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ABSTRACT. – In the acyclic case, we establish a one-to-one correspondence between the tilting objects
of the cluster category and the clusters of the associated cluster algebra. This correspondence enables us
to solve conjectures on cluster algebras. We prove a multiplicativity theorem, a denominator theorem, and
some conjectures on properties of the mutation graph. As in the previous article, the proofs rely on the
Calabi–Yau property of the cluster category.
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RÉSUMÉ. – Pour le cas des carquois acycliques, nous établissons une correspondance biunivoque entre les
objets basculants de la catégorie amassée et les amas de l’algèbre amassée associée. Cette correspondance
nous permet de résoudre des conjectures sur les algèbres amassées. Nous prouvons un théorème de
multiplication, un théorème de dénominateurs, ainsi que certaines conjectures sur les propriétés du graphe
de mutation. Comme dans l’article précédent, les démonstrations reposent sur la propriété de Calabi–Yau
de la catégorie amassée.
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1. Introduction

Cluster algebras are commutative algebras, introduced in [11] by S. Fomin and A. Zelevinsky.
Originally, they were constructed to obtain a better understanding of the positivity and
multiplicativity properties of Lusztig’s dual (semi)canonical basis of the algebra of coordinate
functions on homogeneous spaces. Cluster algebras are generated by the so-called cluster
variables gathered into sets of fixed cardinality called clusters. In the framework of the present
paper, the cluster variables are obtained by a recursive process from an antisymmetric square
matrix B.

Denote by Q the quiver associated to the matrix B, see 5.1. Assume that Q is connected.
A theorem of Fomin and Zelevinsky, [12], asserts that the number of cluster variables of the
corresponding cluster algebra AQ is finite if and only if Q is mutation-equivalent to a quiver
whose underlying graph is a simply laced Dynkin diagram. In this case, it is known that the
combinatorics of the clusters are governed by the generalized associahedron.

Let Q be any finite quiver without oriented cycles and let k be an algebraically closed field.
The cluster category C = CQ was introduced in [8] for type An and in [6] in the general case. This
construction was motivated by the combinatorial similarities of CQ with the cluster algebra AQ.
The cluster category is the category of orbits under an autoequivalence of the bounded derived
category Db(modkQ) of the category of finite dimensional kQ-modules. By [18], the category
CQ is a triangulated category. Let us denote its shift functor by S and write Ext1C(M,N) for
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984 P. CALDERO AND B. KELLER
HomC(M,SN) for any objects M,N of C. By construction, the cluster category is Calabi–Yau
of CY-dimension 2; in other terms, the functor Ext1 is symmetric in the following sense:

Ext1C(M,N)� DExt1C(N,M).

In a series of articles [6,3,4], A.B. Buan, R.J. Marsh, I. Reiten and their collaborators study
the tilting theory of the cluster category. More precisely, they describe the combinatorics of
the cluster tilting objects of the category C, i.e. the objects without self-extensions and with a
maximal number of non-isomorphic indecomposable summands. In [4], the authors define a map
β between the set of clusters of AQ and the set of tilting objects of the category CQ. A natural
question arises: does β provide a one-to-one correspondence between both sets?

In Refs. [7,10], it is proved that in the finite case, i.e. the Dynkin case, the cluster algebra can
be recovered from the corresponding cluster category as the so-called exceptional Hall algebra of
the cluster category. More precisely, in [7] the authors give an explicit correspondence M �→XM

between indecomposable objects of CQ and cluster variables of AQ. In [10], we provide a
multiplication rule for the algebra AQ in terms of the triangulated category CQ.

An ingenious application of the methods of [10] can be found in [14], where the authors give
a multiplication formula for elements of Lusztig’s dual semicanonical basis. Here, the cluster
category is replaced by the category of finite-dimensional modules over the preprojective algebra
and the rôle of the cluster algebra is played by the coordinate algebra of the maximal unipotent
subgroup in the corresponding semisimple algebraic group.

The aim of the present article is to generalize some of the results of [7,10] to the case where Q
is any finite quiver without oriented cycles. Building on the important results obtained in [4] we
strengthen here the connections between the cluster category and the cluster algebra by giving an
explicit expression for the correspondence β and proving that β is one-to-one. The key ingredient
of the proof is a natural analogue of the map M �→ XM of [7]. With the help of a multiplicativity
result, we show that M �→ XM defines a bijection between the indecomposable objects without
self-extensions of CQ and the cluster variables of AQ.

This correspondence between cluster algebras and cluster categories gives positive answers
to some of the conjectures which S. Fomin and A. Zelevinsky formulated in [13]. We prove
connectedness properties of some mutation graphs, cf. Section 5.3. As a byproduct, we obtain
a cluster-categorical interpretation of the passage to a submatrix of the exchange matrix. This
strengthens a key result of [4] and may be of independent interest.

Another consequence of the bijectivity of β is that each seed is determined by its cluster. As
we have learned recently, this result is obtained independently in [5].

The paper is organized as follows: In the first part, we recall well-known facts on the cluster
category. For any object M of the cluster category, we define the Laurent polynomial XM as
in [7]. With the techniques of [10], we prove an ‘exchange relation’ for the XM . To be more
precise, we prove that if M and N are indecomposable objects of the category C = CQ such that
Ext1C(M,N) = k, then

XMXN = XB + XB′ ,

where B and B′ are the unique objects (up to isomorphism) such that there exist non-split
triangles

N →B → M → SN, M → B′ → N → SM.

This formula is an analogue of the ‘exchange relation’ between cluster variables. With the help
of a comparison theorem of [4], we prove by induction that for any indecomposable exceptional
object M , XM is a cluster variable and that its (monomial) denominator is given by the
4e SÉRIE – TOME 39 – 2006 – N◦ 6



FROM TRIANGULATED CATEGORIES TO CLUSTER ALGEBRAS II 985
dimension vector dim(M). From this denominator property, we deduce that the map M �→XM

is injective when restricted to the set of indecomposable objects of CQ without self-extensions.
The connectedness of the tilting graph proved in [4] then implies that the map M �→ XM is a
one-to-one correspondence between the set of tilting objects of CQ and the set of clusters of AQ.

We then deduce some applications of this correspondence to conjectures of [13].

2. The cluster category and the cluster variable formula

2.1. Let H be a finite dimensional hereditary algebra over an algebraically closed field k. We
denote by H-mod the category of finitely generated H-modules. We choose representatives Si,
1 � i � n, of the isoclasses of the simple H-modules and denote by Ii the injective hull and by
Pi the projective cover of Si.

The Grothendieck group of H-mod is the group G0(H-mod) generated by the isoclasses of
modules in H-mod and subject to the relations X = M + N obtained from exact sequences
0 →M → X → N → 0 in H-mod. We denote by [M ] the class of a module M in G0(H-mod).
We put αi = [Si]. The Grothendieck group is free Abelian on the αi. The dimension vector
dim(M) of a module M is by definition the vector of the coordinates of [M ] in this basis.

We define the Euler form by 〈M,N〉 = dimHom(M,N) − dimExt1(M,N), for any M , N
in H-mod. Since H is hereditary, this form is well-defined on the Grothendieck group.

Let τ be the Auslander–Reiten functor of H-mod. This functor verifies the Auslander–Reiten
formula:

DHom(N,τM) = Ext1(M,N),

where D is the functor Homk(?, k).

2.2. For any H-module M , and any e in G0(H-mod), we denote by Gre(M) the Grass-
mannian of submodules of M with dimension vector e:

Gre(M) =
{
N, N ∈H-mod, N ⊂ M, dim(N) = e

}
.

It is a closed subvariety of the classical Grassmannian of the vector space M . Let χc be the
Euler–Poincaré characteristic of the étale cohomology with l-adic coefficients and proper support
defined by

χc(X) =
∞∑

i=0

(−1)i dimHi
c(X,Ql).

Let Q[x±1
i , 1 � i � n] be the Q-algebra of Laurent polynomials in the variables xi. As in [7],

for any module M , we set

XM =
∑

e

χc

(
Gre(M)

)∏
i

x
−〈e,αi〉−〈αi,m−e〉
i ∈ Q

[
x±1

i , 1 � i � n
]
,

where m := dim(M). Note that, as M is finite dimensional, there only exists a finite number of
non-zero terms in this sum. Remark that XM only depends on the isoclass of the module M . As
in [7], one shows that

χc

(
Grg(M ⊕N)

)
=

∑
e+f=g

χc

(
Gre(M)

)
χc

(
Grf (N)

)
.
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986 P. CALDERO AND B. KELLER
Hence, the bilinearity of the Euler form implies that

XM⊕N = XMXN .

2.3. As H is hereditary and finite dimensional, there exists a finite quiver Q without oriented
cycles such that H is Morita equivalent to the path algebra kQ of Q. Let Q0 be the set of vertices
and Q1 the set arrows of Q. Let n be the number of vertices of Q.

The bounded derived category Db = Db(H) of H-mod is a triangulated category. We denote
its shift functor M �→ M [1] by S. The category Db is a Krull–Schmidt category and, up to
canonical triangle equivalence, it only depends on the underlying graph of Q, see [15]. We
identify the category H-mod with the full subcategory of Db formed by the complexes whose
homology is concentrated in degree 0. We simply call ‘modules’ the objects in this subcategory.
The indecomposable objects of Db are the shifts SiM , i ∈ Z, of the indecomposable objects of
H-mod. We still denote by τ the AR-functor of Db; it is known that τ is an autoequivalence
characterized by the Auslander–Reiten formula.

Let F be the autoequivalence τ−1S of Db. The AR-formula implies that

Ext1Db(M,N) = HomDb(M,SN) = DExt1Db(FN,M),

for any objects M , N of Db. Let C = C(H) be the orbit category Db/F : the objects of C are the
objects of Db and the morphisms of C are given by

HomC(M,N) =
⊕
i∈Z

HomDb

(
M,F iN

)
.

The category C is the so-called cluster category, introduced and studied in depth in [6]. Let π
be the canonical functor from Db to C. We will often omit the functor π from the notations.
Statements (i) and (ii) of the following theorem were proved in [18], statements (iii) and (iv)
in [6]:

THEOREM 1. –
(i) The category C is triangulated and

(ii) the functor π :D→C is a triangle functor.
(iii) The category C is a Krull–Schmidt category and
(iv) for any indecomposable object without self-extensions M of C, we have EndC(M) = k.

The shift functor of the triangulated category C will still be denoted by S. For any objects M ,
N of C, the formulas above imply that there exists an (almost canonical) duality

φ :Ext1C(M,N)× Ext1C(N,M)→ k.

The set of indecomposable objects of C is given by

Ind(C) = Ind(H-mod)
∐

{SPi, 1 � i � n}.

Note that SPi = S−1τ−1SPi = S−1Ii.
We extend the definition of XM to any object M of the category C by setting XSPi = xi,

1 � i � n, and requiring XM⊕N = XMXN for all objects M,N of C.
4e SÉRIE – TOME 39 – 2006 – N◦ 6



FROM TRIANGULATED CATEGORIES TO CLUSTER ALGEBRAS II 987
The AR-formula and the fact that τ passes to the Grothendieck group of the derived category
of H-mod allow us to rewrite XM for a module M as

XM =
∑

e

χc

(
Gre(M)

)
xτ(e)−dimM+e,(2.1)

where we have set

xv =
n∏

i=1

x
〈dimSi,v〉
i ,

for any v in Zn. Remark that this notation gives

XSPi = xdim Ii .

2.4. Each object M of C can be uniquely decomposed in the following way:

M = M0 ⊕ SPM = M0 ⊕ S−1IM ,

where M0 is the image under π of a module in Db, and where PM , respectively IM , is a uniquely
determined projective, respectively injective, module. We will say that an object M of C is a
module if M = M0, and that M is the shift of a projective module if M = SPM .

From [6], we recall the

PROPOSITION 1. – For any indecomposable modules M and N in C, we have

Ext1C(M,N) = Ext1H(M,N)⊕DExt1H(N,M).

The module M0 can be recovered using the functor

H0 = HomC(HH ,?) :C → H-mod .

Indeed, we have

H0(M) = H0(M0)⊕H0(SPM ) = HomH-mod(HH ,M0)⊕HomC

(⊕
i

Pi, SPM

)
= M0,

as the last factor is zero. The functor H0 is a homological functor, i.e. it maps triangles in C to
long exact sequences of H-modules.

3. A multiplication formula

3.1. The aim of the section is to prove the following theorem:

THEOREM 2. – Let M and N be indecomposable objects of the category C such that
Ext1C(M,N) is one-dimensional. Then we have

XMXN = XB + XB′ ,

where B and B′ are the unique objects (up to isomorphism) such that there exist non-split
triangles

N → B → M → SN, M → B′ → N → SM.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



988 P. CALDERO AND B. KELLER
Note that when H is the path algebra of a Dynkin quiver, the theorem is a particular case of the
cluster multiplication formula of [10]. Actually, we will see that the method of [10] generalizes
nicely to the framework of the theorem.

Thanks to the hypotheses of the theorem and the symmetry of Ext1, we just need to consider
the two following cases

(1) N = SPi for an i ∈Q0 and M is an indecomposable module.
(2) M and N are indecomposable modules.

Indeed, the isomorphisms M = SPj and N = SPi would imply

Ext1C(M,N) = Ext1C(Pj , Pi) = 0.

3.2. We now prove the theorem in the first case. Suppose N = SPi, and let M be an
indecomposable module such that Ext1C(SPi,M) = k. Using Theorem 1 and the AR-formula,
we obtain

dim(M)i = dimHomH(Pi,M) = dimHomC(Pi,M)

= dimExt1C(SPi,M) = 1.

Hence, up to a multiplicative scalar, there exist a unique non-zero morphism ζ :M → Ii and a
non-zero morphism ζ ′ :Pi →M .

LEMMA 1. – Let M ′ be a submodule of M . Then either M ′ ⊂ ker ζ or im ζ ′ ⊂ M ′.

Proof. – By the formula above, the space M ′
i is of dimension 0 or 1. We claim that

(1) dim(M ′)i = 0 if and only if M ′ ⊂ ker ζ ,
(2) dim(M ′)i = 1 if and only if im ζ ′ ⊂ M ′.
The lemma follows from the claim. Let us prove part (1). The second part is similar and left

to the reader. The module im ζ is non-zero and so it contains the simple socle Si of Ii. Hence,
dim(ker ζ)i = 0, which gives the ‘if’ part. Conversely, if dim(M ′)i = 0, then ζ(M ′) ∩ Si = 0,
hence ζ(M ′) = 0 as Si is the socle of Ii. �

Applying the functor H0 to the non-split triangle

SPi
ι

B
π

M
ζ

S2Pi = Ii(3.1)

we obtain a long exact sequence of H-modules

0 H0B
H0π

M
H0ζ

Ii
H1ι

H0τB
H1π

H0τM.

Now, H0τB = τH0B ⊕ IB , and the first factor is non-injective. As the quotient of an injective
module is still injective, we have im(H1ι) ⊂ IB . Moreover, as H0τM is non-injective, we have
IB ⊂ ker(H1π). Hence, we have equality and so the following exact sequence holds

0 H0B
H0π

M
H0ζ

Ii
H1ι

IB 0.(3.2)

Note that the morphism H0ζ = ζ is non-zero.
In the same way, applying the functor H0 to the non-split triangle

Pi
ζ′

M
π′

B′ ι′
SPi,(3.3)
4e SÉRIE – TOME 39 – 2006 – N◦ 6



FROM TRIANGULATED CATEGORIES TO CLUSTER ALGEBRAS II 989
we obtain

0 PB′ Pi
H0ζ′

M
H0π′

H0B′ 0.(3.4)

Note that the morphism H0ζ ′ = ζ ′ is non-zero.
Now, the lemma implies that for any submodule M ′ of M , M ′ either is a submodule

of imH0π or contains kerH0π′. Hence, there is a natural bijection between Gre M and
Gre(H0B)�Gre−k(H0B′), where

k := dim kerH0π′ = dimPi − dimPB′ .(3.5)

We want to prove the multiplication formula, which in this case is

xdim Ii

∑
e

χc(Gre M)xτ(e)−dimM+e

= xdim IB

∑
e

χc

(
Gre H0B

)
xτ(e)−dimH0B+e

+ xdim IB′
∑

e

χc

(
Gre H0B′)xτ(e)−dimH0B′+e.

So, it remains to prove that

dim Ii + τ(e)− dimM + e = dim IB + τ(e)− dimH0B + e,

and

dim Ii + τ(e)− dimM + e = dim IB′ + τ(e− k)− dimH0B′ + e− k.

The first formula is a direct consequence of (3.2). The second one comes from (3.4), (3.5) and
the formula τ(dimPj) =−dim Ij .

3.3. This subsection and the following one are devoted to the proof of the theorem in the
second case. In order to simplify notations, we will write (X,Y ) for HomC(X,Y ).

Let M and N be two indecomposable modules such that Ext1C(N,M) = k. By Proposition 1,
we can suppose that Ext1H(N,M) = k and Ext1H(M,N) = 0. In this case, by Theorem 1, there
exist (up to isomorphism) a unique non-split short exact sequence of H-modules

0 M
i

B+
p

N 0,

and two triangles in C

M
i

B+
p

N SM,

N
i′

B−
p′

M SN.

Note that B+ is a ‘module’ of C but B− is just an object; they both are uniquely determined up
to isomorphism. We want to prove the formula

XB+ + XB− = XMXN ,

and the idea is first to construct a morphism Ψ between GrB+ � GrH0B− and GrM × GrN .
For any submodule B′

+ of B+, set Ψ(B′
+) = (i−1B′

+, pB′
+), and for any submodule B′

− of B−,
set Ψ(B′

−) = ((H0p′)B′
−, (H0i′)−1B′

−). As a first step, we want to prove the proposition
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



990 P. CALDERO AND B. KELLER
PROPOSITION 2. – The variety GrM × GrN is the disjoint union of Ψ(GrB+) and
Ψ(GrH0B−). Moreover, the fibers of Ψ are affine spaces.

This proposition will be proved at the end of this subsection.
Given a submodule M ′ of M , a submodule N ′ of N , and the corresponding embeddings iM

and iN , we have a diagram

S−1M
ε′

N
ε

SM

S−1M ′

S−1iM

N ′

iN

SM ′

SiM

and two complexes

(S−1M,N ′) α′
(S−1M,N)⊕ (S−1M ′,N ′)

β′

(S−1M ′,N)

(N ′, SM) (N,SM)⊕ (N ′, SM ′)α (N,SM ′)
β

where

α′ =
[

(iN ′)∗
(S−1iM ′)∗

]
, β′ =

[
(S−1iM ′)∗,−(i′N )∗

]
,

α =
[
(iN ′)∗, (SiM ′)∗

]
, β =

[
(SiM ′)∗

−(iN ′)∗

]
.

The two sequences are dual to each other via the canonical duality φ.
The following proposition is straightforward by using basic properties of triangulated

categories.

PROPOSITION 3. – The following conditions are equivalent:
(i) There exists a submodule B′

+ ⊂ B+ such that the diagram

0 M B+ N 0

0 M ′ B′
+ N ′ 0

commutes.
(ii) There exists a morphism η :N ′ → SM ′ such that the square

N
ε

SM

N ′

iN

η
SM ′

SiM

commutes.
(iii) The composed morphism

kerα ↪→ (N ′, SM ′)⊕ (N,SM) → (N,SM)

is non-zero.
4e SÉRIE – TOME 39 – 2006 – N◦ 6
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(iv) The composed morphism

cokα′ ←
(
S−1M ′,N ′)⊕ (

S−1M,SN
)
←↩

(
S−1M,N

)

is non-zero.

The following proposition sheds light on the situation when the conditions of Proposition 3 do
not hold.

PROPOSITION 4. – The following conditions are equivalent:
(i) The composition

cokα′ ←
(
S−1M ′,N ′′)⊕ (

S−1M,SN
)
←↩

(
S−1M,N

)

vanishes, i.e. (S−1M,N) is contained in the image of α′.
(ii) There exist a submodule B′

− ↪→H0B− and a commutative diagram

N
H0i′

H0B′ H0p′

M

N ′ B′
− M ′ 0

0 0 0

where M ′ := H0p′(B′
−) and N ′ = (H0i′)−1(B′

−).

Proof. – Let us show that (i) implies (ii). By the assumption, we can find a commutative square

S−1M
ε′

f

N

S−1M ′

S−1iM

0
N ′

iN

We complete it to a morphism between triangles:

S−1M
ε′

f

N
i′

B−
p′

M

S−1M ′
0

N ′

iN

N ′ ⊕M ′ M ′

iM

We take the homology:

H0(S−1M)
H0(ε′)

H0(f)

N
H0i′

H0B−
H0p′

M

0 N ′

iN

N ′ ⊕M ′ M ′

iM

0

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



992 P. CALDERO AND B. KELLER
We take B′
− as the image of N ′ ⊕ M ′ → H0B−. Let us show that N ′ ⊂ N is H0(i′)−1(B′

−).
Indeed, clearly the image of N ′ is contained in B′

−. Conversely, if we have x ∈N whose image
lies in B′

−, then the image is the image of (x′, y′) in N ′ ⊕M ′, and the image of x ∈N under
N → H0B− → M vanishes. So, the image of y′ in M vanishes. But M ′ → M is mono. So y′

vanishes and we get x′ in N ′ such that x in N and x′ have the same image in H0B−. Then
x = x′ + (H0ε′)(z) for some z in S−1M . But H0ε′ = (H0iN ) ◦ (H0f). So (H0ε′)(z) lies in
fact in N ′ ⊂ N and x lies in N ′.

Let us show that M ′ is the image of B′
−. Clearly, the image of B′

− is contained in M ′.
Conversely, if x′ ∈ M ′, we consider the image y in B′

− of (0, x′) ∈ N ′ ⊕ M ′. Then clearly,
the image of y is x′.

Let us prove that (ii) implies (i). The hypothesis yields the following diagram

H0(S−1M)
H0(ε′)

N
H0i′

H0B−
H0p′

M
H0(Sε′)

H0(SN)

H0(S−1M ′) N ′ B′
− M ′

0
H0(SN ′)

0 0 0 0

As the composition H0(S−1M) → N → H0B− vanishes, the image of H0(S−1M) is
contained in N ′, which is the inverse image of B′

−.
As the composition H0(B−) → M → H0(SN) vanishes, M ′ is contained in the kernel of

M → H0(SN). We know that M is not injective, so, S−1M = τ−1M is still a module.
Moreover, we have

DExt1(N,M) = HomH

(
τ−1M,N

)
= HomH(M,τN) = k.

We obtain the commutative diagrams

S−1M
ε′

f

N

N ′

iN

M
Sε′

SN

M ′

iM
0

The module M ′ has no injective direct summand, because M is indecomposable and non-
injective. So, S−1M ′ is still a module. Consider

S−1M
ε′

f

N

S−1M

S−1iM

0
N ′

iN

We have iN ◦ f ◦S−1iM = ε′ ◦S−1iM = 0. As iN is injective, this gives f ◦S−1M = 0, which
implies (i). �

Propositions 3 and 4 imply the first part of Proposition 2. The second part is a well-known
fact, cf. Lemma 3.8 of [7].
4e SÉRIE – TOME 39 – 2006 – N◦ 6
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3.4. We want to prove the multiplication formula for the second case. It reads as follows:∑
e

χc(Gre M)xτ(e)−dimM+e
∑

f

χc(Grf N)xτ(f)−dimN+f

=
∑

g

χc

(
Grg H0B+

)
xτ(g)−dimB++g + xdim IB−

∑
g

χc

(
Grg H0B−

)
xτ(g)−dimH0B−+g.

By combining Proposition 2 with Proposition 3.6 of [7], we can compare Euler characteristics
on both sides of the equality. What we need to prove now is

τ(e)− dimM + e + τ(f)− dimN + f = τ(g)− dimB+ + g,(3.6)

with e = dimM ′, f = dimN ′, g = dimB′
+, in the setting of Proposition 3(i), and then

τ(e)− dimM + e + τ(f)− dimN + f = dim IB− + τ(g)− dimH0B− + g,(3.7)

with e = dimM ′, f = dimN ′, g = dimB′
−, in the setting of Proposition 4(ii).

The formula (3.6) is clear since g = e + f in this case.
In order to prove the second formula, we need to complete the diagram of Proposition 4 by

adding kernels and cokernels

N/N ′ (H0B−)/B′
− M/M ′ C 0

H0(S−1M) N
H0(i)

H0B−
H0(p)

M H0(SN)

0 K N ′ B′
− M ′

With the notation above, the diagram implies the equalities

τ(e) + τ(f) = τ(g) + τ(dimK),

(dimM − e) + (dimN − f) = (dimH0B− − g) + dimC.

So, in order to prove formula (3.7), it remains to show that

τdimK − dimC = dim IB− .(3.8)

For this, we first note that we have the three triangles

N
H0(i)

H0B− cok
(
H0i

)
⊕ SK SN,

SPB− B− H0B−
0 IB− ,

N Y M SN

in CQ. Note that H0i is the composition of the morphism N → B− with the projection
B− → H0B−. If we form the octahedron associated with this composition, the three triangles
we have just mentioned appear among its faces, as well as a new triangle, namely

SPB− M cok
(
H0i

)
⊕ SK IB− .
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If we apply H∗ to this triangle, we obtain the exact sequence of H-modules

0 M cok
(
H0i

)
⊕H0(τK) IB− H0(τM).

Since M is an indecomposable module, τM is either an indecomposable non-injective module
or zero. The image of IB− → τM = H0τM is injective (as a quotient of an injective module).
Hence it is zero and we get an exact sequence

0 M cok
(
H0i

)
⊕H0(τK) IB− 0.

In the Grothendieck group, this yields

0 = dimM − dim cok
(
H0i

)
− dimH0(τK) + dim IB−

= dimC − dimH0(τK) + dim IB− .

Now, by the third triangle, K is a quotient of H0(S−1M) = H0(τ−1M). As M is a non-injective
indecomposable module, H0(τ−1M) = τ−1M , so τK is a quotient of M , and hence, τK is a
module. Thus, we get formula (3.8) as desired. This ends the proof of Theorem 2.

4. A denominator theorem

4.1. Weakly positive Laurent polynomials

We recall an idea from [4]: Define an integer polynomial P in n variables x1, . . . , xn to be
weakly positive if we have P (z) > 0 for each point z of Nn which has at most one vanishing
component. If P is an integer polynomial and d an n-tuple of integers, then L = P/xd is a
Laurent polynomial, where xd is the product of the xdi

i . It is a weakly positive Laurent polynomial
if we can choose P weakly positive. Clearly, in this case, no factor xi divides P so that
the factorization L = (1/xd) · P is unique. We call xd the denominator of L. For example,
the Laurent polynomial L = x1 is weakly positive with denominator 1/x1. The proof of the
following lemma is elementary and left to the reader.

LEMMA 2. –
(a) If L1 and L2 are weakly positive Laurent polynomials, so is their sum L1 + L2. Moreover,

if xd and xe are the denominators of L1 and L2, the denominator of L1 + L2 is xmax(d,e),
where by definition max(d, e)i = max(ei, di), 1 � i � n.

(b) Suppose that L1 and L2 are Laurent polynomials and L1 is weakly positive. Then L2 is
weakly positive iff L1L2 is weakly positive. Moreover, if xd and xe are the denominators
of L1 and L2, the denominator of L1L2 is xd+e.

4.2. Denominators and dimension vectors

From the multiplication formula, we obtain the following denominator property for excep-
tional modules, i.e. with no self-extensions. A direct proof for arbitrary modules has recently
been obtained in [17].

THEOREM 3. – Let M be an indecomposable exceptional H-module with dimension vector
dimM = (mi). Then the denominator of XM as an irreducible fraction of integral polynomials
in the variables xi is

∏
i x

mi

i .
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Proof. – Let us start with some preliminary remarks: By the explicit formula for XM , its
denominator as an irreducible fraction of integral polynomials is a monomial

xden(M) =
∏

i

x
den(M)i

i ,

where den(M) ∈ Zn. We claim that for each exceptional indecomposable M , the Laurent
polynomial XM is weakly positive. Indeed, if (T,T ′) is an exchange pair of exceptional objects
(cf. [6]) and

T → B → T ′ → ST and T ′ → B′ → T → ST ′

are non-split triangles, then we have

XT ′ =
XB + XB′

XT

by the multiplication formula. Thus, by the lemma above, if XB , XB′ and XT are weakly
positive, so is XT ′ . The claim therefore follows from the facts that each exceptional object is a
direct summand of a cluster tilting object, see (5.2), and that the cluster tilting graph is connected,
cf. [6]. The lemma also shows that for an exchange pair (T,T ′), we have

den(T ) + den(T ′) = max
(
den(B),den(B′)

)
.

Now for an object X of CQ, we define

δ(X) = dimH0(X)−
∑

miei,

where mi is the multiplicity of SPi in the decomposition of X into indecomposables and ei the
i-th vector of the canonical basis of Zn. With this notation, we have to prove that

δ(M) = den(M)

for each indecomposable exceptional M . If P is indecomposable projective, this equality is
trivial for M = SP and is shown for M = P by computing XP explicitly as in [7, Lemma 3.9].
To prove that the equality holds for every indecomposable exceptional, it suffices therefore, by
induction, to prove that we have

δ(T ) + δ(T ′) = max
(
δ(B), δ(B′)

)

if (T,T ′) is an exchange pair and B, B′ are the non-split extensions of T ′ by T and T by T ′,
respectively. This will be proved by distinguishing two cases according to whether T and T ′ are
modules or one of them is a shifted projective (note that they cannot both be shifted projectives
since Ext1CQ

(T,T ′) �= 0).
Case 1: T and T ′ are modules. Since we have

k = Ext1CQ
(T1, T

′
1) = Ext1kQ(T1, T

′
1)⊕DExt1kQ(T ′

1, T1),

exactly one of the triangles

T → B → T ′ → ST and T ′ → B′ → T → ST ′
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comes from an exact sequence of modules. Let us assume it is the first one. Then, by applying
the functor H0, we get exact sequences

0 → T → B → T ′ → 0 and T ′ → H0(B′) → T.

These show that we have

dimB = dimT + dimT ′ and dimH0(B′) � dimT + dimT ′ � dimB.

It follows that δ(B′) � dimB = δ(B) and

δ(T ′) + δ(T ) = δ(B) = max
(
δ(B), δ(B′)

)
.

Case 2: We have T = SP for an indecomposable projective P and T ′ is a module. Again, we
have non-split triangles

T → B → T ′ → ST and T ′ → B′ → T → ST.

We have

k = Ext1CQ
(T,T ′) = HomCQ

(SP,ST ′) = HomkQ(P,T ′)

and

k = Ext1CQ
(T ′, T ) = HomCQ

(
T ′, S2P

)
= HomkQ(T ′, νP ),

where ν is the Nakayama functor. Since modkQ is hereditary, if f :L → M is a morphism of
modkQ, then in the derived category, we have a triangle

L
f

M cok(f)⊕ S ker(f) SL.

It follows that the triangles above are in fact isomorphic to the triangles

S−1νP → S−1 cok(f)⊕ ker(f)→ T ′ → νP and

T ′ → S ker(g)⊕ cok(g) → SP → ST ′

associated with arbitrary non-zero morphisms f :T ′ → νP and g :P → T ′. Now cok(f) is
injective as a quotient of an injective and ker(g) projective as a quotient of a projective. Moreover,
if i is the vertex of Q such that P = Pi, then, as a submodule of Pi, the module ker(f) is a direct
sum of indecomposables Pj such that j < i. Similarly, as a quotient of νPi, the module cok(g)
is a direct sum of indecomposables νPj such that i < j (note that we consider right modules and
order the vertices of Q in the natural way). It follows that we have

max
(
δ
(
S−1 cok(f)

)
, δ

(
S ker(g)

))
= 0

(note that both vectors have negative components). Thus, we have

max
(
δ(B), δ(B′)

)
= max

(
dim ker(f) + δ

(
S−1 cok(f)

)
,dim cok(g) + δ

(
S ker(g)

))
= max

(
dim ker(f),dim cok(g)

)
.

It remains to be proved that

dimT ′ + δ(T ) = max
(
dim ker(f),dim cok(g)

)
.(4.1)
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We check this equality by comparing both sides at each vertex j of Q. As above, let i be the
vertex of Q such that P = Pi so that we have δ(T ) = −ei. We have

Hom(Pi, T
′) = Ext1CQ

(SPi, T
′) = k

so that (dimT ′)i = 1. The maps f :T ′ → νP and g :P → T ′ induce isomorphisms in
Hom(Pi,?) since g ◦ f induces an isomorphism between the one-dimensional spaces Hom(Pi, P )
to Hom(Pi, νP ). It follows that (dim ker(f))i and (dim cok(f))i both vanish so that the equal-
ity (4.1) holds at j = i. Now consider the exact sequences

0 ker(f) T ′ f
νP and P

g
T ′ cok(g) 0.

Suppose that j is not a predecessor of i. Then (dimP )j = 0 and we have (dimT ′)j =
(dim cok(g))j by the second sequence and (dimT ′)j � (dim ker(f))j by the first so that

(dimT ′)j =
(
dim cok(g)

)
j
= max

((
dim cok(g)

)
j
,
(
dim ker(g)

)
j

)

and (4.1) holds at j. Similarly, if j is not a successor of i, we see that the equality (4.1) holds at j.
Since Q has no oriented cycles, each vertex j �= i of Q is a non-successor or a non-predecessor
of i. Thus, the proof of (4.1) is complete. �

4.3. As a corollary of the denominator theorem, we will prove an injectivity property of the
map M �→ XM .

We recall first a few facts on quiver representations.
A representation of Q over a field F is a Q0-graded F -vector space V =

⊕
i∈Q0

Vi together
with an element x = (xh)h∈Q1 in EV :=

∏
h∈Q1

Hom(Vs(h), Vt(h)), where s(h) is the source
and t(h) the target of the arrow h. The group GV :=

∏
i∈Q0

GL(Vi) acts on EV by (gi).(xh) =
(gt(h)xhg−1

s(h)). A representation (M,x) over a field F can be functorialy considered as an FQ-
module and the dimension vector of this module is dimM = (dimMi).

Clearly, the isoclasses of finite-dimensional FQ-modules are naturally identified with
GV -orbits of representations of Q.

COROLLARY 1. – If M and M ′ are non-isomorphic indecomposable modules without self-
extensions, then XM �= XM ′ .

Proof. – It is well known that in the identification above, an isoclass of kQ-module with no
self-extension corresponds to an orbit which is dense in its representation space EV . Therefore, if
M and M ′ are non-isomorphic modules without self-extensions, the corresponding orbits cannot
be in the same representation space. Hence, M and M ′ cannot have the same dimension vector.

By the theorem above, we conclude that XM �= XM ′ . �

5. Application to a class of cluster algebras

5.1. We recall some terminology on cluster algebras. The reader can find more precise and
complete information in [12].

Let n be a positive integer. We fix the ambient field F = Q(x1, . . . , xn), where the xi’s
are indeterminates. Let x be a free generating set of F over Q and let B = (bij) be an n× n
antisymmetric matrix with coefficients in Z. Such a pair (x,B) is called a seed.
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Let (u,B) be a seed and let uj , 1 � j � n, be in u. We define a new seed as follows. Let u′
j

be the element of F defined by the exchange relation:

uju
′
j =

∏
bij>0

u
bij

i +
∏

bij<0

u
−bij

i .(5.1)

Set u′ = u∪ {u′
j}\{uj}. Let B′ be the n× n matrix given by

b′ik =
{−bik if i = j or k = j,

bik + 1
2 (|bij |bjk + bij |bjk|) otherwise.

By a result of Fomin and Zelevinsky, (u′,B′) = μj(u,B) is a seed. It is called the mutation
of the seed (u,B) in the direction uj (or j). We consider all the seeds obtained by iterated
mutations. The free generating sets occurring in the seeds are called clusters, and the variables
they contain are called cluster variables. By definition, the cluster algebra A(x,B) associated
to the seed (x,B) is the Z-subalgebra of F generated by the set of cluster variables. The graph
whose vertices are the seeds and whose edges are the mutations between two seeds is called the
mutation graph of the cluster algebra.

The Laurent phenomenon, see [11], asserts that the cluster variables are Laurent polynomials
with integer coefficients in the xi, 1 � i � n. So, we have A(x,B)⊂ Z[x±1

1 , . . . , x±1
n ].

Note that an antisymmetric matrix B defines a quiver Q = QB with vertices corresponding
to its rows (or columns) and which has bij arrows from the vertex i to the vertex j whenever
bij � 0. The quivers Q thus obtained are precisely the finite quivers without oriented cycles of
length 1 or 2. For such quivers Q, we denote by BQ the corresponding antisymmetric matrix.
The cluster algebra associated to the seed (x,B) will be also denoted by A(Q). In the sequel,
we will be concerned with cluster algebras associated to a quiver Q without oriented cycles.

5.2. We fix a quiver Q without oriented cycles and we set H = kQ. We consider the cluster
category C = CH associated to the quiver Q, cf. [6]. Recall that an object T of C is called
exceptional if it has no self-extensions, i.e. if Ext1(T,T ) = 0. An exceptional object is called
cluster tilting or simply tilting (although this is an abuse of language) if it has n non-isomorphic
indecomposable direct summands, where n is the number of vertices of Q. In the sequel, we will
often identify a tilting object with the datum of its indecomposable summands. An exceptional
object is called almost tilting if it has n− 1 non-isomorphic indecomposable direct summands.
It was shown in [6] that any almost tilting object T can be completed to precisely two non-
isomorphic tilting objects T and T ∗.

For any tilting object T of C, let QT be the quiver associated to the algebra EndC(T ). To
be explicit, fix an ordering of the indecomposable summands T1, . . . , Tn of T and let A be
the endomorphism algebra of the sum of the Ti. Let ei ∈A be the idempotent corresponding
to Ti. Then the vertices of QT are 1, . . . , n, and the number of arrows from i to j is equal to
dimej((radA)/(radA)2)ei. A pair (T,QT ) is called a cluster seed.

For 1 � i � n, we define, following [4], the mutation of the cluster seed (T,QT ) in direction i
by

δi(T,QT ) := (T ∗,QT∗),

where T and T ∗ are the two completions of the almost tilting object

T = T1 ⊕ · · · ⊕ Ti−1 ⊕ Ti+1 ⊕ · · · ⊕ Tn.
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Note that there exists an indecomposable object T ∗
i , unique up to isomorphism, such that

T ∗ = T1 ⊕ · · · ⊕ Ti−1 ⊕ T ∗
i ⊕ Ti+1 ⊕ · · · ⊕ Tn,

which provides a natural ordering of the indecomposable summands of T ∗.
The following theorem is the main result of this article. The first assertion is a refinement of

Conjecture 9.1 of [6] and the second assertion strengthens the main result of [4].

THEOREM 4. – Let Q be a quiver with n vertices and no oriented cycles, and let H = kQ be
the hereditary algebra associated to Q. Then

(i) The correspondence M �→ XM provides a bijection between the set of indecomposable
objects without self-extensions of CH and the set of cluster variables of A(Q).

(ii) The correspondence {T1, . . . , Tn} �→ {XT1 , . . . ,XTn} provides a bijection compatible
with mutations between the set of tilting objects of CH and the set of clusters of A(Q).

Proof. – By construction, any cluster variable belongs to a cluster. As the map M �→XM is
injective on the set of indecomposable objects without self-extensions by Corollary 1, it is enough
to prove (ii).

Let us prove (ii). Suppose that T = T1 ⊕ · · · ⊕ Tn is a tilting object of C and let T ∗ be its
mutation in direction i. Then Ext1(Ti, T

∗
i ) is one-dimensional by [6]. Hence, by Theorem 2, we

have

XTiXT∗
i

=
∏
j

X
aij

Tj
+

∏
j

X
cij

Tj
,(5.2)

where aij and cij are integers defined by the following non-split triangles (unique up to
isomorphism)

Ti →
⊕

aijTj → T ∗
i → STi,

T ∗
i →

⊕
cijTj → Ti → ST ∗

i .

By Theorem 6.2(b) of [4], the quiver QT is determined by these triangles: for any i and j, there
are aij arrows from i to j and cij arrows from j to i. Moreover, if there exists an arrow from i
to j, then there is no arrow from j to i, by Proposition 3.2 of [4].

We now define, as in [4], a correspondence β between tilting seeds and cluster seeds. First
note that the shift of H is a tilting object and that (SH,Q) is a tilting seed. For a given word
i1 · · · it, we can define

β(SH,Q) = (x,BQ),(5.3)

β
(
δit · · · δi1(SH,Q)

)
= μit · · ·μi1(x,BQ).(5.4)

Set (T,QT ) := δit . . . δi1(SH,Q). By [4], the quiver obtained from Q by the sequence of tilting
mutations in the directions i1, . . . , it is equal to the quiver obtained from Q by the sequence of
cluster mutations in the directions i1, . . . , it. Hence, by comparing the cluster exchange relation
(5.1) and the tilting exchange relation (5.2), we obtain by induction that

β
(
δit · · · δi1(SH,Q)

)
=

(
{XT1 , . . . ,XTn},BQT

)
.

In particular, β(δit · · · δi1(SH,Q)) does not depend on the choice of the word i1 · · · it.
By Proposition 3.5 of [6], the mutation graph on the set of tilting seeds is connected. Hence,

equalities (5.3) and (5.4) define a map β from the complete set of tilting seeds to the set of
cluster seeds. The surjectivity of β follows from the fact that its image is stable under mutation.
The injectivity of β follows from Corollary 1. �
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5.3. This section is devoted to the proof of some of the conjectures formulated by S. Fomin
and A. Zelevinsky in [13]. The first corollary is a straightforward consequence of Theorem 4. It
corresponds to [13, Conjecture 4.14(2)] in the acyclic case.

COROLLARY 2. – Let Q be a finite quiver without oriented cycles. Then a cluster seed (u,B)
of A(Q) only depends on u.

This corollary is [13, Conjecture 4.14(3)] in the acyclic case.

COROLLARY 3. – For any cluster variable x, the set of seeds whose clusters contain x forms
a connected subgraph of the exchange graph.

Proof. – Indeed, the cluster variable x corresponds to an exceptional indecomposable object
T1 of CQ. Without restriction of generality, we assume that T1 is non-projective. The seeds
containing x are in bijection with the completions of T1, i.e. the sets {T2, . . . , Tn} of
indecomposables such that the sum of the Ti is cluster tilting. Two seeds are joined by an edge of
the exchange graph iff the corresponding sets of exceptional indecomposables are obtained from
each other by a mutation. By [6], this occurs iff they differ by precisely two indecomposables Ti

and T ∗
i and these satisfy

dimExt1(Ti, T
∗
i ) = 1.

This makes it clear that Theorem 5 below yields a bijection compatible with mutations

{T2, . . . , Tn} �→ {PT2, . . . , PTn}

between the completions of T1 and the basic tilting sets of CQ′ , where Q′ is the quiver of the
endomorphism ring of a projective generator of the category H′ ⊂ modkQ of modules L with

Hom(M,L) = 0 = Ext1(M,L).

Thus, by Theorem 4(ii), the subgraph of the exchange graph of Q formed by the seeds containing
x is isomorphic to the exchange graph of Q′, which is connected by definition. �

A consequence of Theorem 4 is also the proof of [13, Conjecture 4.14(4)] in the general case.

COROLLARY 4. – The set of seeds whose matrix is acyclic forms a connected subgraph
(possibly empty) of the exchange graph.

Proof. – A seed with an acyclic matrix corresponds to a cluster tilting object T whose
endomorphism algebra A = EndCQ

(T ) has a quiver without oriented cycles. Thus, the algebra A
is both, cluster-tilted and of finite global dimension. By Corollary 2.1 of [19], it is hereditary. So
the category CA is well-defined and the equivalence between the derived categories of A and Q
induces a triangle equivalence CA

∼−→ CQ which takes A to T . Such an equivalence induces an
isomorphism

ΓA → ΓB

of the Auslander–Reiten quivers of the two cluster categories. We refer to [6] for the description
of the Auslander–Reiten quivers. Since A is hereditary, the quiver of its indecomposable
projectives forms a slice of the component Γpr

A of ΓA containing the projectives (recall that a
slice is a full connected subquiver whose vertices are a system of representatives of the τ -orbits
in the component). The isomorphism must take Γpr

A to Γpr
B since this is the only components

isomorphic to the repetition ZR of a finite quiver R. It is clear that any slice of Γpr
B can be

transformed into the slice of the projectives by finitely many reflections at sources or sinks. �
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5.4. Cluster tilting objects containing a given summand

Here, we refine a technique pioneered in Section 2 of [4]: Let H be a finite-dimensional
hereditary algebra and H the category of finite-dimensional right H-modules. Let M ∈ H be
a non-projective indecomposable with Ext1(M,M) = 0. Then End(M) is a (possibly non-
commutative) field. Let H′ be the full subcategory on the modules L such that

Hom(M,L) = 0 and Ext1(M,L) = 0.

We know from [16,15] that H′ is a hereditary abelian category with enough projectives and that
a projective generator G of H′ is obtained by choosing an exact sequence

0 → H → G →Mr → 0

which induces an isomorphism

Hom
(
M,Mr

) ∼−→ Ext1(M,H).

Let CH and CH′ be the cluster categories associated with H and H′. The following theorem is an
elaboration on Theorem 2.13 of [4].

THEOREM 5. – Let C(H,M) be the full additive subcategory of CH whose objects are the
sums of indecomposables L of CH such that Ext1(M,L) = 0. There is a canonical equivalence
of k-linear categories

P :C(H,M)/(M) ∼−→CH′ ,

where (M) denotes the ideal of morphisms factoring through a sum of copies of M . Moreover,
we have

Ext1(L1,L2) ∼= Ext1(PL1, PL2)

for all L1,L2 ∈ C(H,M).

Note that C(H,M) is not a triangulated subcategory and not even stable under the shift functor.
The theorem merely claims that as a k-linear category, CH′ is a ‘subquotient’ of CH. To construct
the equivalence P , we choose a ‘fundamental domain’ for the action of the autoequivalence
F = τ−1S on D.

Let P be the full subcategory of the projectives of H and H+ the full additive subcategory
of D = Db(H) each of whose indecomposables lies in H or SP . Let π :D → CH be the
projection functor. We know from [6] that π induces a bijection from the set of isoclasses of
indecomposables of H+ to that of CH and that we have

Ext1
(
π(L1), π(L2)

) ∼−→ Ext1(L1,L2)⊕DExt1(L2,L1)

for any two indecomposables of H+. Moreover, the category CH is equivalent to the category
whose objects are those of H+ and whose morphisms are given by

Hom(L1,L2)⊕Hom(L1, FL2)

with the natural composition. Therefore, Theorem 5 follows from
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THEOREM 6. – There is a canonical bijection L �→ L′ from the set of isoclasses of
indecomposables L of H+ with

L �∼= M, Ext1(L,M) = 0 and Ext1(M,L) = 0(∗)

to the set of isoclasses of indecomposables of H′+. Moreover, for any two objects L1,L2 of H+

satisfying (∗), there is a canonical isomorphism

Ext1(L1,L2)
∼−→ Ext1(L′

1,L
′
2)

and there are canonical isomorphisms

Hom(L1,L2)/(M) ∼−→ Hom(L′
1,L

′
2)

and

Hom(L1, FL2)/(M) ∼−→ Hom(L′
1, F

′L′
2)

compatible with compositions.

Before giving the proof, let us illustrate the statement on the following example: We consider
the path algebra H = kQ of a linearly oriented quiver Q of type A6. Below, we have drawn the
Auslander–Reiten quiver of its derived category. The vertices corresponding to indecomposables
concentrated in degree 0 lie between the two hatched lines. We use the symbols

� for the 14 indecomposables L of H+ not isomorphic to M and which satisfy

Ext1(L,M) = 0 = Ext1(M,L),

• for the 5 indecomposable projectives of H′,
. for indecomposable non-projective objects of H′,
♦ for shifted copies SP of projectives of H′.

Notice the two rectangular zones starting from S−1M respectively ending in SM where no �
occurs. If L �→ L′ denotes the map of the theorem, we have a triangle

LU → L→ L′ → SLU

where LU is a sum of copies of M and LU → L induces a bijection Hom(M,LU ) ∼−→
Hom(M,L). Thus we have L = L′ for all L with Hom(M,L) = 0. The corresponding triangles
for the others are visible in the diagram below:
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Several of the arguments needed in the proof are contained in Section 2 of [4]. For the
convenience of the reader, we nevertheless include them below.

Proof. – Let U ⊂ D be the full triangulated subcategory generated by M . Since Ext1(M,M)
vanishes and Hom(M,M) is a field, its objects are the sums of shifted copies of M . Let V be
the full subcategory of D whose objects are the L ∈ D such that Hom(U,L) = 0 for all U ∈ U .
Then U ,V form a semiorthogonal decomposition [1] of D, i.e. for each object X of D, there is a
triangle

XU → X → XV → SXU

with XU ∈ U and XV ∈ V . This triangle is unique up to unique isomorphism; the functor
X → XU is right adjoint to the inclusion of U and the functor X �→ XV is left adjoint to
the inclusion of V . We have H′ = H ∩ V and the inclusion H′ ⊂ V extends canonically to an
equivalence Db(H′) → V . In particular, each object of V is a direct sum of shifts of objects
of H′. We have U ∩ H = M, the full subcategory on the direct sums of copies of M . The
inclusion H′ ⊂H commutes with kernels, cokernels and preserves Ext1-groups. We will show
that L �→ L′ = LV yields the bijection announced in the assertion.

Let L be indecomposable in H+ such that (∗) holds. Let us first show that Hom(SiM,L)
vanishes if i �= 0. Indeed, if L belongs to H, then this group clearly vanishes if i �= 0,−1
and if i = −1, it vanishes because Ext1(M,L) = 0. If L = SP for a projective P ∈ H, then
Hom(SiM,L) = Hom(SiM,SP ) clearly vanishes for i �= 0,1 and it vanishes for i = 1 because
M is a non-projective indecomposable.

Now let us show that LV is indecomposable: Consider the canonical triangle

LU → L→ LV → SLU .

Since Hom(SiM,L) vanishes for i �= 0, we have LU ∈ M. Therefore, in the associated exact
sequence

Hom(L,L)→ Hom
(
L,LV)

→ Hom(L,SLU )

the third term vanishes. Thus the composition

Hom(L,L)→Hom
(
L,LV) ∼−→Hom

(
LV ,LV)

is surjective and End(LV) is local as a quotient of the local ring End(L).
Let us show that L′ belongs to H′+. Since LU belongs to M, the canonical morphism

f :LU → L is a morphism of H and therefore its cone LV in D is isomorphic to cok(f) ⊕
S ker(f). Since LV is indecomposable, one of the two summands vanishes. If ker(f) vanishes,
then LV belongs to H′ ⊂ H′+. If cok(f) vanishes, we have to show that ker(f) is projective
in H′. Now indeed the short exact sequence

0 → ker(f)→ LU → L→ 0

induces a surjection

Ext1H(LU ,U)→ Ext1H
(
ker(f),U

)
→ 0

for each U ∈ H. The left hand term vanishes since LU is a sum of copies of M and the right
hand term is isomorphic to Ext1H′(ker(f),U) because the inclusion H′ ⊂H preserves extension
groups. Thus, ker(f) is projective in H′.
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From what we have shown, we conclude that the map L → L′ is well-defined. Let us show
that it is injective. For this, we show that the morphism LV → SLU occurring in the canonical
triangle is a minimal left SM-approximation. Then L is determined up to isomorphism as the
shifted cone over this morphism. To show that LV → SLU is a minimal left approximation,
consider the canonical triangle

LU → L→ LV → SLU

and the induced sequence

Hom(L,SM)← Hom
(
LV , SM

)
← Hom(SLU , SM).

Since Hom(L,SM) vanishes by assumption, we do get a surjection Hom(LV , SM) ←
Hom(SLU , SM). If it is not minimal, then there is a retraction r :SLU → SM whose
composition with LV → SLU vanishes. Then r extends to a retraction r̃ :SL → SM . This is
impossible since L is indecomposable and not isomorphic to M .

Let us show now that L �→ L′ is surjective. Let N be indecomposable in H′+. Let N → SM ′

be a minimal SM-approximation and form the triangle

M ′ → L→ N → SM ′.

Let us show that L is indecomposable. Since M ′ ∈ U , we have LV ∼−→ NV and since N ∈ V ,
we have LU

∼−→ M ′. If L is decomposable, say L = L1 ⊕L2, then we get

LV
1 ⊕LV

2
∼−→ N

and, say, LV
1 vanishes. Then L1 belongs to U and thus M ′ ∼→ L1 ⊕ (L2)U . Since N → SM ′ is a

minimal SM-approximation, we have L1 = 0. So L is indecomposable.
Let us show that L belongs to H+. It is clear from the above triangle that L has homology at

most in degrees 0 and 1. Since L is indecomposable, its homology is concentrated in one degree.
If the homology is concentrated in degree 0, then L belongs to H ⊂ H+. Suppose that L has
its homology concentrated in degree 1. Then we must have N = SQ for some indecomposable
projective Q of H′. We know that if PH is a projective generator for H, then PV

H is a projective
generator for H′. Thus, there is a projective P of H and a section s :Q → PU which identifies
Q with a direct factor of PU . Since N → SM ′ is an SM-approximation, the composition

N
Ss

SPU SPM

extends to SM ′ so that we obtain a morphism of triangles

M ′ L N

Ss

SM ′

SPU SP SPU SPM

The morphism L → SP is non-zero since its composition with SP → SPU equals the
composition of the non-zero morphism L → N with the section Ss. So we obtain a non-zero
morphism S−1L → P in H. Since S−1L is indecomposable and P is projective, S−1L is
projective and we have L ∈H+.
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Finally, let us show that L satisfies the condition (∗). If L was isomorphic to M , we would
have N = LV = 0 contrary to our hypothesis that N is indecomposable.

The triangle

M ′ → L→ N → SM ′

yields an exact sequence

Hom(M ′, SM)← Hom(L,SM)← Hom(N,SM)← Hom(SM ′, SM).

Here the leftmost term vanishes since Ext1(M,M) = 0 and the rightmost map is surjective since
N → SM ′ is a left SM-approximation. Thus we have Ext1(L,M) = 0. The triangle also yields
the sequence

Hom
(
S−1M,M ′) → Hom

(
S−1M,L

)
→ Hom

(
S−1M,N

)
.

The left hand term vanishes since Ext1(L1,M) = 0 and the right hand term vanishes since N
belongs to V . Thus we have Ext1(M,L) = 0.

Now let L1, L2 be indecomposables of H+ satisfying condition (∗). Consider the triangle

(L2)U → L2 → LV
2 → S(L2)U .

It induces an exact sequence

Hom
(
S−1L1, (L2)U

)
→Hom

(
S−1L1,L2

)
→ Hom

(
S−1L1,L

V
2

)
→Hom

(
S−1L1, S(L2)U

)
.

The leftmost term vanishes since Ext1(L1,M) = 0 and the rightmost term vanishes since
Ext2(L1,M) = 0. Thus we have

Hom(L1, SL2)
∼−→ Hom

(
L1, SLV

2

) ∼−→ Hom
(
LV

1 , SLV
2

)
,

which proves the assertion on the extension groups. The above triangle also induces an exact
sequence

Hom
(
L1, (L2)U

)
→Hom(L1,L2)→ Hom

(
L1,L

V
2

)
→ Hom

(
L1, S(L2)U

)
.

The last term vanishes since Ext1(M,M) = 0. Thus the kernel of the map

Hom(L1,L2) →Hom
(
L1,L

V
2

) ∼−→ Hom
(
LV

1 ,LV
2

)

is formed by the morphisms factoring through sums of M . Put F = τ−1S. Consider the triangle

(FL2)U → FL2 → (FL2)V → S(FL2)U .

Note that the functor F does not take V to itself. We have

Hom
(
SiM,FL2

) ∼−→ DHom
(
L2, S

iτ2M
)
.

This can be non-zero only if i equals 0 or 1. Thus (FL2)U is a sum of copies of M and SM .
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Therefore, in the exact sequence

Hom
(
L1, (FL2)U

)
→ Hom(L1, FL2) → Hom

(
L1, (FL2)V

)
→Hom

(
L1, S(FL2)U

)

the last term vanishes and

Hom
(
L1, (FL2)V

) ∼−→ Hom
(
LV

1 , (FL2)V
)

identifies with the quotient of Hom(L1, FL2) by the subspace of morphisms factoring through
a sum of copies of M and SM . Since Hom(L1, SM) vanishes, this is also the subspace of
morphisms factoring through a sum of copies of M . To finish the proof, it remains to be noticed
that under the canonical equivalence Db(H′) ∼−→ V , if LV

2 corresponds to L′
2, then the object

(FL2)V does correspond to τ−1
H′ SL′

2, by Lemma 2.14 of [4] or Section 8.1 of [18]. �

6. Example on the Kronecker quiver

6.1. We consider the Kronecker quiver Q obtained by choosing the following orientation of
the diagram Ã1:

1
α

β

2.(6.1)

As an illustration of Theorems 2 and 4, we give an interpretation of some results of [20] in terms
of the cluster category of the Kronecker quiver. We consider covariant representations. So if S1,
S2 are the simple representations, then

dimHom(Si, Si) = 1, dimExt1(S1, S2) = 2, dimExt1(S2, S1) = 0.

Over a field k, the (finite-dimensional) indecomposable representations of the Kronecker quiver
are classified as follows:

The postprojective indecomposable modules Un, n � 0, the preinjective indecomposable
modules V n, n � 0, and the family of indecomposable modules Wn = Wn(x), n > 0, of the
(regular) tube parametrized by x ∈ P1(k). They are given by

Un : kn

α

β

kn+1 with α =
[

In

0

]
, β =

[
0
In

]
,

V n : kn+1

α

β

kn with α = [ In 0 ] , β = [0 In ] ,

Wn((1 :λ)) : kn

α

β

kn with α = In, β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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for λ in k, and

Wn((0 : 1)) : kn

α

β

kn with α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, β = In.

Let us calculate the cluster variables of the cluster algebra A(Q) ⊂ Z[x±1
1 , x±1

2 ] corresponding
to the Kronecker quiver. By Theorem 4, they are given by XUn , XV n , n � 0. By duality, XV n

is obtained from XUn by exchanging x1 and x2. So, we just have to calculate XUn .
Let (yn)n∈N be the sequence given by y0 = x2, y1 = x1, and yn+2 = XUn , n � 0. Set

P1 = U1, P2 = U0, for the indecomposable projective modules, then SP2 ⊕ SP1 is the “seed”
tilting object and SP1 ⊕U0 is also a tilting object of the cluster category since the first
component of dim(U0) is zero. Moreover, for any n � 0, Un ⊕ Un+1 is easily seen to be a
tilting kQ-module by applying recursively the inverse AR-functor to the tilting module P2 ⊕ P1

and the object SP1 ⊕U0. By applying Theorem 4, we obtain that the yn’s are cluster variables
and that

μ2

(
{y2n, y2n+1}

)
= {y2n+2, y2n+1}, μ1

(
{y2n−1, y2n}

)
= {y2n+1, y2n}.

In particular, the exchange relations imply that the sequence (yn)n∈N is given by

y0 = x2, y1 = x1, yn−1yn+1 = y2
n + 1.(6.2)

Note that in the module category Ext1(W 1, Pi) = k, for i = 1,2, which implies

Ext1CQ

(
W 1, Pi

)
= k,

because the P ′
is are projective. Applying the (AR)-autoequivalence τ in the cluster category,

we obtain Ext1CQ
(W 1,Un) = k, n � 0. In the module category, we have (up to isomorphism) a

unique non-split exact sequence

0 → Un → Un+1 →W 1 → 0.

This yields a triangle in the cluster category

Un → Un+1 → W 1 → SUn.

But, as SUn = τUn = Un−2 in the cluster category, shifting the triangle gives

W 1 → Un−1 → Un → SW 1.

Now, let w1 := XW 1 = 1+x2
1+x2

2
x1x2

, then Theorem 2 implies

w1yn = yn+1 + yn−1.
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Note that this formula simplifies the initial induction (6.2). It was obtained in a direct way in [20].
We can calculate the generating series of (yn)n∈N

∑
n�0

yntn =
1− y−1t

1−w1t + t2
,

where y−1 := XV 0 = 1+x2
2

x1
.
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