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BOUNDARY BEHAVIOUR FOR p HARMONIC
FUNCTIONS IN LIPSCHITZ AND STARLIKE LIPSCHITZ

RING DOMAINS

BY JOHN L. LEWIS 1 AND KAJ NYSTRÖM

ABSTRACT. – In this paper we prove new results for p harmonic functions, p �= 2, 1 < p < ∞, in
Lipschitz and starlike Lipschitz ring domains. In particular we prove the boundary Harnack inequality,
Theorem 1, for the ratio of two positive p harmonic functions vanishing on a portion of the boundary of
a Lipschitz domain, with constants only depending on p,n and the Lipschitz constant of the domain. For
p capacitary functions, in starlike Lipschitz ring domains, we prove an even stronger result, Theorem 2,
showing that the ratio is Hölder continuous up to the boundary. Moreover, for p capacitary functions in
starlike Lipschitz ring domains we prove, Theorems 3 and 4, appropriate extensions to p �= 2, 1 < p < ∞,
of famous results of Dahlberg [12] and Jerison and Kenig [25] on the Poisson kernel associated to the
Laplace operator (i.e. p = 2).
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RÉSUMÉ. – Dans cet article, nous présentons de nouveaux résultats pour des fonctions p-harmoniques,
p �= 2, 1 < p < ∞, dans des domaines annulaires lipschitziens et lipschitziens étoilés. En particulier, nous
démontrons l’inégalité de Harnack au bord (Théorème 1) pour le rapport de deux fonctions p-harmoniques
strictement positives quand les deux fonctions s’annulent sur une partie du bord d’un domaine lipschitzien,
avec constantes ne dépendant que de p, de n et de la constante de Lipschitz. Pour les fonctions
p-harmoniques de capacité, dans des domaines annulaires lipschitziens étoilés, nous prouvons un résultat
encore plus fort (Théorème 2) démontrant que le rapport est Hölder continu jusqu’au bord. De plus, pour
les fonctions p-harmoniques de capacité dans des domaines annulaires lipschitziens étoilés, nous montrons
(Théorèmes 3 et 4) des extensions appropriées pour p �= 2, 1 < p < ∞, de résultats très connus de Dahlberg
[12] et de Jerison et Kenig [25] sur le noyau de Poisson associé à l’opérateur de Laplace (pour p = 2).

© 2007 Elsevier Masson SAS

1. Introduction

In this paper we prove a number of new results concerning the boundary behaviour of
p capacitary functions, p �= 2 and 1 < p < ∞, in starlike Lipschitz ring domains. Using our
results we are also able to prove the boundary Harnack inequality for the ratio of two positive
p harmonic functions, vanishing on a portion of the boundary of a bounded Lipschitz domain
Ω ⊂ R

n. The constants in the inequality only depend on p,n and the Lipschitz constant of Ω. To
put these results into perspective we note that the boundary Harnack inequality for harmonic
functions (i.e. p = 2) in a Lipschitz domain was first introduced in [26] and later proved
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766 J.L. LEWIS AND K. NYSTRÖM
independently by [4,12,44]. This inequality was generalized in [24], for p = 2, to nontangentially
accessible domains (NTA domains). In these settings it was also proved that the ratio of two
positive harmonic functions, vanishing on a portion of the boundary, is Hölder continuous up to
the boundary. The importance of these two results—the boundary Harnack inequality and Hölder
continuity up to the boundary for quotients of harmonic functions—to potential theory, boundary
value problems and free boundary problems in Lipschitz domains and beyond, for the Laplace
operator and more general elliptic second order operators, can hardly be overstated. To be specific
concerning areas where the above results are crucial we mention work of B. Dahlberg [12] as
well as Jerison and Kenig [25] on harmonic measure and the Poisson kernel in Lipschitz and C1

domains, the program of Caffarelli [7–9] for the analysis of elliptic free boundary problems and
the program carried out in the papers [3,23,27–30], on free boundary regularity and regularity of
the Poisson kernel below the continuous threshold.

Analogues of these results for the p Laplacian are easily stated but until now their proofs have
eluded the experts, primarily because this operator is nonlinear when p �= 2. In fact the results
and techniques of this paper define a starting point for far reaching developments concerning the
p Laplace operator in Lipschitz domains and beyond. In this paper, which is the first in a sequel,
we lay the groundwork for further developments by proving for p capacitary functions in starlike
Lipschitz ring domains: (a) the boundary Harnack inequality and Hölder continuity of quotients
up to the boundary (Theorem 2), and (b) analogues of results of Dahlberg [12] (Theorem 3)
and Jerison and Kenig [24] (Theorem 4). The boundary Harnack inequality is then (Theorem 1),
extended to general bounded Lipschitz domains and to general positive p harmonic functions
vanishing on a portion of the boundary through comparison with appropriate p capacitary
functions. Hence an in-depth analysis of p capacitary functions in starlike Lipschitz ring domains
is the main focus of this paper.

To proceed and to state our results we need to introduce some notation. Points in Euclidean
n space R

n are denoted by x = (x1, . . . , xn) or (x′, xn) where x′ = (x1, . . . , xn−1) ∈ R
n−1. We

let Ē, ∂E, diamE, be the closure, boundary, diameter, of the set E ⊂ R
n and we define d(y,E)

to equal the distance from y ∈ R
n to E. 〈·,·〉 denotes the standard inner product on R

n and
we let |x| = 〈x,x〉1/2 be the Euclidean norm of x. B(x, r) = {y ∈ R

n: |x − y| < r} is defined
whenever x ∈ R

n, r > 0, and dx denotes Lebesgue n measure on R
n. If O ⊂ R

n is open and
1 � q � ∞, then by W 1,q(O), we denote the space of equivalence classes of functions f with
distributional gradient ∇f = (fx1 , . . . , fxn), both of which are q-th power integrable on O. Let
‖f‖1,q = ‖f‖q + ‖|∇f |‖q be the norm in W 1,q(O) where ‖ · ‖q denotes the usual Lebesgue
q norm in O. Next let C∞

0 (O) be infinitely differentiable functions with compact support in O
and let W 1,q

0 (O) be the closure of C∞
0 (O) in the norm of W 1,q(O).

Given G a bounded domain (i.e., a connected open set) and 1 < p < ∞, we say that û is
p harmonic in G provided û ∈W 1,p(G) and

∫
|∇û|p−2〈∇û,∇θ〉dx = 0(1.1)

whenever θ ∈ W 1,p
0 (G). Observe that if û is smooth and ∇û �= 0 in G, then

∇ ·
(
|∇û|p−2∇û

)
≡ 0 in G(1.2)

so û is a classical solution in G to the p Laplace partial differential equation. Here, as in the
sequel, ∇· is the divergence operator. We note that φ :E → R is said to be Lipschitz on E
provided there exists b,0 < b < ∞, such that
4e SÉRIE – TOME 40 – 2007 – N◦ 5



BOUNDARY BEHAVIOUR FOR p HARMONIC FUNCTIONS 767
∣∣φ(z)− φ(w)
∣∣� b|z −w| whenever z,w ∈ E.(1.3)

The infimum of all b such that (1.3) holds is called the Lipschitz norm of φ on E, denoted ‖φ‖̂E .

It is well known that if E = R
n−1, then φ is differentiable on R

n−1 and ‖φ‖̂Rn−1 = ‖|∇φ|‖∞.
Finally let ei, 1 � i � n, denote the point in R

n with one in the i-th coordinate position and
zeroes elsewhere. We now formulate our result on the boundary Harnack inequality for positive
p harmonic functions in Lipschitz domains.

THEOREM 1. – Let G = {y = (y′, yn) ∈ R
n: yn > φ(y′)} where φ is Lipschitz on R

n−1.
Given p,1 < p <∞, w = (w′, φ(w′)) ∈ ∂G, and r > 0, suppose that ũ, ṽ are positive p harmonic
functions in G∩B(w,r), that ũ, ṽ are continuous in Ḡ∩B(w,r), ũ(w+ r

4en) = ṽ(w+ r
4en) = 1

and that ũ, ṽ = 0 on ∂G ∩ B(w,r). Then there exists c1,1 � c1 < ∞, depending only on p,n,
and ‖|∇φ|‖∞ such that

ũ(y)
ṽ(y)

� c1 whenever y ∈G∩B(w,r/c1).

The conclusion of Theorem 1 is known as a boundary Harnack inequality and as mentioned
above the boundary Harnack inequality for harmonic functions (i.e. p = 2) in a Lipschitz domain
was first introduced in [26], later proved independently by [4,12,44], and generalized in [24] to
NTA-domains. For p �= 2, and φ sufficiently smooth, we note that Theorem 1 follows from barrier
type estimates and the boundary maximum principle for p harmonic functions (see [2]). However
constants then depend on a certain smoothness norm of φ. We also remark that Theorem 1 is not
new in R

2. In fact in [5] it is shown that the conclusion of Theorem 1 is valid whenever w lies
on a quasicircle. Their proof however works only in two dimensions. Thus Theorem 1 is new for
p �= 2, 1 < p < ∞, n > 2.

In the setting of starlike Lipschitz ring domains we are able to prove a refined version of
Theorem 1 including the Hölder continuity of quotients of solutions. To formulate our results we
have to introduce some more notation. A bounded domain Ω ⊂ R

n is said to be starlike Lipschitz
with respect to x̂ ∈Ω provided

∂Ω =
{
x̂ + R(ω)ω: ω ∈ ∂B(0,1)

}
where logR :∂B(0,1)→ R is Lipschitz on ∂B(0,1).

We say that D is a starlike Lipschitz ring domain with center x̂ provided D = Ω\ Ω̄′ where Ω,Ω′

are starlike Lipschitz domains with center x̂ and Ω̄′ ⊂ Ω. Let R,R′ be the graph functions for
∂Ω, ∂Ω′. We shall refer to ‖ logR‖̂∂B(0,1) + ‖ logR′‖̂∂B(0,1) as the Lipschitz constant for D.
Observe that this constant is invariant under scaling about x̂ and also that diamΩ ≈ d(x̂, ∂Ω),
diamΩ′ ≈ d(x̂, ∂Ω′), where A≈ B means A/B is bounded above and below by constants which
depend only on p,n, and the Lipschitz constant for D. If p is fixed, 1 < p < ∞, let û = û(·, p)
be the p capacitary function for D. That is û ≡ 1 on ∂Ω′, û ≡ 0 on ∂Ω in the sense of W 1,p

0 (Ω)
and û is p harmonic in D. It is well known that û is unique and

∫
D

|∇û|p dx = inf
{∫

D

|∇θ|p dx

}
(1.4)

where the infimum is taken over all θ ∈ C∞
0 (Ω) with θ ≡ 1 on Ω̄′. We are able to prove the

following theorem on the boundary behaviour of p capacitary functions.
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768 J.L. LEWIS AND K. NYSTRÖM
THEOREM 2. – Let D̂1, D̂2 be starlike Lipschitz ring domains with centers, x̂, ŷ, respectively.
For fixed p, 1 < p < ∞, let ûi be the p capacitary function for D̂i, and put ũi = min(ûi,1− ûi)
for i = 1,2. Assume also that w ∈ ∂D̂1 ∩ ∂D̂2, x̂, ŷ /∈B(w,16r),

B(w,2r)∩ D̂1 = B(w,2r)∩ D̂2,

and B̄(w,8r) does not contain points in either both bounded components or both unbounded
components of R

n \ D̂i for i = 1,2. Then there exist α, c2, 0 < α � 1 � c2 <∞, depending only
on p,n, and the Lipschitz constants for D̂1, D̂2, such that if w1,w2,∈ B̄(w,r)∩ D̂1, then

∣∣∣∣ ũ1(w1)
ũ2(w1)

− ũ1(w2)
ũ2(w2)

∣∣∣∣� c2
ũ1(ar(w))
ũ2(ar(w))

(
|w1 −w2|

r

)α

,

where ar(w) is a point in B̄(w,r) ∩ D̂1 with d(ar(w), ∂D̂1) = sup{d(y, ∂D̂1):
y ∈ B̄(w,r)∩ D̂1}.

Theorem 1 is proved at the end of Section 4. As noted earlier, the proof of this theorem uses
Theorem 2 and a comparison argument involving p capacitary functions. Thus we briefly outline
the proof of Theorem 2. We start by noting that if û(·, λ), λ ∈ [0,1], is p harmonic in a domain G,
∇û(x,λ) is nonzero for x ∈ G, and if û is sufficiently smooth in x,λ, then ζ = ∂û

∂λ (·, λ) satisfies,
at x, the partial differential equation

Lζ = ∇ ·
[
(p− 2)|∇û|p−4〈∇û,∇ζ〉∇û + |∇û|p−2∇ζ

]
= 0.(1.5)

This follows from differentiating (1.2) for û with respect to λ. In (1.5) we have written ∇û for
∇û(·, λ). Clearly,

Lû(x, ·) = (p− 1)∇ ·
[
|∇û|p−2∇û(x, ·)

]
= 0.(1.6)

(1.5) can be written in the form

Lζ =
n∑

i,j=1

∂

∂xi

[
bij(x)ζxj (x)

]
= 0,(1.7)

where at x ∈ G,

bij(x) = |∇û|p−4
[
(p− 2)ûxi ûxj + δij |∇û|2

]
(x), 1 � i, j � n,(1.8)

and δij is the Kronecker δ. Again we have written ∇û for ∇û(·, λ). The first key observation
in the proof of Theorem 2 is that û(·, λ), ∂û

∂λ (·, λ), both satisfy the divergence form partial
differential equation (1.7).

To continue our outline of the proof of Theorem 2, the proof uses a delicate deformation
technique for starlike Lipschitz ring domains. To describe this technique and to simplify matters,
we consider the following special case of Theorem 2. Let ûi be the p capacitary functions for
starlike Lipschitz ring domains, D̂i, with D̂i = Ω̂i \ B̄(x̂, ρ), i = 1,2, w ∈ ∂Ω̂1 ∩ ∂Ω̂2, and

d(x̂, ∂Ω̂i)/4 � ρ � d(x̂, ∂Ω̂i)/2 for i = 1,2.

Let R̂i, i = 1,2, be the corresponding graph functions for ∂Ω̂i and assume that R̂i, i = 1,2,
is infinitely differentiable on the manifold ∂B(0,1). Put R̂(τ) = R̂τ

2R̂1−τ
1 , 0 � τ � 1, and
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BOUNDARY BEHAVIOUR FOR p HARMONIC FUNCTIONS 769
let Ω̂(τ) be the starlike Lipschitz domain with center x̂, graph function R̂(τ), while D̂(τ) =
Ω̂(τ) \ B̄(x̂, ρ) is the corresponding ring domain. Let û(·, τ), τ ∈ [0,1], be the p capacitary
function for D̂(τ) so that û(·,0) = û1, û(·,1) = û2. In Lemma 2.5 we show that

∣∣∇û(x, τ)
∣∣≈ û(x, τ)

d(x,∂Ω̂(τ))
whenever x ∈ D̂(τ).(1.9)

This fact and Schauder type arguments imply (see Lemma 4.5) that û(x, τ) is smooth in x, τ
whenever x ∈

⋃
D̂(τ). Hence {û(x, τ)}, τ ∈ [0,1], is a smooth deformation of û1(x) to û2(x)

and (1.5)–(1.8) hold with λ replaced by τ. Using this deduction we get

log
(

û2(x)
û1(x)

)
=

1∫
0

ûτ (x, τ)
û(x, τ)

dτ.(1.10)

It follows, from the assumptions in Theorem 2, that

D̂(τ)∩B(w,2r) = D̂1 ∩B(w,2r) for all τ ∈ [0,1].(1.11)

Furthermore it turns out, if for example R̂2 � R̂1, that ûτ > 0 in D̂(τ) and ûτ = 0 continuously
on B(w,2r) ∩ ∂D̂1. Therefore we see, in view of (1.10) and the first key observation, that
in order to prove the above simplified version of Theorem 2, it suffices to show that ûτ/û is
Hölder continuous in D̂1 ∩B(w,r) with constants independent of τ , 0 < τ < 1. Thus the proof
of Theorem 2 is, in this case, reduced to proving a boundary Harnack inequality for positive
solutions to (1.5) vanishing on B(w,2r)∩ ∂D̂1. To prove such an inequality we note that if p is
near enough 2, p �= 2, then we can use (1.9) and argue as in [36] to deduce first that |∇û(·, τ)|p−2

extends to an A2 weight on R
n and second apply results from [15–17] to get the desired boundary

Harnack inequality. Thus in this case one first gets Hölder continuity of ûτ (·, τ)/û(·, τ) and then
of û1/û2. In the general case, 1 < p < ∞, p �= 2, we must work harder, as simple examples
show that h = |∇û|p−2(·, τ) need not be an A2 weight. To get around this difficulty we use some
Rellich type inequalities (see Lemmas 2.39, 2.45, 2.54) and a theorem of Kenig and Pipher [31]
(see Theorem 3.11) to show directly in the spirit of Jerison and Kenig (see Lemma 3.13) that
ûτ (·, τ)/û(·, τ) is Hölder continuous in D̂1 ∩B(w,r).

Finally we note that we currently cannot prove Hölder continuity in Theorem 1, using a similar
variational type argument (as in Theorem 2), because we cannot prove a boundary Harnack
inequality for the resulting partial differential equation satisfied by ûτ , û. At the very least it
appears that one needs to know that inequalities similar to (1.9) hold for ũ, ṽ in B(w,r/c) ∩ G
for some large c depending only on p,n, and the Lipschitz constant for φ.

Next we formulate results on nontangential limits, at the boundary, for gradients of
p capacitary functions in starlike Lipschitz ring domains. In particular we state generalizations
of work by Dahlberg [12] (Theorem 3), and results of Jerison and Kenig [25] (Theorem 4). To do
this we shall need some more notation. Let D = Ω \ Ω̄′ be a starlike Lipschitz ring domain with
center x̂ and as previously, let R,R′ be the graph functions for ∂Ω, ∂Ω′. Let w ∈ ∂D, r > 0, and
suppose that

x̂ /∈B(w,8r), as well as, either B(w,8r)∩ ∂Ω′ = ∅ or B(w,8r)∩ ∂Ω = ∅.(1.12)

We say that B(w,8r)∩∂D is C1 provided R̃ is continuously differentiable on {(y − x̂)/|y − x̂|:
y ∈B(w,8r)∩∂D}, where R̃ = R′ if B(w,8r)∩∂Ω = ∅ and R̃ = R when B(w,8r)∩∂Ω′ = ∅.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



770 J.L. LEWIS AND K. NYSTRÖM
Given b > 1 and x ∈ ∂D ∩B(w,2r), let Γ(x) = {y ∈ D ∩B(w,8r): |y − x|< bd(y, ∂D)}. We
note from elementary geometry that if b is large enough (depending on the Lipschitz constant for
D), then Γ(x) contains the inside of a truncated cone with vertex x, axis parallel to x̂− x, angle
opening θ = θ(b) > 0, and height r. Fix b so that this property holds for all x ∈ ∂D ∩B(w,2r).
Given a measurable function k on D ∩ B(w,8r) define the nontangential maximal function
N(k) :∂D ∩B(w,2r)→ R of k by

N(k)(x) = sup
y∈Γ(x)

|k|(y) whenever x ∈ ∂D ∩B(w,2r).(1.13)

Let Hm,1 � m � n, denote m-dimensional Hausdorff measure (see [40] for a definition) and let
Lq[∂D ∩B(w,2r)],1 � q � ∞, be the usual space of q-th power Hn−1 integrable functions on
∂D ∩B(w,2r). Given a measurable function f on ∂D ∩B(w,2r) we say that f is of bounded
mean oscillation on ∂D ∩B(w,r) (f ∈BMO(∂D ∩B(w,r))) if for all x ∈ ∂D ∩B(w,r) and
0 < s � r, there exists 0 < A <∞ satisfying∫

B(x,s)∩∂D

|f − fB |dHn−1 � Asn−1.(1.14)

Here fB denotes the average of f on B(x, s) ∩ ∂D with respect to Hn−1 measure. The least
such A for which (1.14) holds will be denoted by ‖f ‖̃. We say that f is in VMO(∂D∩B(w,r))
provided for each ε > 0 there is a δ > 0 such that (1.14) holds with A replaced by ε whenever
0 < s < min(δ, r) and x ∈ ∂D ∩ B(w,r). Using this notation, Lemmas 2.39, 2.45, 2.54, and
Theorem 3.11, we prove the following two theorems.

THEOREM 3. – Let D be a starlike Lipschitz ring domain with center x̂ and r,w as in (1.12).
Let u be the p capacitary function for D. Then

lim
y∈Γ(x), y→x

∇u(y) = ∇u(x) for Hn−1 almost every x ∈ ∂D.

Furthermore, there exist 1 � c < ∞ and q, q > p, depending only on p,n, and ‖|∇φ|‖∞ such
that

(a) N
(
|∇u|

)
∈ Lq

(
∂D ∩B(w,2r)

)
,

(b)
∫

B(w,2r)∩∂D

|∇u|q dHn−1 � cr(n−1)( p−1−q
p−1 )

( ∫
B(w,2r)∩∂D

|∇u|p−1 dHn−1

)q/(p−1)

,

(c) log |∇u| ∈BMO(∂D ∩B(w,r)) with ‖log |∇u|‖̃ � c.

THEOREM 4. – If ∂D ∩B(w,8r) is C1 and u,D, r,w are as in Theorem 3, then

log |∇u| ∈VMO
(
∂D ∩B(w,r)

)
.

The rest of the paper is organized as follows. In Section 2 we state and derive some basic
lemmas which will be used in the proof of Theorems 1–4. In Section 3 we introduce elliptic
measure defined with respect to the partial differential equation in (1.7), (1.8), and derive a
boundary Harnack inequality for positive solutions. In Section 4 we study variations of capacitary
functions in smooth starlike Lipschitz ring domains and prove Theorem 1. In Section 5 we prove
Theorems 2, 3, 4.
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2. Basic estimates

Let Ω+,Ω− be starlike Lipschitz domains with center ẑ and Ω̄− ⊂ Ω+. Let R+,R− be the
graph functions for Ω+,Ω− and put D̂ = Ω+ \ Ω̄−. Let β be the Lipschitz constant for D̂. In
the sequel, unless otherwise stated, c will denote a positive constant � 1 (not necessarily the
same at each occurrence), depending only on p, n, and β. In general, c(a1, . . . , an) denotes a
positive constant � 1, which depends on p,n,β and a1, . . . , an, not necessarily the same at each
occurrence. Let û be the p capacitary function for D̂ and put û ≡ 1 on Ω̄− while û ≡ 0 on
R

n \ Ω+. With û now defined on R
n let maxB(z,s) û,minB(z,s) û be the essential supremum

and infimum of û on B(z, s) whenever B(z, s) ⊂ R
n. We say that (1.12) holds for w, provided

w ∈ ∂D̂ and (1.12) is valid with x̂,Ω,Ω′ replaced by ẑ,Ω+,Ω−, respectively. To begin this
section, we state some interior and boundary estimates for û.

LEMMA 2.1. – Let û be the p capacitary function for D̂ and put ũ = min(û,1− û).
(a) If B(w,2r)⊂ D̂, or (1.12) holds for w, then

rp−n

∫
B(w,r/2)

|∇û|p dx � c max
B(w,r)

ũp.

(b) If B(w,2r)⊂ D̂, then maxB(w,r) ũ � cminB(w,r) ũ.

(c) If B(w,2r)⊂ D̂, or (1.12) holds for w, then

∣∣ũ(x)− ũ(y)
∣∣� c

(
|x− y|

r

)α

max
B(w,2r)

ũ whenever x, y ∈ B(w,r).

Proof. – (a) of Lemma 2.1 is a standard subsolution estimate. (b) is a well-known Harnack
inequality for positive solutions of p Laplacian type. If B(w,2r) ⊂ D̂, then (c) is a well-known
interior Hölder continuity estimate for solutions of p Laplacian type (see [41] for these results).
If (1.12) holds for w, then (c) follows from simple barrier type estimates (see also [19]). �

LEMMA 2.2. – Let ũ be as in Lemma 2.1 and suppose (1.12) holds for w. Then
maxB(w,2r) ũ � cũ(ar(w)) where ar(w) is a point in B̄(w,r) with d(ar(w), ∂D̂) =
sup{d(y, ∂D̂): y ∈ B̄(w,r)∩ D̂}. Thus

∣∣ũ(x)− ũ(y)
∣∣� c

(
|x− y|

r

)α

ũ
(
ar(w)

)
whenever x, y ∈ B(w,r).

Proof. – The first inequality in Lemma 2.2 follows from a general argument using Lem-
ma 2.1 often attributed to Carleson (see [10]). However Domar was apparently the first to
use this argument (see [1]). The second inequality follows from the first inequality and Lem-
ma 2.1(c). �

LEMMA 2.3. – û has a representative in W 1,p(Rn) that has Hölder continuous partial
derivatives in D̂. That is, for some σ ∈ (0,1] (depending only on p,n) we have

c−1
∣∣∇û(x)−∇û(y)

∣∣� (
|x− y|/r

)σ max
B(w,r)

|∇û|� cr−1
(
|x− y|/r

)σ max
B(w,2r)

û

whenever x, y ∈ B(w,r/2) and B(w,4r)⊂ D̂.
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Proof. – The proof of Lemma 2.3 can be found in [13], [36] or [43]. �
LEMMA 2.4. – û is C∞ in D̂ \ {x: ∇û(x) = 0}. Moreover if R+,R− are infinitely

differentiable (R+,R− ∈C∞[∂B(0,1)]), then there exists an open neighborhood N of ∂D̂ such
that minD̂∩N |∇û|> 0 and û has a C∞ extension to the closure of D̂ ∩N.

Proof. – If R+,R− are infinitely differentiable, then from Lemma 2.3 and a result of
Lieberman [38] it follows that ∇û has a Hölder γ extension to the closure of D̂ for some
γ ∈ (0,1], depending on p,n and the C2 norm for ∂D̂. Using this result and barriers of the
form

x → A|x− z|(p−n)/(p−1) + B for p �= n, A log |x− z|+ B for p = n,

where z ∈ D̂ and A,B are constants, we conclude that there exists a neighborhood N of ∂D̂
for which minD̂∩N |∇û| > 0. Second from (1.2) and this conclusion we see that û is a solution
to a nondivergence form uniformly elliptic equation with Hölder continuous coefficients in the
closure of D̂ ∩ N. We now use Schauder theory (see [20, Chapters 6, 9]) and a bootstrap type
argument to get that û has a C∞ extension to the closure of D̂ ∩ N. A similar argument gives
that û is infinitely differentiable in a neighborhood of each point x ∈ D̂ where ∇û(x) �= 0. �

LEMMA 2.5. – Let ũ be as in Lemma 2.1 and suppose that (1.12) holds for w. There exists c
such that

(i) 0 <
∣∣∇û(x)

∣∣� c

〈
ẑ − x

|ẑ − x| ,∇û(x)
〉

whenever x ∈ D̂,

(ii) c−1ũ(x)/d(x,∂D̂) �
∣∣∇û(x)

∣∣� cũ(x)/d(x,∂D̂) whenever x ∈ D̂ ∩B(w,3r),

(iii) max
B(x, s

2 )

n∑
i,j=1

|ûyiyj |� c

(
s−n

∫
B(x,3s/4)

n∑
i,j=1

|ûyiyj |2 dy

)1/2

� c2ũ(x)/d(x,∂D̂)2

whenever x ∈ D̂ ∩B(w,2r) and 0 < s � d(x,∂D̂).

Proof. – Since (1.2) is invariant under translations we assume, as we may, that ẑ = 0. We also
temporarily assume that

R+,R− ∈ C∞[
∂B(0,1)

]
.(2.6)

Let θ(x) = −〈x,∇û(x)〉, x ∈ D̂. Then from Lemma 2.4 we deduce that θ has a continuous
extension to the closure of D̂. We claim for some ε > 0 that

θ � ε in D̂.(2.7)

To prove claim (2.7) first observe from (2.6) and Lemma 2.4 that there exists a neighborhood N
of ∂D such that

θ � 2ε in D̂ ∩N(2.8)

for ε small enough. Second, given η > 0, 0 < η � 1/2, let v = v(·, η) be the weak solution to

∇ ·
[(

η + |∇v|2
)(p/2−1)∇v

]
= 0 in D̂(2.9)

with boundary values 1 on Ω̄−, 0 on R
n \ Ω+ in the sense of the Sobolev space W 1,p

0 . We
note that Lemmas 2.1–2.4 are valid with û replaced by v. Moreover, an examination of the
proofs in the references after these lemmas shows that the constants and Hölder exponents in
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Lemmas 2.2, 2.3 can, for a fixed p,1 < p <∞, be chosen independent of η ∈ (0,1/2]. Using this
fact, we deduce that any W 1,p weakly convergent subsequence of {v(·, η)} converges uniformly
as η → 0 to a weak solution, say ṽ, to the p Laplacian in D̂ with continuous boundary values 1
on ∂Ω− and 0 on ∂Ω+. From the weak maximum principle for the p Laplace equation, it follows
that ṽ = û. Thus, v(·, η),∇v(·, η)→ û,∇û as η → 0, uniformly on compact subsets of D̂. From
Schauder type estimates it then follows for each positive integer k that ∂kv → ∂kû uniformly on
compact subsets of V = D̂ \ {x: ∇û(x) = 0}. Here ∂k denotes a k-th partial. Finally v(·, η) is
infinitely differentiable in D̂, as follows once again from Schauder theory and the fact that (2.9)
is uniformly elliptic in D̂.

Given ξ ∈ R
n, |ξ|= 1, and η ∈ (0,1/2] let f = 〈∇v, ξ〉. Differentiating (2.9) in the direction ξ

we get

L∗f =
n∑

i,j=1

∂

∂xi
(b∗ijfxj ) = 0(2.10)

in D̂, where at x ∈ D̂,

b∗ij =
(
η + |∇v|2

)(p/2−2)[(p− 2)vxivxj + δij

(
η + |∇v|2

)]
(2.11)

for 1 � i, j � n. In (2.11), δij again denotes the Kronecker δ. We have

min(p− 1,1)
(
η + |∇v|2

)(p/2−1)|ξ|2

�
n∑

i,j=1

b∗ijξiξj � max(p− 1,1)
(
η + |∇v|2

)(p/2−1)|ξ|2
(2.12)

at x ∈ D̂. Let θ∗ = θ∗(·, η) be defined on D̂ by θ∗(x) = −〈∇v(x), x〉, x ∈ D̂.
From (2.9), (2.10), we find at x ∈ D̂, that

L∗(θ∗) = (p− 2)η∇ ·
[(

η + |∇v|2
)(p/2−2)∇v

]
.(2.13)

Set ψ(x) = min(θ∗(x) − ε,0) and let ζ ∈ C∞
0 (D̂) with ζ ≡ 1 on D̂ \ N. Observe from (2.8)

and uniform convergence of ∇v to ∇û, that for sufficiently small η, say 0 < η � η0, we have
ψζ2 ≡ 0 in D̂ ∩ N̄ . From this observation and the definition of ζ we see that ∇(ψζ2) = (∇ψ)ζ2

for almost every x in D̂ (with respect to Lebesgue n measure). Using this fact, (2.12), (2.13),
and integrating by parts we get,

I = min(p− 1,1)
∫
D̂

(
η + |∇v|2

)(p/2−1)|∇ψ|2ζ2 dx �
n∑

i,j=1

∫
D̂

b∗ijψxiθ
∗
xj

ζ2 dx

= (p− 2)η
∫
D̂

(
η + |∇v|2

)(p/2−2)〈∇v,∇(ψζ2)
〉
dx ≡ J.

(2.14)

From Cauchy’s inequality, we have

J � cI1/2K1/2(2.15)
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where

K = η2

∫
D̂

(
η + |∇v|2

)(p/2−3)|∇v|2ζ2 dx.

For small δ > 0 we write,

K =
∫

{|∇û|�δ}∩D̂

. . . +
∫

{|∇û|>δ}∩D̂

. . . = K1 + K2.

Now limη→0 K2 = 0, as we see from uniform convergence of ∇v to ∇û on the support of ζ.
Also, limsupη→0K1 � Aδp for some 1 < A <∞, independent of δ. Since δ > 0 is arbitrary, we
conclude that limη→0 K = 0. Using this equality, the Fatou lemma, and uniform convergence of
∂kv to ∂kû on compact subsets of V = D̂ \ {x: û(x) = 0}, we deduce from (2.14), (2.15) that∫

{θ<ε}∩V

|∇û|p−2|∇θ|2ζ2 dx = 0

which implies in view of (2.8) that either {θ < ε} is empty or θ is constant on components of
{θ < ε} ∩ V. The latter possibility cannot occur. In fact from (2.8), the only possible boundary
points of such components are points in D̂\V where θ ≡ 0. Thus θ ≡ 0 in {θ < ε}∩D. However
this deduction is impossible, since from continuity of θ, connectivity of D̂, and (2.8) we would
have to have θ = ε/2 at some point in D̂. Thus claim (2.7) is valid.

To continue the proof of Lemma 2.5, observe from assumption (2.6) and Lemma 2.4 that for c
large enough (depending only on β),

g(x) = cθ(x)− |x|
∣∣∇û(x)

∣∣> 0(2.16)

for x ∈ ∂D̂. Here we have also used the fact that ∇û is normal to tangent planes through points of
∂D̂ and starlike Lipschitzness of ∂D̂. We assert that (2.16) also holds in D̂, which clearly implies
Lemma 2.5(i). To prove our assertion, let L be the operator in (1.7), (1.8) defined relative to û
(to get L replace v by û and put η = 0 in the definition of L∗ in (2.10)). We note that Lθ = 0 in D̂,
as follows from Lemma 2.4, (2.7), and either the discussion above (1.6) with û(·, λ) replaced by
û(λx) or (2.13) with η = 0. To show that g cannot have a negative minimum in D̂ it suffices to
show

L
(
|x|

∣∣∇û(x)
∣∣)� 0 for all x ∈ D̂,(2.17)

as we find from (2.7) and a standard argument for uniformly elliptic PDE in divergence form. To
this end observe from symmetry and smoothness of {bij(x)}, 1 � i, j � n, that at x ∈ D̂,

L
(
|x||∇û|

)
= |∇û|L

(
|x|

)
+ |x|L

(
|∇û|

)
+ 2|x|−1|∇û|−1

(
n∑

i,j,k=1

bijxiûxk
ûxkxj

)
.

(2.18)

To simplify the calculations we note that solutions to the p Laplacian (see (1.2)) remain solutions
under rotations. Moreover, g is invariant under rotations around the origin. Thus we assume, for
fixed x ∈ D̂, that

∇û = |∇û|en,(2.19)
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since otherwise we change coordinate systems. From (1.8) or (2.11) with η = 0, v = û, and (2.19)
we see at x that ⎧⎨

⎩
bij = 0 for i �= j,
bii = |∇û|p−2 for 1 � i < n,
bnn = (p− 1)|∇û|p−2.

(2.20)

Differentiating (1.8) and using (2.19) we find at x that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂bij

∂xi
= 0 for i �= j, 1 � i, j < n,

∂bii

∂xi
= ∂bni

∂xn
= (p− 2)|∇û|p−3ûxixn when i < n,

∂bin

∂xi
= (p− 2)|∇û|p−3ûxixi if 1 � i < n,

∂bnn

∂xn
= (p− 1)(p− 2)|∇û|p−3ûxnxn .

(2.21)

We have

|∇û|L
(
|x|

)
= |∇û||x|−1

n∑
i,j=1

∂bij

∂xi
xj + |∇û||x|−3

n∑
i,j=1

bij

(
|x|2δij − xixj

)
= T1 + T2.

(2.22)

We note that (1.7) for û, (2.20), (2.21) imply that

(p− 1)ûxnxn +
n−1∑
i=1

ûxixi = 0.(2.23)

Using (2.21), (2.23) we get at x,

T1 = (p− 2)|∇û|p−2|x|−1

[
n−1∑
i=1

(2xiûxixn + xnûxixi) + (p− 1)xnûxnxn

]

= 2(p− 2)|∇û|p−2|x|−1
n−1∑
i=1

xiûxixn .

(2.24)

Also, from (2.20) we deduce

T2 = |∇û|p−1|x|−3

[
n−1∑
i=1

(
|x|2 − x2

i

)
+ (p− 1)

(
|x|2 − x2

n

)]

= |∇û|p−1|x|−3

[
(n + p− 3)

(
n−1∑
i=1

x2
i

)
+ (n− 1)x2

n

]
.

(2.25)

Next we note that ûxk
is a classical solution to (1.7), (1.8), as we see from (2.7), the discussion

above (1.5) with û(x,λ) = û(x+λek) and the chain rule (see also (2.10)). Using this observation,
(2.19), and (2.20) we find at x that
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|x|L
(
|∇û|

)
= |x|

n∑
i,j,k=1

∂

∂xi

[
(bij ûxkxj )

(
ûxk

|∇û|−1
)]

= |x||∇û|−1
n∑

i,j=1

n−1∑
k=1

bij ûxkxi ûxkxj(2.26)

= |x||∇û|p−3

[
n−1∑
i,k=1

û2
xkxi

+ (p− 1)
n−1∑
k=1

û2
xkxn

]
.

Finally using (2.20) we see at x that

2|x|−1|∇û|−1

(
n∑

i,j,k=1

bijxiûxk
ûxkxj

)

= 2|x|−1|∇û|p−2

(
n−1∑
i=1

xiûxixn + (p− 1)xnûxnxn

)
.

(2.27)

Using (2.22), (2.24)–(2.27) in (2.18) and gathering terms we obtain after some juggling that

|∇û|3−p|x|3L
(
|x||∇û|

)
=

[
(n + p− 3)|∇û|2

(
n−1∑
i=1

x2
i

)
+ 2(p− 1)|∇û||x|2

(
n−1∑
i=1

xiûxixn

)

+ (p− 1)|x|4
n−1∑
i=1

û2
xixn

]

+

[
(n− 1)|∇û|2x2

n + 2(p− 1)|∇û||x|2xnûxnxn + |x|4
n−1∑
i,k=1

û2
xixk

]
.

(2.28)

To complete the proof of (2.17) we show both terms in brackets in (2.28) are nonnegative. In fact
from Schwarz’s inequality we see that(

n−1∑
i=1

xiûxixn

)2

�
(

n−1∑
i=1

û2
xixn

)
·
(

n−1∑
i=1

x2
i

)
.(2.29)

Using (2.29) in the first term in brackets in (2.28) (along with 2ab � a2 + b2) we deduce that this
term is nonnegative. Also from (2.23) and Schwarz’s inequality we find

(p− 1)2û2
xnxn

� (n− 1)
n−1∑
i=1

û2
xixi

.(2.30)

Using (2.30) in the second term in brackets in (2.28) and Schwarz’s inequality, we conclude that
this term is also nonnegative. Thus (2.17) is true. From our earlier remarks we obtain (2.16) in D̂.
Hence Lemma 2.5(i) is true under assumption (2.6).

To continue the proof of Lemma 2.5 we note that the upper bound in Lemma 2.5(ii) follows
from Lemma 2.3. We use (2.16) to prove the lower bound in Lemma 2.5(ii). We first show that

max
B(x,s)

θ � c min
B(x,s)

θ whenever B(x,4s)⊂ D̂.(2.31)
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To prove (2.31) observe from (2.16) and (1.8) that there exists c for which

c−2|x|2−pθ(y)p−2|ξ|2 � c−1
∣∣∇û(y)

∣∣p−2|ξ|2 �
n∑

i,j=1

bij(y)ξiξj

� c
∣∣∇û(y)

∣∣p−2|ξ|2 � c2|x|2−pθ(y)p−2|ξ|2
(2.32)

whenever y ∈ B(x,2s) and ξ ∈ R
n. Using (2.32) and (1.7) for θ we see that Moser iteration

can be applied to powers of θ in the usual way (see [41]) in order to get (2.31). To prove the
lower bound in Lemma 2.5(ii), we consider two cases. First suppose that ∂Ω− ∩ B(w,8r) = ∅.
From Lemmas 2.1, 2.2 we see that ũ ≈ û in B(w,6r) ∩ D̂ with proportionality constants
depending only on p,n,β. If x ∈ B(w,3r) ∩ D̂, we can draw a ray l in D̂ from x to a point
in B̄(x,d(x,∂D̂)) ∩ ∂Ω+ thanks to (1.12) for w. Let y be the first point on l (starting from x)
with û(y) = û(x)/2. Then from the mean value theorem of elementary calculus there exists z on
the part of l between x, y with

û(x)/2 = û(x)− û(y) �
∣∣∇û(z)

∣∣|y − x|.(2.33)

From Lemma 2.2 we deduce the existence of c with

y, z ∈B
[
x, (1− c−1)d(x,∂D̂)

]
.(2.34)

From (2.34), (2.31), and (2.16) it follows that for some c, |∇û(z)| � c|∇û(x)|. Using this
inequality in (2.33) we conclude that

û(x) � c
∣∣∇û(x)

∣∣d(x,∂D̂).

Hence the lower bound in Lemma 2.5(ii) is valid if w ∈ ∂Ω+. A similar argument applies if
w ∈ ∂Ω−. We omit the details. Thus Lemma 2.5(ii) is valid.

Finally Lemma 2.5(ii) implies that the PDE in (1.7), (1.8) is uniformly elliptic in
B(x,3d(x,∂D̂)/4) with Hölder continuous coefficients involving derivatives of û. Since deriv-
atives of û satisfy (1.7) (as mentioned above (2.26)), we can differentiate (1.7) to get a diver-
gence form PDE for second derivatives of u. DiGiorgi or Moser iteration can then be applied
to get Lemma 2.5(iii). One can also obtain Lemma 2.5(iii) from Schauder type estimates for
the nondivergence form PDE satisfied by û as in Lemma 2.4. Thus Lemma 2.5 is valid under
assumption (2.6).

To complete the proof of Lemma 2.5 we show that assumption (2.6) is unnecessary. For this
purpose let R+

m,R−
m ∈ C∞(∂B(0,1)) for m = 1,2, . . . , with ‖ logR∗

m‖̂ � kβ, and R∗
m →R∗ as

m →∞ uniformly on ∂B(0,1) whenever ∗ ∈ {+,−}. Here k depends only on n. Let D̂m, ûm

be the ring domain and p capacitary function with center ẑ, corresponding to R+
m,R−

m. From
Lemmas 2.2, 2.3 we see that ûm,∇ûm converge uniformly on compact subsets of D̂ to û,∇û.
We apply Lemma 2.5 to each ûm. Since the constants in this lemma and (2.31) are independent
of m we conclude that Lemma 2.5 also holds for û without hypothesis (2.6). The proof of
Lemma 2.5 is now complete. �

LEMMA 2.35. – Let ũ, û, D̂, be as in Lemma 2.5. There exists unique finite positive Borel
measures μ+, μ− on R

n with support in ∂Ω+, ∂Ω−, respectively, such that if μ = μ+−μ−, then
(a)

∫
|∇û|p−2〈∇û,∇φ〉dx = −

∫
φdμ whenever φ ∈C∞

0 (Rn).
(b) If w satisfies (1.12) then there exists c such that c−1rp−nμ̃[B(w,4r)] � ũ(ar(w))p−1 �

crp−nμ̃[B(w,r/2)], where μ̃ = μ+ if B(w,8r) ∩ ∂Ω− = ∅ and μ̃ = μ− if B(w,8r) ∩
∂Ω+ = ∅.
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Proof. – Existence and uniqueness of μ satisfying Lemma 2.35(a) is easily proved using
Lemmas 2.1 and 2.2 (see [5] or [21] for a proof). Assuming Lemma 2.35(a) one gets the left-
hand inequality in Lemma 2.35(b) by first choosing φ ∈C∞

0 (B(w,6r)) with φ≡ 1 on B(w,4r)
and then using Lemma 2.1. The right-hand inequality in Lemma 2.35(b) is essentially proved in
[32, Lemma 3.1] (see also [14, Lemma 1]). �

From Lemma 2.5 it is easily seen that

D(t) =
{
x: t < û(x) < 1

}
and D′(t) =

{
x: 0 < û(x) < t

}
, 0 < t < 1,

are starlike Lipschitz ring domains with center ẑ

and constants depending only on β.

(2.36)

Moreover, (1 − t)−1 max{û − t,0} and min{û/t,1} are the p capacitary functions for
D(t),D′(t), respectively. If B(w,8r) ∩ Ω− = ∅, let μt, μ

−, be the measures corresponding to
max{û− t,0} in D(t), as in Lemma 2.35. We note that

dμt(w) = |∇û|p−1(w)dHn−1(w) for w ∈
{
x: û(x) = t

}
,(2.37)

as follows from Lemma 2.35(a) with μ+ replaced by μt, Lemmas 2.4, 2.5, and integration by
parts. A similar argument gives that μt, μ

+ are the measures corresponding to min(u, t) in D′(t).
Moreover, since û ∈ W 1,p(Rn), it is easily deduced from Lemma 2.35(a) that

μt → μ+, μ− weakly in the sense of measures as t→ 0,1 respectively.(2.38)

Next we have the following reverse Hölder inequality.

LEMMA 2.39. – Let μ,w be as in Lemma 2.35. Then dμ/dHn−1 = ±kp−1 on B(w,8r)∩∂D̂
where k � 0 with

∫
B(w,2r)∩∂D̂

kp dHn−1 � cr−
n−1
p−1

( ∫
B(w,2r)∩∂D̂

kp−1 dHn−1

)p/(p−1)

.

Proof. – Again we consider two cases. If B(w,8r)∩Ω− = ∅, we first show that Lemma 2.39
is valid with μ+ replaced by μt for t sufficiently near 0. Again we assume that ẑ = 0. For t
near 0, and 2r < s < 3r, we note from Lemmas 2.4, 2.5 that integration by parts can be used to
get

∫
∂[B(w,s)∩D(t)]

〈x, ν〉|∇û|p dHn−1 =
∫

B(w,s)∩D(t)

∇ ·
(
x|∇û|p

)
dx

= n

∫
B(w,s)∩D(t)

|∇û|p dx

+
n∑

i,j=1

∫
B(w,s)∩D(t)

p|∇û|p−2xj ûxi ûxixj dx

(2.40)
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where ν denotes the outer unit normal to the boundary of B(w,s) ∩ D(t). Now from (1.2) and
integration by parts, we deduce

n∑
i,j=1

∫
B(w,s)∩D(t)

p|∇û|p−2xj ûxi ûxixj dx

= −p

∫
B(w,s)∩D(t)

|∇û|p dx + p

∫
∂[B(w,s)∩D(t)]

〈x,∇û〉〈∇û, ν〉|∇û|p−2 dHn−1.

Using this equality in (2.40) we get

I =
∫

∂[B(w,s)∩D(t)]

〈x, ν〉|∇û|p dHn−1

− p

∫
∂[B(w,s)∩D(t)]

〈x,∇û〉〈∇û, ν〉|∇û|p−2 dHn−1

= (n− p)
∫

B(w,s)∩D(t)

|∇û|p dx.

(2.41)

We note that ν = − ∇û
|∇û| on ∂D(t)∩B(w,s). Thus from (2.41)

(p− 1)
∫

∂D(t)∩B(w,s)

〈x,∇û〉|∇û|p−1 dHn−1 = I + E(2.42)

where

|E|� (p + 1)
∫

∂B(w,s)∩D(t)

|x||∇û|p dHn−1.

Next choose s ∈ (2r,3r) so that

∫
∂B(w,s)∩D(t)

|∇û|p dHn−1 � 2r−1

∫
B(w,3r)∩D(t)

|∇û|p dx.

This choice is possible from weak type estimates. Using these inequalities in (2.42), d(0, ∂D̂) ≈
diam D̂, and (2.5)(i), we deduce

∫
B(w,s)∩∂D(t)

|x||∇û|p dHn−1 � c
[
d(0, ∂D̂)/r

] ∫
B(w,3r)∩D(t)

|∇û|p dx + |I|.(2.43)
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Then from (2.43), (2.41), (2.37), Lemmas 2.1, 2.2, 2.35 with D̂, û, replaced by D(t),
(1− t)−1 max(û− t,0), we find that

c−2

∫
B(w,s)∩∂D(t)

|∇û|p dHn−1 � c−1r−1

∫
B(w,3r)∩D(t)

|∇û|p dx

� r−
n−1
p−1

( ∫
B(w,2r)∩∂D(t)

|∇û|p−1 dHn−1

)p/(p−1)

� cr−p+n−1û
(
a3r(w)

)p

= cr−
n−1
p−1

(
μt

[
B(w,2r)

])p/(p−1)
.

(2.44)

In (2.44) we have also used the fact that d(0, ∂D̂) > r. Thus Lemma 2.39 holds with k = |∇û|
and μ+, D̂ replaced by μt,D(t). Using the change of variables formula we can pull back each μt

to a measure on ∂B(0,1). In view of (2.44) and (2.36) we see that the Radon–Nikodym derivative
of each pullback measure with respect to Hn−1 measure on ∂B(0,1), satisfies a Lp/(p−1)

reverse Hölder inequality on {x/|x|: x ∈ B(w,2r) ∩ ∂D(t)}. Moreover Lp/(p−1) and Hölder
constants depend only on p,n,β, for small t > 0. Hence any sequence of these derivatives has a
subsequence that converges weakly in Lp/(p−1). Using these observations, lower semicontinuity
of the norm in Lp/(p−1) under weak convergence, (2.38), and letting t → 0 we get the Radon–
Nikodym derivative of the pullback of μ+ on B(w,2r)∩ ∂D̂ satisfies a Lp/(p−1) reverse Hölder
inequality. Transforming back, we conclude that Lemma 2.39 is true when B(w,8r)∩∂Ω− = ∅.
If B(w,8r) ∩ ∂Ω+ = ∅, we can use the same argument with D(t) replaced by D′(t). Letting
t→ 1 and taking limits as above we get Lemma 2.39 in this case also. �

We use Lemma 2.39 to prove the following localization lemma.

LEMMA 2.45. – Let ũ, û, and D̂ be as in Lemma 2.5. Let w satisfy (1.12) and let w′ ∈ D̂ be
the point on the ray from ẑ through w with |w−w′|= r/4. There exist c and a starlike Lipschitz
domain Ω̃ ⊂ B(w,2r)∩ D̂ with center at w′,

cHn−1
[
∂Ω̃∩B(w,r)∩ ∂D̂

]
� rn−1,

and Lipschitz constant β′ � c(β + 1). Moreover if x ∈ Ω̃, then

c−1r−1ũ(w′) �
∣∣∇û(x)

∣∣� cr−1ũ(w′).

Proof. – As usual we consider two cases. First suppose that B(w,8r) ∩ ∂Ω− = ∅. From
Lipschitzness of ∂D̂ and basic geometry we deduce the existence of c′ (depending only on
p,n,β) such that if

R̂(ω) = |x−w′| when ω =
x−w′

|x−w′| , x ∈B(w,r/c′)∩ ∂D̂,

then log R̂ is Lipschitz on E =
{

x−w′

|x−w′| : x ∈ B(w,r/c′)∩ ∂D̂

}

with ‖ log R̂‖̂E � c′(β + 1).

(2.46)

One proof of (2.46) is to observe that it is equivalent to the statement that the cones Γ(x), x ∈
B(w,r/c′) ∩ ∂D̂, defined above (1.13), each contain w′. (2.46) can also be deduced from
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basic trigonometry using starlike Lipschitzness of D̂ with respect to ẑ. Let r′ = r/c′ and for
x ∈B(w,r′)∩ ∂D̂ set

M1(x) = inf
0<s<r′

s1−n

∫
B(x,s)∩∂D̂

kp−1 dHn−1,

M2(x) = sup
0<s<r′

s1−n

∫
B(x,s)∩∂D̂

kp−1 dHn−1.

We claim there exist a compact set F ⊂ B(w,r′/4) ∩ ∂D̂ and c′′ (depending only on p,n,β)
with

c′′M1 > (r′)1−pû
(
ar′(w)

)p−1
on F and c′′Hn−1(F ) > (r′)n−1.(2.47)

In fact if

ε = (1/c′′)(r′)1−pû
(
ar′(w)

)p−1
,

G =
{
x ∈B(w,r′/4)∩ ∂D̂: M1(x) � ε

}
,

then by a standard covering argument there exists {B(xi, ri)} with xi ∈ G, 0 < ri � r′,
G ⊂

⋃
i B(xi, ri) and {B(xi, ri/10)} pairwise disjoint. Also,

∫
B(xi,ri)∩∂D̂

kp−1 dHn−1 � 2εrn−1
i for each i.

Using these facts and Hn−1[B(xi, ri/10)∩ ∂D̂]≈ rn−1
i , we get

∫
G

kp−1 dHn−1 �
∑

i

∫
B(xi,ri)∩∂D̂

kp−1 dHn−1

� 2ε
∑

i

rn−1
i � cε(r′)n−1.

(2.48)

On the other hand if Λ = B(w,r′/4) ∩ ∂D̂ \ G, then from Lemmas 2.39, 2.35, with r replaced
by r′/8, and Hölder’s inequality, we get for some c,

∫
Λ

kp−1 dHn−1 � Hn−1(Λ)1/p ·
( ∫

B(w,r′/4)∩∂D̂

kp dHn−1

)1−1/p

� c
[
(r′)1−nHn−1(Λ)

]1/p ·
∫

B(w,r′/4)∩∂D̂

kp−1 dHn−1

� c2
[
(r′)1−nHn−1(Λ)

]1/p(r′)n−pû
(
ar′(w)

)p−1
.

(2.49)

Since

(r′)n−pû
(
ar′(w)

)p−1 � c

∫
B(w,r′/4)∩∂D̂

kp−1 dHn−1
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we can add (2.48), (2.49) to get after division by (r′)n−pû(ar′(w))p−1 that for some c,

c−1 �
[
(r′)1−nHn−1(Λ)

]1/p + 1/c′′.(2.50)

Clearly (2.50) implies (2.47) with F replaced by Λ. A standard measure theory argument then
shows that we can replace Λ by suitable F compact, F ⊂Λ. Thus (2.47) is valid.

Fix c′′ so that (2.47) holds. To continue, we use the Hardy–Littlewood Maximal theorem (see
[42, ch. 1]) and Lemmas 2.35, 2.39, to find F ′ compact, F ′ ⊂ F and c̄ � c′′ such that

M2 � c̄(r′)1−pû
(
ar′(w)

)p−1
on F ′ and c̄Hn−1(F ′) � (r′)n−1.

Combining this inequality with (2.47) and using Harnack’s inequality (Lemma 2.1(b)), we have
for some c,

c−1r1−pû(w′)p−1 � s1−n

∫
B(x,s)∩∂D̂

kp−1 dHn−1 � cr1−pû(w′)p−1

for x ∈ F ′ and 0 < s < r′ where Hn−1(F ′) � c−1rn−1.

(2.51)

Next we draw all rays from points in B̄(w′, r/c) to points in F ′. Let Ω̃ be the interior of this
set. Using (2.46) it is easily seen for c large enough that Ω̃ is starlike Lipschitz with center at w′

and Lipschitz constant � c(β + 1). Also from (2.51) we see that

cHn−1
[
∂Ω̃∩B(w,r)∩ ∂D̂

]
� rn−1.

If x ∈ Ω̃ and d(x,∂D̂) � r′/105, then from Lemma 2.5(ii) and Harnack’s inequality, we find that

c−1r−1û(w′) �
∣∣∇û(x)

∣∣� cr−1û(w′).(2.52)

Otherwise there exists x̃ ∈ F ′ with |x − x̃| � cd(x,∂D̂). Choose s, 0 < s < r′, such that
s � |x− x̃|� cs. Using Lemmas 2.35, 2.39, 2.5(ii), (2.51), and Harnack’s inequality we conclude
that ∣∣∇û(x)

∣∣p−1 ≈
[
û(x)/d(x,∂D̂)

]p−1 ≈ s1−n

∫
B(x̃,s)∩∂D̂

kp−1 dHn−1

≈ r1−pû(w′)p−1

(2.53)

where all proportionality constants depend only on p,n,β. Thus (2.52) holds in this case also.
The proof of Lemma 2.45 is now complete when B(w,8r) ∩ ∂Ω− = ∅. An essentially identical
argument holds if B(w,8r)∩ ∂Ω+ = ∅. �

Finally in this section we use Lemmas 2.45, 2.5 to show that if

dσ̃(y) = d(y, ∂Ω̃) max
B(y, 1

2 d(y,∂Ω̃))

{
|∇û|2p−6

n∑
i,j=1

û2
xixj

}
dy

when y ∈ Ω̃, then σ̃ is a Carleson measure on Ω̃. More specifically we prove the following
lemma.
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LEMMA 2.54. – Let w,w′, r, Ω̃ be as in Lemma 2.45. If z ∈ ∂Ω̃ and 0 < s < r, then

σ̃
(
B(z, s)∩ Ω̃

)
� csn−1

(
ũ(w′)/r

)2p−4
.

Proof. – We only give the proof when B(w,8r) ∩ Ω− = ∅. Let R̃ be the graph function for
Ω̃. We let for, 0 < ε < 1

100 min∂B(0,1) R̃, R = R̃ − ε and let Ω be the starlike Lipschitz domain

with center w′, graph function R. If z ∈ ∂Ω̃ and 0 < s � 1
2d(z, ∂D̂), we can use Lemmas 2.45,

2.5, and the fact that d(y, ∂Ω̃) � d(y, ∂D̂) for y ∈ Ω̃, to get that Lemma 2.54 is valid in this
case. Otherwise, we use a simplified version of the argument in [34,35]. Again, let L, (bij),
1 � i, j � n, be as in (1.7), (1.8), defined relative to û, D̂. Since derivatives of û are solutions to
Lζ = 0 (see the remark above (2.26)), we find at x ∈ D̂,

L
(
|∇û|2

)
=

n∑
i,j=1

∂

∂xi

[
bij

∂

∂xj

(
|∇û|2

)]

= 2
n∑

i,j=1

bij ûxixj ûxixj � min(1, p− 1)|∇û|p−2
n∑

i,j=1

û2
xixj

.

(2.55)

Also we note from (2.5)(ii), (iii) and Lemma 2.45 that

∫
B(z,s)∩Ω

d(y, ∂Ω) max
B(y, 1

2 d(y,∂Ω))

{
|∇û|2p−6

n∑
i,j=1

û2
xixj

}
dy

� c

∫
B(z,s)∩Ω

d(y, ∂Ω)1−n

( ∫
B(y, 3

4 d(y,∂Ω))

|∇û|2p−6
n∑

i,j=1

û2
xixj

dx

)
dy

� c

∫
B(z,4s)∩Ω

d(y, ∂Ω)
∣∣∇û(y)

∣∣2p−6
n∑

i,j=1

û2
yiyj

dy

(2.56)

where the third integral is obtained from the second integral by interchanging the order of
integration. Define σ as above Lemma 2.54 with Ω̃ replaced by Ω. Using (2.55), (2.56) and
once again Lemmas 2.5, 2.45 we see that

σ
[
B(z, s)∩Ω

]
� c

∫
B(z,4s)∩Ω

d(y, ∂Ω)
∣∣∇û(y)

∣∣2p−6
n∑

i,j=1

û2
yiyj

dy

� c

(
û(w′)

r

)(p−5) ∫
B(z,4s)∩Ω

û(y)L
(
|∇û|2

)
(y)dy.

(2.57)

We note that the divergence theorem can be used in B(z,4s)∩Ω. Since Lû = 0 in D̂ we have∫
B(z,4s)∩Ω

ûL
(
|∇û|2

)
dy =

∫
B(z,4s)∩Ω

[
ûL

(
|∇û|2

)
− |∇û|2Lû

]
dy.

Hence, if we let ν = (ν1, . . . , νn) be the outer unit normal to B(z,4s)∩Ω, then
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∣∣∣∣
∫

B(z,4s)∩Ω

ûL
(
|∇û|2

)
dy

∣∣∣∣� 2

∣∣∣∣∣
∫

∂[B(z,4s)∩Ω]

n∑
i,j,k=1

ûνibij ûxk
ûxkxj dHn−1

∣∣∣∣∣
+

∣∣∣∣∣
∫

∂[B(z,4s)∩Ω]

n∑
i,j=1

|∇û|2νibij ûxj dHn−1

∣∣∣∣∣(2.58)

� cs(n−1)r−(p+1)û(w′)p+1

where we have used |bij | � p|∇û|p−2, and once again Lemmas 2.5, 2.45 to make estimates.
Combining (2.57)–(2.58) letting ε → 0, and using Fatou’s lemma we conclude that Lemma 2.54
is true. �

3. Elliptic measure and a boundary Harnack inequality

To continue the program outlined in Section 1, let û, D̂, ẑ,Ω+,Ω−,R+,R−, β, be as in
Section 2. Throughout this section we assume that

R+,R− ∈ C∞(
∂B(0,1)

)
.(3.1)

Let L, (bij), be as in (1.7), (1.8) relative to û, D̂. Then from (3.1), Lemmas 2.4, 2.5, see that (bij)
is symmetric and infinitely differentiable in the closure of D̂. Also,

c−1
∣∣∇u(y)

∣∣p−2|ξ|2 �
n∑

i,j=1

bij(y)ξiξj � c|ξ|2
∣∣∇u(y)

∣∣p−2
(3.2)

whenever y ∈ D̂ and ξ ∈ R
n, so (bij) is uniformly elliptic in D̂. Let H ⊂ D̂ be either a starlike

Lipschitz domain or H = D̂. Using the above facts and arguing as in [39] we deduce the existence
of Green’s function, g(·, ·) :H ×H → (0,∞] with the following properties.

(a′) g(x, y) = g(y,x) when x �= y,x, y ∈H,

(b′) ζg(·, y) ∈W 1,2
0

[
H \ B̄(y, ε)

]
whenever B̄(y, ε)⊂ Hand ζ ∈C∞

0

(
R

n \ B̄(y, ε)
)
,

(c′) if x �= y, x, y ∈ B

[
y,

d(y, ∂D̂)
2

]
∩H , then, g(x, y)≈

(
û(y)

d(y, ∂D̂)

)2−p

|x− y|2−n

for n > 2 and for n = 2, g(x, y) ≈
(

û(y)
d(y, ∂D̂)

)2−p

log
(

2d(y, ∂D̂)
|x− y|

)
,

(d′) if y ∈ H, let g(·, y)≡ 0 on R
n \H. Then g(·, y) is continuous on R

n \ {y}.

(3.3)

In (c′) we have used Lemma 2.5 to estimate the ellipticity constants in (3.2). Also all
proportionality constants depend only on p,n, and β. For given y ∈ H extend g(·, y) to a
continuous function on R

n \ {y} as in (d′). Then there exists a positive Borel measure, ω(·, y),
on R

n with support in ∂H,ω(∂H,y) = 1, and the property that

θ(y) =
∫ n∑

i,j=1

θxibijgxj (·, y)dx +
∫

θ dω(·, y)(3.4)
4e SÉRIE – TOME 40 – 2007 – N◦ 5



BOUNDARY BEHAVIOUR FOR p HARMONIC FUNCTIONS 785
whenever θ ∈C∞
0 (Rn). Observe from (3.4) with θ ∈ C∞

0 (H \{y}) that g(·, y) is a weak solution
to L in H \ {y}. From Schauder or Moser–DiGiorgi type estimates it follows that g(·, y) is
an infinitely differentiable solution to L in H \ {y} which extends to a continuous function in
R

n \ {y} with g(·, y)≡ 0 on R
n \H. Using this fact, we deduce the following interior estimates

for g(·, y).

LEMMA 3.5. – If B(z,4s)⊂ H \ {y}, then,

(a) s2−n

∫
B(z,s/2)

∣∣∇g(·, y)
∣∣2 dx � c max

B(z,s)
g(·, y)2,

(b) max
B(z,s)

g(·, y) � c min
B(z,s)

g(·, y),

(c) For some 0 < α̂ < 1, |g(ζ, y) − g(ξ, y)| � c( |ζ−ξ|
s )α̂ maxB(z,s) g(·, y) whenever

ζ, ξ ∈B(z, s).

Proof. – From Lemma 2.5 and (3.2) we see that the ellipticity constants for L are bounded
above and below in B(z,2s) by constant multiples of ( u(z)

d(z,∂D̂)
)p−2 (depending only on p,n,β).

Thus Lemma 3.5 follows from standard estimates of the above mentioned authors. �
Using (3.4), Lemma 3.5, and arguing as in [39], one can deduce by way of a method of Perron–

Wiener–Brelot, that the continuous Dirichlet problem for L in H has a solution in the sense that
given a continuous function f on ∂H there exists a strong solution F to L in H with F = f
continuously on ∂H. Indeed,

F (y) =
∫

f dω(·, y) for y ∈H.

If H = D̂, then from C∞ smoothness of bij , ∂D̂, as well as (3.2) and Schauder type arguments,
one can show that g(·, y) extends to a C∞ function in the closure of D̂ (away from y). Using this
fact and the divergence theorem we deduce that on ∂D̂,

dω(·, y) = |∇g|−1(·, y)
n∑

i,j=1

bijgxi(·, y)gxj (·, y)dHn−1 ≈ |∇û|p−2
∣∣∇g(·, y)

∣∣dHn−1.(3.6)

ω(·, y) is called elliptic measure for H relative to L and y ∈H. We say that ω(·, y) is a doubling
measure if, for some 1 � C <∞,

ω
(
B(x,2s), y

)
� Cω

(
B(x, s), y

)
whenever x ∈ ∂H and 0 < s � diamH.(3.7)

ω(·, y) is said to be an A∞ weight with respect to Hn−1 on ∂H if ω(·, y) is a doubling
measure and for some δ > 0 there exists ε = ε(δ) > 0 with the property that if E is Borel,
E ⊂ B(x, s)∩ ∂H (x, s, as in (3.7)), then

Hn−1(E)
Hn−1(B(x, s)∩ ∂H)

� δ −→ ω(E,y)
ω(B(x, s), y)

� ε(3.8)

(see [11] for several equivalent characterizations of A∞). Let ω̂, ĝ denote elliptic measure and
Green’s function for D̂. We prove the following result on the elliptic measure.
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LEMMA 3.9. – Let x ∈ ∂D̂, 0 < ρ, suppose ẑ /∈ B(x,8ρ) and either B(x,8ρ) ∩ ∂Ω+ = ∅ or
B(x,8ρ)∩ ∂Ω− = ∅. Then for some η > 0 (depending only on p,n,β)

ω̂
(
B(x,ρ), aρ(x)

)
� η.

Proof. – We note that aρ(x) is defined as in Lemma 2.2 with r,w replaced by ρ,x. To prove
Lemma 3.9, let x′ ∈ D̂ be the point on the ray from ẑ through x with |x′ − x| = ρ. Let Ω̃ be as
in Lemmas 2.45, 2.54, defined relative to x,x′, ρ. From the definition of (bij) in (1.8) we find at
y ∈ Ω̃ that

n∑
i,j=1

|∇bij |2 � c|∇û|2p−6
n∑

i,j=1

|ûyiyj |2.

From this display and Lemma 2.54 we conclude that if

dγ(y) =
n∑

i,j=1

d(y, ∂Ω̃) max
B̄(y, 1

2 d(y,Ω̃))
|∇bij |2 dy for y ∈ Ω̃,

then γ is a Carleson measure on Ω̃ with

sup
0<s<ρ

γ(B(z, s)∩ Ω̃)
sn−1

� c

(
u(x′)

ρ

)2p−4

whenever z ∈ ∂Ω̃.(3.10)

Let ω̃(·, x′) be elliptic measure for Ω̃ defined relative to L,x′. We shall need the following
theorem of [31] tailored to our situation (see also [22, ch. 3]). �

THEOREM 3.11. – If (3.10) holds then ω̃(·, x′) is an A∞ weight with respect to Hn−1 with
constants C in (3.7) and δ, ε in (3.8) depending only on p,n,β.

Proof. – We note that the dependence of the constants in Theorem 3.11 can be easily checked
since if

b′ij =
(

u(x′)
ρ

)2−p

bij

then ω̃(·, x′) is obviously a solution in Ω̃ to the PDE one gets from replacing (bij) by (b′ij) in
the definition of L. Moreover ellipticity constants in (3.2) and the Carleson norm in (3.10) taken
relative to (b′ij) depend only on p,n,β. �

To get Lemma 3.9 from Theorem 3.11, we first observe from Lemma 2.45 that

Hn−1
(
B(x,ρ)∩ ∂Ω̃∩ ∂D̂

)
� ρn−1/c.

In particular there exist x̃ ∈ ∂Ω̃ and c̃ > 1 such that B(x̃, ρ/c̃)⊂ B(x,ρ) and

Hn−1
(
B(x̃, ρ/c̃)∩ ∂Ω̃∩ ∂D̂

)
� ρn−1/c.

Applying Theorem 3.11 we deduce from the definition of A∞ in (3.8) that

ω̃
(
B(x̃, ρ/c̃)∩ ∂D̂,x′)� c−2ω̃

(
B(x̃, ρ/c̃), x′)� c−3,
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where the last inequality follows from the doubling property of ω̃ and the fact that ω̃(∂Ω̃, x′) = 1.
Thus from the maximum principle we have for some c

ω̂
(
B(x,ρ)∩ ∂Ω̃, x′)� ω̃

(
B(x,ρ)∩ ∂D̂,x′)� c−1.

We note that Harnack’s inequality holds for ω̂(·, y) with constants depending only on p,n,β
by the same reasoning as in Lemma 3.5(b). From Harnack’s inequality, we see that x′ can be
replaced by aρ(x) in the above inequality. Hence Lemma 3.9 is true.

If x,ρ are as in Lemma 3.9 we claim that

ω̂
(
B(x,ρ), y

)
� c−1 whenever y ∈B(x,ρ/4)∩ D̂.(3.12)

In fact given y as in (3.12) choose ŷ ∈ ∂D̂ with |y − ŷ| = d(y, ∂D̂). Put ρ̂ = 2|y − ŷ| and
observe that Lemma 3.9 can be used with x,ρ replaced by ŷ, ρ̂. Doing this and using Harnack’s
inequality we get claim (3.12). Our goal is to prove a boundary Harnack inequality for L. Using
the argument in [22, ch. 2, sec. 3] or [6, Lemma 2.2], it will turn out that (3.12), (3.3)(c′), and
Harnack’s inequality are enough to give this inequality.

LEMMA 3.13. – Let w ∈ ∂D̂, r > 0. Suppose that ẑ /∈ B(w,8r) and either B(w,8r) ∩
∂Ω− = ∅ or B(w,8r) ∩ ∂Ω+ = ∅. Let h1, h2 be positive solutions to L in D̂ ∩ B(w,r) with
hi = 0, i = 1,2, continuously on ∂D̂ ∩B(w,r). There exists ĉ (depending only on p,n,β), such
that if r̂ = r/ĉ, then

ĉ−1 h1(ar̂(w))
h2(ar̂(w))

� h1(y)
h2(y)

� ĉ
h1(ar̂(w))
h2(ar̂(w))

whenever y ∈B(w, r̂)∩ D̂.

Proof. – Let w′ ∈ D̂ be the point on the ray from ẑ through w with |w − w′| = r/4. We
assume, as we may, that hi(w′) = 1, i = 1,2, since otherwise we divide hi by these constants
for i = 1,2. We note that interior Hölder continuity estimates and Harnack’s inequality can be
stated for h1, h2 as in Lemma 3.5 with g(·, y) replaced by h1, h2. From Harnack’s inequality
and starlike Lipschitzness of D̂ we see that in order to prove Lemma 3.13 it suffices to show for
some c that

c−1 � h1(y)/h2(y) � c for y ∈B(w,r/c).(3.14)

To prove (3.14), we note as in (2.46) that if c′ � 1010 is large enough (depending only on p,n,β),
then the domain Ω̂ ⊂ B(w,r) ∩ D̂, formed by drawing all open line segments from points in
∂D̂ ∩ B(w,r/c′) to points in B(w′, r/c′), is a starlike Lipschitz domain with center w′ and
Lipschitz constant � c(β + 1). Moreover if ρ = r/(c′)2, then

B(w,1000ρ)∩ D̂ = B(w,1000ρ)∩ Ω̂.(3.15)

With c′ now fixed let g′ denote Green’s function for Ω̂. If y ∈ B(w,ρ/100) ∩ D̂, choose
ỹ ∈ ∂D̂∩ ∂Ω̂ with |y− ỹ|= d(y, ∂Ω̂). This choice is possible thanks to (3.15). Let ρm = 2−mρ,
ρ̂m = 2−1/2ρm, for m = 0,1,2, . . . and Gj = B̄(ỹ, ρj) ∩ ∂D̂ \ B(ỹ, ρj+1) for j = 0,1,2, . . . .

From (3.15), (3.3)(c′), (3.12) with x replaced by points in ∂B(ỹ, ρ̂0)∩∂D̂, Harnack’s inequality,
and the weak boundary maximum principle for L, we see that

ch1(·) �
[
û
(
aρ(ỹ)

)]p−2
rn−pg′

(
·, aρ(ỹ)

)
and h2(·) � cω̂(G0, ·)(3.16)
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in [B(ỹ, ρ/2) \ B(aρ(ỹ), d[aρ(ỹ),∂Ω̂)]
1000 )] ∩ Ω̂. From (3.16) we conclude that to prove h1(y)/

h2(y) � c−1 it suffices to show that

ω̂(G0, y) � c
[
û
(
aρ(ỹ)

)]p−2
rn−pg′

(
y, aρ(ỹ)

)
.(3.17)

(3.17) is a consequence of the following claim. Given ε > 0 sufficiently small (depending on
p,n,β) there exists c(ε) (depending only on ε, p,n,β ) such that

ω̂(Gj−1, ·) � εω̂(Gj , ·) + c(ε)
[
û
(
aρj (ỹ)

)]p−2
ρn−p

j g′
(
·, aρj (ỹ)

)
in B(ỹ, ρj+1)∩ Ω̂

(3.18)

whenever j = 1,2, . . . . To prove (3.18) for a fixed j, let ε′ < 10−10, and let N be the largest
positive integer � 1/ε′. Set

Eij =
{

ζ ∈Gj :
(

1 +
i− 1
100N

)
ρ̂j � |ζ − ỹ|<

(
1 +

i

100N

)
ρ̂j

}
for i = 1,2, . . . ,N.

Then

{Eij}N
1 are pairwise disjoint,

N⋃
i=1

Eij ⊂ Gj and ω̂(Eij , ·) � c−1(3.19)

on

Fij =
⋃{

B

(
ζ,

ε′ρj

10000

)
∩ Ω̂: ζ ∈Eij and(

1 +
(i− 3/4)

100N

)
ρ̂j � |ζ − ỹ|<

(
1 +

(i− 1/4)
100N

)
ρ̂j

}
,

as we see from (3.12). From (3.19) we find that if

z ∈Hij =
(

Ω̂∩ ∂B

[
ỹ,

(
1 +

i− 1/2
100N

)
ρ̂j

])
\Fij ,

then d(z, ∂Ω̂) � ε′ρj/c. Using this fact, Harnack’s inequality, and (3.3)(c′) once again we find
for some c(ε′) that

c(ε′)
[
û
(
aρj (ỹ)

)]p−2
ρn−p

j g′
(
·, aρj (ỹ)

)
� 1 on Hij(3.20)

for 1 � i � N , j = 0,1, . . . . Adding (3.19), (3.20) we get that

ω̂(Gj−1, ·) � 1 � cω̂(Eij , ·) + c(ε′)û
[
aρj (ỹ)

]p−2
ρn−p

j g′
(
·, aρj (ỹ)

)
(3.21)

on ∂B[ỹ, (1 + i−1/2
100N )ρ̂j ] ∩ Ω̂. Using the boundary maximum principle for L we deduce that

(3.21) is valid in B(ỹ, ρj+1)∩ Ω̂. Summing (3.21) for a fixed j from i = 1 to N, we obtain from
(3.19) (after division by N ) that

ω̂(Gj−1, ·) � (c/N)ω̂(Gj , ·) + c(ε′)
[
û
(
aρj (ỹ)

)]p−2
ρn−p

j g′
(
·, aρj (ỹ)

)
(3.22)
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in B(ỹ, ρj+1)∩ Ω̂. Choose ε′ so that c/N < ε or equivalently cε′ = ε for some c. Rewriting (3.22)
in terms of ε we obtain claim (3.18) provided 0 < ε < 1/c and c is large enough.

To prove (3.17) let k be the positive integer with y ∈ B(ỹ, ρk+1)\ B̄(ỹ, ρk+2). Iterating (3.18)
from 1 to k we get

ω̂(G0, y) � εkω̂(Gk, y) + c(ε)
k∑

j=1

εj−1
[
û
(
aρj (ỹ)

)]p−2
ρn−p

j g′
(
y, aρj (ỹ)

)
.(3.23)

Observe from (3.3)(a′) that Lemma 3.5 holds with g(·, y) replaced by g(y, ·). Thus if

y /∈
⋃
i

B

[
aρi(ỹ),

d(aρi(ỹ), ∂Ω̂)
100

]
,(3.24)

then from Harnack’s inequality applied to g′(y, ·), û, we deduce

εj−1
[
û
(
aρj (ỹ)

)]p−2
ρn−p

j g′
(
y, aρj (ỹ)

)
� c(1/2)j

[
û
(
aρ(ỹ)

)]p−2
ρn−pg′

(
y, aρ(ỹ)

)
(3.25)

for j = 1,2, . . . , provided ε is sufficiently small (depending only on p,n,β). Likewise

εkω̂(Gk, y) � (1/2)ω̂(G0, y)(3.26)

for small ε. Fix ε > 0 so that (3.25), (3.26) are true. Using (3.25), (3.26) in (3.23) we obtain after
some arithmetic that (3.17) is valid when (3.24) holds. Otherwise we note the existence of y∗

satisfying (3.24) (with y replaced by y∗) and with |y∗ − y| ≈ d(y∗, ∂Ω̂) ≈ ρk. Then (3.17) is
valid for y∗ and from Harnack’s inequality it follows that (3.17) is valid for y. From the remark
above (3.17) we get the lower bound in (3.14). Interchanging h1, h2 we also get the upper bound
in (3.14). This proves Lemma 3.13. �

We end this section by proving the following lemma.

LEMMA 3.27. – Let w ∈ ∂D̂, r, r̂ and h1, h2 be as in Lemma 3.13. There exist λ, 0 < λ < 1,
and c∗ (depending only on p,n,β) such that

∣∣∣∣h1(y)
h2(y)

− h1(y′)
h2(y′)

∣∣∣∣� c∗
(
|y − y′|

r

)λ
h1(ar̂(w))
h2(ar̂(w))

whenever y, y′ ∈B(w, r̂/4).

Proof. – Given ỹ ∈ ∂D̂ ∩B(w, r̂/2) set

M(s) = M(s, ỹ) = sup
B(ỹ,s)

h1

h2
(y),

m(s) = m(s, ỹ) = inf
B(ỹ,s)

h1

h2
(y),

when 0 < s < r̂/2, where ĉ is the constant in Lemma 3.13. Then h1 − m(s)h2 � 0 and
M(s)h2−h1 � 0 in B(ỹ, s)∩D̂. Observe from Harnack’s inequality that each of these functions
is either positive or identically zero in B(ỹ, s) ∩ D̂. If both functions are positive then from
Lemma 3.13 with h1, h2 replaced by h1 − m(s)h2, h2, and h2M(s) − h1, h2, respectively, we
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find that if ĉ is the constant in Lemma 3.13 and ŝ = s/ĉ, then

(α) M(ŝ)−m(s) � ĉ
[
m(ŝ)−m(s)

]
,

(β) M(s)−m(ŝ) � ĉ
[
M(s)−M(ŝ)

]
.

(3.28)

If ψ(t) = ψ(t, ỹ) = M(t)−m(t), then adding (3.28)(α), (β) we get

ψ(s) + ψ(ŝ) � ĉ
[
ψ(s)−ψ(ŝ)

]
or

ψ(ŝ) � ĉ− 1
ĉ + 1

ψ(s).(3.29)

Clearly this inequality is also valid if either of the above functions vanishes. If y, y′ ∈
B(w, r̂/4) ∩ D̂ and |y − y′| > r̂

1000 , then from Lemma 3.13 we see that Lemma 3.27 holds. If
|y−y′|� min[ r̂

1000 , d(y, ∂D̂)/2] we can use Harnack’s inequality and interior Hölder continuity
estimates for h1, h2 to get Lemma 3.27 in this case. Otherwise, choose ỹ ∈ ∂D̂∩B(w, r̂/2) with
|y − ỹ| = d(y, ∂D̂). Iterating (3.29) starting from s = r̂/4 and finishing with s ≈ 4|y − y′|, we
deduce for some λ,0 < λ < 1, and c,∣∣∣∣h1(y)

h2(y)
− h1(y′)

h2(y′)

∣∣∣∣� M
(
2|y − y′|, ỹ

)
−m

(
2|y − y′|, ỹ

)

� c

(
|y − y′|

r

)λ
h1(ar̂(w))
h2(ar̂(w))

.

Hence Lemma 3.27 holds in all cases. �
Remark. – Let D̂,w, r, r̂, be as in Lemma 3.27 and suppose that ζ̂ ∈ D̂ \ B(w,8r). If h1, h2

are positive solutions to L in D̂ \ {ζ̂}, then Lemmas 3.13, 3.27 are valid with r̂ replaced by r.
Indeed, we can first apply Lemmas 3.13, 3.27, with w,r replaced by ỹ, ŝ = r/10, whenever
ỹ ∈ ∂D̂ ∩B(w,r). Using hi(aŝ(ỹ))≈ hi(ar̂(w)), i = 1,2, we then get Lemmas 3.13, 3.27 with
r̂ replaced by r.

4. Deformation of ring domains and proof of Theorem 1

Let Ω−
i ,Ω+

i , i = 1,2, be starlike Lipschitz domains with center ẑ and Ω̄−
i ⊂ Ω+

i for i = 1,2.
Let R+

i ,R−
i , i = 1,2, be the corresponding graph functions and let Di = Ω+

i \ Ω̄−
i , i = 1,2. For

fixed p, 1 < p < ∞, let u, v, be the p capacitary functions for D1,D2, respectively. We assume
that

R+
i ,R−

i ∈C∞
0

(
∂B(0,1)

)
for i = 1,2,(4.1)

and also that w ∈ ∂D1 ∩ ∂D2, r > 0, with

(a) B(w,8r)∩D1 = B(w,8r)∩D2.

(b) Either B̄(w,8r)∩ [Ω−
1 ∪Ω−

2 ] = ∅ or B̄(w,8r)∩ [Rn \Ω+
1 ∪R

n \Ω+
2 ] = ∅.

(4.2)

We first study properties of the deformation touted above (1.10). To this end we define for
0 � τ < 1 and ω ∈ ∂B(0,1),

R+(τ,ω) =
[
R+

2 (ω)
]τ [

R+
1 (ω)

]1−τ
, R−(τ,ω) =

[
R−

2 (ω)
]τ [

R−
1 (ω)

]1−τ
.
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Let Ω+(τ),Ω−(τ), be starlike Lipschitz domains with center ẑ and graph functions, R+(τ, ·),
R−(τ, ·), while D(τ) = Ω+(τ) \ Ω̄−(τ) is the corresponding ring domain. For fixed p,
1 < p < ∞, let u(·, τ), τ ∈ [0,1], be the p capacitary function for D(τ). Extend u(·, τ) to R

n by
putting u(·, τ) ≡ 0 on R

n \ Ω+(τ) and u(·, τ) ≡ 1 on Ω̄−(τ). From Lemma 2.1(c) we see that
{u(·, τ), 0 � τ � 1} are Hölder continuous on R

n with exponent independent of τ ∈ [0,1]. From
Lemma 2.5 and the same argument as in the proof of Lemma 2.4, we see that u(·, τ), τ ∈ [0,1],
has an infinitely differentiable extension to D̄(τ). Moreover, a check of the argument shows that
there exists δ, ε > 0, for a given nonnegative integer k and fixed s ∈ [0,1], such that

(−) min
D̄(τ)

∣∣∇u(·, τ)
∣∣> ε provided τ ∈ (s− δ, s + δ),

(−−) the Ck norm of u(·, τ) in D̄(τ) is uniformly bounded for τ ∈ (s− δ, s + δ).
(4.3)

Using Ascoli’s theorem on R
n, (4.3), and uniqueness of u(·, τ) we see that if ∂lu(·, τ) denotes

an arbitrary l-th partial derivative of u(·, τ) in D(τ) (with respect to x), then for s ∈ [0,1],

lim
τ→s

∂lu(·, τ) = ∂lu(·, s) as τ → s, uniformly on compact subsets of D(s).(4.4)

Next we consider regularity in τ.

LEMMA 4.5. – Let u(·,·) be as above. Then uτ (x, τ) = ∂
∂τ u(x, τ) exists continuously

whenever (x, τ) ∈
⋃

t∈[0,1] D(t) × {t}. Moreover for τ ∈ [0,1], uτ (·, τ) extends continuously

to D̄(τ) and
(α) uτ (·, τ) is a solution to (1.7) in D(τ) with bij defined relative to u(·, τ),

(β) uτ (y, τ) = −〈y − ẑ,∇u(y, τ)〉 log(R′
2/R′

1)(
y−ẑ
|y−ẑ| ) when y ∈ ∂D(τ), where ′ = + if

y ∈ ∂Ω+(τ) and ′ = − if y ∈ ∂Ω−(τ).

(γ) log
(

v(x)− a

u(x)− a

)
=

1∫
0

uτ (x, τ)
u(x, τ)− a

dτ whenever a = 0,1 and x ∈ B(w,8r)∩D1.

Proof. – We assume, as we may, that ẑ = 0. If τ = 0,1 in Lemma 4.5, then uτ should
be interpreted as a limit of one-sided difference quotients. To begin, if ξ = (ξ1, . . . , ξn),
w = (w1, . . . ,wn) ∈ R

n \ {0}, and 1 � i � n we note that

|ξ|p−2ξi − |w|p−2wi =

1∫
0

d

dλ

{∣∣λξ + (1− λ)w
∣∣p−2[

λξi + (1− λ)wi

]}
dλ

=
n∑

j=1

(ξ −w)j

( 1∫
0

aij

[
λξ + (1− λ)w

]
dλ

)
,

where for 1 � i, j � n,

aij(η) = |η|p−4
[
(p− 2)ηiηj + δij |η|2

]
for η ∈ R

n \ {0}.(4.6)

In this display δij , once again, denotes the Kronecker delta. Using (4.3), (4.4), and (1.2), we
deduce for given s ∈ [0,1] that if

U(x) = U(x, τ, s) =
u(x, s)− u(x, τ)

,

s− τ
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Aij(x) = Aij(x, τ, s) =

1∫
0

aij

[
λ∇u(x, s) + (1− λ)∇u(x, τ)

]
dλ,

then, whenever x ∈ D(τ)∩D(s), τ ∈ [s− δ, s + δ], and 1 � i, j � n,

L̃U(x) =
n∑

i,j=1

∂

∂xi

[
Aij(x)Uxj

]
= 0 on D(τ)∩D(s).(4.7)

Moreover, if x ∈D(τ)∩D(s), then it is easily seen that

(∗) c−1|ξ|2
∣∣∣∣∇u(x, s)

∣∣+ ∣∣∇u(x, τ)
∣∣∣∣p−2 �

n∑
i,j=1

Aij(x)ξiξj

whenever ξ ∈ R
n \ {0},

(∗∗)
n∑

i,j=1

∣∣Aij(x)
∣∣� c

∣∣∣∣∇u(x, s)
∣∣+ ∣∣∇u(x, τ)

∣∣∣∣p−2
,

(4.8)

where c depends only on p,n.
Given ε1 > 0 small, choose δ1, δ2 > 0 so small that∣∣∇u(tω, τ)−∇u

[
(1− δ1)R+(s,ω)ω, τ

]∣∣
+
∣∣∇u(t̂ω, τ)−∇u

[
(1 + δ1)R−(s,ω)ω, τ

]∣∣� ε1
(4.9)

whenever t ∈ [(1−δ1)R+(s,ω),R+(τ,ω)], t̂ ∈ [R−(τ,ω), (1+δ1)R−(s,ω)], and ω ∈ ∂B(0,1),
τ ∈ (s− δ2, s + δ2). Also, we require∣∣∇u(y, s)−∇u(y, τ)

∣∣< ε1 on Γ1 ∪ Γ2 if τ ∈ (s− δ2, s + δ2)(4.10)

where

Γ1 =
{
(1− δ1)R+(s,ω)ω: ω ∈ ∂B(0,1)

}
,

Γ2 =
{
(1 + δ1)R−(s,ω)ω: ω ∈ ∂B(0,1)

}
.

This choice of δ1, δ2 > 0 is possible thanks to (4.3), (4.4). Let y ∈ ∂[D(s) ∩ D(τ)], for
some τ ∈ (s − δ2, s + δ2) with y/|y| = ω. Let a1 = min{R′(τ,ω),R′(s,ω)} and a2 =
max{R′(τ,ω),R′(s,ω)} where ′ = + if y lies in the unbounded component of D(τ) ∩ D(s)
while ′ = − if y is in the bounded component of D(τ)∩D(s). We note that

U(y, τ, s) = ±
a2∫

a1

∂

∂t
U(tω, τ, s)dt

where the − sign is taken if ′ = + and the + sign if ′ = −. Using this note (4.9), (4.10), and the
chain rule, we deduce that

U(y, τ, s) =
R′(τ,ω)−R′(s,ω)

s− τ

{
e +

[
R′(s,ω)

]−1〈∇u(y, s), y
〉}

(4.11)

where |e|� 3ε1. Since

R′
s(s,ω) =

[
R′(s,ω)

]
log(R′

2/R′
1)(ω) for ′ ∈ {+,−},
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we conclude from (4.11) that U(·, τ, s) converges uniformly on ∂[D(τ)∩D(s)] to the right-hand
side of Lemma 4.5 (β) as τ → s in the sense that given ε2 > 0, there is a δ3 > 0 such that∣∣∣∣U(y, τ, s) +

〈
y,∇u(y, s)

〉
log(R′

2/R′
1)
(

y

|y|

)∣∣∣∣� ε2(4.12)

for all y ∈ ∂[D(τ)∩D(s)] and τ ∈ (s− δ3, s + δ3). Let ψ be a classical solution to

Lψ =
n∑

i,j=1

∂

∂xi

[
bij(x)

∂ψ

∂xj

]
= 0 in D(s)(4.13)

with continuous boundary values

ψ(y) = −
〈
y,∇u(y, s)

〉
log(R′

2/R′
1)
(

y

|y|

)
on ∂D(s).(4.14)

Here bij(x) = aij(∇u(x, s)), 1 � i, j � n, x ∈ D(s), and aij are as in (4.6). Since (bij) are
uniformly elliptic it follows from the usual minimizing argument that∫

D(s)

|∇ψ|2 dx � M < ∞.(4.15)

To prove Lemma 4.5(α), (β), we need to show that ψ = us(·, s). To this end, we observe from
(4.3), (4.4), (4.8) that Aij(·, s, t), 1 � i, j � n, are uniformly elliptic and Cl, l = 1,2, . . . with
ellipticity and norm constants in D(s)∩D(τ) that are independent of τ ∈ (s− δ3, s+ δ3). Also,
from (4.12), (4.7), (4.8), and the boundary maximum principle for L̃ we see that the functions
U(·, τ, s) are uniformly bounded in D(s)∩D(τ), τ ∈ (s− δ3, s + δ3).

Using the above facts and Schauder theory, we find that if limk→∞ τk = s, then a subsequence
of {U(·, τk, s)} converges in the Cl norm on each compact subset of D(s) for l = 0,1,2, . . . . Let
V be such a limit. From these remarks and (4.7), (4.8), we deduce that LV = 0 in D(s) where L
is as in (4.13). Let

φ1(x) = max
(
U(x, τ, s)−ψ(x)− 2ε2,0

)
,

φ2(x) = min
(
U(x, τ, s)− ψ(x) + 2ε2,0

)
when x ∈ D(s)∩D(τ) and τ ∈ (s− δ3, s + δ3). From (4.12) we see that φk , k = 1,2, vanishes
continuously on ∂[D(s)∩D(τ)]. This fact and (4.7) imply

∫
D(s)∩D(τ)

n∑
i,j=1

AijUxj (φk)xi dx = 0 =
∫

D(s)∩D(τ)

n∑
i,j=1

bijψxj (φk)xi dx

for k = 1,2. This equality, (4.3), and (4.8) yield for some 0 < K < ∞, depending on various
smoothness constants but independent of s, τ ∈ (s− δ3, s + δ3), that

K−1

∫
D(s)∩D(τ)∩{|U−ψ|>2ε2}

∣∣∇U(·, τ, s)−∇ψ
∣∣2 dx

�
∫

D(s)∩D(τ)

n∑
i,j=1

Aij(Uxj −ψxj )(φ1 + φ2)xi dx
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=
∫

D(s)∩D(τ)

n∑
i,j=1

(bij −Aij)ψxj (φ1 + φ2)xi dx.

Using Cauchy’s inequality with ε′s, (4.3), (4.4), (4.8), (4.15), it follows for some K1 having the
same dependence as K that

∫
D(s)∩D(τ)∩{|U−ψ|>2ε2}

∣∣∇U(·, τ, s)−∇ψ
∣∣2 dx � K1

∫
D(s)∩D(τ)

n∑
i,j=1

|bij −Aij |2|∇ψ|2 dx → 0

as τ → s. Using Fatou’s lemma and Poincaré’s inequality, we conclude that∫
D(s)∩D(τ)∩{|V −ψ|>2ε2}

|V −ψ|2 dx

� lim inf
k→∞

∫
D(s)∩D(τ)∩{|U−ψ|>2ε2}

∣∣U(·, τk, s)−ψ
∣∣2 dx = 0.

(4.16)

Since ε2 > 0 is arbitrary we deduce from (4.16) that ψ ≡ V. Since every subsequence of
{U(·, τ, s)} must converge to ψ we conclude that us ≡ ψ. Thus Lemma 4.5(α), (β), holds. Con-
tinuity of us as in Lemma 4.5, is a consequence of (4.3), (4.4), Lemma 4.5(α), (β), and Schauder
theory. Finally Lemma 4.5(γ) follows from continuity of us, the fact that 0 < u(·, s) < 1 in D(s),
the fundamental theorem of calculus, and the observation that (4.2) yields, x ∈ D(s), s ∈ [0,1],
whenever x ∈ B(w,8r)∩D1. The proof of Lemma 4.5 is now complete. �

We now consider some applications of Lemma 4.5. We show that under certain deformations,
a boundary Harnack inequality applies to the integrand in Lemma 4.5(γ) for each fixed τ. Thus
we will essentially obtain Theorem 2 in certain special cases. To prove Theorem 2, we shall
deform D̂1 into D̂2 by a series of such deformations, ending in Section 5. At the end of this
section we pause to deduce Theorem 1 from Lemma 4.34. To begin suppose that D = Ω+ \Ω−

is a starlike Lipschitz ring domain with Lipschitz constant β, center ẑ, and graph functions
R+,R−. Let u be the p capacitary function for D. As in Theorem 2 we assume for w ∈ ∂D,
r > 0, that

ẑ /∈B(w,16r) and either B̄(w,8r)∩Ω− = ∅ or B̄(w,8r)∩R
n \Ω+ = ∅.(4.17)

We prove

LEMMA 4.18. – Given p, 1 < p <∞, let D,R+,R−, u, be as above. Let w,r, ẑ satisfy (4.17)
and suppose that w ∈ ∂Ω+. If R+,R− ∈ C∞(∂B(0,1)), then there exists a starlike Lipschitz
ring domain D∗ = Ω+ \B(ẑ, ρ) with ρ ≈ d(ẑ, ∂Ω+) and the following properties:

(i) B̄(w,8r)∩B(ẑ,2ρ) = ∅ and B(ẑ,2ρ)⊂ Ω+.
(j) If u∗ denotes the p capacitary function for D∗, then for some c

c−1 u∗(ar(w))
u(ar(w))

� u∗(z)
u(z)

� c
u∗(ar(w))
u(ar(w))

whenever z ∈B(w,r/2)∩D.

(k) Let u∗ be as in (j) and w1,w2 ∈B(w,r/2)∩D. Then there exist c,λ, 0 < λ < 1, such that

∣∣∣∣u∗(w1)/u(w1)
u∗(w )/u(w )

− 1
∣∣∣∣+

∣∣∣∣u(w1)/u∗(w1)
u(w )/u∗(w )

− 1
∣∣∣∣� c

(
|w1 −w2|

r

)λ

.

2 2 2 2
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Moreover if (i) holds with ρ replaced by ρ̃ and ũ is the p capacitary function for D̃ =
Ω+ \B(ẑ, ρ̃), then (j), (k) are valid with either u,D or u∗,D∗ replaced by ũ, D̃.

Proof. – In Lemma 4.18, λ, c and the proportionality constant for ρ/d(ẑ, ∂Ω+) depend only
on p,n,β. In the proof of Lemma 4.18 we assume, as usual, that ẑ = 0. We consider two cases.
First suppose that

Ω̄− ∩ ∂B
(
0, d(0, ∂Ω+)/4

)
�= ∅.(4.19)

In this case since Ω− is starlike Lipschitz, we can choose c′, depending only on p,n,β, to be the
largest number such that if ρ = d(0, ∂Ω+)/c′, then

B(0,2ρ)⊂Ω−.(4.20)

(i) of Lemma 4.18 follows from (4.17), (4.20). Let R−
2 (ω) = ρω when ω ∈ ∂B(0,1) and set

R+
i = R+ for i = 1,2, R−

1 = R−. Applying the deformation at the beginning of this section,
with D1 = D,D2 = D∗, we get u(·, τ), the p capacitary function for D(τ) = Ω+(τ) \ Ω̄−(τ).
From (4.20) and starlike Lipschitzness of Ω+ we see that 2 � R−/ρ � c. This inequality,
Lemma 4.5(β), and Lemma 2.5(i) imply that uτ ≡ 0 on ∂Ω+ and

0 <−uτ �−c
〈
x,∇u(x)

〉
(4.21)

for x ∈ ∂Ω−(τ). Since uτ , 〈x,∇u(x, τ)〉, both satisfy (1.7), (1.8) with (bij) defined relative to
u(·, τ) in D(τ) it follows from the weak maximum principle for this divergence form equation
that (4.21) also holds in D(τ). Let

r(τ) = sup
{
s: B̄(w,2s)∩Ω−(τ) = ∅

}
.

From (4.20), (4.17), and the definition of R(τ, ·), we see that r is increasing and continuous
on [0,1] with r(0) � 4r, r(1) � ρ. Next we note that Lemmas 3.13, 3.27 can be applied with
h1, h2 replaced by −uτ (·, τ), u(·, τ) and D̂∩B(w,8r) by D(τ)∩B(w,2r(τ)). Using this note,
Remark at the end of Section 3, and Lemma 4.5(γ) we get for w1,w2 ∈B(w,r),

∣∣∣∣log
(

u∗(w1)
u(w1)

)
− log

(
u∗(w2)
u(w2)

)∣∣∣∣�
1∫

0

∣∣∣∣uτ (w1, τ)
u(w1, τ)

− uτ (w2, τ)
u(w2, τ)

∣∣∣∣dτ

� c

(
|w1 −w2|

r

)λ
1∫

0

−uτ (ar(τ)(w), τ)
u(ar(τ)(w), τ)

dτ,

(4.22)

where ar(τ)(w) is defined relative to D(τ). If r(0) � ρ/1000, we deduce from Lemma 2.5 that

−uτ (ar(τ)(w), τ)
u(ar(τ)(w), τ)

� c.(4.23)

Using (4.23) in (4.22) we find for w1,w2 ∈B(w,r) that

∣∣∣∣log
(

u∗(w1)
u(w )

)
− log

(
u∗(w2)
u(w )

)∣∣∣∣� c

(
|w1 −w2|

r

)λ

.(4.24)

1 2
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Choosing w1 = ar(w) ∈ D ∩ B(w,r), and exponentiating (4.24) we conclude that (j) of
Lemma 4.18 is valid. (k) follows from (j), (4.24), and the fact that | log t|/|t − 1| is bounded
below for t ∈ (0, c] by a constant depending only on p,n,β. If r(0) < ρ/1000 we choose,
τ1, τ2, . . . , τm ∈ [0,1], so that τi, 1 � i � m, is the value in [0,1] with r(τi) = 2ir(0), 1 � i � m,
and ρ/1000 � r(τm) < ρ/500. Also let τm+1 = 1 and note that τ1 = 0 by definition. We claim
that

0 < τi+1 − τi � cr(τi)/ρ for 1 � i � m.(4.25)

To prove this claim observe from the definition of r(τ) that there exists ωi, 1 � i � m, such that
ωi ∈ ∂B(0,1) and R−(τi, ωi)ωi ∈ ∂B(w,r(τi)) for i = 1,2, . . . ,m. From the definition of τi we
see that

R−(τi, ωi)/R−(τi+1, ωi+1) � ecr(τi)/ρ.(4.26)

On the other hand from the definition of R−(τ, ·) and the definition of τi we deduce that

R−(τi, ωi)
R−(τi+1, ωi+1)

=
[
R−(ωi+1)/ρ

](τi+1−τi) ·
[
R−(ωi+1)/R−(ωi)

](τi−1)

� e−cr(τi)/ρ2(τi+1−τi).

(4.27)

Combining (4.26), (4.27) and then taking logarithms, we get claim (4.25).
Observe from Lemma 2.5 and (4.21) that

−uτ (ar(τi)(w), τ)
u(ar(τi)(w),τ )

� cρ

r(τi)
whenever τ ∈ [τi, τi+1], 1 � i � m.(4.28)

Applying Lemmas 3.13, 3.27, as above, and using (4.25), (4.28) we find for w1,w2 ∈
B(w,r)∩D that

τi+1∫
τi

∣∣∣∣uτ (w1, τ)
u(w1, τ)

− uτ (w2, τ)
u(w2, τ)

∣∣∣∣dτ � c

(
|w1 −w2|

r(τi)

)λ
τi+1∫
τi

−uτ (ar(τi)(w), τ)
u(ar(τi)(w), τ)

dτ

� c2−iλ

(
|w1 −w2|

r(0)

)λ

� c2−iλ

(
|w1 −w2|

r

)λ

.

(4.29)

From (4.29) and Lemma 4.5(γ) we conclude for w1,w2 ∈ B(w,r) that

∣∣∣∣log
(

u∗(w1)
u(w1)

)
− log

(
u∗(w2)
u(w2)

)∣∣∣∣�
m∑

i=1

τi+1∫
τi

∣∣∣∣uτ (w1, τ)
u(w1, τ)

− uτ (w2, τ)
u(w2, τ)

∣∣∣∣dτ

� c

[(
m−1∑
i=1

2−iλ

)
+ 1

](
|w1 −w2|

r

)λ

.

(4.30)

From (4.30) we see first that (4.24) is valid and second that Lemma 4.18 holds for our choice
of ρ when (4.19) is true.

If (4.19) is false, choose t to be the largest number in [0,1] with

{
x: u(x) � t

}
∩ ∂B

(
0, d(0, ∂Ω+)/4

)
�= ∅.(4.31)
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Then from Lemma 2.5 we see that min(u/t,1) is the p capacitary function for the starlike
Lipschitz ring domain, D̃ = {x: 0 < u(x) < t} with Lipschitz constant depending only on
p,n,β. Let ρ be the largest number so that B(0,2ρ) ⊂ {x: u(x) > t}. We can now repeat our
earlier argument with D̃, u/t replacing u,D. Doing this we get Lemma 4.18 for u/t. Clearly we
can replace u/t by u in (j), (k) of this lemma. The proof of the first part of Lemma 4.18 is now
complete.

If ρ̃ is as in Lemma 4.18, we can use Lemma 4.5 to deform D∗ into D̃. Using the above
argument with either B(ẑ, ρ) or B(ẑ, ρ̃) replacing Ω− we get Lemma 4.18 for u∗, ũ. Clearly
Lemma 4.18 for u,u∗ and u∗, ũ implies Lemma 4.18 for u, ũ. �

Next we state an analogue of Lemma 4.18 when w ∈ ∂Ω−.

LEMMA 4.32. – Given p, 1 < p < ∞, let D,R+,R−, u, be as in Lemma 4.18. Let w,r, ẑ
satisfy (4.17) and suppose that w ∈ ∂Ω−. If R+,R− ∈C∞(∂B(0,1)), then there exists a starlike
Lipschitz ring domain D∗ = B(ẑ, ρ̂) \Ω− with ρ̂≈ d(ẑ,D) and the following properties:

(i′) B̄(w,8r)∩B(ẑ, ρ̂/2) = ∅ and Ω− ⊂ B(ẑ, ρ̂/2).
(j′) If u∗ denotes the p capacitary function for D∗ and u+ = 1 − u, u∗ = 1 − u∗, then for

some c,

c−1 u∗(ar(w))
u+(ar(w))

� u∗(z)
u+(z)

� c
u∗(ar(w))
u+(ar(w))

whenever z ∈B(w,r/2)∩D.

(k′) Let u∗, u+, be as in (j′) and w1,w2 ∈ B(w,r/2) ∩D. Then there exist c,λ, 0 < λ < 1,
such that

∣∣∣∣u∗(w1)/u+(w1)
u∗(w2)/u+(w2)

− 1
∣∣∣∣+

∣∣∣∣u+(w1)/u∗(w1)
u+(w2)/u∗(w2)

− 1
∣∣∣∣� c

(
|w1 −w2|

r

)λ

.

Moreover if (i′) holds with ρ replaced by ρ̃ and ũ is the p capacitary function for D̃ =
B(ẑ, ρ̃) \ Ω−, then (j′), (k′) are valid with either u+, D or u∗, D∗ replaced by 1 − ũ, D̃.
Constants have the same dependence as in Lemma 4.18.

Proof. – Let s− = max∂B(0,1) R− and s+ = max∂B(0,1) R+. Again one considers two cases.
If

B̄(ẑ,4s−)∩ ∂Ω+ �= ∅(4.33)

put ρ̂ = 2s+ and define D∗ as in Lemma 4.32. Arguing as in the case when (4.19) of Lemma 4.18
held, we obtain (i′), (j′), (k′) of Lemma 4.32. If (4.33) is false we choose t to be the smallest
number in [0,1] with {x: 0 < u(x) � t} ∩ B̄(ẑ,4s−) �= ∅. In this case we put D̂ = {x: t <
u(x) < 1}, û = max{(u − t)/(1 − t),0} and note from Lemma 2.5 that D̂ is starlike Lipschitz
with Lipschitz constant depending only on p,n,β. Let s̃ = max{|x − ẑ|: x ∈ ∂D̂} and set
ρ̂ = 2s̃. Define D∗, u∗ as previously relative to ρ̂. Proceeding as in the first case with u+,D,
replaced by 1 − û = 1−u

1−t , D̂, we get Lemma 4.32 for 1 − û, u∗. Since (j′), (k′) are unchanged
upon multiplying a given function by a constant, we conclude that the first part of Lemma 4.32
holds in this case also. To prove the second part of Lemma 4.32 we use Lemma 4.5 to deform
D∗ into D̃ and argue as in the first part of this lemma. �

LEMMA 4.34. – Let Ω+
i , i = 1,2, be starlike Lipschitz domains with center ẑ and C∞ graph

functions, R+
i . Let Di = Ω+

i \ B̄(ẑ, ρ1) and suppose for fixed p, 1 < p < ∞, that ui is the p
capacitary function for Di, i = 1,2. If w ∈ ∂Ω+

1 ∩ ∂Ω+
2 , r, ρ1 > 0, assume that
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798 J.L. LEWIS AND K. NYSTRÖM
B(w,8r)∩Ω+
1 = B(w,8r)∩Ω+

2 , B(w,8r)∩B(ẑ,2ρ1) = ∅,
B(ẑ,2ρ1)⊂ Ω+

i for i = 1,2.

Then (j), (k) of Lemma 4.18 are valid with u,u∗ replaced by u1, u2. c, λ depend only on p,n
and the Lipschitz constants for Di, i = 1,2.

Proof. – As usual we assume that ẑ = 0. We employ the same strategy as in the proof of
Lemma 4.18. Applying the deformation at the beginning of Section 4, we get u(·, τ), τ ∈ (0,1),
satisfying Lemma 4.5. For fixed τ ∈ [0,1] let g(·, y) be Green’s function for D(τ) and the
operator L in (1.7) with pole at y ∈ D(τ). Here (bij) are defined relative to u(·, τ). Then
u(·, τ), g(·, y) have C∞ extensions to ∂D(τ) and since ∇g,∇u are both parallel to the inner
normal at a given point of ∂D(τ), we have

n∑
i,j=1

bijgxigxj = (p− 1)|∇u|p−2
∣∣∇g(·, y)

∣∣2 on ∂D(τ).(4.35)

Let

Ej = ∂Ω+(τ)∩
[
B(w,2jr) \B(w,2j−1r)

]
for j = 4,5, . . . ,m,

where m is the first positive integer with Ej = ∅ for j > m. If y ∈D(τ), let

Ij(y) = −(p− 1)
∫
Ej

〈
x,∇u(x, τ)

〉
log(R+

2 /R+
1 )

(
x

|x|

)∣∣∇u(x, τ)
∣∣p−2∣∣∇g(x, y)

∣∣dHn−1(x).

From (4.35), (3.6), and Lemma 4.5 we see that

uτ (y, τ) =
m∑

j=4

Ij(y) whenever y ∈D(τ).(4.36)

Let βi be the Lipschitz constant for Di, i = 1,2, and set r̂ = sup{s: B(w,2s) ∩ B̄(0, ρ1) = ∅}.
We note that

r̂ ≈ d
(
0, ∂Ω+(τ)

)
≈ diamD(τ)(4.37)

with proportionality constants depending only on β1, β2, p,n. From (4.37) and Lipschitzness of
logR+

i , i = 1,2, we find that

∣∣log(R+
2 /R+

1 )
∣∣� c2jr/r̂ on Ej , 4 � j � m.(4.38)

Let k be the largest positive integer with Ek ⊂ B(w, r̂). From Lemmas 3.13, 3.27, and (3.3)(c′),
we observe for ζ ∈D(τ) near a point of Ej , 4 � j � k, and w1,w2 ∈B(w,r)∩D1, as in Remark
at the end of Section 3, that

∣∣∣∣ g(ζ,w1)
u(ζ, τ)u(w1, τ)

− g(ζ,w2)
u(ζ, τ)u(w2, τ)

∣∣∣∣� c

(
|w1 −w2|

2jr

)λ
g(ζ, a2jr(w))

u(ζ, τ)u(a2jr(w), τ)

� c

(
|w1 −w2|

2jr

)λ

(2j(p−n)rp−n)u
(
a2jr(w), τ

)−p
.

(4.39)
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A similar argument yields (4.39) with a2jr(w) replaced by ar̂(w) when k < j � m. Letting
ζ → x ∈ Ej we obtain from (4.39) and smoothness of u(·, τ), g that

∣∣∣∣ |∇g(x,w1)|
|∇u(x, τ)|u(w1, τ)

− |∇g(x,w2)|
|∇u(x, τ)|u(w2, τ)

∣∣∣∣
� c

(
|w1 −w2|

2jr

)λ

(2jr)p−nu
(
a2jr(w), τ

)−p

(4.40)

when 4 � j � k. If k < j � m, we replace a2jr(w) by ar̂(w) in (4.40). We can now use (4.40),
(4.38), (4.37) to estimate Ij . If 4 � j � k and w1,w2 ∈ B(w,r)∩D we find

∣∣∣∣ Ij(w1)
u(w1, τ)

− Ij(w2)
u(w2, τ)

∣∣∣∣
� c2jr

∫
Ej

∣∣∇u(x, τ)
∣∣p∣∣∣∣ |∇g(x,w1)|

|∇u(x, τ)|u(w1, τ)
− |∇g(x,w2)|

|∇u(x, τ)|u(w2, τ)

∣∣∣∣dHn−1(x)

� c

( ∫
Ej

|∇u|p dx

)(
|w1 −w2|

2jr

)λ

(2j(p+1−n)rp+1−n)u
(
a2jr(w), τ

)−p
.

(4.41)

From Lemma 2.39 and Lemma 2.35(b) we deduce for 1 � j � k that

∫
Ej

|∇u|p dHn−1 � cu
(
a2jr(w), τ

)p(2jr)n−1−p.(4.42)

Putting (4.42) in (4.41) it follows that

∣∣∣∣ Ij(w1)
u(w1, τ)

− Ij(w2)
u(w2, τ)

∣∣∣∣� c2−jλ

(
|w1 −w2|

r

)λ

.(4.43)

A similar argument yields that (4.43) also holds for k < j � m. Note that m − k � c, thanks
to (4.37). From this note, (4.36), (4.43) we see that

∣∣∣∣uτ (w1, τ)
u(w1, τ)

− uτ (w2, τ)
u(w2, τ)

∣∣∣∣�
m∑

j=4

∣∣∣∣ Ij(w1)
u(w1, τ)

− Ij(w2)
u(w2, τ)

∣∣∣∣� c

(
|w1 −w2|

r

)λ

.(4.44)

Using (4.44) and (4.5) (γ) as in (4.22) we conclude that for w1,w2 ∈ B(w,r)∩D,

∣∣∣∣log
(

u2(w1)
u1(w1)

)
− log

(
u2(w2)
u1(w2)

)∣∣∣∣� c

(
|w1 −w2|

r

)λ

.(4.45)

(4.45) is easily seen to imply Lemma 4.34 (see the discussion after (4.24)). �
Next we state a version of Lemma 4.34 when w ∈ ∂Ω−

1 ∩ ∂Ω−
2 .

LEMMA 4.46. – Let Ω−
i , i = 1,2, be starlike Lipschitz ring domains with center ẑ and C∞

graph functions, R−
i . Let Di = B(0, ρ1) \ Ω̄−

i and suppose for fixed p, 1 < p < ∞, that ui is the
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800 J.L. LEWIS AND K. NYSTRÖM
p capacitary function for Di, i = 1,2. If w ∈ ∂Ω−
1 ∩ ∂Ω−

2 , r, ρ1 > 0, assume that

B(w,8r)∩Ω−
1 = B(w,8r)∩Ω−

2 , ẑ /∈ B(w,16r), Ω−
i ⊂B(ẑ, ρ1/2), i = 1,2.

Then (j′), (k′) of Lemma 4.32 are valid with u+, u∗, replaced by 1 − u1, 1 − u2. c, λ depend
only on p,n and the Lipschitz constants for Di, i = 1,2.

Proof. – The proof of Lemma 4.46 is essentially identical to the proof of Lemma 4.34. We
omit the details. �

Proof of Theorem 1. – We now use Lemma 4.34 to prove Theorem 1. First we claim that

Lemma 4.34 remains true without the assumption that

R+
i ∈C∞(

∂B(0,1)
)
, i = 1,2.

(4.47)

Indeed, let {R+
i,m}, i = 1,2, m = 1,2, . . . , be a sequence of C∞(∂B(0,1)) real valued functions

with

(a) ‖R+
i,m‖̂∂B(0,1) � cβi for i = 1,2, m = 1,2, . . . .

(b) R+
i,m → R+

i uniformly on ∂B(0,1).

(c) R+
1,m = R+

2,m on

{
x− ẑ

|x− ẑ| : x ∈B(w,8r − 1/m)
}
∩ ∂D.

(4.48)

In (4.48)(a), c depends only on n. Existence of {R+
i,m} satisfying (4.48) is easily shown. For

example extend R+
i , i = 1,2 to R

n \ {ẑ} by putting R+
i (x) = R+

i ( x−ẑ
|x−ẑ| ) when x ∈ R

n \ {ẑ}.
One can take logR+

i,m = logR+
i ∗ θεm for certain εm > 0, m = 1,2, . . . , with limm→∞εm = 0.

Here θ ∈ C∞
0 [B(0,1)] with

∫
Rn θ dx = 1 and θε(x) = ε−nθ(x/ε), x ∈ R

n. Also, ∗ denotes
convolution on R

n. Let Ω+
i,m be the starlike Lipschitz domain with center ẑ and graph function

R+
i,m for i = 1,2, m = 1,2, . . . . Put Di,m = Ω+

i,m \ B(ẑ, ρ1) and let ui,m be the p capacitary
functions for Di,m. From (4.48) and Lemma 2.2 we see that ui,m,Di,m converge to ui,Di

in Hölder and Hausdorff distance norms, as m → ∞. We apply Lemma 4.34 with ui,Di,8r
replaced by ui,m,Di,m,8r − 1/m. Since the constants in Lemma 4.34 depend only on p,n and
the Lipschitz constants for Di,m we can let m→∞ and conclude that (4.47) is true.

Let ũ, ṽ, r,w,φ,G be as in Theorem 1 and let w̃ = w + r
4en. As in (2.46), observe that if c′ is

large enough (depending on p,n and the Lipschitz norm of φ), then the domain Ω ⊂ G∩B(w,r)
obtained from drawing all open line segments from points in B(w,r/c′) ∩ ∂G to points in
B(w̃, r/c′) is Lipschitz starlike with center w̃ and Lipschitz constant � c(‖|∇φ|‖∞ + 1), where
c depends only on n. Let r′ = r

4c′ and let u be the p capacitary function for D = Ω \ B̄(w̃, r′/4).
Since ũ(w̃) = 1 = ṽ(w̃), it follows from Harnack’s inequality and the weak maximum principle
for the p Laplacian that

cmin(ũ, ṽ) � u in D.(4.49)

Let

R(ω) = |y − w̃| when ω =
y − w̃

|y − w̃| and y ∈B(w,r′)∩ ∂G,

Ki =
{

y − w̃

|y − w̃| : y ∈B(w,2−ir′)
}

for i = 0,1,2,

L = sup
K

R.

0
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From our construction, we observe for some c (depending on p,n, and the Lipschitz constant
for φ) that

min
{
d
(
K2, ∂B(0,1) \K1

)
, d
(
K1, ∂B(0,1) \K0

)}
� c−1.(4.50)

Let 0 � α � 1, α ∈ C∞
0 (Rn), with α ≡ 1 on K2 and α ≡ 0 on ∂B(0,1) \K1. We can choose α

so that

|∇α| � c−1(4.51)

thanks to (4.50). Let

logR′(ω) =
{

α logR + (1− α) log(2L) when ω ∈K0,
log(2L) when ω ∈ ∂B(0,1) \K0.

Using (4.51) it is easily shown that

‖ logR′‖̂∂B(0,1) � c
(
‖ logR‖̂∂K0 + 1

)
.

Let Ω′ be the starlike Lipschitz domain with center at w̃ and graph function R′. Let D′ =
Ω′ \ B(w̃, r′/4) and let u′ be the p capacitary function for D′. Then from our construction,
the fact that L � cr′, Lemma 2.2, and Harnack’s inequality we deduce first that cu′ � max(ũ, ṽ)
on G ∩ ∂B(w,3r′/4) and second from the weak maximum principle that cu′ � max(ũ, ṽ) in
G∩B(w,3r′/4). Using this inequality and (4.49) we conclude that to prove Theorem 1 it suffices
to prove this theorem for u,u′. Now from our construction it is easily checked that the hypotheses
of Lemma 4.34 are satisfied with u1, u2, r replaced by u,u′, r′/100 so Theorem 1 holds for u,u′.
From our earlier reasoning we conclude that Theorem 1 is true. �

5. Proof of Theorems 2, 3, and 4

Let D̂i, i = 1,2, be as in Theorem 2 with centers x̂, ŷ and corresponding p capacitary functions
ûi, i = 1,2. We note that Lemmas 4.18, 4.34 imply the validity of Theorem 2 when w ∈ ∂D̂i,
i = 1,2, lies in the unbounded components of R

n \ D̂i, i = 1,2, and x̂ = ŷ (i.e. D̂i, i = 1,2 have
the same center). Moreover, Lemmas 4.32, 4.46 imply the validity of Theorem 2 when w ∈ ∂D̂i

lies in the bounded components of R
n \ D̂i, i = 1,2, and x̂ = ŷ. Indeed, the C∞ smoothness

assumption on the various graph functions in the above lemmas can be done away with as in
(4.48). Also, if w lies in the unbounded components of R

n \ D̂i, i = 1,2, and x̂ = ŷ, then we can
first use Lemma 4.18 to reduce the proof of Theorem 2 to the case when D̂i = Ω̂+

i \ B̄(x̂, ρ1),
i = 1,2, where ∂Ω̂+

i is the outer boundary of D̂i. Applying Lemma 4.34 we then get Theorem 2.
A similar argument holds when w lies in the bounded components of R

n \ D̂i, i = 1,2, and
x̂ = ŷ. Thus

Theorem 2 is valid when D̂1, D̂2 have the same center.(5.1)

To complete the proof of Theorem 2 we need to consider the case when x̂ �= ŷ. To this end
recall that w ∈ ∂D̂1 ∩ ∂D̂2 with

B(w,2r)∩ D̂1 = B(w,2r)∩ D̂2.(5.2)

Also, B(w,8r) does not contain any points in either both bounded components or both
unbounded components of R

n \ D̂i, i = 1,2. Once again we consider two cases. If w lies in
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the unbounded component of R
n \ D̂i for i = 1,2, let R̂+

i be the corresponding graph functions
for the outer boundary of D̂i, i = 1,2. Put Ω̂+

1 = {x̂ + tR̂+
1 (ω)ω: ω ∈ ∂B(0,1), 0 � t < 1}

and Ω̂+
2 = {ŷ + tR̂+

2 (ω)ω: ω ∈ ∂B(0,1), 0 � t < 1}. From Lemma 4.18 we see that since
w ∈ ∂Ω̂+

1 ∩ ∂Ω̂+
2 we may also assume that

D̂1 = Ω̂+
1 \ B̄(x̂, ρ1), D̂2 = Ω̂+

2 \ B̄(ŷ, ρ2),

where ρ1 ≈ d(x̂, ∂Ω̂+
1 ), ρ2 ≈ d(ŷ, ∂Ω̂+

2 ).
(5.3)

Moreover,

B̄(w,8r)∩
[
B(x̂,2ρ1)∪B(ŷ,2ρ2)

]
= ∅.(5.4)

Given z ∈ B(w,r)∩∂D̂i, i = 1,2, we claim that it suffices to show there exists c, depending only
on p,n, and the Lipschitz constants for Ω̂+

i , i = 1,2, such that if z ∈ B(w,r) ∩ ∂Ω̂+
i , i = 1,2,

then

the conclusion of Theorem 2 holds with w,r replaced by z, r/c.(5.5)

In fact assuming (5.5) one can cover B(w,r) ∩ ∂D̂i, i = 1,2, by at most c+ such balls to
get Theorem 2 near B(w,r) ∩ ∂D̂1. One can then use interior Hölder continuity and Harnack
estimates for û1, û2 (see Lemma 2.1) to get Theorem 2 for the rest of B(w,r) ∩ D̂1. Hence we
prove only (5.5). Let z ∈ B(w,r)∩ ∂Ω̂+

i , i = 1,2, and let l denote the open line segment drawn
from x̂ to z. Let β1 be the Lipschitz constant for D̂1. If ζ ∈ l, let Ω = Ω(ζ), be the domain
obtained from drawing all open line segments connecting points in B(ζ, |ζ − z|/c′) to points in
B(z, |ζ − z|/c′) ∩ ∂Ω̂+

1 . If c′ is large enough (depending only on p,n,β1) and |ζ − z| � r/8,
it follows from the same reasoning as in (2.46) that Ω is starlike Lipschitz with center at ζ,
constant � c(β1 + 1), and Ω ⊂ D̂1. Let D(ζ) = Ω(ζ) \ B(ζ, 1

2 |ζ − z|/c′). We note that if
ξ ∈B(ζ, 1

4 |ζ − z|/c′), then

D(ζ) is also a starlike Lipschitz ring with center at ξ and constant � c(β1 + 1).(5.6)

Let ζ1 ∈ l be such that |ζ1 − z| = r/8. From our construction it is easily seen that there exists
0 < θ < 1/2 (depending only on p,n,β1) and a sequence {ζi}N

1 with

(a)
|ζi+1 − z|
|ζi − z| � 1 + θ, 1 � i � N − 1,

(b) ζi+1 ∈ B

(
ζi,

1
4
|ζi − z|/c′

)
for 1 � i � N − 1 and x̂ ∈B

(
ζN ,

1
4
|ζN − z|/c′

)
.

(5.7)

Let vi, i = 1,2, . . . ,N , be the p capacitary function for D(ζi). From (5.6) we see that
D(ζi),D(ζi+1) are both starlike Lipschitz with respect to ζi+1. Also v1 ≈ v2 ≈ 1 at a point
in D(ζi) ∩ D(ζi+1) with distance ≈ |ζi − z| from ∂D̂i, i = 1,2. From these facts, (5.1),
(5.6), and our construction we see that Theorem 2 can be applied with û1, û2, r,w replaced by
vi, vi+1,

|ζi−z|
100c′ , z to get first, for c � 106c′, that vj/vk � c on B(z, |ζi − z|/c) ∩ D̂1 whenever

j, k ∈ {i, i + 1} and thereupon, from (5.7), that∣∣∣∣log
(

vi+1(w1)
vi(w1)

)
− log

(
vi+1(w2)
vi(w2)

)∣∣∣∣
� c

(
|w1 −w2|
|ζ − z|

)λ

� c(1 + θ)−iλ

(
|w1 −w2|

r

)λ(5.8)
i
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whenever w1,w2 ∈B(z, r/c)∩ D̂1. Summing this inequality we deduce that∣∣∣∣log
(

vN (w1)
v1(w1)

)
− log

(
vN (w2)
v1(w2)

)∣∣∣∣
�

N−1∑
i=1

∣∣∣∣log
(

vi+1(w1)
vi(w1)

)
− log

(
vi+1(w2)
vi(w2)

)∣∣∣∣� c

(
|w1 −w2|

r

)λ

.

(5.9)

In view of (5.1), (5.6), (5.7), we see that Theorem 2 can also be applied to vN , û1. Doing this and
using (5.9) we get

∣∣∣∣log
(

û1(w1)
v1(w1)

)
− log

(
û1(w2)
v1(w2)

)∣∣∣∣� c

(
|w1 −w2|

r

)λ

(5.10)

whenever w1,w2 ∈B(z, r/c)∩ D̂1 and c is large enough, depending only on p,n,β1.
Let β2 be the Lipschitz constant for D̂2 and let η be a point in D̂2 on the line segment from

ŷ to z with |η − z| = r/8. Let H(η) be the domain obtained from drawing all infinite rays with
tips in B(η, |η− z|/c′) through points in B(z, |η− z|/c′)∩∂Ω̂+

2 . Let Ω(η) = H(η)∩ D̂2. If c′ is
large enough, it follows as in (2.46) or the construction of Ω(ζ), that Ω(η) is the union of all open
line segments joining points in B(η, |η − z|/c′) to points in B(z, |η − z|/c′)∩ ∂Ω̂+

2 . Thus Ω(η)
is starlike with respect to centers in B̄(η, 1

16r/c′) and starlike Lipschitz with respect to points in
B(η, 1

32r/c′). Again c′ and the Lipschitz constant can be chosen to depend only on p,n,β2. Let
D(η) = Ω(η) \ B(η, 1

16r/c′) and let v be the p capacitary function for D(η). Arguing as in the
proof of (5.10) we deduce that

∣∣∣∣log
(

û2(w1)
v(w1)

)
− log

(
û2(w2)
v(w2)

)∣∣∣∣� c

(
|w1 −w2|

r

)λ

(5.11)

whenever w1,w2 ∈ B(z, r/c) ∩ D̂1 and c is large enough, depending only on p,n,β2. With c′

now fixed we draw the closed line segment l′ connecting η to ζ1. If y ∈ l′ let Ω′(y) be the union of
all open line segments connecting points in B(y, 1

8r/c′) to points in B(z, 1
8r/c′)∩∂D̂i, i = 1,2.

We claim that

G =
⋃
y∈l′

Ω′(y) ⊂ R
n \

[
B

(
z,

1
8
r/c′

)
∩ ∂Ω+

2

]
(5.12)

so that Ω(y), y ∈ l′, is starlike Lipschitz with respect to any point in B(y, 1
32r/c′). Indeed,

otherwise we first observe that

L =
⋃

y′∈l′

B

(
y′,

1
8
r/c′

)
⊂ R

n \
[
B

(
z,

1
8
r/c′

)
∩ ∂Ω+

2

]

since a ray drawn from a point in B(η, 1
8r/c′) through a point in B(z, 1

8r/c′) ∩ ∂Ω+
2 can never

reenter D̂2 once it leaves D̂2 and B(ζ1,
1
8r/c′) ⊂ D2. Using this observation, we see that if (5.12)

is false, then there are points P,Q,R with P ∈ L,Q,R ∈ B(z, 1
8r/c′)∩ ∂Ω̂+

i , i = 1,2, such that
the line segment l1 from P to Q contains R. Choose P1,∈ Ω(ζ1) and P2 ∈ Ω(η) such that the
line segment, l′′, from P1 to P2 is parallel to l′ and contains P. Let l2 be the line segment from
P1 to Q. Then P1, P2, P,Q,R all lie in a two-dimensional plane and P2 lies outside the triangle
with vertices P1, P,R. Draw the infinite ray, P2 through R. Let σ denote the part of this ray
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connecting R to ∞. Then by our choice of Ω(η), we must have σ ⊂ R
n \ D̂2. However clearly

σ must intersect the open line segment l∗ from P1 to Q and

l∗ ⊂Ω(ζ1)⊂ D̂1 ∩B(w,2r) = D̂2 ∩B(w,2r)

thanks to our construction of Ω(ζ1) and (5.2). We have reached a contradiction. Thus claim (5.12)
is true. From (5.12) we can conclude that D(y) = Ω(y) \B(y, 1

16r/c′) is starlike Lipschitz with
center at ξ and constant depending only on p,n,β1, β2, whenever ξ ∈ B(y, 1

32r/c′) and y ∈ l′.
We can now use Theorem 2 at most c times, as in the proof of (5.9) in order to conclude that

∣∣∣∣log
(

v1(w1)
v(w1)

)
− log

(
v1(w2)
v(w2)

)∣∣∣∣� c

(
|w1 −w2|

r

)λ

(5.13)

provided w1,w2 ∈ B(z, r/c)∩ D̂1 and c is large enough (again depending only on p,n,β1, β2).
Combining (5.10), (5.11), (5.13), we deduce first that (5.5) is true and thereupon, from our earlier
remarks, that Theorem 2 is true when w lies in the unbounded components of R

n \ D̂i, i = 1,2.
Using essentially the same argument we can deduce Theorem 2 when w lies in the bounded

components of R
n \ D̂i, i = 1,2. One small change in the proof is to choose c′ so large that rays

drawn from B(η, 1
8r/c′) through points in B(z, 1

8r/c′) ∩ ∂D̂2 cannot reenter D̂2 in B(w,2r).
Then Ω(η) = B(w,2r)∩H(η)∩ D̂2 is the union of line segments joining points in B(η, 1

8r/c′)
with B(w,r/c′)∩ ∂D̂2 and the proof of (5.13) is unchanged. We omit the rest of the details. The
proof of Theorem 2 is now complete.

Proof of Theorem 3. – Let D be the starlike Lipschitz ring domain in Theorem 3 with center
x̂ and p capacitary function u. Let μ = μ+ − μ− be the measure corresponding to u as in
Lemma 2.35. Let w ∈ ∂D, r be as in (1.12) and recall from Lemma 2.39 that dμ/dHn−1 =
±kp−1 on B(w,8r)∩D where the + sign is taken if w is in the outer boundary of D while the
− sign is taken if w lies in the inner boundary of D. Moreover, applying Lemma 2.39 with w,r
replaced by y ∈B(w,8r)∩ ∂D and s so that B(y,8s)⊂ B(w,8r), we deduce

∫
B(y,s)∩∂D

kp dHn−1 � cs−
n−1
p−1

( ∫
B(y,s)∩∂D

kp−1 dHn−1

)p/(p−1)

.

The above inequality and Lemma 2.35(b) imply (see [18]) that for some q′ > p (depending only
on p,n and the Lipschitz constant for D) that

∫
B(w,3r)∩∂D

kq′
dHn−1 � cr−

(n−1)(q′+1−p)
p−1

( ∫
B(w,3r)∩∂D

kp−1 dHn−1

)q′/(p−1)

.(5.14)

Let y ∈ ∂D ∩ B(w,2r) and z ∈ Γ(y) ∩ B(y, r/4), where Γ(y), y ∈ B(w,2r) ∩ D, is defined
for a fixed constant b above (1.13). From Lemmas 2.35 and 2.5 with w,x replaced by y, z and
s = |z − y|, we obtain that

∣∣∇u(z)
∣∣� cmin

{
u(z),1− u(z)

}
/s � c2s−1

[
sp−n

∣∣μ(B(y, s)
)∣∣]1/(p−1)

= c2

[
s1−n

∫
B(y,s)∩∂D

kp−1 dHn−1

]1/(p−1)

� c2
[
M(kp−1)(y)

]1/(p−1)(5.15)
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where

M(f)(y) = sup
0<s<r/4

[
s1−n

∫
B(y,s)

f dHn−1

]

whenever f is an integrable function on ∂D ∩B(w,4r). Let

N1

(
|∇u|

)
(y) = sup

Γ(y)∩B(y,r/4)

|∇u|.

Then from (5.14), (5.15), and the Hardy–Littlewood maximal theorem, we get for q = (q′ +p)/2
that ∫

B(w,3r)∩∂D

N1

(
|∇u|

)q
dHn−1 � c

∫
B(w,3r)∩∂D

M(kp−1)q/(p−1) dHn−1

� c2r−
(n−1)(q+1−p)

p−1

( ∫
B(w,3r)∩∂D

kp−1 dHn−1

)q/(p−1)

.

(5.16)

Using Lemma 2.3 we see that |∇u(x)| � cr−1 when x ∈ Γ(y) \ B(y, r/2) and y ∈ ∂D. Thus
N(|∇u|) � N1(|∇u|) + cr−1 on ∂D ∩ B(w,2r). In view of (5.16) it now follows that (a) of
Theorem 3 is true.

The proof that ∇u has nontangential limits Hn−1 almost everywhere is by contradiction.
Suppose for a fixed constant, in the definition of Γ(z), z ∈ ∂D, that

lim
y∈Γ(z),y→z

∇u(y) does not exist for z ∈ F ⊂ ∂D with Hn−1(F ) > 0.(5.17)

Let w ∈ F be an Hn−1 point of density for F. Then limt→0 t1−nHn−1[B(w, t)∩ ∂D \ F ] = 0,
so if r > 0 is small enough, we deduce that

cHn−1
[
∂Ω̃∩B(w,r)∩ F

]
� rn−1

where Ω̃ ⊂ D is as in Lemma 2.45. From this lemma, we have |∇u| ≈ c on Ω̃. Define (bij(x))
as in (1.8) with û replaced by u and let L be the corresponding divergence form elliptic operator
defined as in (1.7). Then as noted above (2.26) we have Luxk

= 0 in D for 1 � k � n. Moreover
L is uniformly elliptic on Ω̃ and uxk

is bounded on Ω̃. It now follows from a well-known
argument (see [10]) that uxk

has nontangential limits at almost every boundary point of Ω̃
with respect to elliptic measure defined relative to L (see Section 3). Here b, 1 < b < ∞, is
arbitrary in the choice of nontangential cones for Ω̃. From Theorem 3.11 we conclude that uxk

has nontangential limits at Hn−1 almost every point in ∂Ω̃. Since b is arbitrary, and ∂Ω̃ has
tangent planes Hn−1 a.e., we see that this limit can only exist if (5.17) is false.

Let ∇u(w), w ∈ ∂D, denote the nontangential limit of ∇u whenever this limit exists. To
prove (b) of Theorem 3 we can retrace the argument leading to Lemma 2.39. Indeed in (2.44) we
showed that if w is in the outer boundary of D, D(t) = {y ∈ D: t < u(y) < 1}, and t is near 0,
then

∫
B(w,2r)∩{u=t}

|∇u|pdHn−1 � cr−
n−1
p−1

( ∫
B(w,2r)∩{u=t}

|∇u|p−1 dHn−1

)p/(p−1)

.(5.18)
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If w lies in the inner boundary of D, this inequality also holds provided t is near enough 1.
From Lemma 2.5 we see that if {x: u(x) = t} = {Rt(ω)ω: ω ∈ ∂B(0,1)}, then {logRt(·)} are
uniformly Lipschitz on ∂B(0,1). Using this fact, the fact that ∇u has radial limits Hn−1 almost
everywhere, Theorem 3(a), and dominated convergence, we get that (5.18) holds with {u = t}
replaced by ∂D. Also from (2.38) and Lemma 2.39 we find that

ν ≈ |μ| where dν = |∇u|p−1 dHn−1 on ∂D.(5.19)

Theorem 3(b) now follows from (5.14) and (5.19). Theorem 3(b) implies Theorem 3(c)
(see [11]). The proof of Theorem 3 is complete. �

Remark. – For use in the proof of Theorem 3 we point out that a slightly more sophisticated
argument in Theorem 3 yields,

ν = |μ| on ∂D ∩B(w,2r).(5.20)

In fact extend Rt to R
n \ {0} by putting Rt(x) = Rt( x

|x| ). Since u(Rt(ω)ω) = t for
ω ∈ ∂B(0,1), we can use the implicit function theorem and the chain rule to deduce for
ω = (ω1, . . . , ωn) and x = |x|ω that

∇ logRt(ω) = − |x|∇u(x)
〈x,∇u(x)〉 +

x

|x| .(5.21)

We note that |∇u| �= 0, Hn−1 almost everywhere, on ∂D as follows from Theorem 3 and [11].
Using this note, (5.21), Lemma 2.5, and Theorem 3, we see that if y ∈ Γ(z) ∩ {x: u(x) = t}→
z ∈ ∂D, then

∇ logRt

(
y/|y|

)
→− |z|∇u(z)

〈z,∇u(z)〉 +
z

|z| ,(5.22)

Hn−1 almost everywhere. Let R be a graph function for either the outer or inner boundary
of D. Since logRt → logR uniformly on ∂B(0,1) as t → 0 or 1, it follows that the right-hand
side of (5.22) is a distributional gradient of logR. Thus it is equal Hn−1 almost everywhere to
the gradient of logR at z/|z|. Using this fact, (5.18), (2.38), the change of variables theorem,
Lemma 2.5, Theorem 3, and dominated convergence we get (5.20). Finally note that taking limits
in (5.22) it also follows that ∇u is Hn−1 almost everywhere normal to the tangent planes through
points in ∂D. Taking limits in (2.41) we conclude that (2.41) holds with D(t) replaced by D
where ν = ∇u

|∇u| , Hn−1 almost everywhere on ∂D.

Proof of Theorem 4. – Let D,w, r,u, p be as in Theorem 3 and suppose also that ∂D ∩
B(w,8r) is C1. To prove Theorem 4 it suffices by way of a lemma of Sarason (see [27]) to show
that there exists ε0 > 0, r0 = r0(ε) defined for ε ∈ (0, ε0), such that whenever y ∈ B(w,r)∩ ∂D
and 0 < s < r0(ε), then

∫
−

B(y,s)∩∂D

|∇u|p dHn−1 � (1 + ε)
( ∫

−
B(y,s)∩∂D

|∇u|p−1 dHn−1

)p/(p−1)

.(5.23)

Here ∫
−f dHn−1 =

[
Hn−1(E)

]−1
∫

f dHn−1
E E
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whenever E ⊂ ∂D is Borel measurable with finite positive Hn−1 measure and f is an Hn−1

integrable function on E. The proof of (5.23) is by contradiction. Indeed, otherwise, there exist
sequences (sm)∞1 , (ym)∞1 satisfying ym ∈ ∂D ∩ B(w,r), m = 1,2, . . ., limm→∞ sm = 0, and
for which (5.23) is false with y, s replaced by ym, sm, m = 1,2, . . . . To obtain a contradiction we
note from C1 smoothness of ∂D∩B(w,8r) that ∂D∩B(w,4r) is Reifenberg flat with vanishing
constant (see [27]) in the following sense. Given δ > 0, small, there is an a = a(δ) < 10−6r, such
that whenever y ∈ ∂D ∩B(w,4r) and 0 < s � a, then

{
z + tν ∈B(y, s/δ), z ∈ P, t > δs

}
⊂ D,{

z − tν ∈ B(y, s/δ), z ∈ P, t > δs
}
⊂ R

n \ D̄.
(5.24)

Here P = P (y) is the tangent plane to ∂D ∩ B(w,4r) at y and ν = ν(y) is the corresponding
unit normal pointing into D. For fixed A > 106 we can also choose δ0 = δ0(A) > 0 so small that
if y′ = y + Asν(y), then the domain Ω(y′), obtained by drawing all line segments from points
in B(y′, As

4 ) to points in ∂D ∩B(y,As), is starlike Lipschitz with respect to y′. We assume, as
we may, that sm � a(δ0), for m = 1,2, . . . . Let y′

m be the point corresponding to ym as above
and put Dm = Ω(y′

m) \ B̄(y′
m,Asm/8). From C1 smoothness of ∂D ∩ B(w,8r), we see that

Dm, m = 1,2, . . . , has Lipschitz constant � c0 where c0 is an absolute constant. Let um be
the p capacitary function for Dm, m = 1,2, . . . . From Theorem 2 with r,w, û1, û2 replaced by
Asm

100 , ym, u, um, we deduce that if w1,w2 ∈ B(ym,2sm)∩D, m = 1,2, . . . , then

∣∣∣∣log
(

um(w1)
u(w1)

)
− log

(
um(w2)
u(w2)

)∣∣∣∣� cA−α,

where c,α are the constants in Theorem 2, so are independent of m. Letting w1,w2 → z1, z2 ∈
∂D ∩B(ym,2sm), and using Theorem 3, we get Hn−1 almost everywhere that

∣∣∣∣log
(
|∇um(z1)|
|∇u(z1)|

)
− log

(
|∇um(z2)|
|∇u(z2)|

)∣∣∣∣� cA−α.

Exponentiating this inequality we have for c large enough,

(1− c̃A−α)
|∇um(z1)|
|∇um(z2)|

� |∇u(z1)|
|∇u(z2)|

� (1 + c̃A−α)
|∇um(z1)|
|∇um(z2)|

,

where c̃ depends only on p,n, and the Lipschitz constant for D. Using this inequality and the
fact that (5.23) is false, we obtain∫

−
B(ym,sm)∩∂D

|∇um|p dHn−1

(
∫
−

B(ym,sm)∩∂D
|∇um|p−1 dHn−1)p/(p−1)

� (1− cA−α)

∫
−

B(ym,sm)∩∂D
|∇u|p dHn−1

(
∫
−

B(ym,sm)∩∂D
|∇u|p−1 dHn−1)p/(p−1)

� (1− cA−α)(1 + ε).

(5.25)

Let Tm be a conformal affine mapping of R
n which maps the origin, en, onto ym, y′

m respectively
and W = {x ∈ R

n: xn = 0} onto P (ym) for m = 1,2, . . . . It is easily seen that Tm is the
composition of a translation, rotation, dilation. Let D′

m, u′
m be such that Tm(D′

m) = Dm

and um(Tmx) = u′
m(x) whenever x ∈ D′

m. Since the p Laplace equation is invariant under
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translations, rotations, and dilations, we see that u′
m is the p capacitary function for D′

m. From
(5.25) we also get

∫
−

B(0,1/A)∩∂D′
m
|∇u′

m|p dHn−1

(
∫
−

B(0,1/A)∩∂D′
m
|∇u′

m|p−1 dHn−1)p/(p−1)

=

∫
−

B(ym,sm)∩∂D
|∇um|p dHn−1

(
∫
−

B(ym,sm)∩∂D
|∇um|p−1 dHn−1)p/(p−1)

� (1− cA−α)(1 + ε).

(5.26)

Letting m →∞ we see from Lemmas 2.1, 2.2 that u′
m converges uniformly on R

n to u′ where u′

is the p capacitary function for the starlike Lipschitz ring domain, D′ = Ω̂\B(en,1/8). Also Ω̂ is
obtained by drawing all line segments connecting points in B(0,1)∩W to points in B(en,1/4).
To get a contradiction we shall show that

limsup
m→∞

[ ∫
−

B(0,1/A)∩∂D′
m
|∇u′

m|p dHn−1

(
∫
−

B(0,1/A)∩∂D′
m
|∇u′

m|p−1 dHn−1)p/(p−1)

]

�
∫
−

B(0,1/A)∩W
|∇u′|p dHn−1

(
∫
−

B(0,1/A)∩W
|∇u′|p−1 dHn−1)p/(p−1)

.

(5.27)

To see how (5.27) leads to a contradiction, note from Schwarz reflection that u′ has a p
harmonic extension to B(0,1/8) with u′ ≡ 0 on W ∩ B(0,1/8). From barrier estimates we
have c−1 � |∇u′| � c on B(0,1/16) where c depends only on p,n, and from Lemma 2.3 we
find that |∇u′| is Hölder continuous with exponent σ on B̄(0,1/16)∩W (one could take σ = 1
here). Using these facts we conclude first that for some c

(1− cA−σ)
∣∣∇u′(0)

∣∣� ∣∣∇u′(z)
∣∣� (1 + cA−σ)

∣∣∇u′(0)
∣∣

when z ∈ B(0,1/A) and second from (5.26), (5.27) that

(1 + cA−σ) �
∫
−

B(0,1/A)∩W
|∇u′|p dHn−1

(
∫

B(0,1/A)∩W
|∇u′|p−1 dHn−1)p/(p−1)

� (1− cA−α)(1 + ε).

Clearly this inequality cannot hold if A = e1/ε and ε0 is sufficiently small. From this
contradiction we conclude that in order to prove Theorem 4 it suffices to prove (5.27). To prove
(5.27) we shall need the following lemma.

LEMMA 5.28. – Given η > 0 small, there exists c, depending only on p,n, and the Lipschitz
constant for D and m0 = m0(η), such that if m � m0, x ∈ ∂D′

m ∩ B(0,1/100), and 0 � s �
1/100, then u′

m(as(x)) � cs1−η.

Proof. – Let ν′
m be the outer unit normal to ∂D′

m. We note for large m that since ∂D is C1,
there is a truncated cone L ⊂ R

n \ D′
m with vertex at x, axis parallel to ν′

m(x), angle opening
θ > π/2, and height 1/50, where θ can be arbitrarily near π/2. Let T be the cone with vertex at
the origin, axis parallel to en, and of angle opening θ. Arguing as in [33] we see there exists a
positive solution f = f(·, θ) to the p Laplacian in T of the form

f(z) = |z|γψ

(
〈z, en〉
|z|

)
, z ∈ T,(5.29)
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where ψ ∈ C∞[cosθ,1] and ψ(1) = 1, ψ(cosθ) = 0. Using the maximum principle for p
harmonic functions, rotation and translation invariance of the p Laplacian, as well as Theorem 1,
it follows that the conclusion of Lemma 5.28 holds with 1 − η replaced by γ = γ(θ). Thus to
complete the proof of Lemma 5.28 it suffices to show that γ(θ) → 1 continuously as θ → π/2.
This can be easily verified using a compactness argument, since any convergence subsequence
say {f(·, θj)} with θj → π/2 is a positive solution to the p Laplacian on {x: xn > 0} which
vanishes on W. This solution also has the form (5.29) with γ = limj→∞ γ(θj). Using Theorem 1
and the fact that xn is also a positive solution to the p Laplacian on {x: xn > 0} which vanishes
on W, it follows that γ = 1.

Another proof of Lemma 5.28 which uses only the fact that ∂D ∩B(w,4r) is Reifenberg flat
with vanishing constant (see (5.24)) and an iteration argument, can be given as in [36, (2.37)].
The proof in [36] gives a lower bound for u′

m(as(x)) and is only in R
2. However thanks to

Theorem 1, essentially the same iterative argument can be used to get Lemma 5.28. �
Finally we use Lemma 5.28 to prove (5.27). Let μm = μ+

m − μ−
m, be the measure associated

with u′
m for m = 1,2, . . . . From (5.20) we see that

d|μm| = |∇u′
m|p−1 dHn−1 on ∂D′

m.(5.30)

From Lemmas 2.1, 2.2, and 2.35 we see that {|μm|} converges weakly to |μ′ | where μ′ =
μ+

′ − μ−
′ is the measure associated with u′. Also (5.30) holds for |μ′ |, u′. From the definition of

weak convergence and (5.30) we deduce∫
B(0,1/A)∩W

|∇u′|p−1 dHn−1 = lim
m→∞

∫
B(0,1/A)∩∂D′

m

|∇u′
m|p−1 dHn−1.(5.31)

Let C = {x = (x′, xn) ∈ R
n: |x′|< 1/A, |xn|< 1/A} be the symmetric cylinder of radius 1/A,

height 2/A with center at the origin and axis parallel to en. Let ν∗ be the outer unit normal to C.
To handle the top integral in (5.27) we argue as in the proof of Lemma 2.39 leading to (2.41). As
noted after (5.22), this inequality holds with u, D(t), B(w,s), replaced by u′

m,D′
m,C, and with

∇u′
m as the normal, Hn−1 almost everywhere, to ∂D′

m. We get

Lm = (p− 1)
∫

∂D′
m∩C

〈en − x,∇u′
m〉|∇u′

m|p−1 dHn−1 = Jm + Km,(5.32)

where

Jm = (p− n)
∫

D′
m∩C

|∇u′
m|p dx

and

Km =
∫

D′
m∩∂C

〈x− en, ν∗〉|∇u′
m|p dHn−1

− p

∫
D′

m∩∂C

〈∇u′
m, ν∗〉〈∇u′

m, x− en〉|∇u′
m|p−2 dHn−1.

Now u′
m,∇u′

m converge uniformly on compact subsets of D′ to u′,∇u′. Replace u by u′
m in

Theorem 3. From the proof of Theorem 3(a) (see (5.16)) we deduce that the Lq norm (q > p) of
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N(|∇u′
m|) on ∂D′

m ∩ B(0,1/8) is uniformly bounded for m = 1,2, . . . . Using these facts and
standard convergence theorems we see that

lim
m→∞

Jm = (p− n)
∫

D′∩C

|∇u′|p dx.(5.33)

The same argument can be applied to Km to get

lim
m→∞

Km =
∫

D′∩∂C

〈x− en, ν∗〉|∇u′|p dHn−1

− p

∫
D′∩∂C

〈∇u′, ν∗〉〈∇u′, x− en〉|∇u′|p−2 dHn−1

(5.34)

provided we first show that

∫
D′

m∩∂C

|∇u′
m|p+1 dHn−1 � M < ∞(5.35)

for sufficiently large m, say m � m0. To prove (5.35) note from our construction that ∂D′
m∩∂C

is a Lipschitz image of {x′ ∈ R
n−1: |x′|= 1/A}, with Lipschitz constant independent of m. Let

Λk =
{
x ∈D′

m ∩ ∂C: A−12−k−1+n < d(x,∂D′
m) < A−12−k−n

}
for k = 3, . . . .

From Lemma 5.28 and Lemma 2.5(ii) for u′
m, we see that if m0 is large enough, then for

m > mo,

|∇u′
m|p+1 � cA2k/2(5.36)

on Λk where c is independent of m and k. If |x′|= 1/A, and l denotes the line through x′ parallel
to en, then from (5.36) and the above note we deduce that∫

l∩Λk

|∇u′
m|p+1(x′, ·)dH1 � c2−k/2.

Integrating with respect to Hn−2 measure over the sphere of radius 1/A in R
n−1, it follows that

∫
Λk

|∇u′
m|p+1 dHn−1 � c2−k/2A2−n.(5.37)

Let Λ =
⋃∞

k=1 Λk. Summing (5.37) we get

∫
Λ

|∇u′
m|p+1 dHn−1 � cA2−n.(5.38)

Now from (5.24) we see for m0 large enough that cd(C \Λ, ∂D′
m) � A−1 where c is independent

of m. From this fact,(5.38), and uniform convergence of ∇u′
m to ∇u′ on compact subsets of D′
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we find that (5.35) is valid. Thus (5.34) is also valid. Now, (5.32) also holds with u′
m replaced by

u′ and ∂Dm by ∂D′. In view of (5.33), (5.34) and (5.32) for u′, u′
m we deduce that

lim
m→∞

Lm = (p− 1)
∫

W∩B(0,1/A)

〈en − x,∇u′〉|∇u′|p−1 dHn−1

= (p− 1)
∫

W∩B(0,1/A)

|∇u′|p dHn−1.

(5.39)

Since ∇u′
m(x), x ∈ ∂D′

m, is normal Hn−1 almost everywhere to the tangent plane through x,
we deduce from C1 smoothness of ∂D ∩B(w,8r) and our construction that

∣∣|∇u′
m|+ 〈x− en,∇u′

m〉
∣∣� bm|∇u′

m| on ∂D′
m ∩C

where bm → 0 as m→∞. Thus,

lim
m→∞

Lm = (p− 1) lim
m→∞

∫
∂D′

m∩C

|∇u′
m|p dHn−1.(5.40)

Next we note from C1 smoothness of ∂D ∩B(w,8r) that

Hn−1
[
∂D′

m ∩B(0,1/A)
]
→ Hn−1

[
W ∩B(0,1/A)

]
as m→∞.(5.41)

Using (5.40) in (5.39), the fact that B(0,1/A) ⊂ C, (5.41), and (5.31), we conclude that (5.27)
is true. From our earlier remarks, we now get Theorem 4. �
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