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RESIDUE CURRENTS WITH PRESCRIBED
ANNIHILATOR IDEALS

BY MATS ANDERSSON 1 AND ELIZABETH WULCAN

ABSTRACT. – Given a coherent ideal sheaf J we construct locally a vector-valued residue current R
whose annihilator is precisely the given sheaf. In case J is a complete intersection, R is just the classical
Coleff–Herrera product. By means of these currents we can extend various results, previously known for
a complete intersection, to general ideal sheaves. Combining with integral formulas we obtain a residue
version of the Ehrenpreis–Palamodov fundamental principle.

© 2007 Elsevier Masson SAS

RÉSUMÉ. – Soit J un faisceau cohérent d’idéaux. Nous construisons localement un courant résiduel
R à valeurs vectorielles dont l’annihilateur est J . Au cas où J serait une intersection complète, R est
simplement le produit classique de Coleff–Herrera. Ces courants permettent d’étendre au cas général des
résultats divers, déjà connus dans le cas d’une intersection complète. En utilisant ces courants résiduels et
des formules intégrales, nous obtenons ainsi une version résiduelle du Principe Fondamental d’Ehrenpreis–
Palamodov.
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1. Introduction

Let h = h1, . . . , hm be a tuple of holomorphic functions such that their common zero set Z
has codimension m, and let

μh = ∂̄
1
h1

∧ · · · ∧ ∂̄
1

hm
(1.1)

be the Coleff–Herrera product introduced in [16]. Dickenstein and Sessa, [18], and Passare,
[31], independently proved the duality principle, that a holomorphic function φ is in the ideal
sheaf J (h) generated by h1, . . . , hm if and only if the current φμh vanishes, i.e., φ belongs
to the annihilator annμh. Given any coherent ideal sheaf J one can locally find a finite tuple
γ = (γ1, . . . , γμ) of so-called Coleff–Herrera currents such that J = annγ =

⋂
j annγj ; this is

closely related to the existence of Noetherian operators, see [15]. However, much of the utility of
the duality principle depends on the fact that the current μh fits into various division-interpolation
integral formulas, see, e.g., [13,31,14,11,12]. Therefore it is natural to look for an analogue, for
a general ideal sheaf, with this extra property.

1 The first author was partially supported by the Swedish Natural Science Research Council.
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986 M. ANDERSSON AND E. WULCAN
To begin with we consider an arbitrary complex of Hermitian holomorphic vector bundles over
a complex manifold X ,

0 → EN
fN−−→ · · · f3−→ E2

f2−→ E1
f1−→E0,(1.2)

that is exact outside an analytic variety Z of positive codimension. To this complex E• we
associate a current R = R(E•) taking values in End(

⊕
k Ek) and with support on Z . This

current in a certain way measures the lack of exactness of the associated complex of locally
free sheaves of O-modules of sections of Ek

0 →O(EN )→ · · · →O(E1) →O(E0).(1.3)

Let R� denote the component of R that takes values in Hom(E�,
⊕

k Ek). It turns out that (1.3)
is exact if and only if R� = 0 for � � 1 (Theorem 3.1). Let J = Im(O(E1) →O(E0)). The main
result in this paper is the following:

THEOREM 1.1. – Suppose that the sheaf complex (1.3) is exact. Then the associated residue
current R has its support on the set Z where the sheaf O(E0)/J is not locally free, and a local
holomorphic section φ of E0 is in J if and only if φ is generically in the image of f1 and the
residue current Rφ vanishes.

The set Z is precisely the set where the mapping f1 does not have optimal rank. If f1 is
generically surjective, or equivalently ann(O(E0)/J ) is nonzero, thus φ ∈ J if and only if
Rφ = 0. In this case Z is the zero locus of ann(O(E0)/J ). In particular as soon as J is a
nontrivial ideal sheaf (rankE0 = 1) then R has its support on the zero locus of J and φ ∈ J if
and only if Rφ = 0. In analogy with Noetherian differential operators it is natural to say that R
is a Noetherian residue current for J .

If J is any coherent subsheaf of some locally free sheaf O(E0), then at least locally O(E0)/J
admits a resolution (1.3), and if we equip the corresponding complex of vector bundles with any
Hermitian metric we thus locally get a current R as in Theorem 1.1. In case J is defined by
a complete intersection, the Koszul complex provides a resolution, and the resulting residue
current is just the Coleff–Herrera product, see Example 1 below. In general it is just as hard to
find resolutions of ideals as to find, e.g., Noetherian differential operators, so Theorem 1.1 will
not contribute to effectivity questions, but it turns out to be useful in several other ways.

If O(E0)/J is a sheaf of Cohen–Macaulay modules, the associated current R is independent
of the Hermitian metrics and it is essentially canonical, see Section 4 for precise statements.
In the Cohen–Macaulay case we can also define a cohomological residue for J , so that the
cohomological duality principle for a complete intersection ideal extends (Theorem 4.2).

Combined with the framework of integral formulas developed in [5], we present in Section 5
a holomorphic division formula, (5.4), for sections of Ek . In particular, as soon as φ ∈ J , this
formula provides an explicit realization of the membership. By a similar integral formula we
obtain a residue characterization (Theorem 5.1) of the sheaf EJ of E-modules generated by J .

Given a module J over C[z1, . . . , zn], generated by an r0 × r1-matrix F (z) of polynomials in
C

n of generic rank r0 we can find a global Noetherian residue current R for the corresponding
sheaf J in C

n. It is obtained from a resolution of the module over the graded ring C[z0, . . . , zn]
induced by a homogenization of F . We can use this current to prove a generalization of Max
Noether’s classical AF + BG theorem. Our main application is a residue version of the general
fundamental principle: If FT is the transpose of F , then any smooth solution to FT (i∂/∂t)ξ = 0
4e SÉRIE – TOME 40 – 2007 – N◦ 6
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on a smoothly bounded convex set in Rn can be written

ξ(t) =
∫

Cn

RT (ζ)A(ζ)e−i〈t,ζ〉,

for an appropriate (explicitly given matrix of smooth functions) A; here RT is the transpose
of R. Conversely, since R is Noetherian, any ξ(t) given in this way is a homogeneous solution.
This follows along the same lines as in [14], where this result was obtained for a complete
intersection F by means of the Coleff–Herrera product.

Throughout this paper, E•(E), D•(E), D′
•(E), and O(E) denote the sheaves of smooth forms,

test forms, currents, and holomorphic functions, respectively with values in the vector bundle E.

2. Residue currents of generically exact complexes

Let E,Q be Hermitian holomorphic vector bundles over a connected manifold X and let
f :E → Q be a holomorphic morphism. If f has optimal rank ρ then the rank is precisely ρ
outside the analytic set Z = {F = 0}, where F = detρ f is a section of ΛρE∗ ⊗ ΛρQ. Let
σ :Q → E be the minimal inverse in X \ Z , i.e., σξ is the minimal solution to fη = ξ if ξ is in
the image of f and σξ = 0 if ξ is orthogonal to Imf . Then clearly σ is smooth outside Z , and
following the proof of Lemma 4.1 in [4] we get

LEMMA 2.1. – If F = F 0F ′ in X , where F 0 is a holomorphic function and F ′ is non-
vanishing, then F 0σ is smooth across Z .

Let

0 → EN
fN−−→ EN−1

fN−1−−−→ · · · f−M+2−−−−−→ E−M+1
f−M+1−−−−−→ E−M → 0(2.1)

be a holomorphic complex of Hermitian vector bundles over the n-dimensional complex
manifold X , and assume that it is pointwise exact outside the analytic set Z of positive
codimension. Then for each k, rankfk is constant in X \Z and equal to

ρk = dimEk − dimEk+1 + · · · ± dimEN .(2.2)

The bundle E =
⊕

Ek has a natural superbundle structure, i.e., a Z2-grading, E = E+ ⊕ E−,
E+ and E− being the subspaces of even and odd elements, respectively, by letting E+ =⊕

2k Ek and E− =
⊕

2k+1 Ek , see [34] and, e.g., [5], for details. The mappings f =
∑

fj and
∂̄ are then odd mappings on D′

•(E) and they anticommute so that ∇2 = 0, where ∇ = f − ∂̄
is (minus) the (0,1)-part of Quillen’s superconnection D − ∂̄. Moreover, ∇ extends to an odd
mapping ∇End on D′

•(EndE) and ∇2
End = 0. In X \ Z let σk :Ek−1 → Ek be the minimal

inverses of fk . If σ = σ−M+1 + · · · + σN :E → E and I denotes the identity endomorphism
on E, then fσ + σf = I. Moreover, σσ = 0 and thus

σ(∂̄σ) = (∂̄σ)σ.(2.3)

Since σ is odd, ∇Endσ = ∇◦ σ + σ ◦∇ = fσ + σf − (∂̄ ◦ σ + σ ◦ ∂̄), so we get

∇Endσ = I − ∂̄σ.(2.4)

Notice that ∂̄σ has even degree. In X \Z we define the EndE-valued form, cf. (2.4),

u = σ(∇Endσ)−1 = σ(I − ∂̄σ)−1 = σ + σ(∂̄σ) + σ(∂̄σ)2 + · · · .(2.5)
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



988 M. ANDERSSON AND E. WULCAN
Now, ∇Endu = ∇Endσ(∇Endσ)−1 − σ∇End(∇Endσ)−1, and since ∇2
End = 0 we thus have

∇Endu = I.(2.6)

Notice that

u =
∑

�

∑
k��+1

u�
k

where

u�
k = σk(∂̄σk−1) · · · (∂̄σ�+1)

is in E0,k−�−1(Hom(E�,Ek)) over X \Z . In view of (2.3) we also have

u�
k = (∂̄σk)(∂̄σk−1) · · · (∂̄σ�+2)σ�+1.(2.7)

Let

u� =
∑

k��+1

u�
k,

be u composed with the projection E → E�. We can make a current extension of u across Z
following [33] and the proof of Theorem 1.1 in [1]. In fact, after a sequence of suitable resolutions
we may assume that the sections Fj = detρj fj of Λρj E∗

j ⊗Λρj Ej−1 are of the form Fj = F 0
j F ′

j ,
where F 0

j is a monomial and F ′
j are non-vanishing. If F is a holomorphic function that vanishes

on Z , in the same way we may assume that F = F 0F ′. By Lemma 2.1, σj = αj/F 0
j , where

αj is smooth across Z . Since αj+1αj = 0 outside the set {F 0
j+1F

0
j = 0}, thus αj+1αj = 0

everywhere. Therefore, cf. (2.7), it is easy to see that

u�
�+k =

(∂̄α�+k)(∂̄α�+k−1) · · · (∂̄α�+2)α�+1

F 0
�+k · · ·F 0

�+1

.(2.8)

Since Fj only vanish on Z and F vanishes there, F 0 must contain each coordinate factor that
occurs in any F 0

j . It follows now that λ 	→ |F |2λu has a current-valued analytic continuation to
Reλ >−ε, and that U = |F |2λu|λ=0 is a current extension of u.

In the same way we can now define the residue current R = R(E•) associated to (2.1) as

R = ∂̄|F |2λ ∧ u|λ=0.

It clearly has its support on Z . If R�
k = ∂̄|F |2λ ∧ u�

k|λ=0 and R� is defined analogously, then

R =
∑

�

R� =
∑

�

∑
k��+1

R�
k.

Notice that R�
k is a Hom(E�,Ek)-valued (0, k − �)-current. The currents U � and U �

k are defined
analogously. Notice that U has odd degree and R has even degree. In analogy with Theorems 1.1
and 1.2 in [1] we have:

PROPOSITION 2.2. – If U and R are the currents associated to the complex (2.1) then

∇EndU = I −R, ∇EndR = 0.(2.9)
4e SÉRIE – TOME 40 – 2007 – N◦ 6
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Moreover, R�
k vanishes if k − � < codimZ , and ξ̄R = dξ̄ ∧ R = 0 if ξ is holomorphic and

vanishes on Z .

The residue current R = R(E•) is related to the (lack of) exactness of the sheaf complex
associated to (2.1) in the following way.

PROPOSITION 2.3. – Let R = R(E•) be the residue current associated with (2.1) and let φ
be a holomorphic section of E�.

(i) If f�φ = 0 and R�φ = 0, then locally there is a holomorphic section ψ of E�+1 such that
f�+1ψ = φ.

(ii) If moreover R�+1 = 0, then the existence of such a local solution ψ implies that R�φ = 0.

Proof. – Let U be the associated current such that (2.9) holds. Then ∇(Uφ) =
φ − U(∇φ) − Rφ. Since Uφ = U �φ, Rφ = R�φ, and ∇φ = f�φ − ∂̄φ, it follows from the as-
sumptions of φ that ∇(U �φ) = φ. Now (i) follows by solving a sequence of ∂̄-equations locally.
For the second part, assume that f�+1ψ = φ. Then by (2.9), R�φ = Rφ = R(∇ψ) = ∇(Rψ) =
∇(R�+1ψ) = 0. �

If now (1.2) is a generically exact holomorphic complex of Hermitian bundles, since rankf1

is generically constant, we can define σ1 in an unambiguous way in X \ Z , and therefore the
currents R� for � � 0 can be defined as above, and we have:

COROLLARY 2.4. – If R = R(E•) is the residue current associated to (1.2), then Propo-
sition 2.3 holds (for � � 0), provided that f0φ = 0 is interpreted as φ belonging generically
(outside Z) to the image of f1.

If f1 is generically surjective, in particular if rankE0 = 1 and f1 is not identically 0, then this
latter condition is of course automatically fulfilled.

Proof. – The corollary actually follows just from a careful inspection of the arguments in the
proof of Proposition 2.3. Another way is to extend (1.2) to a generically exact complex (2.1) and
then refer directly to Proposition 2.3, noting that the definition of R� for � � 0 as well as the
condition f0φ = 0 are independent of such an extension. �

3. Residue currents with prescribed annihilators

The exactness of (1.3) is characterized by the current R associated with (1.2).

THEOREM 3.1. – Assume that (1.2) is generically exact, let R be the associated residue
current, and let (1.3) be the associated complex of sheaves. Then R� = 0 for all � � 1 if and
only if (1.3) is exact.

For the proof we will use the following characterization of exactness due to Buchsbaum and
Eisenbud, see [21] Theorem 20.9: The complex (1.3) is exact if and only if

codimZj � j(3.1)

for all j, where, cf. (2.2),

Zj = {z; rankfj < ρj}.

Remark 1. – To be precise we will only use the “only if”-direction. The other direction is
actually a consequence of Corollary 2.4 and (the proof of) Theorem 3.1.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



990 M. ANDERSSON AND E. WULCAN
Proof. – From Corollary 2.4 it follows that (1.3) is exact if R� = 0 for � � 1. For the converse,
let us now assume that (1.3) is exact; by the Buchsbaum–Eisenbud theorem then (3.1) holds.
We will prove that R1 = 0; the case when � > 1 is handled in the same way. The idea in the
proof is based on the somewhat vague principle that a residue current of bidegree (0, q) cannot
be supported on a variety of codimension q + 1. Taking this for granted, we notice to begin with
that R1

2 = ∂̄|F |2λ ∧ σ2|λ=0 is a (0,1)-current and has its support on Z2, which has codimension
at least 2. Hence R1

2 must vanish according to the vague principle. Now, σ3 is smooth outside Z3,
and hence R1

3 = ∂̄σ3 ∧ R1
2 = 0 outside Z3; thus R1

3 is supported on Z3 and again, by the same
principle, R1

3 must vanish etc. To make this into a strict argument we will use the following
simple lemma which follows from a Taylor expansion.

LEMMA 3.2. – Suppose that γ(s, τ) is smooth in C × C
r and that moreover γ(s, τ)/s̄ is

smooth where τ1 · · · τk 
= 0. Then γ(s, τ)/s̄ is smooth everywhere.

After a sequence of resolutions of singularities the action of R1
k on a test form ξ is a finite sum

of integrals of the form

∫
∂̄|F 0|2λ ∧ (∂̄αk)(∂̄αk−1) · · · (∂̄α3)α2

F 0
k F 0

k−1 · · ·F 0
3 F 0

2

∧ ξ̃

∣∣∣∣
λ=0

where F 0, F 0
i and αi are as (2.8) above, and where ξ̃ is the pullback of ξ. To be precise, there

are also cutoff functions involved that we suppress for simplicity. Observe that ∂̄|F 0|2λ is a finite
sum of terms like aλ|F 0|2λ ds̄/s̄, where a is a positive integer and s is just one of the coordinate
functions that divide F 0. We need to show that all the corresponding integrals vanish when λ = 0,
and to this end it is enough to show, see, e.g., Lemma 2.1 in [1], that

η =
ds̄

s̄
∧ (∂̄αk)(∂̄αk−1) · · · (∂̄α3)α2 ∧ ξ̃

is smooth ((ds̄/s̄)∧ β being smooth for a smooth β means that each term of β contains a factor
s̄ or ds̄).

Let � be the largest index among 2, . . . , k such that s is a factor in F 0
� (possibly there is no

such index at all; then � below is to be interpreted as 1) and let τ1, . . . , τr denote the coordinates
that divide F 0

k · · ·F 0
�+1. We claim that, outside τ1 · · · τr = 0, the form

ds̄

s̄
∧ (∂̄αk) · · · (∂̄α�+1)

F 0
k · · ·F 0

�+1

∧ ξ̃

is smooth. This follows by standard arguments, see, e.g., the proof of Lemma 2.2 in [33] or
the proof of Theorem 1.1 in [1]; in fact, outside Zk ∩ · · · ∩ Z�+1 the (n,n − � + 1)-form
(∂̄σk) · · · (∂̄σ�+1) ∧ ξ is smooth and it must vanish on Z� for degree reasons, since Z� has
codimension at least �. Thus the form

η̃ =
ds̄

s̄
∧ (∂̄αk) · · · (∂̄α�+1)∧ ξ̃

is smooth outside τ1 · · · τr = 0. By Lemma 3.2, applied to

γ = ds̄∧ (∂̄αk) · · · (∂̄α�+1)∧ ξ̃,

η̃ is smooth everywhere, and therefore η is smooth. �

4e SÉRIE – TOME 40 – 2007 – N◦ 6
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If (1.3) is exact, then, with no ambiguity, we can write Rk rather than R0
k .

Proof of Theorem 1.1. – Since a free resolution of a free sheaf is pointwise exact, it follows
that ZN ⊂ · · · ⊂ Z1 = Z . Therefore u0 is smooth outside Z and thus the support of R must be
contained in Z . By Theorem 3.1, R1 = 0, and so the second assertion, the Noetherian property
of R = R0, follows from Corollary 2.4. �

Given any coherent sheaf F in a Stein manifold X and compact subset K ⊂ X , one can always
find a resolution

· · · →O⊕r2 →O⊕r1 →O⊕r0(3.2)

of F in a neighborhood of K , e.g., by iterated use of Theorem 7.2.1 in [25]. The key stone
in the proof of Theorem 3.1, the Buchsbaum–Eisenbud theorem, in general requires that the
resolution (3.2) starts with 0 somewhere on the left. However, by the Syzygy theorem and Oka’s
lemma, Ker(O⊕r� → O⊕r�−1) is (locally) free for large �, so we can replace such a module
O⊕r� with this kernel and 0 before that. Therefore Theorem 3.1 holds and we have

PROPOSITION 3.3. – Let J be a coherent subsheaf of O⊕r0 in a Stein manifold X . For each
compact subset K ⊂ X there is a residue current R defined in a neighborhood of K such that
annR = J .

The degree of explicitness of the Noetherian residue current R in Theorem 1.1 is of course
directly depending on the degree of explicitness of the resolution.

Example 1 (The Koszul complex). – Let H be a Hermitian bundle over X of rank m and let
h be a non-trivial holomorphic section of the dual bundle H∗. Then h can be considered as a
morphism H → C × X , and we get a generically exact complex (1.2) by taking Ek = ΛkH
and let all the mappings fk be interior multiplication with f . If η is the section of E over
X \ Z of minimal norm such that f · η = 1, then σkξ = η ∧ ξ for sections ξ of Ek−1, and
hence u�

k = η ∧ (∂̄η)k−�−1, acting on Λ�H via wedge multiplication. Thus R�
k = ∂̄|h|2λ ∧ ξ ∧

(∂̄ξ)k−�−1|λ=0 are precisely the currents considered in [1]. If h is a complete intersection and
h = h1e

∗
1 + · · · + hme∗m in some local holomorphic frame e∗j for H∗, then R is precisely the

Coleff–Herrera product (1.1) times e1 ∧ · · · ∧ em, where ej is the dual frame, see [1].

We now consider a simple example of a non-complete intersection ideal.

Example 2. – Consider the ideal J = (z2
1 , z1z2) in C

2 with zero variety {z1 = 0}. It is easy
to see that

0 →O f2−→O⊕2 f1−→O,(3.3)

where

f1 = [z2
1 z1z2 ] and f2 =

[
z2

−z1

]

is a (minimal) resolution of O/J . We equip the corresponding vector bundles with the trivial
Hermitian metrics. Since Z has codimension 1, R consists of the two parts R2 = ∂̄|F |2λ∧u0

2|λ=0

and R1 = ∂̄|F |2λ ∧ u0
1|λ=0, where u0

2 = σ2∂̄σ1 and u0
1 = σ1, respectively. To compute R it is

enough to make a simple blow-up at the origin, and one gets, cf. [37] and [36], that

R2 = ∂̄

[
1
z2

]
∧ ∂̄

[
1
z

]
and R1 =

[
0
1

][
1
z

]
∂̄

[
1
z

]
.

1 2 2 1

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



992 M. ANDERSSON AND E. WULCAN
We see that annR2 = (z2
1 , z2) and annR1 = (z1), and hence annR = (z2

1 , z2) ∩ (z1) = J as
expected. Notice that the Koszul complex associated with the ideal J is like (3.3) but with an
extra factor z1 in the mapping f2. Then the current R0

1 is of course the same as before, but

R0
2 =

1
2
∂̄

[
1
z3
1

]
∧ ∂̄

[
1
z2

]
.

In this case annR0 = annR0
2 ∩ annR0

1 = (z3
1 , z2) ∩ (z1) which is strictly smaller than J .

Roughly speaking, the annihilator of R0
2 is too small, since the singularity of σ2 and hence of u0

2

is too big, due to the extra factor z1 in f2.

There has recently been a lot of work done on finding free resolutions of monomial ideals,
see for example [28], [7] or [9]. For more involved explicit computations of residue currents for
monomial ideals, see [37]. We conclude with a simple example where ann(O(E0)/J) = 0.

Example 3. – Consider the submodule J of O⊕2 generated by f1 = [z1z2 −z2
1 ]T and the

resolution 0 →O f1−→O⊕2, which is easily seen to be minimal. Notice that Z = {z1 = 0} is the
associated set where O⊕2/J is not locally free, or equivalently where f1 is not locally constant.
Moreover, notice that ann(O⊕2/J) = 0. The associated residue current is

R = R1 =
[

1
z2

]
∂̄

[
1
z1

]
[ 0 1 ] .

If we extend the complex with the mapping f0 = [z1 z1] the new complex is still exact outside Z .
Observe that annR is generated by z1[1 1]T and moreover that Kerf0 is generated by [z2 −z1]T .
Thus Kerf0 ∩ annR = J as expected.

4. Cohen–Macaulay ideals and modules

Let Fx be a Or
x-module. The minimal length νx of a resolution of Fx is precisely

n− depthFx, and depthFx � dimFx, so the length of the resolution is at least equal
to codimFx. Recall that the module Fx is Cohen–Macaulay if depthFx = dimFx, or
equivalently, νx = codimFx, see [21]. As usual we say that an ideal Jx ⊂ Ox is Cohen–
Macaulay if Fx =Ox/Jx is a Cohen–Macaulay module.

A coherent analytic sheaf F is Cohen–Macaulay if Fx is Cohen–Macaulay for each x. If we
have any locally free resolution of F and codimF = p, then at each point Ker(O(Ep−1) →
O(Ep−2)) is free by the uniqueness theorem, see below, so by Oka’s lemma the kernel is locally
free; hence we can modify the given resolution to a locally free resolution of minimal length p.
Notice that the residue current associated with a resolution of minimal length p just consists of
the single term R = R0

p, which locally is a rp × r0-matrix of currents.

THEOREM 4.1. – Suppose that F is a coherent analytic sheaf with codimension p > 0 that is
Cohen–Macaulay, and assume that

0 →O(Ep)→ · · · →O(E1) →O(E0)(4.1)

is a locally free resolution of F of minimal length p. Then the associated Noetherian current is
independent of the Hermitian metric.
4e SÉRIE – TOME 40 – 2007 – N◦ 6
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Proof. – Assume that u and u′ are the forms in X \ Z constructed by means of two different
choices of metrics on E. Then ∇Endu = I and ∇Endu′ = I in X \Z , and hence

∇End(uu′) = (∇Endu)u′ − u∇Endu′ = u′ − u,

where the minus sign occurs since u has odd order. For large Reλ we thus have, cf. the proof of
Proposition 2.2,

∇End

(
|F |2λuu′) = |F |2λu′ − |F |2λu− ∂̄|F |2λ ∧ uu′.

As before one can verify that each term admits an analytic continuation to Reλ > −ε, and
evaluating at λ = 0 we get ∇EndW = U ′ − U − M, where W = |F |2λuu′|λ=0, and M is the
residue current

M = ∂̄|F |2λ ∧ uu′|λ=0.(4.2)

Since ∇2
End = 0, by Proposition 2.2 we therefore get

R−R′ = ∇EndM.(4.3)

However, since the complex ends up at p, each term in uu′ has at most bidegree (0, p − 2)
and hence the current M has at most bidegree (0, p − 1). Since it is supported on Z with
codimension p, it must vanish, cf. the proof of Proposition 2.2. �

When F = O(E0)/J is Cohen–Macaulay we can also define a cohomological residue that
characterizes the module sheaf J = Im(O(E1) →O(E0)) locally. Suppose that we have a fixed
resolution (4.1) of minimal length and let us assume that p > 1. If u is any solution to ∇Endu = I
in X \Z , then u0

p is a ∂̄-closed Hom(E0,Ep)-valued (0, p− 1)-form. Moreover if u′ is another
solution, then it follows from the preceding proof that ∂̄(uu′)0p = u0

p − u′0
p . Therefore u0

p defines
a Dolbeault cohomology class ω ∈ H0,p−1(X \Z,Hom(E0,Ep)). If φ is a holomorphic section
of E0 then ωφ = [u0

pφ] is an element in H0,p−1(X \ Z,Ep). Moreover, if v is any solution
in X \ Z to ∇v = φ, then vp defines the class ωφ. In fact, ∇(uv) = v − uφ = v − u0φ so that
∂̄(uv)p = u0

pφ−vp. Precisely as for a complete intersection, [18] and [31], we have the following
cohomological duality principle.

THEOREM 4.2. – Let X be a Stein manifold and let (4.1) be a resolution of minimal length p
of the Cohen–Macaulay sheaf O(E0)/J over X , and assume that p > 1. Moreover, let ω be
the associated class in H0,p−1(X \ Z,Hom(E0,Ep)). For a holomorphic section φ of E0 the
following conditions are equivalent:

(i) φ is a global section of J .
(ii) The class ωφ in X \Z vanishes.

(iii)
∫

ωφ∧ ∂̄ξ = 0 for all ξ ∈Dn,n−p(X,E∗
p) such that ∂̄ξ = 0 in a neighborhood of Z .

Notice that if R is the associated Noetherian current, then ∂̄U0
p = Rp, so by Stokes’ theorem,

(iii) is equivalent to that
∫

Rpφ ∧ ξ = 0 for all ξ ∈ Dn,n−p(X,E∗
p) such that ∂̄ξ = 0 in a

neighborhood of Z .
If p = 1, then f1 is an isomorphism outside Z , so its inverse ω = σ1 is a holomorphic (0,0)-

form in X \ Z . Thus a holomorphic section φ of E0 belongs to J if and only if ωφ has a
holomorphic extension across Z .

Proof. – If (i) holds, then φ = f1ψ for some holomorphic ψ; thus ∇ψ = φ. However, since
p > 1, ψ has no component in Ep, and hence by definition the class ωφ vanishes. The implication
(ii) → (iii) follows from Stokes’ theorem.
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Let us now assume that (iii) holds, and choose a point x on Z . Let vk = u0
kφ. If X ′ is an

appropriate small neighborhood of x, then, since Z has codimension p and vp is a ∂̄-closed
(0, p)-current, one can verify that the condition (iii) ensures that ∂̄wp = vp has a solution in
X ′ \W , where W is a small neighborhood of Z in X ′. Then, successively, all the lower degree
equations ∂̄wk = vk + fk+1wk+1, k � 2, can be solved in similar domains. Finally, we get a
holomorphic solution ψ = v1 + f2w2 to f1ψ = φ, in such a domain. By Hartogs’ theorem ψ
extends across Z in X ′. Alternatively, one can obtain such a local holomorphic solution ψ, using
the decomposition formula (5.4) below and mimicking the proof of the corresponding statement
for a complete intersection in [31]; cf. also the proof of Proposition 7.1 in [5]. Since X is Stein,
one can piece together to a global holomorphic solution to f1ψ = φ, and hence φ is a section
of J . �

Example 4. – Let J be an ideal in O0 of dimension zero. Then it is Cohen–Macaulay and
for each germ φ in O0, ωφ defines a functional on O0(E∗

n) 
 Orn
0 . If J is defined by a

complete intersection, then we may assume that (4.1) is the Koszul complex. Then rn = 1, and
in view of the Dolbeault isomorphism, see, e.g., Proposition 3.2.1 in [31], ωφ is just the classical
Grothendieck residue.

For the rest of this section we will restrict our attention to modules over the local ring O0,
and we let O(Ek) denote the free O0-module of germs of holomorphic sections at 0 of the
vector bundle Ek . Given a free resolution (1.3) of a module F0 over O0 and given metrics on
Ek we thus get a germ R of a Noetherian residue current at 0. Recall that the resolution (1.3)
is minimal if for each k, fk maps a basis of O(Ek) to a minimal set of generators of Imfk .
The uniqueness theorem, see, e.g., Theorem 20.2 in [21], states that any two minimal (free)
resolutions are equivalent, and moreover, that any (free) resolution has a minimal resolution as a
direct summand.

For a Cohen–Macaulay module F0 over O0 we have the following uniqueness.

PROPOSITION 4.3. – Let F0 be a Cohen–Macaulay module over O0 of codimension p. If
we have two minimal free resolutions O(E•) and O(E′

•) of F0, then there are holomorphic
invertible matrices gp and g0 (local holomorphic isomorphism gp :E′

p 
 Ep and g0 :E′
0 
 E0)

such that R = gpR
′g−1

0 .

Since minimal resolutions have minimal length p, the currents are independent of the metrics,
in view of Proposition 4.1.

Proof. – By the uniqueness theorem there are holomorphic local isomorphisms gk :E′
k → Ek

such that

0 O(E′
p)

f ′
p

gp

· · · f ′
2 O(E′

1)
f ′
1

g1

O(E′
0)

g0

0 O(Ep)
fp · · · f2 O(E1)

f1 O(E0)

commutes. Let g denote the induced isomorphism E → E′. Choose any metric on E and equip
E′ with the induced metric, i.e., such that |ξ| = |g−1ξ| for a section ξ of E′. If σ :E → E and
σ′ :E′ → E′ are the associated endomorphisms over X \ Z , cf. Section 2, then σ′ = gσg−1 in
X \Z , and therefore

u′ = σ′ + (∂̄σ′)σ′ + · · ·= g
(
σ + (∂̄σ)σ + · · ·

)
g−1 = gug−1.

Therefore, (u′)0p = gpu
0
pg

−1
0 , and hence the statement follows since R = Rp = R0

p. �
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We shall now consider the residue current associated to a general free resolution.

THEOREM 4.4. – Let F0 be a Cohen–Macaulay module over O0 of codimension p. If R is
the residue current associated to an arbitrary free resolution (1.3) (and given metrics on Ek) and

R′ = R′
p is associated to a minimal resolution 0 →O(E′

p)
f ′

p−−→ · · · f ′
2−→O(E′

1)
f ′
1−→O(E′

0), then

Rp = hpR
′
pβ0,(4.4)

where β0 :E0 → E′
0 is a local holomorphic pointwise surjective morphism and hp is a local

smooth pointwise injective morphism hp :E′
p → Ep. Moreover, for each � > 0,

Rp+� = α�Rp,

where α� is a smooth Hom(Ep,Ep+�)-valued (0, �)-form.

Proof. – By the uniqueness theorem for resolutions, the resolution E′
• is isomorphic to a direct

summand in E•, and in view of the preceding proposition, we may assume that

O(Ek) = O(E′
k ⊕E′′

k ) =O(E′
k)⊕O(E′′

k )

and fk = f ′
k ⊕ f ′′

k , so that

0

ip+1

O(E′
p)

f ′
p

ip

· · · f ′
2 O(E′

1)
f ′
1

i1

O(E′
0)

i0

O(Ep+1)
fp+1 O(Ep)

fp · · · f2 O(E1)
f1 O(E0),

where ik :E′
k →E′

k ⊕E′′
k are the natural injections, and

→O(E′′
p+1)

f ′′
p+1−−−→O(E′′

p )
f ′′

p−−→ · · · f ′′
2−−→O(E′′

1 )
f ′′
1−−→O(E′′

0 )

is a resolution of 0. In particular,

→Ep+1
f ′′

p+1−−−→ E′′
p

f ′′
p−−→ · · · f ′′

2−−→ E′′
1

f ′′
1−−→ E′′

0 → 0

is a pointwise exact sequence of vector bundles, and therefore the set Zk where rankfk is not
optimal coincides with the set Z ′

k where rankf ′
k is not optimal. In particular, Zk = ∅ for k > p.

If we choose, to begin with, Hermitian metrics on Ek that respect this direct sum, and let σk , σ′
k ,

and σ′′
k be the corresponding minimal inverses, then σk = σ′

k ⊕ σ′′
k and hence

u0
k = (∂̄σ′

k ⊕ ∂̄σ′′
k )(∂̄σ′

k−1 ⊕ ∂̄σ′′
k−1) · · · (∂̄σ′

2 ⊕ ∂̄σ′′
2 )(σ′

1 ⊕ σ′′
1 ) = (u′)0k ⊕ (u′′)0k

for all k. However, (u′′)0k is smooth, and hence

Rp = R′
p ⊕ 0, Rk = 0 for k 
= p.

For this particular choice of metric thus (4.4) holds with hp as the natural injection ip :E′
p → Ep

and β0 as the natural projection.
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Without any risk of confusion we can therefore from now on let R′
p denote the residue current

with respect to this particular metric on E, and moreover let σ′ denote the minimal inverse of
f with respect to this metric, etc. We now choose other metrics on Ek and let Rk from now on
denote the residue current associated with this new metric. Following the notation in the proof of
Proposition 4.1 we again have (4.3), and for degree reasons still M0

p = 0; here M �
k denotes the

component of M that takes values in Hom(E�,Ek). Thus

Rp −R′
p = fp+1M

0
p+1.

Moreover, if we expand uu′, we get

M0
p+1 = ∂̄|F |2λ ∧

[
σp+1σ

′
p(∂̄σ′

p−1) · · · (∂̄σ′
1)

+ σp+1(∂̄σp)σ′
p−1(∂̄σ′

p−2) · · · (∂̄σ′
1) + · · ·

]∣∣
λ=0

.

However, σp+1(∂̄σp) = (∂̄σp+1)σp and σp+1 is smooth since Zp+1 is empty, so

M0
p+1 = −σp+1R

′
p + (∂̄σp+1)M0

p = −σp+1R
′
p.

Thus,

Rp = R′
p − fp+1σp+1R

′
p = (IEp − fp+1σp+1)R′

p.

Since fp+1 has constant rank, H = Imfp+1 is a smooth subbundle of Ep. Notice that Π =
IEp − fp+1σp+1 is the orthogonal projection of Ep onto the orthogonal complement of H
with respect to the new metric. In this case therefore h in (4.4) becomes the natural injection
ip :E′

p → Ep composed by Π, and since E′
p ∩H = 0, h is pointwise injective.

Since Zk is empty for k > p, σk is smooth for k > p and hence for � > p,

R� = ∂̄|F |2λ ∧ (∂̄σ�) · · · (∂̄σp+1)u0
p = (∂̄σ�) · · · (∂̄σp+1)∂̄|F |2λ ∧ u0

p = α�Rp

where α� = (∂̄σ�) · · · (∂̄σp+1). �

5. Division and interpolation formulas

To obtain formulas for division and interpolation that involve our currents R and U we will
use the general scheme developed in [5]. Let z be a fixed point in C

n, let δζ−z denote interior
multiplication by the vector field 2πi

∑n
1 (ζj − zj)(∂/∂ζj), and let ∇ζ−z = δζ−z − ∂̄. Let

g = g0,0 + · · ·+ gn,n be a smooth form such that ∇ζ−zg = 0 and g0,0(z) = 1 (here lower indices
denote bidegree); such a form will be called a weight with respect to the point z. If g has compact
support then

φ(z) =
∫

gφ(5.1)

for φ that are holomorphic in a neighborhood of the support of g, [5].
Let D be a ball with center at the origin in C

n and let χ be a cutoff function that is 1 in a
neighborhood of D. Then for each z ∈ D,

g = χ− ∂̄χ∧ s

∇ s
= χ− ∂̄χ∧

[
s + s∧ ∂̄s + · · ·+ s∧ (∂̄s)n−1

]
(5.2)
ζ−z
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is a weight, and it depends holomorphically on z. Assume that (2.1) is a complex of (trivial)
bundles over a neighborhood of D and let J = Imf1. Let us also fix global frames for the
bundles Ek . Then Ek 
 C

rankEk and the morphisms fk are just matrices of holomorphic
functions. One can find (see [5] for explicit choices) (k − �,0)-form-valued holomorphic Hefer
morphisms, i.e., matrices, H�

k :Ek → E� depending holomorphically on z and ζ , such that
H�

k = 0 for k < �, H�
� = IE�

, and in general,

δζ−zH
�
k = H�

k−1fk − f�+1(z)H�+1
k ;(5.3)

here f stands for f(ζ). Let

HU =
∑

�

H�+1U =
∑
�k

H�+1
k U �

k, HR =
∑

�

H�R =
∑
�k

H�
kR�

k.

Then g′ = f(z)HU + HUf + HR maps a section of E� depending on ζ into a (current-valued)
section of E� depending on both ζ and z. Moreover, ∇ζ−zg

′ = 0 and g′0,0 = IE . If g is weight
with compact support, cf. Proposition 5.4 in [5], we therefore have the representation

φ(z) = fk+1(z)
∫
ζ

Hk+1Uφ∧ g +
∫
ζ

HkUfkφ∧ g +
∫
ζ

HkRφ∧ g,(5.4)

z ∈ D, for φ ∈ O(D,Ek). Thus we get an explicit realization (in terms of U ) of fk+1ψ = φ, if
fkφ = 0 and Rφ = 0, and thus an explicit proof of Proposition 2.3(i).

If we have a complex (1.2) over a neighborhood of D, and either f1 is generically surjective
or we have an extension to a generically exact complex ending at E−1, then (5.4) still holds for
k = 0. If R is Noetherian, then the last two terms vanish if and only if φ is in J . We thus obtain
an explicit realization of the membership of J .

In the same way as in [2] one can extend these formulas slightly, to obtain a characterization
of the module EJ of smooth tuples of functions generated by J , i.e., the set of all φ = f1ψ for
smooth ψ. For simplicity we assume that O(E0)/J has positive codimension so that f0 = 0.
Let R be a Noetherian current for J . First notice that if φ = f1ψ, then, cf. Proposition 2.2,
Rφ = R0φ = R0f1ψ − R1∂̄ψ = R∇ψ = ∇R1ψ = 0, so that Rφ = 0. Since each partial
derivative ∂/∂z̄j commutes with f1, we get that

R(∂αφ/∂z̄α) = 0(5.5)

for all multiindices α. The converse can be proved by integral formulas precisely as in [2], and
thus we have

THEOREM 5.1. – Assume that J ⊂ O⊕r0 is a coherent subsheaf such that O⊕r0/J has
positive codimension, and let R be a Noetherian residue current for J . Then an r0-tuple
φ ∈ E⊕r0 of smooth functions is in EJ if and only if (5.5) holds for all α.

Let J be a coherent Cohen–Macaulay ideal sheaf of codimension p over some pseudoconvex
set X and let μ be an analytic functional that annihilates J . In [19] was proved (Theorem 4.4)
that μ can be represented by an (n,n)-current μ̃ with compact support of the form μ̃ = α ∧ R,
where α is a smooth (n,n− p)-form with compact support and R is the Coleff–Herrera product
of a complete intersection ideal contained in J . In particular, μ̃ vanishes on EJ . As another
application of our integral formulas we prove the following more general result.
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THEOREM 5.2. – Let X be a pseudoconvex set in Cn and let J be a coherent subsheaf of
O(E0) 
O⊕r0 such that O(E0)/J has positive codimension. If μ ∈ O′(X,E∗

0) is an analytic
functional that vanishes on J , then there is an (n,n)-current μ̃ with compact support that
represents μ, i.e.,

μ.ξ = μ̃.ξ, ξ ∈O(X,E0),(5.6)

and such that μ̃ vanishes on EJ . More precisely we can choose μ̃ of the form

μ̃ =
∑

k

αkRk,

where R is a Noetherian residue current for J and αk ∈Dn,n−k(X,E∗
k).

Here Ek refers to the trivial vector bundles associated to a free resolution of O(E0)/J .

Proof. – Assume that μ is carried by the O(X)-convex compact subset K ⊂ X and let V
be an open neighborhood of K . For each z ∈ V we can choose a weight gz with respect to z,
such that z 	→ gz is holomorphic in V and all gz have support in some compact K̃ ⊂ X , see
Example 10 in [1]. Let R be a residue current for J , associated to a free resolution of O(E0)/J
in a neighborhood of K̃ , cf. Proposition 3.3. Now consider the corresponding decomposition
(5.4) (with k = 0) that holds for z ∈ V , with g = gz ; notice that f0 = 0 by the assumption on J .
The analytic functional μ has a continuous extension to O(K,E0) and since O(X) is dense in
O(K) μ will vanish on the first term on the right-hand side in (5.4). If we define the (n,n)-
current

μ̃ = μz(gz ∧H0)R =
∑

k

μz(gz
n−k,n−k ∧H0

k)Rk =
∑

k

αkRk,

then αk have compact support and (5.6) holds. Since R is Noetherian, μ̃ annihilates EJ . �

6. Homogeneous residue currents

We will now make a construction of homogeneous Noetherian residue currents in C
n+1. This

is the key to find global Noetherian currents for polynomial ideals in C
n by homogenization in

the next section. Let S = C[z0, z1, . . . , zn] be the graded ring of polynomials in C
n+1, and let

S(−d) be equal to S considered as an S-module, but with the grading shifted by −d, so that the
constants have degree d, the linear forms have degree d + 1, etc. Assume that

0 → MN → · · · →M1 →M0(6.1)

is a complex of free graded S-modules, where

M0 = S⊕r0 , Mk = S(−dk
1)⊕ · · · ⊕ S(−dk

rk
).

Then the (degree preserving) mappings are given by matrices of homogeneous elements in S. We
can associate to (6.1) a generically exact complex of vector bundles (1.2) over P

n in the following
way. Let O(�) be the holomorphic line bundle over Pn whose sections are (naturally identified
with) �-homogeneous functions in Cn+1. Moreover, let Ei

j be disjoint trivial line bundles over
Pn and let

Ek =
(
Ek

1 ⊗O(−dk
1)

)
⊕ · · · ⊕

(
Ek

r ⊗O(−dk
r )

)
.

k k
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Notice that the homogeneous elements in M� of degree r precisely correspond to the global
holomorphic sections of the bundle E� ⊗O(r).

The mappings in (6.1) induce vector bundle morphisms fk :Ek → Ek−1. We equip Ek with
the natural Hermitian metric, i.e., such that

∣∣ξ(z)
∣∣2
Ek

=
rk∑

j=1

∣∣ξj(z)
∣∣2|z|2dk

j ,

if ξ = (ξ1, . . . , ξrk
), and we have the associated currents U and R as before; they are associated

to the complex

0 → EN ⊗O(r) fN−−→ · · · f2−→ E1 ⊗O(r) f1−→ E0 ⊗O(r)(6.2)

as well.

Example 5. – For each j, k let εk
j be a global frame element for the bundle Ek

j . Then

R�
k =

r�∑
i=1

rk∑
j=1

(R�
k)ij ⊗ εk

i ⊗ (ε�
j)

∗,

where each (R�
k)ij is a (0, k − �)-current on P

n, taking values in Hom(O(−d�
j),O(−dk

i )) 

O(d�

j − dk
i ); alternatively (R�

k)ij can be viewed as a (d�
j − dk

i )-homogeneous current on
C

n+1 \ {0}. In the affine part U0 = {[z] ∈ P
n; z0 
= 0} we have, for each k, a holomorphic

frame

ek
j = z

−dk
j

0 εk
j , j = 1, . . . , rk,

for the bundle Ek . In these frames

R�
k =

r�∑
i=1

rk∑
j=1

(R̂�
k)ij ⊗ ek

i ⊗ (e�
j)

∗,(6.3)

where (R̂�
k)ij are (scalar-valued) currents in U0 
 C

n. Since (R̂�
k)ij are the dehomogenizations

of (R�
k)ij , and d�

j − dk
i � 0, it is easily seen that (R̂�

k)ij have current extensions to P
n.

If (6.1) is exact, then according to the Buchsbaum–Eisenbud theorem for graded rings, see
[22], the set in C

n+1 (or equivalently in P
n) where the rank of fk is strictly less than the generic

rank ρk , has at least codimension k. It follows, cf. the proof of Theorem 3.1, that R� = 0 for
� � 1, and (6.2) is exact. In particular, R = R0 is a Noetherian residue current for the subsheaf
J ⊗O(r) of O(E0 ⊗O(r)) generated by f1. Let now φ be a global holomorphic section φ of
E0 ⊗ O(r), that is generically in the image of f1, and such that Rφ = 0. Then ∇(U0φ) = φ,
cf. the proof of Proposition 2.3, and we obtain a holomorphic section ψ of E1 ⊗ O(r) such
that f1ψ = φ, provided that we can solve globally a sequence of ∂̄-equations. The first one is
∂̄wμ = U0

μφ, μ = min(N − 1, n), and the right hand side here is a (0, μ− 1)-current with values
in

Eμ ⊗O(r) 

rμ⊕

j=1

O(r − dμ
j ).
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Recall that H0,q(Pn,O(ν)) = 0 for all ν if 0 < q < n, whereas H0,n(Pn,O(ν)) = 0 if
ν � −n, see, e.g., [17]. Therefore the equation has a global solution if either N � n or
maxj(r− dn

j ) � −n. The other equations to solve, ∂̄wk = U0
kφ + fk+1wk+1, have lower degree

so then there are no cohomological obstructions. Thus we have:

PROPOSITION 6.1. – Assume that J ⊂ M0 is a homogeneous submodule and (6.1) a free
resolution of M0/J of minimal length, and let R be the associated Noetherian residue current.
Let φ be a holomorphic section of E0 ⊗ O(r) that lies generically in the image of f1 :E1 ⊗
O(r) → E0 ⊗O(r). If either

(i) N � n
or

(ii) r � maxj(dn+1
j )− n,

then f1ψ = φ has a global holomorphic solution if (and only if ) Rφ = 0.

Let (6.1) be any complex and let R be the associated residue current. If we in addition assume
that (6.1) has length at most n + 1, then by a similar argument as above it follows that (6.1) is
exact if and only if R� = 0 for all � � 1, i.e., if and only if (6.2) is exact, cf. Theorem 3.1.

Remark 2. – The minimal length N of a resolution (6.1) is equal to n + 1 − depth(M0/J)
by the Auslander–Buchsbaum theorem, see [21]. The condition (i) is equivalent to that
depth(M0/J) � 1 which means that M0/J contains a nontrivial nonzerodivisor. If J is defined
by a complete intersection, then the condition (i) is fulfilled. Also if Z is discrete and all the zeros
are of first order, then depthS/J = 1, see [22], so that (i) holds.

The least possible value of r in (ii) is closely related to the degree of regularity of J , see,
e.g., [22]. An estimate of the regularity for zero-dimensional ideals is given in [35]. See [8] for a
general criterion for a given degree of regularity. See also Remark 3 below.

7. Noetherian residue currents for polynomial ideals

We will now use the results from the previous section to obtain Noetherian residue currents
for (sheaves induced by) polynomial modules in Cn. Let z′ = (z1, . . . , zn) be the standard
coordinates in C

n that we identify with U0 = {[z] ∈ P
n; z0 
= 0}, where [z] = [z0, . . . , zn] are

the usual homogeneous coordinates on P
n. Let F1 be a Hom(Cr1 ,Cr0)-valued polynomial in

C
n, whose columns F 1, . . . , F r1 have (at most) degrees d1

1, . . . , d
1
r1

and let J be the submodule

of C[z1, . . . , zn]r0 generated by F 1, . . . , F r1 . After the homogenizations fk(z) = z
d1

k
0 F k(z′/z0)

we get an r0 × r1-matrix f1 whose columns are d1
k-homogeneous forms in C

n+1; thus a graded
mapping

f1 :S(−d1
1)⊕ · · · ⊕ S(−d1

r1
) → S⊕r0 .

Extending to a graded resolution (of minimal length) (6.1) we obtain a Noetherian residue current
R for the sheaf generated by f1 and an associated current U . In the trivializations in C

n 
 U0,
described in Example 5, the component Rk of R is the matrix (R̂0

k)ij . In the same trivializations
U �

k corresponds to a matrix (Û �
k)ij . Moreover, the mappings fk correspond to the matrices Fk

that are just the dehomogenizations of the matrices fk in (1.2).
If Φ is an r0-tuple of polynomials in C

n and there is a tuple Ψ of polynomials such that
Φ = F1Ψ in C

n then clearly RΦ = 0. Conversely, if RΦ = 0 in C
n (and the equation is locally

solvable generically) we know that Φ is in the sheaf generated by F1 and hence by Cartan’s
theorem there is a polynomial solution to F1Ψ = Φ. However, we now have a procedure to
find such a Ψ: Take a homogenization φ(z) = zr

0Φ(z′/z0) for some r � degΦ. The condition
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RΦ = 0 in Cn means that Rφ = 0 outside the hyperplane at infinity, so if r is large enough,
Rφ = 0 on P

n. Now Proposition 6.1 applies if either r is so large that condition (ii) is fulfilled,
or if the length of the resolution is less than n + 1. If r is chosen large enough we thus have
a holomorphic section ψ of E1 ⊗O(r) such that f1ψ = φ. After dehomogenization we get the
desired polynomial solution Ψ = (Ψj) to F1Ψ =

∑
F jΨj = Φ, and degF jΨj � r. It is well

known that in the worst case the final degree has to be doubly exponential; at least d2(n/10)
, if d

is the degree of F1, see [27].

Remark 3. – The final degree is essentially depending on the maximal polynomial degree in
the resolution, and it is known to be at worst like (2d)2

n−1 if d is the degree of the generators,
see [6].

We proceed with a result where we have optimal control of the degree of the solution; it is a
generalization of Max Noether’s classical theorem, [29]; see also [23].

THEOREM 7.1. – Let F 1, . . . , F r1 be r0-columns of polynomials in C
n and let J be the

homogeneous submodule of M0 = S⊕r0 defined by the homogenized forms f1, . . . , fr1 .
Furthermore, assume that the quotient module M0/J is Cohen–Macaulay and that no
irreducible component of Z is contained in the hyperplane at infinity. If Φ belongs to the
submodule J̃ ⊂ C[z′]r0 generated by F 1, . . . , F r1 , then there are tuples of polynomials Ψj with
deg(F jΨj) � degΦ such that F 1Ψ1 + · · ·+ F r1Ψr1 = Φ.

Sketch of proof. – We follow the procedure described above. Assume that codimM0/J = p.
The Cohen–Macaulay assumption means that dimM0/J = depthM0/J = n + 1 −
codimM0/J . By the Auslander–Buchsbaum theorem therefore we can choose a resolution (6.1)
of M0/J of length p, see [22]. Moreover all irreducible components of Z have codimension p.
We choose r = degΦ. Since Φ is in the ideal in C

n we have that Rφ = 0 in C
n. By Proposi-

tion 2.2, R = Rp and since Z has no component contained in the hyperplane at infinity, we can
copy the argument in the proof of Theorem 1.2 in [3] and conclude that Rφ = 0 in P

n. Since
p < n + 1, cf. Proposition 6.1, we can find a holomorphic section ψ of E1 ⊗ O(r) such that
f1ψ = φ. After dehomogenization we get the desired solution Ψ. �

We conclude this section with an explicit integral formula that provides a realization of
the membership of Φ in J ⊂ C[z1, . . . , zn]r0 ; for simplicity we assume that the matrix F1 =
(F 1, . . . , F r1) is generically surjective, i.e., has generic rank r0. From now on we write z rather
than z′. It is easy to see that one can choose Hefer matrices of forms H�

k satisfying (5.3) (with fk

replaced by Fk) that are polynomials in both z and ζ; in fact, the explicit formula in Section 4 in
[5] when applied to polynomials will produce polynomials. Notice that

g =
1 + 〈ζ̄ , z〉
1 + |ζ|2 +

i

2π
∂∂̄ log

(
1 + |ζ|2

)

is a weight in C
n with respect to the point z, cf. Section 5. Since gμ =O(1/|ζ|μ) for fixed z and

H� consists of polynomials, it follows that

gμ ∧H0R, gμ ∧H1U(7.1)

have current extensions to P
n if μ is large enough, cf. Example 5. Let χk(ζ) = χ(|ζ|/k), where

χ(t) is a cutoff function that is 1 for t < 1 and 0 for t > 2. If μ is sufficiently large, depending
on the order at infinity of R and U , we have that
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χkgμ ∧H0R → gμ ∧H0R, ∂̄χk ∧ gμ ∧H0R → 0,(7.2)

χkgμ ∧H1U → gμ ∧H1U, ∂̄χk ∧ gμ ∧H1U → 0, k →∞.

Let gk = χk − ∂̄χk ∧ s/∇ζ−zs, where s is the (1,0)-form in (5.2). Then gk ∧ gμ+m is a
compactly supported weight with respect to z if k > |z|, and hence we have the representation
(writing F rather than F1)

Φ(z) = F (z)
∫

gk ∧ gμ+m ∧H1UΦ +
∫

gk ∧ gμ+m ∧H0RΦ.

Notice that (
1 + 〈ζ̄, z〉
1 + |ζ|2

)m

P (ζ)

is smooth on P
n for fixed z if P is a polynomial with degP � m. If we let k →∞ we therefore

obtain

THEOREM 7.2. – Let F be a r0 × r1-matrix of polynomials in C
n with generic rank r0 and

let J be the submodule of C[z1, . . . , zn]r0 generated by the columns of F . For each given integer
m, with the notation above and for a large enough μ, we have the polynomial decomposition

Φ(z) = F (z)
∫

gμ+m ∧H1UΦ +
∫

gμ+m ∧H0RΦ(7.3)

of r0-columns Φ of polynomials with degree at most m, and the last term vanishes as soon as
Φ ∈ J .

The integrals here are to be interpreted as the action of currents on test functions on P
n. If

Φ belongs to J thus (7.3) provides a realization of the membership, expressed in terms of the
current U and the Hefer forms.

8. The fundamental principle

Let E1 and E0 be trivial bundles, let F be a Hom(E1,E0)-valued polynomial of generic
rank r0 = rankE0 and let FT be the transpose of F . Furthermore, let K be the closure of
an open strictly convex bounded domain with smooth boundary in R

n containing the origin.
The fundamental principle of Ehrenpreis and Palamodov states that every homogeneous solution
to the system of equations FT (D)ξ = 0, D = i∂/∂t, on K is a superposition of exponential
solutions with frequencies in the algebraic set Z = {z; rankF (z) < r}. Following the ideas in
[14] we can produce a residue version of the fundamental principle.

Let ρ(η) be the support function supt∈K〈η, t〉 for K but smoothened out in a neighborhood
of the origin in R

n. Since ρ is smooth in R
n and 1-homogeneous outside a neighborhood of the

origin, all its derivatives are bounded. Let

ρ′(η) = (∂ρ/∂η1, . . . , ∂ρ/∂ηn).

We extend to complex arguments ζ = ξ + iη by letting ρ(ζ) = ρ(η) and ρ′(ζ) = ρ′(η). Then ρ′

maps C
n onto K , see [14]. The convexity of ρ implies that

eρ(ζ)
∣∣ei〈ρ′(ζ),ζ−z〉∣∣ � eρ(z).(8.1)
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We are to modify the decomposition (7.3) to allow entire functions h with values in E0

satisfying an estimate like
∣∣h(z)

∣∣ � C
(
1 + |z|

)M
eρ(z)(8.2)

for some, from now on, fixed natural number M . We will use the same notation as in the previous
section. First we introduce a new weight.

LEMMA 8.1. – The form

g′ = ei〈ρ′(ζ),ζ−z〉+ i
π ∂∂̄ρ = ei〈ρ′(ζ),ζ−z〉

∑
��0

(
i

π
∂∂̄ρ

)�

/�!

is a weight for each fixed z ∈ C
n.

Proof. – Since ∂ρ/∂ζk = −(i/2)ρ′k(ζ),

γ = i
〈
ρ′(ζ), ζ − z

〉
+

i

π
∂∂̄ρ(ζ) = ∇ζ−z

−∂ρ

πi

is ∇ζ−z-closed and γ0,0(z) = 0. Thus γ and eγ are weights. �
It follows from (8.1) that

gμ ∧ g′ ∧H1Uh, gμ ∧ g′ ∧H0Rh

will vanish to a given finite order at infinity if μ is large enough and h(ζ) satisfies (8.2).
Therefore, if μ is large enough, using the compactly supported weights gk and arguing as in
the proof of Theorem 7.2, we obtain the decomposition

h(z) = F (z)
∫

g′ ∧ gμ ∧H1Uh +
∫

g′ ∧ gμ ∧H0Rh = FTh + Sh(8.3)

for all entire h satisfying (8.2). Furthermore, Sh vanishes if h = Fq for some holomorphic q,
and in view of (8.1), both Th and Sh satisfy (8.2) for some other large number M ′ instead of M .

Let E ′(K) be the space of distributions in R
n with support contained in K and let E ′,M (K)

denote the subspace of distributions of order at most M . For ω ∈ E ′(K) let ω̂(ζ) = ω(e−i〈ζ,·〉) be
its Fourier–Laplace transform. The Paley–Wiener–Schwartz theorem, see [26] Thm. 7.3.1, states
that if ν ∈ E ′,M (K), then

∣∣ν̂(ζ)
∣∣ � C

(
1 + |ζ|

)M
eρ(η),(8.4)

and conversely: if h is an entire function that satisfies such an estimate then h = ν̂ for some
ν ∈ E ′(K).

From (8.3), applied to ν̂ for ν ∈ E ′,M (K,E0), we therefore get mappings

T :E ′,M (K,E0)→E ′(K,E1), S :E ′,M (K,E0) →E ′(K,E0),

such that

ν = F (−D)T ν + Sν,
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and Sν = 0 if ν = F (−D)ω for some ω ∈ E ′
(K,E1). By duality we have mappings

T ∗ :E(K,E∗
1)→ CM (K,E∗

0), S∗ :E(K,E∗
0)→ CM (K,E∗

0 )

and they satisfy

ξ = T ∗FT (D)ξ + S∗ξ, ξ ∈ E(K,E∗
0).(8.5)

THEOREM 8.2. – Suppose that M � degF . If ξ ∈ E(K,E∗
0), then S∗ξ ∈ CM (K,E∗

0)
satisfies FT (D)S∗ξ = 0. If in addition FT (D)ξ = 0, then S∗ξ = ξ. Moreover, we have the
explicit formula

S∗ξ(t) =
∫
ζ

RT (ζ)αT (ζ,D)ξ(ρ′)e−i〈ζ,t−ρ′〉 ∧ e
i
π ∂∂̄ρ,(8.6)

where αT (ζ,D)ξ(ρ′) is the result when replacing each occurrence of z in αT (ζ, z) by D, letting
it act on ξ(t) and evaluating at the point ρ′(ζ).

Thus S∗ is a projection onto the space of homogeneous solutions.
Recall that ρ′ ∈ K . Also notice that Re−i〈ζ, t〉 = 〈η, t〉 � ρ(η) if t ∈ K , so combined with

(8.1) we get that

Re−i
〈
ζ, t− ρ′(ζ)

〉
� 0, t ∈K

(for ζ outside a neighborhood of 0). Therefore the integral in (8.6) has meaning if μ is large
enough.

Proof. – Suppose that M � degF . Then for ω ∈ E ′,M−deg F (K,E1) we have

ω.FT (D)S∗ξ = F (−D)ω.S∗ξ = S
(
F (−D)ω

)
.ξ = 0(8.7)

since τ = F (−D)ω ∈ E ′,M (K,E0) so that Sτ = 0. From (8.7) the first statement now follows.
The second one follows immediately from (8.5).

It remains to prove (8.6). The argument is very similar to the proof of Theorem 2 in [14] so
we only sketch it. To begin with we have

Sν̂(z) =
∫
ζ

α(ζ, z)R(ζ)ν̂(ζ)ei〈ζ−z,ρ′(ζ)〉 ∧ e
i
π ∂∂̄ρ(8.8)

where α(·, z) = gμ∧H0 is a polynomial in z. Let δt be the Dirac measure at t ∈K . Then, letting
T denote transpose of matrices, we have

S∗ξ(t) = δt.S∗ξ = (Sδt.ξ)T

=
1

(2π)n

∫
x

∫
ζ

RT (ζ)αT (ζ, x)e−i〈x,ρ′〉ξ̂(−x)e−i〈ζ,t−ρ′〉 ∧ e
i
π ∂∂̄ρ.

As in [14] one can verify that it is legitimate to interchange the order of integration, and then
(8.6) follows by Fourier’s inversion formula. �
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COROLLARY 8.3. – For any solution ξ ∈ E(K,E∗
0) of FT (D)ξ = 0, there are smooth forms

Ak(ζ) with values in E∗
k such that

ξ(t) =
∫
ζ

∑
k

RT
k (ζ)Ak(ζ)e−i〈ζ,t−ρ′(ζ)〉.(8.9)

Conversely, for any such smooth forms Ak(ζ) with sufficient polynomial decay at infinity the
integral (8.9) defines a homogeneous solution.

The last statement follows just by applying FT (D) to the integral and using that
FT (ζ)RT = 0.

Remark 4. – In case F defines a complete intersection, formulas similar to (8.9) were obtained
in [14] and [32]. In [14] is assumed, in addition, that FT (D) is hypoelliptic; then one can avoid
the polynomial weight factor gμ and so the resulting formula is even simpler. See also [10] and
[12].

Example 6 (A final example). – The ideal (z2
1 , z1z2) corresponds to the system

∂2

∂t21
ξ(t) = 0,

∂2

∂t1∂t2
ξ(t) = 0.

In view of (8.9) and Example 2, the solutions are precisely the functions that can be written

ξ(t) =
∫
z

[
1
z2

]
∂̄

[
1
z1

]
∧A1(z)dz2 ∧ dz̄1 ∧ dz̄2 e−i(z1t1+z2t2)

+
∫
z

∂̄

[
1
z2
1

]
∧ ∂̄

[
1
z2

]
∧A2(z)dz̄1 ∧ dz̄2 e−i(z1t1+z2t2),

for smooth functions A1 and A2 with appropriate growth. It is easily checked directly to be the
general solution, since the first integral is a quite arbitrary function C(t2) whereas the second
integral is an arbitrary polynomial C1 + C2t1.
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