)
−σ

dτ
S
(h) > 0.

Proof. – By Theorem 4.3,

c0 := lim
s→aι

(s− aι)
bι

�

GS

Hι(h)
−s

dτ
S
(h)

exists and is non-zero. It is then clear that c0 > 0 since Hι is a positive function on G
S . For

any f ∈ F , we can find cf ≥ 1 such that for all h ∈ G
S , c

−1

f
Hι(h) ≤ Hι(fh) ≤ cfHι(h).

Without loss of generality, we may assume Hι(h) ≥ 1 for all h ∈ G
S . Now for σ < aι + 1,

we have �

GS

Hι(h)
−σ

dτ
S
(h) ≤ (max

f∈F

cf )
aι+1

·

�

U

Hι(h)
−σ

dτ
S
(h).

Hence the claim follows.

L���� 4.9. – For any finite S ⊂ R and a co-finite subgroup Wf of Wι, there is a map
g �→ sg : GS → G

S which factors through (GS ∩GWf )\GS for which the following hold:

1.
GWf =

�

g∈(GWf
∩GS)\GS

(GWf ∩GS)g sg(GWf ∩G
S
);

2. for any ϕ ∈ Cc(GWf ),
�

GWf

ϕ dτWf =

�

g∈GS

�

h∈GS∩GWf

ϕ(gsgh) dτ
S
(h) dτS(g)

if τS and τS are normalized so that τWf = τS × τS locally.

Proof. – Let pr denote the restriction of the projection map G(A) → GS to GWf . Since
G(K) is dense in GS by the weak approximation and the image pr(GWf ) is an open subgroup
containing G(K), the map pr is surjective.

Note that (GWf ∩G
S
)(GWf ∩GS) is a normal subgroup of GWf , and that the map pr in-

duces an isomorphism, say p̃r, between (GWf ∩GS)(GWf ∩G
S
)\GWf and (GWf ∩GS)\GS .

For each g ∈ (GWf ∩GS)\GS , choose sg ∈ G
S ∩ p̃r

−1
(g). This yields the decomposition

GWf = ∪g∈(GWf
∩GS)\GS

(GWf ∩G
S
)(GWf ∩GS)sg g.

Since (GWf ∩GS)sg g = g sg(GWf ∩GS), (1) follows. It is easy to deduce (2) from (1).
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Proof of Proposition 4.6: For g ∈ G
S , consider

�

χ∈Λ
Wf

Z
S
(s, χ)χ(g) =

�

χ∈Λ
Wf

�

GS

Hι(h)
−s

χ(gh) dτ
S
(h)(4.10)

= (#Λ
Wf )

�

g−1GWf
∩GS

Hι(h)
−s

dτ
S
(h)

where the second equality holds by Lemma 4.7(3).
Hence

(#Λ
Wf )

−1
· γ

S

Wf
(g) = lim

s→aι

(s− aι)
bι

�

g−1GWf
∩GS

Hι(h)
−s

dτ
S
(h),

which is equal to, along σ ∈ R,

lim inf
σ→aι

(σ − aι)
bι

�

g−1GWf
∩GS

Hι(h)
−σ

dτ
S
(h).

Therefore by Lemma 4.8, γS

Wf
(g) > 0 for g ∈ G

S . Since G(A) = GSG
S , it suffices to prove

γS

Wf
(hx) > 0 for any h ∈ GS and x ∈ G

S . Let sh ∈ G
S be as defined in Lemma 4.9. By (1)

of the same lemma,
χ(h) = χ(s

−1

h
)

for any χ ∈ Λ
Wf . This implies that for any x ∈ G

S , γS

Wf
(hx) = γS

Wf
(s
−1

h
x). Since s

−1

h
x ∈

G
S , by Theorem 4.13, γS

Wf
(s
−1

h
x) > 0 and hence γS

Wf
(hx) > 0. This finishes the proof.

The functions γS

Wf
are related for different S’s by the following:

Pʀ����ɪ�ɪ�ɴ 4.11. – Let S ⊂ S� be finite subsets of R and let Wf be a co-finite subgroup
of Wι,

1. for any g ∈ G
S ,

γ
S

Wf
(g) =

�

h∈GS0

H
−aι
ι,S0

(h) γ
S
�

Wf
(hg) dτS0

, for S0 = S
�
− S.

2. In particular, for any finite S ⊂ R,

γWf (e) =

�

GS

H
−aι
ι,S

γ
S

Wf
dτS .

3. γWf =
�

χ∈Λ
cχχ; in particular, γWf = γWι .

Proof. – Note that G
S

= GS0
G

S
�

and τS
= τS0

× τS
�
. Since

�
GS0

H
−aι
ι,S0

χ dτS0
exists

for any χ ∈ Λ by Lemma 4.2, we deduce

γ
S

Wf
(g) =

�

χ∈Λ
Wf

Ç�

GS0

H
−aι
ι,S0

χ dτS

å
·

Ç
lim

s→a
+

ι

(s− aι)
bιZ

S
�
(s, χ)

å
· χ(g)

=

�

h∈GS0

Hι,S0
(h)

−aι

Ñ
�

χ∈Λ
Wf

c
S
�

χ χ(gh)

é
dτS0

(h)

=

�

h∈GS0

Hι,S0
(h)

−aιγ
S
�

Wf
(gh) dτS0

(h).

Hence (1) follows. By putting S = ∅, (2) follows.
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Since Hι is Wf -invariant, it follows from Lemma 4.12 below cχ = 0 for any χ ∈ Λ−Λ
Wf .

Hence the claim holds.

L���� 4.12. – Let Y = G(A) or G(K)\G(A). Let Wf be a co-finite subgroup of Wι

and let χ ∈ Λ− Λ
Wf . Then for any Wf -invariant function ψ on Y , we have

�

Y

χ(g)ψ(g) dτ(g) = 0,

if the integral exists. In particular, if the support of ψ is contained in G(K)\GWf and�
G(K)\GWf

ψ dτ = 0, then for any χ ∈ Λ,
�

G(K)\GWf

χ · ψ dτ = 0.

Proof. – Since χ ∈ Λ − Λ
Wf there exists w ∈ Wf such that χ(w) �= 1. Since ψ is

Wf -invariant and τ is invariant,
�

G(A)

χ(g)ψ(g) dτ0(g) =

�

G(A)

χ(wg)ψ(wg) dτ(g) = χ(w)

�

G(A)

χ(g)ψ(g) dτ(g).

This equality implies the first claim immediately. For the second claim, it suffices to note that
for χ ∈ Λ

Wf , χ = 1 on GWf .

4.3. Volume asymptotic

Tʜ��ʀ�� 4.13. – Let aι ∈ Q+ and bι ∈ N be as in (4.1). Then for any finite subset
S ⊂ R, any co-finite subgroup Wf of Wι and g ∈ G

S , there exist a monic polynomial P (x) of
degree bι − 1 and a positive real number δ such that

(4.14) τ
S
(BT ∩ gGWf ∩G

S
) =

γS

Wf
(g−1

)

#ΛWf · aι(bι − 1)!
· T

aιP (log T ) + O(T
aι−δ

).

In particular, as T →∞,

(4.15) τ
S
(BT ∩ gGWf ∩G

S
) ∼

γS

Wf
(g−1

)

#ΛWf · aι(bι − 1)!
· T

aι(log T )
bι−1

.

Proof. – By Lemma 2.5, BT is a relatively compact subset of G(A) and hence
τS

(BT ∩G
S
) < ∞ for each T ≥ 1 and for any finite S. By the same lemma, δ0 := infg∈G(A)

Hι(g) > 0. Define

α(t) = τ
S
(Bt ∩ gGWf ∩G

S
) for t ∈ [δ0,∞),

and

f(s) =

� ∞

δ0

t
−s

dα.

Then by (4.10),

f(s) =

�

gGWf
∩GS

Hι(h)
−s

dτ
S
(h) = (#Λ

Wf )
−1

�

χ∈Λ
Wf

Z
S
(s, χ)χ(g

−1
).

Since
lim

s→aι

(s− aι)
bιf(s) = (#Λ

Wf )
−1

γ
S

Wf
(g) > 0
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by Proposition 4.6, the claim follows from Theorems 4.3 and 4.4.

Lastly in this subsection, we show that the volume asymptotic for τWf (BT ∩GWf ) is in-
dependent of Wf ’s.

C�ʀ�ʟʟ�ʀʏ 4.16. – For g ∈ G(A) and any co-finite subgroup Wf of Wι,

τ(BT ∩ gGWι) ∼T [GWι : GWf ] · τ(BT ∩ gGWf ).

In particular,

lim
T→∞

τWf (BT ∩GWf )

τWι(BT ∩GWι)
= 1.

Proof. – Since γWf (g) = γWι(g) by Proposition 4.11, the first claim follows from Theo-
rem 4.13 and Lemma 4.7(2). Since the restriction of τ to GWf is equal to [G(A) : GWf ]·τWf ,
the second claim follows from the first one.

4.4. Construction of µ̃ι

Let ῑ : G → P(MN) denote the projective embedding obtained by the composition of ι

with the canonical projection from GLN → P(MN). For each v ∈ R, denote by Xι,v the
closure of ῑ(G(Kv)) in P(MN (Kv)), and set

Xι =

�

v∈R

Xι,v.

Fix a height function Hι =
�

v∈R Hι,v on the associated adele group G(A) relative to ι as
in Definition 2.6. For a finite subset S ⊂ R, set Hι,S =

�
v∈S Hι,v and Xι,S =

�
v∈S Xι,v.

Without loss of generality, we may consider G(Kv) as a subset of Xι,v. We will first construct
a family of measures {µι,Wf ,S} on Xι,S for all finite S and for all co-finite subgroups Wf of
Wι, and put them together to define the measure µ̃ι on Xι.

Recall the definition of the function γS

Wf
on G(A) from (4.5), and the notation γWι(e) =

γ
∅
Wι

(e). By Lemma 4.2 and Propositions 4.6, 4.11 (2), the following is a well-defined proba-
bility measure on GS (which will be in fact considered as a measure on Xι,S):

dµι,Wf ,S(g) := γWι(e)
−1

·Hι,S(g)
−aι · γ

S

Wf
(g) dτS(g).

R���ʀ� 4.17. – Let G
�
S

denote the derived subgroup of GS . Then [GS : G
�
S
] < ∞

[43, Proposition 3.17]. Then for any ψ ∈ C(Xι,S), since the projection of γS

Wf
to GS factors

through G
�
S

, we deduce that

µι,Wf ,S(ψ) = γWι(e)
−1

�

u∈GS/G�
S

γ
S

Wf
(u) ·

�

uG
�
S

Hι,S(g)
−aιψ(g) dτS(g).

Since γS

Wf
(u) > 0 for each u, it follows that the measure µι,Wf ,S is equivalent to a Haar

measure on GS , considered as a measure on Xι,S .

For Wf < Wι, denote by C(Xι)
Wf the closed subspace of C(Xι) consisting of functions

which are (right)-invariant under Wf .
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Tʜ��ʀ�� 4.18. – There exists a unique probability measure µ̃ι on Xι such that for any
ψ ∈

�
Wf <Wι co-finite C(Xι)

Wf ,

(4.19) µ̃ι(ψ) = γWι(e)
−1

·

�

χ∈Λ

lim
s→a

+

ι

(s− aι)
bι

�

G(A)

Hι(g)
−s

χ(g) ψ(g)dτ(g).

Proof. – Define a linear functional µι,Wf on C(Xι)
Wf by

(4.20) µι,Wf (ψ) = γWι(e)
−1

·

�

χ∈Λ
Wf

lim
s→a

+

ι

(s− aι)
bι

�

G(A)

Hι(g)
−s

χ(g) ψ(g)dτ(g).

We first claim that µι,Wf is well-defined, positive and bounded by 1 and µι,Wf (1) = 1. For
each finite set of places S, let C(Wf , S) denote the subset of C(Xι)

Wf consisting of functions
which factor through Xι,S . The restriction of ψ ∈ C(Wf , S) to Xι,S will also be denoted by
ψ by abuse of notation. By Proposition 4.11 (1), the measures µι,Wf ,S are compatible in the
sense that for S ⊂ S�, the restriction of µι,Wf ,S� to C(Wf , S) coincides with µι,Wf ,S . Observe
that for ψ ∈ C(Wf , S),

µι,Wf (ψ) = µι,Wf ,S(ψ).(4.21)

Hence the limit exists in (4.20) for all ψ ∈ C(Wf , S) for each finite S. Since
�

S C(Wf , S) is
dense in C(Xι)

Wf where S ranges over all finite subsets of R and µι,Wf is a linear functional
with

|µι,Wf (ψ)| ≤ �ψ�∞ for any ψ ∈ C(Xι)
Wf

it follows that the limit exists in (4.20) for any ψ ∈ Cc(Xι)
Wf and hence µι,Wf is well-defined.

The other claims on µι,Wf are now clear.
By applying Lemma 4.12 for ψ = H

−s

ι , the family µι,Wf of linear functionals on C(Xι)
Wf

is compatible, in the sense that if Vf ⊂ Wf are co-finite subgroups of Wι, then

µι,Vf |C(Xι)
Wf = µι,Wf .

Hence (4.19) is well-defined on C0 :=
�

Wf <Wι co-finite C(Xι)
Wf .

Since C0 is dense in C(Xι), there exists a unique positive linear functional µ̃ι on C(Xι)

satisfying (4.19).

Pʀ����ɪ�ɪ�ɴ 4.22. – For any finite S ⊂ R, the projection µ̃ι,S of µ̃ι on Xι,S is equivalent
to a Haar measure of GS .

Proof. – Recall that G
�
S

denotes the derived subgroup of GS . We first claim that if Vf ,
Wf are co-finite subgroups of (Wι ∩G

�
S
)× (Wι ∩G

S
), then µι,Wf ,S = µι,Vf ,S . Indeed, by

definition of µι,Wf ,S and γS

Wf
, it is sufficient to show that for all χ /∈ Λ

Wf , cS
χ = 0, and so by

symmetry:
γ

S

Vf
(g) =

�

χ∈Λ
Vf∩Λ

Wf

c
S

χ · χ(g) = γ
S

Wf
(g).

Let χ /∈ Λ
Wf , so that χ(w) �= 1 for some w ∈ Wf . Write w = wSwS , where wS ∈ G

�
S

and
wS ∈ G

S . Then χ(wS
) = χ(w) �= 1 since wS ∈ G

�
S

, and hence

c
S

χ = lim
s→aι

(s− aι)
bι

�

GS

Hι(g)
−s

χ(g)dτ
S
(g).
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Since Wf ⊂ Wι, and wS ∈ Wι,
�

GS

Hι(g)
−s

χ(g)dτ
S
(g) =

�

GS

Hι(gw
S
)
−s

χ(gw
S
)dτ

S
(g)

= χ(w
S
)

�

GS

Hι(g)
−s

χ(g)dτ
S
(g),

which proves that this integral is zero for all s, and so cs,χ = 0.

Define µ̃ι,S = µι,Wf ,S for any Wf ⊂ (Wι ∩G
�
S
)× (Wι ∩G

S
). This measure is absolutely

continuous, by the remark 4.17 on µι,Wf ,S . We claim that µ̃ι,S is precisely the projection of
µ̃ι. For ψ ∈ C(Wf , S) for some Wf < (Wι ∩G

�
S
)× (Wι ∩G

S
), we have

µ̃ι(ψ) = µι,Wf (ψ) = µι,Wf ,S(ψ) = µ̃ι,S(ψ).

Since the union ∪Wf C(Wf , S), where Wf ranges over co-finite subgroups of G(Af ) con-
tained in (Wι ∩G

�
S
)(Wι ∩G

S
), is dense in C(Xι,S), this finishes the proof.

Let ι : G → GLN be an absolutely irreducible representation defined over K with the
highest weight λι. Set

∆ι =

ß
α ∈ ∆ :

uα + 1

mα

= aι

™
.

For α ∈ ∆, we denote by α̌ the corresponding coroot. It follows from Theorem 7.1 in [48]
that if for a finite subset S ⊂ R and an automorphic character χ,

c
S

χ = lim
s→a

+

ι

(s− aι)
bι

�

GS

Hι(g)
−s

χ(g) dg �= 0,

then

(4.23) χ(α̌) = 1 for all α ∈ ∆ι,

and conversely if (4.23) holds, then cS
χ �= 0 for all sufficiently large S ⊂ R.

R���ʀ� 4.24. – We discuss some examples to illuminate the properties of the measure
µ̃ι.

1. Suppose that λι is a multiple of 2ρ +
�

α∈∆
α. In particular, this holds for λι corre-

sponding to the anticanonical class and for all rank 1 groups.
Then ∆ι = ∆. If a character χ ∈ Λ satisfies (4.23) then it follows from the Cartan

decomposition (2.1) that χ(G
S
) = 1 for sufficiently large S and by the weak approxi-

mation, χ = 1. This shows that cS
χ = 0 for every finite S ⊂ R and every χ ∈ Λ

Wf−{1},
so γS

Wf
is equal to lims→aι(s− aι)

bιZS
(s, 1). Hence by Theorem 4.13,

(4.25) #G(K) ∩BT ∼T τ(BT );

and

(4.26) µ̃ι =

�

v∈R

Hι,v(gv)
−aι dτv(gv)�

G(Kv)
Hι,v(gv)−aι dτv(gv)

.
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2. Suppose that K has class number one, G is K-split and Wι =
�

v∈Rf
G(Ov) (with

respect to the canonical model over the ring O of integers).
According to Remark in Section 2 in [27],

G(A) = G(K)G
◦
∞Wι.

Hence, Λ
Wι = {1}, and consequently, (4.25) holds and µι,Wι is given by (4.26).

3. (Cf. Example 8.10, [48].) Let G = PGL4 and ι be the adjoint representation. By [43,
§ 8.2], there exists a lattice L ⊂ pgl4(K) (i.e., an O-module of full rank) such that G

has class number 2 with respect to L. We take the height function H =
�

v∈R Hv where
Hv is the maximum norm with respect to L for v ∈ Rf . The group Wι is given by�

v∈Rf
StabG(Kv)(L⊗Ov). By [43, § 8.2], G(K)G∞Wι is a normal subgroup of index

2 in G(A). If we additionally assume that the number field K is totally complex, then
G∞ is connected and, hence, ΛWι = {1, χ} for some automorphic character χ of order
2. Every automorphic character of G(A) is of the form η ◦ det where η is a Hecke
character such that η4

= 1. Since the map det : PGL4(Kv) → K×
v /(K×

v )
4 is surjective

for every v ∈ R, it follows that χ = η ◦ det with η2
= 1. In this case, the roots and

coroots are given by

αi(diag(a1, . . . , a4)) = aia
−1

i+1
, α̌i(t) = diag(t, . . . , t� �� �

i

, 1, . . . , 1)

for i = 1, 2, 3, and

λι = α1 + α2 + α3, 2ρ = 3α1 + 4α2 + 3α3.

Hence, aι = 5, bι = 1, ∆ι = {α2}. Then (4.23) is equivalent to η2
= 1, and we deduce

that cS
χ �= 0 for sufficiently large finite S ⊂ R. Since the function γS

Wι
= cS

1
+ cS

χχ

restricted to GS is not constant for sufficiently large S ⊂ R, we conclude that

µι,Wι,S �=

�

v∈S

Hι,v(gv)
−aι dτv(gv)�

G(Kv)
Hι,v(gv)−aι dτv(gv)

.

We also note that in this case, Theorem 4.13 implies that for an automorphic char-
acter χ such that cχ �= 0, we have

lim
T→∞

τ(BT ∩GWι)

τ(BT )
= c

−1

1
·
1

2
(c1 + cχ) �=

1

2
.

In particular, it may happen that in Theorem 1.10, τ(BT ) is not asymptotic to [G(A) :

GWι ] · τ(BT ∩GWι) as T →∞.

4.5. Equidistribution of height balls BT ∩GWf with respect to µ̃ι

Pʀ����ɪ�ɪ�ɴ 4.27. – Let Wf < Wι be a co-finite subgroup. Then for any ψ ∈ C(Xι)
Wf ,

lim
T→∞

1

τWf (BT ∩GWf )

�

BT∩GWf

ψ dτWf = µ̃ι(ψ).
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Proof. – To prove the proposition, we may assume ψ ∈ C(Wf , S) for some finite S, since
these functions form a dense subset of C(Xι)

Wf . Let χBT denote the characteristic function
of the set BT . By Lemma 4.9 (2), we have a map g ∈ GS �→ sg ∈ G

S such that
�

BT∩GWf

ψ dτWf =

�

g∈GS

ψ(g)

�

h∈GS∩GWf

χBT (gsgh) dτ
S
(h) dτS(g).

Since Hι(gsgh) = Hι,S(g) Hι(sgh),
�

h∈GS∩GWf

χBT (gsgh) dτ
S
(h) = τ

S
{h ∈ G

S
∩GWf : Hι(sgh) < T Hι,S(g)

−1
}

= τ
S
(s
−1

g BT ·Hι,S(g)−1 ∩GWf ∩G
S
)

= τ
S
(BT ·Hι,S(g)−1 ∩ sgGWf ∩G

S
).

Hence

(4.28)
�

BT∩GWf

ψ dτWf =

�

g∈GS

ψ(g)τ
S
(BT ·Hι,S(g)−1 ∩ sgGWf ∩G

S
)dτS(g).

Setting

yT (g) :=
τS

(BT ·Hι,S(g)−1 ∩ sgGWf ∩G
S
)

τS(BT ∩GWf ∩GS)
,

we claim that for some constant C > 0,

(4.29) yT (g) ≤ C ·Hι,S(g)
−aι for any g ∈ GS .

By (4.15), for any h ∈ G
S , there exists a constant ch ≥ 1 such that for any T > 2,

(4.30) c
−1

h
· T

aι(log T )
bι−1

≤ τ
S
(BT ∩ hGWf ∩G

S
) ≤ ch · T

aι(log T )
bι−1

.

Since {sg ∈ G
S

: g ∈ GS} is a finite set, c := max{csg : g ∈ GS} < ∞. It follows by (4.30)
that for any g ∈ GS with Hι,S(g) ≤ T/2,

τ
S
(BT ·Hι,S(g)−1 ∩ sgGWf ∩G

S
) ≤ c ·Hι,S(g)

−aιT
aι(log T Hι,S(g)

−1
)
bι−1

.

On the other hand for any g ∈ GS satisfying T/2 ≤ Hι,S(g) ≤ Tδ
−1

0
where δ0 :=

infg∈G(A) Hι(g) > 0 (see Lemma 2.5),

τ
S
(BT ·Hι,S(g)−1 ∩ sgGWf ∩G

S
) ≤ τ

S
(B2 ∩G

S
) ≤ d ·Hι,S(g)

−aιT
aι ,

where d = δ
−aι
0

τS
(B2 ∩G

S
). Also, for Hι,S(g) > Tδ

−1

0
, yT (g) = 0.

Hence by applying (4.30) once more now to h = e, we obtain the inequality (4.29). Since
H
−aι
ι,S

∈ L1
(GS) by Lemma 4.2, it follows that yT belongs to L1

(GS). Since by Theorem
4.13,

yT (g) → γWf ,S(s
−1

g ) Hι,S(g)
−aιγ

S

Wf
(e)

−1 as T →∞,

we apply the dominated convergence theorem to (4.28) and deduce that

lim
T→∞

�
BT∩GWf

ψ dτWf

τS(BT ∩GWf ∩GS)
= γ

S

Wf
(e)

−1

�

GS

ψ(g)γ
S

Wf
(s
−1

g ) Hι,S(g)
−aι dτS(g).

Using γS

Wf
(s−1

g ) = γS

Wf
(g) and the definition of the measure µι,Wf ,S , we have

(4.31) lim
T→∞

�
BT∩GWf

ψ dτWf

τS(BT ∩GWf ∩GS)
= µ̃ι(ψ) · γ

S

Wf
(e)

−1
.
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Taking ψ = 1, we also get

(4.32) lim
T→∞

τWf (BT ∩GWf )

τS(BT ∩GWf ∩GS)
= γ

S

Wf
(e)

−1
.

Therefore combining (4.31) and (4.32), we obtain

lim
T→∞

�
BT∩GWf

ψ dτWf

τWf (BT ∩GWf )
= µ̃ι(ψ).

5. Equidistribution for saturated cases

Let G be a connected adjoint semisimple group defined over K and let ι be a faithful
representation of G to GLN defined over K which has a unique maximal weight. We recall
that ι : G → GLN is called saturated if the set

(5.1)
ß

α ∈ ∆ :
uα + 1

mα

= aι

™

is not contained in the root system of a proper normal subgroup of G.
Fix a height function Hι on G(A) associated to ι, and let µ̃ι be the probability measure

on Xι constructed in Theorem 4.18 (associated to Hι).

Tʜ��ʀ�� 5.2. – Suppose that ι is saturated. For ψ ∈ C(Xι),

lim
T→∞

1

τWf (BT ∩GWf )

�

g∈G(K):Hι(g)<T

ψ(g) =

�

Xι

ψ dµ̃ι

where Wf is any co-finite subgroup of Wι.

Note that by Corollary 4.16, the above equality is independent of Wf . To derive the
asymptotic formula for the number of K-rational points, it suffices to take ψ = 1 in
Theorem 5.2, and hence we obtain Theorem 1.10.

C�ʀ�ʟʟ�ʀʏ 5.3. – If ι is saturated, we have, as T →∞,

#{g ∈ G(K) : Hι(g) < T} ∼ τWf (BT ∩GWf )

for any co-finite subgroup Wf of Wι.

Combining Theorem 5.2 with Theorem 4.13, we deduce Theorems 1.2 (without an error
term) and 1.6 for the saturated case. The rate of convergence as well as the nonsaturated case
are discussed in the next section.

R���ʀ� 5.4. – Note that for any finite S, the projection of µ̃ι to Xι,S is µ̃ι,S , which is
equivalent to a Haar measure on GS by Proposition 4.22. Any open subset Xι contains
a subset of the form VSXR−S where VS is an open subset of Xι,S , which again contains
(gWf ∩GS)G

S for some g ∈ GS and some co-finite subgroup Wf of Wι. Now

µ̃ι((gWf ∩GS)G
S
) = µ̃ι,S(gWf ∩GS) > 0.

This shows that µ̃ι has full support on Xι.

The rest of section is devoted to a proof of Theorem 5.2. We recall the following facts:
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L���� 5.5. – Let G be a connected semisimple adjoint K-group, ι : G → GL(V ) a
K-rational representation of G, and let M be a connected normal K-subgroup of G.

1. There exists a connected normal K-subgroup N of G so that G = MN and M ∩N =

{e}, and M is semisimple adjoint.
2. For each x ∈ N(A), the function g �→ Hι(gx) defines a height function on M(A) with

respect to the restriction ι|M.
3. If ι has a unique maximal weight λι, then the restriction ι|M has a unique maximal weight.

Proof. – (1) follows directly from Proposition 3.30. Let x ∈ N(A). Whenever
x ∈ N(Kv) ∩ Wι, which is the case for almost all v, we have Hι,v(gx) = Hι,v(g) for
all g ∈ M(Kv). Using this, it is easy to verify that the function g �→ Hι(gx) is a height
function as defined in Definition 2.3.

For (3), let T be a maximal torus of G defined over K, Π denote the set of all weights of
ι with respect to T, and Π

� denote the set obtained by restricting elements of Π to M∩T. If
V = ⊕λ∈ΠVλ is the weight space decomposition for ι, the weight space decomposition for
ι|M is of the form V = ⊕β∈Π�Wβ where Wβ := ⊕{Vλ : λ|T∩M = β}. In particular, any
weight of ι|M is the restriction of a weight of ι to T ∩M. Hence if βι is the restriction of λι

to T∩M, and β ∈ Π
�, not equal to βι, then βι− β is a non-zero sum of positive roots of M

with respect to M ∩T. Therefore βι is the unique maximal weight of ι|M.

L���� 5.6. – The following are equivalent.

1. ι is saturated.
2. For any proper connected normal K-subgroup M of G,

τM(BT ∩M(A)) = O(T
aι(log T )

bι−2
)

where τM is a Haar measure on M(A).

Proof. – Assume (1). Since ι has a unique maximal weight, the restriction ι|M of ι has a
unique maximal weight as well. There exists a connected normal K-subgroup N of G so that
G = MN and M∩N = {e}. By Lemma 2.4, without loss of generality, we may assume that
Hι is the product of height functions Hι|M and Hι|N and Hι(e) = 1. Hence BT ∩M(A) =

{x ∈ M(A) : Hι|M(x) ≤ T}. Hence by Theorem 4.13,

τM(BT ∩M(A)) ∼ c · T
a
(log T )

b−1

where a and b are defined as in (4.1) for ι|M. Now the saturated condition means that a = aι

and b ≤ bι−1. Hence (2) holds. To show the other direction, suppose that ι is not saturated.
Then there exist connected proper normal K-subgroups M and N of G as above such that
{α ∈ ∆ : uα + 1 = aι · mα} is contained in the root system of M. By Theorem 4.13, there
exists c > 0 such that for all large T ,

τM(BT ∩M(A)) ≥ c · T
aι(log T )

bι−1
.

Hence (2) does not hold.

The following lemma is the main reason why we need the assumption of ι being saturated
for the proof of Theorem 5.2.

By Lemma 5.5, G is a product of connected K-simple adjoint subgroups.
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L���� 5.7. – Suppose that ι is saturated. Write G = G1 × · · · × Gm as a product of
connected K-simple subgroups. Then for any fixed C > 0,

lim
T→∞

τWf ((BT −BC
) ∩GWf )

τWf (BT ∩GWf )
= 0

where BC
:= {(g1, . . . , gm) ∈ G(A) : Hι(gi) > C for each i = 1, . . . ,m}.

Proof. – Since GWf is non-compact, τWf (BT ∩ GWf ) → ∞ as T → ∞. If m = 1,
the claim follows immediately from this. Suppose m ≥ 2. Without loss of generality, we
may assume that Hι(g1, . . . , gm) =

�m

i=1
Hι(gi). For each i, let BC

i
denote the subset of BT

consisting of g = (g1, . . . , gm) with Hι(gi) ≤ C. If we denote by τi and τ i Haar measures
on Gi(A) and

�
j �=i Gj(A) such that τWf = (τi × τ i

)|GWf
, then

τWf (B
C

i ) ≤ C0 · τ
i
({g

�
∈

�

j �=i

Gj(A) : Hι(g
�
) < δ

−1

i
· T})

where δi = infg∈Gi(A) Hι(g) and C0 = τi({g ∈ Gi(A) : Hι(g) ≤ C}).

By the previous lemma, for some ci > 0,

τ
i
({g

�
∈

�

j �=i

Gj(A) : Hι(g
�
) < δ

−1

i
· T}) = O(T

aι(log T )
bι−2

).

Hence for each i,

lim
T→∞

τWf (BC
i
∩GWf )

τWf (BT ∩GWf )
= 0.

Since BT −BC ⊂ ∪m
i=1

BC
i

, this proves the claim.

In the following, we fix a co-finite subgroup Wf of Wι. Set

YWf = G(K)\GWf .

For a fixed ψ ∈ C(Xι)
Wf , we define a function FT on GWf ×GWf by

FT (g, h) =

�

γ∈G(K)

ψ(g
−1

γh) · χBT (g
−1

γh).

Since BT is a compact subset of G(A), the above sum is finite and since FT is G(K)×G(K)-
invariant, we may consider FT as a function on YWf × YWf

Note that

FT (e, e) =

�

γ∈G(K):Hι(γ)≤T

ψ(γ).

Pʀ����ɪ�ɪ�ɴ 5.8 (Weak-convergence). – Suppose that ι is saturated. For i = 1, 2, let
αi ∈ C(YWf ) be a Wf -invariant function and

�
YWf

αi dτWf = 1. If α(x, y) := α1(x)α2(y),

then

lim
T→∞

1

τWf (BT ∩GWf )

�

YWf
×YWf

FT · α d(τWf × τWf ) =

�

Xι

ψ dµ̃ι.
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Proof. – Observe that α is Wf ×Wf -invariant and

�FT ,α�YWf
×YWf

=

(5.9)

=

�

x∈YWf

�

y∈YWf

Ñ
�

γ∈G(K)

ψ(x
−1

γy)χBT (x
−1

γy)

é
α1(x)α2(y) dτWf (y)dτWf (x)

=

�

x∈YWf

�

h∈GWf

ψ(x
−1

h)χBT (x
−1

h)α1(x)α2(h) dτWf (h)dτWf (x)

=

�

g∈GWf

ψ(g)χBT (g)

��

x∈YWf

α1(x)α2(xg) dτWf (x)

�
dτWf (g)

=

�

g∈BT∩GWf

ψ(g)�α1, g · α2� dτWf (g).

As in the above lemma 5.7, we write G = G1×· · ·×Gm. Now for a sequence {g ∈ G(A)},
that g → ∞ strongly means precisely the Gi(A)-component gi of g tends to ∞ for each
1 ≤ i ≤ m. Since the height function Hι is proper, this is again equivalent to saying that
Hι(gi) →∞ for each i = 1, . . . ,m.

For i = 1, 2, we claim that αi − 1 ∈ L2

00
(YWf ), that is, for any automorphic character χ

of G(A), �

YWf

α · χ dτWf =

�

YWf

χ dτWf .

If χ is Wf -invariant, then χ = 1 on GWf . Since
�

YWf
α dτWf = 1, the claim is clear. If χ ∈

Λ−Λ
Wf , we only need to apply Lemma 4.12 for ψ = α−1Yf , where 1Yf is the characteristic

function of YWf , since we may consider ψ as a function on G(K)\G(A) which is 0 outside
YWf .

Hence, by Theorem 3.28, for any given ε > 0, there exists C > 0 such that for all g ∈ BC ,

(5.10) |�α1, g · α2� − 1| = |�α1 − 1, g · (α2 − 1)�| < ε.

Hence
�����

�

g∈BT∩GWf

ψ(g)�α1, g.α2� dτWf (g)−

�

g∈BT∩GWf

ψ(g) dτWf (g)

�����

< sup |ψ| · (�α1� · �α2�+1) · τWf ((BT −B
C

)∩GWf )+ε · sup |ψ| · τWf (BT ∩B
C
∩GWf )

where �αi� is the L2-norm of αi ∈ L2
(YWf ) for each i. By Lemma 5.7, it follows that

lim sup
T→∞

1

τWf (BT ∩GWf )

�����

�

g∈BT∩GWf

ψ(g)(�α1, g.α2� − 1) dτWf (g)

����� ≤ ε · sup |ψ|.

Since ε > 0 is arbitrary, by (5.9), this proves

lim
T→∞

1

τWf (BT ∩GWf )

�

YWf
×YWf

FT · α d(τWf × τWf ) = lim
T→∞

�
BT∩GWf

ψ dτWf

τWf (BT ∩GWf )
.
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By Lemma 4.27, this proves Proposition 5.8.

Proof of Theorem 5.2. – It suffices to prove our theorem for nonnegative functions
ψ ∈ C(Xι)

Wf for each co-finite subgroup Wf of Wι. Fix ε > 0. Let W∞ be a symmetric
neighborhood of e in G

◦
∞ such that

W∞BT W∞ ⊂ B(1+ε)T and B(1−ε)T ⊂

�

g,h∈W∞

gBT h for all T > 1.

By the uniform continuity of ψ, replacing W∞ by a smaller one if necessary, we may as-
sume that

(5.11) ψ(g
−1

xh)− ε ≤ ψ(x) ≤ ψ(g
−1

xh) + ε for all x ∈ X and g, h ∈ W∞.

Define
F
±
T

(g, h) =

�

γ∈G(K)

(ψ(g
−1

γh)± ε) · χBT (g
−1

γh).

We claim that for any T > 1 and for any g, h ∈ W := W∞ ×Wf ,

(5.12) F
−
(1−ε)T

(g, h) ≤ FT (e, e) ≤ F
+

(1+ε)T
(g, h).

To see this, observe that if γ ∈ G(K) with Hι(γ) < T , and g, h ∈ W then

Hι(g
−1

γh) ≤ (1 + ε)T and f(γ) ≤ ψ(g
−1

γh) + ε.

Hence

FT (e, e) =

�

γ∈G(K),Hι(γ)<T

ψ(γ) ≤

�

γ∈G(K),Hι(g
−1γh)<(1+ε)T

(ψ(g
−1

γh) + ε) = F
+

(1+ε)T
(g, h),

proving the right inequality in (5.12). The other inequality can be proved similarly. Now let
φ ∈ Cc(YWf ) be a non-negative Wf -invariant function such that supp(φ) ⊂ G(K)\G(K)W

and
�

YWf
φ dτWf = 1. By integrating (5.12) over YWf × YWf against the function α(x, y) =

φ(x) · φ(y), we obtain

�F
−
(1−ε)T

, α� ≤ FT (e, e) ≤ �F
+

(1+ε)T
, α�.

Note that Theorem 4.13 implies the following: there exist sequences {aε ≥ 1} and
{bε ≤ 1} such that aε → 1 and bε → 1 as ε → 0 for all sufficiently small ε > 0,

(5.13) bε ≤ lim inf
T

τWf (B(1−ε)T ∩GWf )

τWf (BT ∩GWf )
≤ lim sup

T

τWf (B(1+ε)T ∩GWf )

τWf (BT ∩GWf )
≤ aε.

Hence by applying Proposition 5.8,

lim sup
T

FT (e, e)

τWf (BT ∩GWf )
≤ lim sup

T

�F
+

(1+ε)T
, α�

τWf (BT ∩GWf )

≤ lim sup
T

�F
+

(1+ε)T
, α�

τWf (B(1+ε)T ∩GWf )
· lim sup

T

τWf (B(1+ε)T ∩GWf )

τWf (BT ∩GWf )

≤ aε ·

�

Xι

(ψ + ε)dµι,Wf ≤ aε ·

Ç�

Xι

ψdµι,Wf + ε

å

and similarly,

bε ·

Ç�

Xι

ψdµ̃ι − ε

å
≤ lim inf

T

FT (e, e)

τWf (BT ∩GWf )
.
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Taking ε → 0,

lim
T

FT (e, e)

τWf (BT ∩GWf )
=

�

Xι

ψ dµι,Wf .

This finishes the proof of Theorem 5.2.

In fact, for the case ψ = 1, the computation in the proof of Theorem 5.2 can be simplified
significantly, and it applies to general families of balls BT , which we presently introduce.

For an increasing sequence {BT } of relatively compact subsets of G(A) and a compact
open subgroup Wf ⊂ G(Af ), we call {BT } Wf -well rounded if the following holds:

1. WfBT Wf = BT for any T > 1;
2. for any small ε > 0, there exists a neighborhood Wε ⊂ G

◦
∞ of e such that

WεBT Wε ⊂ B(1+ε)T and B(1−ε)T ⊂

�

g,h∈Wε

gBT h

for all T > 1;
3. τWf (BT ∩GWf ) →∞ as T →∞ and there exist constants aε ≥ 1 and bε ≤ 1 tending

to 1 as ε → 0 such that for all sufficiently small ε > 0,

bε ≤ lim inf
T

τWf (B(1−ε)T ∩GWf )

τWf (BT ∩GWf )
≤ lim sup

T

τWf (B(1+ε)T ∩GWf )

τWf (BT ∩GWf )
≤ aε.

The proof of Theorem 5.2 gives

Pʀ����ɪ�ɪ�ɴ 5.14. – Let G be a connected absolutely almost simple K-group, and let
Wf be a compact open subgroup of G(Af ). Then for any Wf -well rounded sequence {BT } of
relatively compact subsets of G(A),

#G(K) ∩BT ∼T→∞ τWf (BT ∩GWf ).

6. Arithmetic fibrations and construction of µι

In this section we prove the main theorems for a general case, that is, without the satura-
tion assumption on ι. We let G be a connected semisimple adjoint group defined over K and
ι a faithful representation of G to GLN defined over K which has a unique maximal weight
λι. Fix a height function Hι on G(A) associated to ι.

Let T, Φ(G,T), ∆, 2ρ =
�

α∈∆
uαα, λι =

�
α∈∆

mαα and aι, bι be as defined in Section
1.2. Let M be the smallest connected normal K-subgroup of G whose root system contains
the set ß

α ∈ ∆ :
uα + 1

mα

= aι

™
.

Let N be a connected normal K-subgroup of G such that G = MN and M ∩N = {e}.
Let π : G → N be the canonical projection. Note that any element of G(A) can be uniquely
written as g1g2 with g1 ∈ M(A) and g2 ∈ N(A). We denote by τM the Haar measure on
M(A) such that τM(M(A)/M(K)) = 1.

For each x ∈ N(A), the function H
x

ι (g) := Hι(gx) defines a height function on M(A) with
respect to ι� := ι|M, and ι� has a unique maximal weight by Lemma 5.5. Also the definition
of M implies that ι� is saturated, aι� = aι and bι� = bι. Set

Vι := M(Af ) ∩Wι.
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Then Theorems 1.2 and 5.2 (for the saturated cases) imply that for each x ∈ N(K),

1. there exists cx > 0 such that

Nπ−1(x)(Hι, T ) = #{g ∈ M(K) : Hι(gx) < T} ∼ cx · T
aι(log T )

bι−1
;(6.1)

2. the following number

rx,ι =

�

χ∈Λ

lim
s→a

+

ι

(s− aι)
bι

�

M(A)

Hι(gx)
−s

χ(g) dτM(g)

is a positive real number;
3. if XM denotes the closed subspace

�
v∈R ι�(M(Kv)) of Xι, there exists a probability

measure µ̃x,ι on XM such that for any ψ ∈ C(XM) which is invariant under a co-finite
subgroup of Vι,

µ̃x,ι(ψ) = r
−1

x,ι ·

�

χ∈Λ

lim
s→a

+

ι

(s− aι)
bι

�

M(A)

Hι(gx)
−s

χ(g) ψ(g)dτM(g).

Noting that N(Hι, T ) =
�

x∈N(K)
Nπ−1(x)(Hι, T ), we restate Theorem 1.2 in the intro-

duction.

Tʜ��ʀ�� 6.2. – We have

1. cHι :=
�

x∈N(K)
cx < ∞;

2. for some δ > 0,

(6.3) N(Hι, T ) = cHι · T
aι(log T )

bι−1
(1 + O((log T )

−δ
)).

Set for T > 0 and x ∈ N(A),

B
x

T = {g ∈ M(A) : H
x

ι (g) < T}.

Since x commutes with M(A), each height function H
x

ι on M(A) is invariant under Vι. Let
YM = M(K)\MVι and τ be the invariant probability measure on YM. For each x ∈ N(K),
set

F
x

T (g, h) :=

�

γ∈M(K)

χBx
T
(g
−1

γh), g, h ∈ M(A).

We may consider F x

T
as a function on YM × YM. Write M = M1 · · ·Mr as a product

of connected K-simple K-groups and denote by τi the invariant probability measure on
Mi(K)\Mi(A) ∩ MVι . For a collection of smooth (Wf ∩ Mi(A))-invariant functions
ψi ∈ Cc(Mi(K)\Mi(A) ∩ MVι), such that

�
ψi dτi = 1 for each 1 ≤ i ≤ r, define

ψ ∈ Cc(YM) and α ∈ Cc(YM × YM) by

ψ(z1, . . . , zr) :=

r�

i=1

ψi(zi) and α(y1, y2) := ψ(y1)ψ(y2).

L���� 6.4. – 1. There is a constant c > 0 such that for any x ∈ N(K),

cx ≤ c ·Hι(x)
−aι .
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2. There exist l ∈ N and δ > 0, independent of x, such that for any x ∈ N(K) and
T � Hι(x),

�F
x

T , α�YM×YM = cx · T
aι(log T )

bι−1
+ O(dx · C

�
ψ · T

aι(log T )
bι−1−δ

)

where dx = Hι(x)
−aι(log Hι(x))

bι−1 and C �
ψ

= max(1,maxi �D
lψi�

2r
) and D is the

elliptic operator defined in (3.26).

Proof. – As in the proof of Proposition 5.8, we derive that

�F
x

T , α� =

�

g∈Bx
T∩MVι

�ψ, g.ψ� dτ(g).

Note that

| �ψ, g.ψ� − 1| =

�����

r�

i=1

�ψi, gi.ψi� − 1

����� =

������

r�

i=1

(

i−1�

j=1

�ψj , gj .ψj�)(�ψi, gi.ψi� − 1)

������

≤ r · Cψ ·max
i

|�ψi, gi.ψi� − 1| = r · Cψ ·max
i

|�ψi − 1, gi.(ψi − 1)�|

where Cψ = max(1,maxi �ψi�
2r−2

). Since ψi − 1 ∈ L2

00
(Mi(K)\Mi(A) ∩MVι) for each i,

we deduce from Theorem 3.27 that

(6.5) |�F
x

T , α� − τ(B
x

T ∩MVι)|

≤ 2r ·

�
�

i

cWf∩Mi(A)

�
· C

�
ψ ·

�

g=g1···gr∈Bx
T∩MVι

(max
i

ξ̃Mi(gi)
1/2

) dτ(g)

where C �
ψ

= max(1,maxi �D
lψi�

2r
) for some large l.

Since ξ̃Mi ≤ ξMi

1/2, it follows from Lemma 3.6 that there exist m ∈ N and C1 > 0 such
that for any 1 ≤ i ≤ r,

ξ̃
1/2

Mi
(gi) < C1 ·Hι(gi)

−1/m for any gi ∈ Mi(A).

Define a function on M(A) by

H̃(g1 · · · gr) := min
i

Hι(gi), gi ∈ Mi(A).

Let κ be as in Lemma 2.4 for G1 = M and G2 = N so that Bx

T
⊂ BκT ·Hι(x)−1 . It then

follows from (6.5) that

|�F
x

T , α� − τ(B
x

T ∩MVι)| < C2 · C
�
ψ ·

�

BκT ·Hι(x)−1∩MVι

H̃(g)
−1/m

dτ(g)(6.6)

for a constant C2 > 0 independent of x.
Since ι� is saturated, by Lemma 5.6, for every proper normal K-subgroup L of M,

τL(BT ∩ L(A)) � (log T )
−1

τ(BT ∩MVι)

where τL is a Haar measure on L(A).
For each C > 1, set

B
C

= {g ∈ M(A) : H̃(g) > C}.

Note that
(BT −B

C
) ∩MVι ⊂ ∪

r

i=1
Ωi
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where Ωi = {g = g1 · · · gr ∈ MVι : Hι(gi) ≤ C, Hι(g) < T}. Now denoting by L
(i) the

subgroup of M generated by M1, . . . ,Mi−1,Mi+1, . . . ,Mr, let κi > 1 be a constant as in
Lemma 2.4 for G1 = Mi and G2 = L

(i). Let δ0 := infg∈G(A) Hι(g) > 0 (Lemma 2.5). Then
for any C � 1,

τ(Ωi) ≤

�

Hι(gi)<C

τLi(A)(Bκiδ
−1

0
T
∩ L

(i)

Vι∩L(Af )
) dτMi(gi)

� C
aι(log C)

bι−1
(log T )

−1
τ(Bκ0T ∩MVι)

where κ0 = maxi(κiδ
−1

0
).

Hence for any C � 1 and T � C,

τ((BT −B
C

) ∩MVι) � C
aι(log C)

bι−1
(log T )

−1
τ(Bκ0T ∩MVι).

Therefore

�

BT∩MVι

H̃
−1/m

dτ =

�

BT∩BC∩MVι

H̃
−1/m

dτ +

�

(BT−BC)∩MVι

H̃
−1/m

dτ

(6.7)

� (C
−1/m

+ δ
−1/m

0
· C

aι(log C)
bι−1

(log T )
−1

) · τ(Bκ0T ∩MVι)

� (log T )
−δ

· τ(Bκ0T ∩MVι) for C = (log T )
1/(2aι)

for some δ > 0. We now deduce from (6.6) and (6.7) that

(6.8) �F
x

T , α� = τ(B
x

T ∩MVι) + O
�
C
�
ψ · (log T )

−δ
· τ(Bκ0κT ·Hι(x)−1 ∩MVι)

�

for some δ > 0. Let S ⊂ R be as in the proof of Lemma 2.4, that is, for any v ∈ R− S,

G(Kv) = UvA
+

v Uv and Hv(ι(g)) = χ(a) for g = u1au2 ∈ G(Kv).

Denote by τS and τS Haar measures on MS and M
S respectively such that τ = τS × τS

locally.
Recall from (4.9) the map MS → (MVι ∩M

S
)\MS by g �→ [sg] and as in (4.28) we have

τ(B
x

T ∩MVι) =

�

g∈MS

τ
S
(B

κT ·H−1

ι (gx)
∩ sgMVι ∩M

S
) dτS(g).(6.9)

=

�

g∈B
δ−1

0
κT ·H−1

ι (x)
∩MS

τ
S
(B

κT ·H−1

ι (gx)
∩ sgMVι ∩M

S
) dτS(g).

By Theorem 4.13, there is c0 > 0 such that for all g ∈ MS ,

τ
S
(BT ∩ sgMVι ∩M

S
) = c0 · γVι,S(s

−1

g ) · T
aι(log T )

bι−1
+ O(T

aι(log T )
bι−2

).

Here the implied constant can be taken uniformly for all g ∈ GS , since there are only finitely
many cosets sgMVι ∩M

S .
Note that γS

Vι
(s−1

g ) = γS

Vι
(g) = γS

Vι
(gx) since x ∈ N(K) and it is bounded. We deduce

that when Hι(gx) � T/δ0,

τ
S
(B

κT H
−1

ι (gx)
∩MVι ∩M

S
) = c · γ

S

Vι
(g)(T ·H

−1

ι (gx))
aι(log T )

bι−1

+ O((T ·H
−1

ι (gx))
aι(log Hι(gx))

bι−1
(log T )

bι−2
)
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for c = c(S, Vι, κ) > 0. To estimate the integral over the domain Hι(gx) � T/δ0, it suffices
to note that by Lemma 4.2,

τS(B
T ·H−1

ι (x)
∩MS) � (T H

−1

ι (x))
aι−ε

.

Since by Lemmas 2.4 and 4.2,
�

g∈MS

γ
S

Vι
(g) Hι(gx)

−aι(log Hι(gx))
bι−1

dτS(g) � Hι(x)
−aι(log Hι(x))

bι−1
,

it follows from the above estimates that for T � Hι(x),

τ(B
x

T ∩MVι) = cxT
aι(log T )

bι−1
+ O(dxT

aι(log T )
bι−2

),

where

cx = c ·

�

g∈MS

γ
S

Vι
(gx) Hι(gx)

−aι dτS(g) � Hι(x)
−aι .(6.10)

Hence combining (6.8) and (6.9), we have for T � Hι(x),

�F
x

T , α� = cx · T
aι(log T )

bι−1
+ O(dx · C

�
ψ · T

aι(log T )
bι−1−δ

).

A key ingredient in deducing Theorem 6.2 is the following stronger version of (6.1):

Pʀ����ɪ�ɪ�ɴ 6.11. – There exists δ > 0 such that for each x ∈ N(K) and for any T �

Hι(x),

(6.12) Nπ−1(x)(Hι, T ) = cx · T
aι(log T )

bι−1
+ O(dx · T

aι(log T )
bι−1−δ

)

where dx = Hι(x)
−aι(log Hι(x))

bι−1 and the implied constant is independent of x.

Proof. – Let φε be a smooth symmetric nonnegative function on M∞, which is a prod-
uct

�r

i=1
φi,ε of smooth functions on the simple factors of M∞,

�
M∞

φε dτ∞ = 1 and
supp(φε) is contained in the Riemannian ball at e in M∞ of radius ε, and for some ρ > 0,
maxi �D

lφi,ε�
2r � ε−ρ (see, for example, Lemma 4.4 in [27]). By the definition of Hι in

(2.6), there exists b > 0 such that

supp(φε) ·B
x

T · supp(φε) ⊂ B
x

(1+bε)T

for every T > 1 and x ∈ N(K).

Define

ψε(g) =
1

τRf (Vι)

�

γ∈M(K)

φε(γg∞) · χVι(γgf ), g = g∞gf ∈ M∞M(Af ).

Define αε(y1, y2) = ψε(y1)ψε(y2) for (y1, y2) ∈ YM × YM. Then

Nπ−1(x)(Hι, T ) ≤

¨
F

x

(1+bε)T
, αε

∂

= cxT
aι(log T )

bι−1
+O(cx · ε · T

aι(log T )
bι−1

+dx · ε
−ρ

T
aι(log T )

bι−1−δ
).

Setting ε = (log T )
−δ/(ρ+1), we derive the upper estimate for Nπ−1(x)(Hι, T ). The lower

estimate is proved similarly.
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Proof of Theorem 6.2. – According to the choice of N, for any simple root α ∈ ∆ whose
restriction to N is a root, we have

(6.13)
uα + 1

mα

< aι.

Since N(K) is a discrete subgroup of N(A), we can find an open neighborhood U := U∞×

Uf of the identity in N(A) such that γU ∩ γ�U = ∅ for all γ �= γ� ∈ N(K). We may assume
Uf ⊂ Wι and BT U∞ ⊂ B2T for all T � 1. Since τN(γU) = τN(U) by the invariance of τN,
we deduce

NN(Hι, T ) = τN(U)
−1

· τN

Ñ
�

γ∈N(K):Hι(x)≤T

γU

é
≤ τN(U)

−1
· τN(B2T ∩N(A)).

Therefore Theorem 4.13, applied to τN(B2T ∩N(A)), together with (6.13) yields that there
exists ε > 0 such that

NN(Hι, T ) = O(T
aι−ε

).

Hence setting α(t) = NN(Hι, t), we have for any aι − ε/2 ≤ a ≤ aι,
�

x∈N(K)

Hι(x)
−a

=

� ∞

0

t
−a

dα(t) = a

� ∞

0

t
−a−1

α(t) dt �

� ∞

0

t
−(1+ε/2)

dt < ∞.

Since cx � Hι(x)
−aι by (6.10) and dx = Hι(x)

−aι(log Hι(x))
bι−1, it follows that

(6.14) cHι :=

�

x∈N(K)

cx < ∞ and
�

x∈N(K)

dx < ∞.

Let δ0 > 0 be as in (2.6) and let β > 0 be such that Proposition 6.11 holds for all
T > β ·Hι(x). Let δ > 0 be a constant given in the same proposition.

Applying Lemma 2.4 for M and N with κ therein, we have

�

x∈N(K):Hι(x)>β−1T

Nπ−1(x)(Hι, T ) = #{xy ∈ N(K)M(K) : Hι(x) > β
−1

T, Hι(xy) < T}

(6.15)

≤ NM(Hι, κβ) ·NN(Hι, κTδ
−1

0
) = O(T

aι−ε
).

Now applying Proposition 6.11, since
�

x∈N(K)
dx < ∞,

�

x∈N(K):Hι(x)≤β−1T

Nπ−1(x)(Hι, T )

=

Ñ
�

x∈N(K):Hι(x)≤β−1T

cx

é
T

aι(log T )
bι−1

+ O(T
aι(log T )

bι−1−δ
).

Therefore as T →∞,

N(Hι, T ) =

�

x∈N(K):Hι(x)≤β−1T

Nπ−1(x)(Hι, T ) + O(T
aι−ε

)

=

Ñ
�

x∈N(K):Hι(x)≤β−1T

cx

é
T

aι(log T )
bι−1

(1 + O((log T )
−δ

)).
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Since
�

x∈N(K):Hι(x)≤β−1T cx = C(Hι) + O(T−ε
), we have

N(Hι, T ) = C(Hι) · T
aι(log T )

bι−1
(1 + O((log T )

−δ
))

finishing the proof.

We now construct the probability measure on Xι in order to prove Theorem 1.6 in the
introduction in a general case. We consider each µ̃x,ι as a measure on Xι since XM is a closed
subspace of Xι. For each x ∈ N(K), denote by x.µ̃x,ι the measure defined by

(x.µ̃x,ι)(ψ) := µ̃x,ι(ψx)

where ψx(g) = ψ(gx). Noting that each x.µ̃x,ι supported on XMx, defines a probability
measure µι on Xι by

(6.16) µι =

�

x∈N(K)

cx

cHι

(x.µ̃x,ι).

Note that µι = µ̃ι in the case when ι is saturated (see Theorem 4.18 for the definition of
µ̃ι).

Tʜ��ʀ�� 6.17. – For any ψ ∈ C(Xι),

lim
T→∞

1

N(Hι, T )

�

g∈G(K):Hι(g)<T

ψ(g) =

�

Xι

ψ dµι.

Proof. – Let ψ ∈ C(Xι). We write

µT (ψ) =
1

N(Hι, T )

�

g∈G(K): Hι(g)<T

ψ(g),

µx,T (ψ) =
1

Nπ−1(x)(Hι, T )

�

g∈M(K): Hι(gx)<T

ψ(g) for each x ∈ N(K).

Note that

(6.18) µT (ψ) =

�

x∈N(K)

Nπ−1(x)(Hι, T )

N(Hι, T )
µx,T (ψ).

Since {µT : T � 1} is a sequence of probability measures on a compact space Xι, it suffices
to prove that any convergent subsequence of µT , in the weak∗ topology, has the same limit
µι. Hence without loss of generality, we may assume that µT is convergent.

Let δ > 0 be as in Proposition 6.11 and let β > 0 be such that the same proposition holds
for all T > β ·Hι(x). By (6.15) and Theorem 6.2, there exists ε > 0 such that

�

x∈N(K): Hι(x)>β−1T

Nπ−1(x)(Hι, T )

N(Hι, T )
≤ O(T

−ε
).

Hence

(6.19) lim
T→∞

µT (ψ) = lim
T→∞

�

x∈N(K): Hι(x)≤β−1T

Nπ−1(x)(Hι, T )

N(Hι, T )
µx,T (ψ).
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For x ∈ N(K) such that Hι(x) ≤ β−1T , we deduce from Proposition 6.11 and Theorem
6.2 that

Nπ−1(x)(Hι, T )

N(Hι, T )
≤

cx

cHι

+ θx(log T )
−δ

,

where θx comes from the error terms in (6.3) and (6.12), and satisfies
�

x∈N(K)
θx < ∞.

Since the sum in (6.19) is majorized by
�

x∈N(K)

Å
cx

cHι

+ θx(log T )
−δ

ã
< ∞,

we can apply the dominated convergence theorem to obtain

lim
T→∞

µT (ψ) =

�

x∈N(K)

cx

cHι

�
lim

T→∞
µx,T (ψ)

�
.

By Theorem 1.6, applied to M and the height function g �→ Hι(gx), we have for every ψ ∈

C(Xι),

lim
T→∞

µx,T (ψ) =
1

Nπ−1(x)(Hι, T )

�

g∈M(K):Hι(gx)<T

ψx(g) =

�

Xι

ψx dµ̃x,ι

where ψx(g) = ψ(gx).
Therefore

lim
T→∞

µT (ψ) =

�

x∈N(K)

cx

cHι

· µ̃x,ι(ψx).

7. Manin’s and Peyre’s conjectures

In this section, we now explain our main results in the context of Manin’s conjecture on
the asymptotic number of rational points of bounded height for Fano varieties. Let X be a
smooth projective variety defined over K. For every line bundle class [L] on X defined over
K, there exists an associated height function HL on X(K), unique up to the multiplication
by bounded functions, via Weil’s height machine (cf. [51, Theorem B. 3.2]). For example, if L

is a very ample line bundle of X with a K-embedding ψL : X → PN , then a height function
HL on X(K) is defined as

HL := H ◦ψL

for some height function H on PN
(K). We call a pair L = (L,HL) a metrized line bundle.

Due to the freedom of choosing a height function H on PN
(K), HL is not uniquely deter-

mined and this is why we use the subscript L rather than L.
For a metrized ample line bundle L = (L,HL) on X and a subset U of X, set

NU (L, T ) := #{g ∈ U ∩X(K) : HL(g) < T}.

The goal of Manin’s conjecture is to obtain the asymptotic (as T → ∞) of NU (L, T ) for
some Zariski open subset U of X, possibly by passing to a finite extension field of K.

Two important geometric invariants here are:

aL := inf{a ∈ Q+
: a[L] + [KX ] ∈ Λeff(X)} — the Nevanlinna invariant of L,

bL := the codimension of the face of Λeff(X) containing aL[L] + [KX ] in its interior
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where [KX ] denotes the canonical line bundle class and Λeff(X) denotes the cone of classes
of effective line bundles on X.

Now let G be a connected semisimple adjoint algebraic group defined over K. Let X de-
note the projective K-variety, which is the wonderful compactification of G constructed by
De Concini and Procesi [18] and by De Concini and Springer [19]. It is shown in [18] that X

is a Fano variety.

One way of constructing X explicitly is to take the Zariski closure of the image of G in
P(MN ) under an irreducible faithful representation G → GLN whose highest weight is reg-
ular. A dominant weight χ is called regular if χ =

�
α∈∆

mαωα with all mα > 0 where
{ωα : α ∈ ∆} is the set of fundamental weights.

The Picard group Pic(X)K̄ is isomorphic to the weight lattice of G. Under this isomor-
phism, the simple roots α correspond to the boundary divisors Dα such that X−G = ∪αDα,
and the Galois action on Pic(X)K̄ corresponds to the twisted Galois action (also called the
∗-action, see [54, 2.3]) on the weight lattice. Hence, the Picard group Pic(X) is freely gener-
ated by the line bundles corresponding to the orbits of the fundamental weights under the
twisted Galois action. The closed cone Λeff(X) of the effective line bundles is the positive
cone spanned by DΓK .α, α ∈ ∆, i.e.,

Λeff(X) = ⊕R≥0 [DΓK .α]

where the sum is taken over the ΓK-orbits ΓK .α in the set {α ∈ ∆} of simple roots and
DΓK .α :=

�
β∈ΓK .α Dβ , and the anticanonical class [−KX ] corresponds to 2ρ +

�
α∈∆

α.
Moreover any ample line bundle class [L] of X over K corresponds to a regular dominant
weight in such a way that if [L�] := m[L] corresponds to χ ∈ X∗

(T) for m ∈ N, the re-
striction of HL� to G(K) coincides with a height function Hι with respect to the irreducible
representation ι defined over K with the highest weight λι and aL = aι and bL = bι (cf. [48,
Proposition 6.3]). In particular, HL� has a natural extension to G(A). We refer to [9, Ch. 6]
for a more detailed account on the wonderful compactification, and [56, 4.1] and [48, Section
6] on metrized line bundles.

Therefore the following theorem, conjectured by Manin, follows from Theorem 1.2.

Tʜ��ʀ�� 7.1. – Let X be the wonderful compactification of a connected adjoint semisim-
ple K-group G, and L = (L,HL) a metrized ample line bundle on X. Then there exist cL > 0

and δ > 0 such that

NG(L, T ) = cL · T
aL(log T )

bL−1
(1 + O((log T )

−δ
)).

In order to describe the distribution of rational points, we construct a finite measure τL
on X(A) first for each saturated ample line bundle L and then for any ample line bundle L.

D��ɪɴɪ�ɪ�ɴ 7.2. – We call an ample line bundle L on X saturated if the representation
defined by the corresponding dominant weight is saturated.

We note that if G is K-simple, every ample line bundle is saturated, and that the anti-
canonical line bundle−KX is always saturated for any G. Batyrev and Tschinkel introduced
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the notion of a strongly saturated line bundle in [4]: A line bundle L is called strongly satu-
rated if for any Zariski open dense subset U of X,

(7.3) lim
T→∞

NU (L, T )

NG(L, T )
= 1.

L���� 7.4. – A strongly saturated (see (7.3)) ample line bundle L is saturated.

Proof. – Suppose not. Then by Theorem 4.13, there exists a connected normal K-
subgroup M of G such that ι|M is saturated and the volume of BT ∩ M(A) is of order
T aL(log T )

bL−1. By Theorem 1.6, #BT ∩ M(K) has the order of T aL(log T )
bL−1. This

contradicts to the assumption that L is strongly saturated.

L���� 7.5. – Let L and L� be metrizations of a saturated line bundle L and (BT , Wf ),
and (B�

T
, W �

f
) be defined as above with respect to L and L� respectively. Then

lim
T→∞

τWf (BT ∩GWf )

τW �
f
(B�

T
∩GW �

f
)

=
τL(G(A))

τL�(G(A))
.

Proof. – Let Vf = Wf ∩W �
f

. By Proposition 4.16, it suffices to show that

(7.6) lim
T→∞

τ(BT ∩GVf )

τ(B�
T
∩GVf )

=
τL(G(A))

τL�(G(A))
.

Let S be a finite set such that HL and HL� are equal on G
S . If we set HL,S = HL |GS ,

then it follows from (7.10) and Theorem 4.3 that

(7.7)
τL(G(A))

τL�(G(A))
=

�
GS

HL,S(g)
−aLγS(g) dτS�

GS
HL�,S(g)−aLγS(g) dτS

.

Theorem 4.13 with S = ∅ and (7.7) imply that the both sides of (7.6) stay the same when
HL,S and HL�,S are replaced by constant multiples. Hence, we can assume that

(7.8) HL,S(e) = HL�,S(e) = 1.

As in the proof of Lemma 4.27, we obtain

τ(BT ∩GVf ) =

�

g∈GS

τ
S
(BT HL,S(g)−1 ∩ sgGVf ∩G

S
) dτS(g)

∼

Ç�

g∈GS

HL,S(g)
−aLγS(g)dτS(g)

å
· τ

S
(BT ∩GVf ∩G

S
).

Similarly,

τ(B
�
T ∩GVf ) ∼

Ç�

g∈GS

HL�,S(g)
−aLγS(g)dτS(g)

å
· τ

S
(B

�
T ∩GVf ∩G

S
).

Since by (7.8),

BT ∩G
S

= B
�
T ∩G

S
,

this finishes the proof.
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Now we define a finite measure τL on X which describes the asymptotic distribution of
rational points with respect to a metrized ample line bundle L = (L,HL). If L is saturated,
we set τL to be τ̃L defined in the following proposition. Let WL denote the maximal compact
open subgroup of G(Af ) under which HL is bi-invariant.

Pʀ����ɪ�ɪ�ɴ 7.9. – For any metrized ample line bundle L = (L,HL), there exists a
unique finite measure τ̃L on X(A) such that for all ψ ∈ C(X(A)) invariant under a co-finite
subgroup of WL,

(7.10) τ̃L(ψ) = d
− dim(X)/2

K
·

�

χ∈Λ

Ç
lim

s→a
+

L

(s− aL)
bL

�

G(A)

HL(g)
−s

χ(g) ψ(g) dτ(g)

å
.

Proof. – Let ι be the representation with highest weight given by the regular dominant
weight corresponding to L. Then X(A) = Xι. By Theorem 4.18 it suffices to set

τ̃L = d
− dim(X)/2

K
· γWL(e) · µ̃ι.

For a general ample line bundle L, the variety X has an asymptotic arithmetic L-fibration
in the sense of [4]. By the results in section 6, there exist a connected semisimple K-group N

and a surjective K-homomorphism π : G → N such that for each x ∈ N(K), there exist a
finite measure τ̃x,L on X(A) supported on π−1

(x)(A) satisfying the following:

1. for any ψ ∈ C(X(A)) invariant under a compact open subgroup of G(Af ),

τ̃x,L(ψ) = d
− dim(XM )/2

K
·

�

χ∈ΛM

Ç
lim

s→a
+

L

(s− aL)
bL

�

M(A)

HL(gx)
−s

χ(g) ψ(gx) dτM(g)

å

where M = π−1
(e), τM is the Haar measure on M(A) with τM(M(K)\M(A)) = 1,

ΛM is defined in the same way as Λ for M and XM is the closure of M in X;
2. there exists cx > 0 such that as T →∞,

Nπ−1(x)(L, T ) ∼ cx · T
aL(log T )

bL−1
.

By Lemma 7.5, there exists cL > 0 (independent of metrization) such that cx = cL ·

τ̃x,L(X(A)) for each x ∈ N(K). Theorem 6.2 implies that
�

x∈N(K)

τ̃x,L(X(A)) < ∞

and that the following defines a finite measure on X satisfying Theorem 7.11:

τL :=

�

x∈N(K)

τx,L.

Tʜ��ʀ�� 7.11. – For any metrized ample line bundle L = (L,HL) on X, and for any
ψ ∈ C(X(A)),

lim
T→∞

1

NG(L, T )

�

g∈G(K):HL(g)<T

ψ(g) =
1

τL(X(A))

�

X(A)

ψ dτL.

Moreover, if L is saturated and cL is as in Theorem 7.1, the ratio cL
τL(X(A))

is independent of the
metrization HL.
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R���ʀ� 7.1. – Peyre [41] defined the Tamagawa measure τ−KX on X(A) associated
with the anti-canonical metrized line bundle −KX = (−KX ,H−KX ):

τ−KX := c0 · lim
s→1+

(s− 1)
rank(Pic(X))

�
�

v∈R−S

Lv(s,Pic(X))

�
·H−KX (g)

−1
dτ(g)

where S ⊂ R is a finite subset of places with bad reduction, and c0 = d
− dim(X)

2

K
·�

v∈R−S Lv(1,Pic(X))
−1 with dK the discriminant of K.

Note that a−KX = 1, b−KX = rank(Pic(X)), and

lim
s→1+

(s− 1)
rank(Pic(X))

�

G(A)

H−KX (g)
−s

χ(g)dτ(g) = 0

for all χ �= 1. Hence for L = −KX , (7.10) gives Peyre’s measure τ−KX . An analog of Peyre’s
measure for general line bundles was also introduced in [4], but the measure τL seems to be
different, in general, from the measure defined in [4].
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