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NAVIER-STOKES REGULARIZATION
OF MULTIDIMENSIONAL EULER SHOCKS

BY C.M.I. OLIVIER GUES !, Guy METIVIER 2, MARK WILLIAMS 3,
KEVIN ZUMBRUN #

ABSTRACT. — We establish existence and stability of multidimensional shock fronts in the vanishing
viscosity limit for a general class of conservation laws with “real”, or partially parabolic, viscosity including
the Navier-Stokes equations of compressible gas dynamics with standard or van der Waals-type equation
of state. More precisely, given a curved Lax shock solution u° of the corresponding inviscid equations for
which (i) each of the associated planar shocks tangent to the shock front possesses a smooth viscous profile
and (ii) each of these viscous profiles satisfies a uniform spectral stability condition expressed in terms of an
Evans function, we construct nearby smooth viscous shock solutions u° of the viscous equations converging
to u° as viscosity € — 0, and establish for these sharp linearized stability estimates generalizing those of
Majda in the inviscid case. Conditions (i)—(ii) hold always for shock waves of sufficiently small amplitude,
but in general may fail for large amplitudes.

We treat the viscous shock problem considered here as a representative of a larger class of multidimen-
sional boundary problems arising in the study of viscous fluids, characterized by sharp spectral conditions
rather than symmetry hypotheses, which can be analyzed by Kreiss-type symmetrizers.

Compared to the strictly parabolic (artificial viscosity) case, the main new features of the analysis appear
in the high frequency estimates for the linearized problem. In that regime we use frequency-dependent
conjugators to decouple parabolic components that are smoothed from hyperbolic components (like density
in Navier—Stokes) that are not. The construction of the conjugators and the subsequent estimates depend on
a careful spectral analysis of the linearized operator.
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RESUME. — Nous démontrons I’existence et la stabilité d’ondes de chocs multidimensionnelles a viscosité
évanescente pour une classe générale de systemes de lois de conservation partiellement paraboliques
possédant une viscosité «réaliste », et incluant le systeéme des équations de Navier—Stokes de la dynamique
des gaz compressibles pour une équation d’état standard ou de type Van der Vaals. Plus précisément, étant
donnée une solution onde de choc 1 du systeéme hyperbolique sans viscosité pour laquelle (i) chaque choc
plan tangent admet un profil de choc visqueux et (ii) chacun de ces profils de chocs satisfait une hypothese
spectrale de stabilité uniforme formulée en termes de fonction d’Evans, nous contruisons une famille de
solutions u° du probléme visqueux qui convergent vers u° lorsque la viscosité € — 0. Nous établissons pour
celles-ci des estimations linéarisées optimales qui généralisent les estimations obtenues par Majda dans le
cas des ondes de choc sans viscosité. Les conditions (i) et (ii) sont toujours satisfaites pour des ondes de
chocs d’amplitude suffisamment petite, mais peuvent ne pas 1’étre pour des chocs de grande amplitude.
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76 C.M.LO. GUES, G. METIVIER, M. WILLIAMS AND K. ZUMBRUN

Notre approche du probleme de la stabilit€ des chocs visqueux est représentative d’une classe de
problemes aux limites multidimensionnels apparaissant en mécanique des fluides, qui sont caractérisés
par des hypotheses de stabilité spectrales (plutot que par des hypothéses de symétrie) et dont 1’analyse
s’effectue par des méthodes de « symétriseurs de Kreiss ».

Par rapport au cas strictement parabolique (viscosité artificielle), les plus importantes nouveautés de
I’analyse apparaissent dans les estimations a hautes fréquences pour le probleme linéarisé. Dans ce régime,
on introduit des matrices de conjugaison dépendant des variables de fréquence afin de découpler les
composantes « paraboliques » qui sont régularisées, de celles « hyperboliques » qui ne le sont pas (comme la
densité dans Navier—Stokes). La construction de ces matrices et I’obtention des estimations correspondantes
nécessitent une analyse spectrale soignée de I’ opérateur linéarisé.

© 2006 Elsevier SAS

1. Introduction

A number of equations in continuum mechanics may be written as viscous, or second-order
perturbations

d d
(1.1) Ofo(us) +> 0515 (u) —e > 95(Bj(u")dhu) =0
j=1 §.k=1

of first-order systems of hyperbolic conservation laws
d

(1.2) Oifo(w) + 05 f;(u) =0,
j=1

whereu, f7 e RN, B ik € RN *N Here the second-order B; 1, terms model transport effects such
as viscosity and heat, magnetic, or electric conduction, while the coefficient ¢ is a dimensionless
parameter depending on the length and time scales under consideration. The main examples that
we have in mind are the Navier—Stokes and Euler equations of compressible gas dynamics, which
have forms (1.1) and (1.2), respectively. In general, we will refer to B; ;, terms as (generalized)
viscosity terms, and é as a (generalized) Reynolds number. See Section 2 for a precise description
of the Navier—Stokes and Euler equations.

Systems (1.2) are well known to support shock wave, or travelling discontinuity front solutions

0 < t? 9
(13) wo(y, ,1) = {“i’ N
Uy, T= Y(t,y)
Here (t,y,z) := (zo,21,...,24) and ua—L, ¢ are smooth functions satisfying the Rankine—
Hugoniot jump conditions
d—1
(1.4) Zaﬂ/}[fj(u)] = [fa(u)]
j=0

on the shock front { =4 (¢,y)}, and (1.2) on the respective sides of the front. A wide class of
such solutions has been constructed by A. Majda [26,27] under an appropriate spectral stability
condition (the “uniform Lopatinski condition”, definition (A.1)) on the family of all planar
shock fronts tangent to 1. A fundamental question in the theory of hyperbolic conservation
laws, known as the “viscous profile” or “vanishing viscosity” problem, is whether there exist
“viscous regularizations” of such inviscid shock solutions, that is, solutions u. of the viscous

4° SERIE — TOME 39 — 2006 — N° 1



NAVIER-STOKES REGULARIZATION OF MULTIDIMENSIONAL EULER SHOCKS 77

equations (1.1) such that u, approaches ug in the vanishing viscosity limit € — 0. That is, does
the behavior of solutions of the model (1.2) accurately predict the behavior of solutions of the
more complicated model (1.1)?

In the case that (1.1) is strictly parabolic, a complete solution of the viscous profile
problem was given in [12], extending partial results of [11], answering in the affirmative
under the assumption of a viscous spectral stability condition (the “uniform Evans condition”,
definition (2.20)) analogous to that of Majda in the inviscid case. However, physical systems
are typically not strictly parabolic, but rather of a composite, symmetric hyperbolic—partially
parabolic form identified by Kawashima [21-23]; in particular, the Navier—Stokes equations of
compressible gas- or magnetohydrodynamics (MHD) have this form. Thus, the problem remains
open in the physical context from which it originally derived.

In this paper, we continue the program begun in [10-12], extending the results of [12] to
a general class of hyperbolic—parabolic systems containing in particular the Navier—Stokes
equations of compressible gas dynamics. Viscous regularizations are shown to exist assuming
the uniform Evans condition; the condition is known to hold for weak shocks [34]. With suitable
modifications, our methods can be applied also to the equations of MHD [14]. The class of
systems we consider is somewhat more general than the one defined by Kawashima, and is
defined by replacing his symmetrizability hypotheses with sharper spectral hypotheses. The
relation between the two classes is analogous to that between the classes of hyperbolic and
Friedrichs symmetric hyperbolic systems.

In the inviscid case the standard approach [26-28] toward the analysis of solutions (1.3) is to
flatten the shock by the change of variables involving the unknown 1)

(1.5) T=xz—v(ty),

transforming (1.2) into

d—1
(1.6) > Aj(w)dju+ Ag(u, dip)dzu =0,

J=0

where A;(u) := fj(u) is the Jacobian matrix of f; and

d—1
(1.7) Ag(u,dip) = Ag(u) = 059 A;(w)
j=0

is the boundary matrix. Eq. (1.6) is then solved separately on {Z > 0} and {Z < 0}, together with
the transmission conditions

d—1
(1.8) > 0 [f(w)] = [fa(uw)] on{i=0}
§=0

induced by (1.4).

In the viscous case, under appropriate “physical” hypotheses (see Section 2, or discussion
in [38, Section 1.3.1 and references therein]), the discontinuity is smoothed by the joint action
of hyperbolic and parabolic terms, and so there is no well-defined front and no transmission
condition (1.4). Nonetheless, following [12,17] we introduce an artificial unknown front ¢)* and
perform the transformation

(1.9) T=x—°(t,y)
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78 C.M.LO. GUES, G. METIVIER, M. WILLIAMS AND K. ZUMBRUN

to convert the equations to a form

d—1 d
(1.10) ZAj (us)ajus + Zd(us,dws)aius —€ Z D; (Bj,k (us)Dkus) =0
=0

jk=1

analogous to the inviscid one, where D; = 0; — (0;4°)0z when 1 < j < d and Dy = 0;. Note
that the function v which defines the “viscous front” is distinct from the function v that defines
the inviscid shock.

The introduction of the viscous front allows us to reformulate (1.10) as a transmission problem.
Let Bg,q(u®, Vi)°) be the coefficient of 93 in (1.10). Since solutions are expected to be smooth
in the viscous case, we set ug. = u®|1,>0, replace the jump conditions (1.8) with tangency
conditions

(1.11) [uf] =0, [Baa(uf, V) 0zuf] =0 oni =0,

and observe that every smooth solution 15 , ° of the transmission problem (1.10), (1.11) pieces
together to give a smooth solution of (1.10), or equivalently (after changing back to the original
variables), the original viscous problem (1.1) on the whole space.

This puts the viscous and inviscid problems into the common framework of fixed-boundary
transmission problems and, in particular, allows us to apply Kreiss-type symmetrizers to the
viscous problem. (Recall that in [19] Kreiss constructed symmetrizers for strictly hyperbolic
boundary problems.) Still to be determined are the separation of viscous and inviscid effects in
the enlarged system (1.10) and the relation of (1.11) to (1.8) in the singular limit € — 0. Note
that the “size” of the viscous boundary-transmission system, and the number of transmission
conditions both depend on the rank of §d7d; thus, (1.11) represents an appropriate generalization
to real viscosity systems of the corresponding condition introduced in [12,17] in the strictly
parabolic case.

By suitable extension of the methods of [12,17], we find (see Section 5) that, provided (i)
the inviscid solution ug (1.3) satisfies the spectral stability condition imposed by Majda on his
constructed solutions and (ii) each tangent planar discontinuity has a transversal planar viscous
profile (as defined in Section 2.3), then we may construct a hierarchy of approximate solutions

(1.12) ug =N Wty & i), WM = Y Y (ty)

0<j<M 0<ji<M

of (1.10)=(1.11) of order M > 0 satisfying the equations up to order e+ In this expansion the
first term )" is the inviscid shock front (called v in (1.3)) and

(1.13) Uty &,2) =uo(t,y, 2+ ¢°(t,y)) + VO (t,y,2) in £3>0,

where V9(t,y, z) decays exponentially to zero as z — 00 and describes the viscous boundary
layers on each side of the inviscid shock. In addition, for

(1.14) p(ty) = (ud (t,y,9° (), ug (£, 0°(t,y)), dv° (t,y)),

Wo(z,p(t,y)) :=U(t,y,0, ) satisfies the viscous profile equation (2.22), (2.23) associated to
the inviscid shock.

The goal is then to convert the formal approximation error to a rigorous convergence error:
that is, to show that (us™, ¥M) is order eM*! close to an exact solution (u®, ¥¢). The
main issue therefore, as in [11,12], is to establish sufficiently strong stability estimates about the

4° SERIE — TOME 39 — 2006 — N° 1



NAVIER-STOKES REGULARIZATION OF MULTIDIMENSIONAL EULER SHOCKS 79

highly singular approximate solutions u: , 1)2:% to carry out an appropriate nonlinear iteration
for u®, v°.

To this end, we impose a spectral stability condition on the viscous shock profiles associated
with the family of planar shocks tangent to the inviscid shock 1y, analogous to the condition
imposed by Majda on the planar shocks themselves. As described in [36,39], this may be
expressed in terms of an Evans function analogous to the Lopatinski determinant of the inviscid
case; moreover, it is a striking fact that the viscous spectral condition in the low frequency regime
is equivalent to the combination of the inviscid spectral condition and transversality of the viscous
profile. The latter two conditions are the main ones needed for our construction of approximate
solutions. A precise statement of the equivalence is given by Theorem A.2 in Appendix A. Thus,
the viscous stability condition is a natural generalization of the uniform Lopatinski condition of
Majda, which we call the uniform Evans condition. Like the Lopatinski condition, the uniform
Evans condition is satisfied for sufficiently small-amplitude shocks [6,34], but may fail for
large-amplitude shocks [5,37]. Under this condition we establish uniform stability estimates
for ¢ sufficiently small, estimates that reduce in the vanishing viscosity limit € — 0 to those
established by Majda [26,27] in the inviscid case, and yield eventually the following main
theorem. The hypotheses (HO)-(H10) are partitioned among Assumptions 2.1, 2.4,2.6,2.9, 2.21,
and 4.1.

THEOREM 1.1. — Given models (1.1)—(1.2) and a piecewise smooth inviscid shock solution
ug, Yo of (1.6)—(1.8) defined on a time interval 0 < t < T, satisfying hypotheses (H0)—(H9) and
(H10)(a) (including the uniform Evans condition (H9)), there exist approximate solutions ui’M s
=M of (1.10)=(1.11) as described in (1.12) of all orders M > 0, and an exact solution uf, 1)
of (1.10)—(1.11), such that, for all 2 < p < oo,

M MA+1 M M+1
(115)  Jlug™ = UEHLP([O,T],y,E) SCem, e - we‘LP([O,T],y) SCemT
Consequently,
1
(1.16) 1= = woll oo,y ) S CEP 87 = Vol Laoimy ) < CF
and therefore
(1.17) [t — tiol| L ((0,7,9.2) < CEP,

where U. and g denote the associated solutions of (1.1) and (1.2), and C' > 0 is a constant
independent of €.

This theorem is an immediate corollary of the more precise result Theorem 6.18. Together
with our linearized stability estimates, Theorem 1.1 represents a natural extension of the results
of Majda [26,27] for inviscid equations (1.2) to the partially parabolic viscous regularization
(1.1), analogous to that carried out in [12] in the strictly parabolic case.

Our analysis in the low and medium frequency regimes follows that of [12], with appropriate
modifications to accommodate partially parabolic viscosity. In particular, we use the central
ideas introduced in [12] of working with the problem linearized with respect to both u and v,
and of introducing an extra boundary condition supplementing (1.11) in the form of a local
front evolution rule. Having introduced the extra unknown ¢ in (1.10), we should expect the
problem to be underdetermined without some extra boundary condition. The key to the low
frequency stability analysis, here as in [12], is to choose the extra boundary condition in a
way that removes the translational degeneracy of the linearized problem in the low frequency
regime.
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The high-frequency stability analysis of [12] in the strictly parabolic case was based on a
relatively straightforward rescaling argument. Here it is trickier due to the partial parabolicity and
is carried out in a different way. In this regime, after a careful spectral analysis of the full operator,
we are able to use paradifferential conjugators to decouple parabolic components that are
smoothed from hyperbolic components (like density in Navier—Stokes) that are not. The estimate
of the hyperbolic components depends on a further spectral analysis of the corresponding block
evaluated near the endstates of the profile, and on a choice of norms exponentially weighted in a
suitable way along the profile. The estimate of the parabolic components proceeds just as in the
case of artificial viscosity.

New arguments are also required in the construction of the approximate solutions, especially
in the choice of boundary conditions for the “slow” parts of the higher order profiles. In addition,
the weaker high frequency estimate associated with real viscosity requires, for its application
to the small viscosity limit, a nonlinear iteration scheme quite different from the one used
in [12].

The high frequency analysis and the associated identification of useful structural conditions
on the equations sufficient to carry out the analysis represent the main contributions of the paper.
In this paper and its successors we identify general classes of hyperbolic—parabolic systems
characterized by sharp spectral hypotheses rather than symmetry hypotheses, which can be
analyzed using Kreiss-type symmetrizers. Such problems include the viscous shock problem
considered here, the Navier—Stokes noncharacteristic boundary layers studied in [13], and the
viscous MHD shocks studied in [14].

Plan of the paper. In Section 2 we present the various assumptions made in our analysis and
discuss the fully linearized problem. The assumptions are satisfied in particular for sufficiently
small-amplitude, Lax-type shock waves of the Euler/Navier—Stokes equations of compressible
flow, with standard or van der Waals-type equation of state. The main ideas and difficulties of
the paper are already present in the frozen coefficient analysis of Section 3, which is completely
free of paradifferential operators. Paradifferential operators are used only in Section 4 in order
to extend the estimates of Section 3 to the variable coefficient case. This is essential in order to
handle curved shocks. Section 4.2 contains all the needed paradifferential facts. In Section 5 we
construct high order approximate solutions to the viscous transmission problem (1.10), (1.11),
and in Section 6 we find exact solutions nearby. In Appendix A we give a proof the Zumbrun
and Serre [36,37,39] result, relating low frequency behavior of the Evans function to the Majda
inviscid stability determinant.

Remark 1.2.— (1) We call attention to the convention on stating hypotheses described in
Remark 2.25.

(2) We do not distinguish between v and v, u° and ug, w* and w, etc. Especially when
other indices are present, it is sometimes more convenient to have an index up rather than down
or vice versa.

2. Equations and assumptions
2.1. The physical equations
Our assumptions are modeled on the fundamental example of the Navier—Stokes equations of
compressible gas dynamics with general, possibly van der Waals type equation of state. The full

Navier—Stokes equations are the 5 X 5 system
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3
21 @ p+ Z(pv)ij =

j=1

3 3 3
+Z (pv'o? +dij), Z{M(U;j +v],) +A<vak>5ij} )
j=1 k=1 T

j=1

O ()] oo (e ) o)

3 3 3
_Z{IMZM(U;J_+U§i)+/\ujZUI;k+liaxj} .
=1 0 =1 -

k=1

J

J
Here we choose to work with the unknowns p, v = (v!,v?,v3) and 6 which denote the density,
fluid velocity, and temperature, respectively. The pressure p and internal energy e are given

smooth functions of p > 0 and # > 0 satisfying
(2.2) Ope > 0.
We take the viscosity coefficients i, A and the heat conduction coefficient x to satisfy

(2.3) p=cpu(p,0), A=el(p,0), k= cek(p,0)

where p, A and k are positive functions. € > 0 is a small parameter that we will sometimes refer
to as “the viscosity”. Note that the condition (2.2), together with the condition « > 0, is necessary
for the well posedness of the heat conduction equation in 8. Note also that the inviscid system of
Euler’s equation (2.1) with € = 0 is hyperbolic only when

(2.4) d,p>0,

which may hold on a strictly smaller domain of (p, 8) than does (2.2), as seen in the example of
a van der Waals gas.

2.2. Structural assumptions
The Navier—Stokes system is a particular case of systems (1.1). We note that viscous terms
appear only in the last four equations and that these terms involve second derivatives of v and

6 only. We split vectors f € R® into their first component f! and the remaining ones f? € R*.
With u! = p and u? = (v, §) we see that the Navier-Stokes system has the structure of (1.1) with

/ AL 0 0 O
(2.5) Ao(u) == folu) = <A21 A%2> ) Bjr(u) = (0 Bz}z) )
Jk

where M“# denote the sub-blocks of the matrix M corresponding to the splitting u = (u®, u?).
In particular,

2.6) Bjk(w) = Ao(u) ™ By (u) = (8 Er‘fgm)) '

Extending these properties we consider systems (1.1) which satisfy (2.5):
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ASSUMPTION 2.1. -

(HO) (Smooth fluxes and viscosity.) Let U* be an open subset of RY. The fluxes f; are C>°
functions of u € U* with values in RY and the Bj are C°° N x N matrices on U*.
Moreover, for all u € U*, the matrix f{(w) is invertible.

(H1) (Block form.) Possibly after a change of variables w and multiplication on the left by an
invertible constant coefficient matrix, there is s € {1,..., N} and there are coordinates
u=(ut,u?) e RN~ x R® and f = (f!, f2) € RN¥~* x R® such that the block form
condition (2.5) is satisfied.

Remark 2.2. — This assumption can be put in a more geometric form, at least locally. First
observe that under a change of variables u = ® (@), the fluxes f; and matrices B j are changed
to

Q.7) fi=fio®  Bjn=(Bjxo®)®
so that Bj j, is changed to

(2.8) ASIB; g = (9) (B o ®)d.
When (2.6) holds, the kernel and image of B, ; = Ay ' B; 1, satisfy

ker Bj (u) D K :=RN7% x {0}*, Im Bj 1, (u) CT:= {0}V 7% x R*.

Moreover,
Im B; i (u) € J:= {0}V =% x R,

Conversely, locally, Assumption 2.1 is the conjunction of five properties, which can be checked
in any coordinate system u:

(1) there is a space K(u) of dimension N — s such that for all u € U*, ker B; . (u) D K(u);

(2) there is a space J of dimension s such that for all v € /*, Im Bj’k(u) cJ

(3) forall u e U*, RN =K (u) & I(u), where I(u) = Ag(u)~1J;

(4) the vector bundle K(u) is smooth and integrable;

(5) the vector bundle I(u) is smooth and integrable.
Indeed, (3)—(5) imply that, at least locally, there is a change of coordinates u = ® (), with
@ = (u',u?) € RN=% x R* such that

K(u) = @(@) (RY = x {0}),  I(w) = &'(@) ({0} x R°).

By (2), we can choose linear coordinates f = (f!, f2) such that J = { f! =0} = {0}V x R®.
This implies that B; ;, = (B, 1, © <I>)<I>’ has the block diagonal form in (2.5). Moreover, Ao =

(®)~1(Ay " o ®) maps J to J, thus A L and A, have the triangular form in (2.5). This shows
that the conditions in (H1) are satlsﬁed in the coordinates .

Example 2.3.— We have already shown that (H1) is satisfied for Navier—Stokes equations.
More generally, suppose that there are splittings of coordinates u = (u!,u?) € RVN=% x RS,
F=(f" %) € RV=% x R® such that

2.9) folw) = fi (), Bi(u)dhu = (Ej k<u>§k<@<u>>> ’

where U € C®°(U*;R®) and the §j7k are s X s smooth matrices. Then, if the mapping
— (u',7(u)) is a diffeomorphism, taking u' and 1) (u) as coordinates, we see that (H1) is
satisfied.
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The assumption (H1) has an important consequence for the structure of Eq. (1.1) written in
nonconservative form: it reads

d d d
(2.10) Z Aj(u)oju—e Z Bjyk(u)af-yku —€ Z 9,k (u, 0ju, Opu) =0
j=0 jik=1 jik=1

with
9je(u,v,w) = (v VyBjp(u))w
bilinear in v and w. Moreover, (2.5) implies that the first NV — s components of g; ; vanish:

(2.11) gj.k(u,v,w) = ( 0 ) .

gik(u,v,w)

This is useful in the nonlinear stability analysis, since it allows us to consider terms like g as
lower order perturbations.
The triangular form of the equations also reveals the importance of the (1,1) block:

d
(2.12) L' (u,0) = ZA;l(u)aj, or
j=0

' (4,0) = (A3 (w) " L (u, ),

which plays a special role in the analysis.

From now on we work with variables u = (u!,u?) € U* such that (2.5) and (2.6) hold. We set
(2.13) Aj=fl,  Aj=Aj'A;,  Bjr=A)'Bjx,
and systematically use the notation M7 for the sub-blocks of a matrix M corresponding to the
splitting u = (u*, u?).
ASSUMPTION 2.4. —
(H2) (Partial parabolicity.) There is ¢ > 0 such that for all u € U/* and ¢ € R?, the eigenvalues
—22 —2,2 .
of B (u,&) = Z;‘l,k:1 &€k By (u) satisfy Re pu > c[¢]?.
(H3) (Hyperbolicity of (1,1) block.) The eigenvalues of A" (u,€) = 39_, &7, (u) are real
and semisimple with constant multiplicities for v € U* and ¢ € R?\{0}.

Remark 2.5.— (1) Assuming (H1), the condition (H2) is equivalent to the following coordi-
nate-independent condition:

(H2') for all u € U* and & € R4\{0}, 0 is an eigenvalue of B(u,&) = &€, B,k (u) with
constant multiplicity N — s and the remaining eigenvalues satisfy Re u > c|¢|%.

(2) When s = N — 1, which is the case for the Navier—Stokes equations, then

d
(2.14) A, 6) =3 A (u)
j=1
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with Z;l(u) € R. Therefore, the condition (H3) is automatically satisfied. (H3) is also clearly

satisfied in cases where Zn(u, &) is a (real) scalar multiple of the identity I _g, as occurs for
MHD in the case of infinite magnetic permeability.

Next we assume that the inviscid equations are hyperbolic for « in some open subdomain
UcCU*. Let

d d
(2.15) Au,§)=> &Aj(w) and B(u,&) = > &&Bjx(u).
j=1 J,k=1

ASSUMPTION 2.6. —

(H4) (Hyperbolicity near endstates.) For u € U and ¢ € R?\{0} the eigenvalues of A(u, &)
are real and semisimple with constant multiplicity.

(H5) (Strict dissipativity near endstates.) There is ¢ > 0 such that for € I and ¢ € RY, the
eigenvalues 1 of iA(u, &) + B(u, &) satisfy

cléf®

2.16 Ry > .

Remark 2.7.— (1) It is important for applications to allow that I/ can be strictly smaller
than I/*. For instance, for Euler’s equation / is the sub-domain of states such that ,p > 0; recall
Section 2.1. Note also that for such states u, Euler’s equation satisfies the constant multiplicity
assumption (H4).

The hypothesis (H4), which plays a role only in our low frequency analysis, is violated by the
equations of viscous MHD, where characteristics of variable multiplicity appear in the hyperbolic
part. Symmetrizers for viscous MHD in the low frequency regime are constructed in [14]. MHD
can be treated by combining the low frequency analysis of [14] with the medium and high
frequency analysis given here.

(2) Hypothesis (H2) is clearly satisfied by the Navier-Stokes equations when dge > 0. We
refer to [22,23] or [38, Remark 1.25], for verification that the Navier—Stokes equations satisfy
(H5) whenever 9ge > 0, 9,p > 0. More generally, for systems that are symmetrizable in the sense
that the matrices A;, B; ; may be taken symmetric, (2.16) is equivalent to the genuine coupling
condition of Kawashima: no eigenvector of A(u, ) lies in the kernel of B(u, &) for &€ € R4\ {0}.
This condition is checked for the Navier—Stokes equations in [23].

(3) There is a slight redundancy in Assumption 2.6, since (HS5) implies that the eigenvalues of
A(u, &) are real.

2.3. Profiles and Evans functions

Next we consider planar shocks. Denoting by (y1,...,y4—1,2) the space variables, we
consider solutions of the inviscid equation (1.2) consisting of two constant states u~ and u™
in U separated by a plane {x = hot + Z;i;ll hjy;}. The states u™ and the front h must satisfy
the Rankine—Hugoniot condition:

d—1
(2.17) > hilfiw)] = [fa(w)]

5=0
where [f] denotes f(ut)— f(u™). Withv = v(h) := (—hg, —h1,...,—hg_1,1), let us introduce

the normal flux and the normal boundary matrices
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) d
(2.18) faluw,v) = v; f(u)
=0
d ~
V) :ZVjAj(u), Ag(u,v) = Ag(u)~t Ag(u,v),

deuz/ E vivpBjk(
7,k=1

Remark 2.8. — Let us also define for j=1,...,d—1

d
(2.19) Bja(u,v) =Y wBjx(u),  Baj(u,v) ZukBkJ

Observe that Eq. (1.10) can then be rewritten

d

(2.20) ZA )0ju+ Ad(u v(dip))dqu — € Z 9;(B;, k(u,y(dw))é‘ku) =

J,k=1

We will sometimes abuse notation slightly and write, for example, gd(mdw) in place of
Ag(u,v(dy)).

In the viscous case, discontinuities are replaced by profiles, and shocks are replaced by
travelling waves

d—1
221) u*(t,,2) —w(w) b(ty) = hot + 3 hyy;
j=1

Then u° is a solution of (1.1) if and only if w solves the profile equation

(2.22) 0, (fd (w(z),y)) — 0, (Ed,d (w(z),u)azw) =
The profile is associated to a shock p = (v, u™", h) when

(2.23) lim w(z)=v" and lir+n w(z)=u".
Recall that the Rankine—Hugoniot conditions (2.17) follow from (2.22), (2.23).

The next two assumptions mean that we are considering a family of profiles associated to Lax
shocks, with an additional assumption of “hyperbolicity in the v direction” for the (1, 1) block.

ASSUMPTION 2.9. —

(H6) (Lax shocks.) We are given a C* manifold C C U x U x R%, with C compact, such
that each p = (u~,u™,h) in C satisfies (2.17). Moreover, the boundary matrices
Ag(u*,v(h)) are invertible and the numbers N_ (respectively N,) of positive
(respectively negative) eigenvalues of A4(u~,v) (respectively Aq(ut,v)) satisfy N, +
N_=N+1.

(H7) (Shock profiles.) We are given a C*° function Wy (z,p) from R x C to U* such that for
all p € C, Wy (+,p) is a solution of (2.22), (2.23). We refer to such a function as a “shock
profile”.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



86 C.M.LO. GUES, G. METIVIER, M. WILLIAMS AND K. ZUMBRUN

(H8) (Hyperbolicity of (1,1) block with respect to v.) For each p = (u™,u™,h) € C, one

of iZ}f (w,v(h)) has only strictly positive eigenvalues for all w in the closed orbit
{Wo(z,p): » € R}

In addition to the parameters p = (u™,u™, h), we introduce new parameters (u’,h’) € RY x
R? to represent perturbations of profiles and fronts. We set

(2.24) q=(p,u',n), W(z,q) = Wo(z,p) +’, W (+o00,q) = u® 4+ o/
and
225 Aj(z,9):=4;(W(z,q), Aj(z.0)=4;(W(z,q), j<d-1,

Ad(zv Q) = Ad(W(za(J)a V(h + 1’ ))7 Ad(zv Q) = Ad(W(zvq)a V(h + h/))

PROPOSITION 2.10. — Let W(z,q) be as in (2.24) and assume (H3) and (H8). There exists a
neighborhood O of (0,0) € RY, x RY, such that for all z € RU {400}, p €C, and (v',1') € O,
we have W (z,q) € U* and

(2.26) (a) oneof £ Z}il (2,q) has only strictly positive eigenvalues;
d—1
(b)  the eigenvalues of A} (z,q) " (Aél(z, Q)T+ Z A]ll(z, q)nj>
j=1

are real and semisimple with constant multiplicity for (7,n) € R%\ 0. In addition there exists
Z > 0 such that for all q as above,

(2.27) |2| > Z = W(z,q) €U.

Proof. — (1) For £ € C?*! the homogeneous polynomial 7(€) is said to be hyperbolic in the
real direction (3 if and only if 7(/3) # 0 and for all real ¢’ ¢ R the roots r € C of w(r(3 4 ¢') are
real. For (z, ¢) as above, (H3) implies that

d
(2.28) m(2,¢,§) = det(ZAil(&q)fj)

=0

is hyperbolic in the direction dt = (1,0, ...,0). (2.26)(a) holds if and only if one of +v(h + k')
lies in the same component as dt of the open set {&: 7(z,q,&) # 0} [18, Lemma 8.7.3].
Hypothesis (H8), compactness of C, and compactness of the closed orbit associated to each p € C
allow us to choose O so this is the case. (2, ¢, ) is hyperbolic with respect to all directions in
that component, so (2.26)(a) implies that the roots r of

(2.29) m(z,q,rv(h+h)+&)=0, & ¢Ry,

are real, which is equivalent to saying the eigenvalues in (2.26)(b) are real.
(2) Changing the notation for frequencies, we set

d—1
(2.30) Az q,n,60) =Y A (2 q)my + A (2,0)Ea,
Jj=1
. d—1
Gz, q,mm) =AY (z.q) " (Aél(z,q)f + ZA?(Z,q)nj) :
j=1
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(H3) implies that for (7, 7) real, all eigenvalues &4 of G*1(z, ¢, T — iy, ) have nonzero imaginary
part when v > 0. From (2.26)(a) it follows that these eigenvalues lie in the same fixed half plane,
one of £3&; > 0.

(3) Suppose now that éd is an eigenvalue of G'!(z, q,7,n) for (z,n) € R?\ 0. By (H3) there
exists a unique eigenvalue 3(z,q,7,&q) of AL, which is C*° in all arguments, analytic in &4, of
constant multiplicity, and such that

2.31) 7+ B(2.q4,1,€,) =0.
Note then that (7,7, & d) is nonglancing, which means that
(2.32) e, B#0 at(z,q,n.€,),

for otherwise the equation

(2.33) T —iy+0(2,¢,1,8a) =0

has roots in £; with J&; of both signs when ~ > 0, contradicting the conclusion of part (2).
It follows that —¢  is a semisimple eigenvalue of Qu(z,q,z,ﬂ) with multiplicity equal to
that of —7 as an eigenvalue of A'(z,q,n,¢ ,) [32, Proposition 3.9]. Thus, the assertion of
semisimplicity and constant multiplicity in (2.26)(b) follows from that in (H3).

(4) The ability to choose Z as in (2.27) is immediate from compactness. O

Remark 2.11.— (1) Hypothesis (H6) is the starting point for constructing shock solutions of
the inviscid equation. The construction of profiles as in (H7) is the first step in the analysis of
the viscous perturbation. We refer to [8,25] for the construction of profiles for the Navier—Stokes
equations. For example, Gilbarg shows that for a convex pressure law, profiles exist for shocks
of any strength. See [25,33] for construction of small-amplitude profiles of general systems.

(2) Following [24,38] we may take advantage of the divergence form of (2.22), integrating
from —oo to z to express the profile equation as an algebraic relation

(2.34) fi(w,v) = fi(u_,v) =0,
combined with the reduced ODE
(2.35) O,w? = (532(1) -t (fg (w,v) — fdQ(u_, 1/))

Since AL' = f1' is invertible by the first part of (H8), we may solve for w; as a function of
wy in (2.34), reducing the algebro-differential system (2.34)—(2.35) to a standard ODE in the
variable ws.

(3) Hypothesis (H8), especially through its consequence, Proposition 2.10, plays an important
part in the high frequency estimate. In the estimate (3.97)(a) for the hyperbolic block, it is
essential that the eigenvalues of A'! be nonglancing (2.32). One can show that if the eigenvalues
of Al are nonglancing and (H8) fails to hold, then constant multiplicity for A (H3) fails.

(H8) is satisfied in physical examples, and it holds in particular for the Navier—Stokes
equations. More generally, consider the case where s = N — 1, so that L' is a vector field

d
(2.36) LY = AgH(w)o, + Y Aj (u)9;
j=1
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with A3' € R. In this case (H8) reduces to the condition that

d
2.37) AL (Wo(z,p),v(h) = v AJH (Wo(2,p)) #0

=0

forallpeCand z € RU +o0.
For the Navier—Stokes equations,

d
Lll = 8t + Zvjaj
j=1

and the condition reads

d—1

(2.38) ho # vqg — Z hjv; along the profile,
j=1

where, with H = |(—hq,...,—hg4-1,1)],

d—1
ho/H and Up = <vd—2hjvj>/H
j=1

are the speed of the shock and fluid speed normal to the shock respectively. One can show that
(2.38) is a consequence of the profile equations; see [37, Appendix A.1]. For weak shocks this
condition is clear, since Lax shocks are associated to acoustic modes and their speed is ~ v,, £ ¢,
where c is the sound speed.

DEFINITION 2.12.— A solution w of the connection problem (2.34)—(2.35), (2.23) is called
transversal if the unstable manifold of (2.35) at u, and the stable manifold of (2.35) at u;
intersect transversally along w.

PROPOSITION 2.13. — (See [24,38].) Suppose that w is a shock profile associated to a planar
Lax shock p = (u~,u™, h). Then w converges exponentially in all derivatives to its end states u*
and 0,w2(z) # 0 for all z € R. Moreover, if w is transversal, then it is unique up fo translation.

Proof. — Evaluating 0,,,w; in (2.34) using the Implicit Function Theorem, we find that the

linearization of the right-hand side of (2.35) about the endstates in is

oo« —1 s = e e ]
2.39) (B2 (A% - A2 () AR).

By Assumption (H2) and Assumption (H8) we have

(240)  det((B2) " (A2 — A21(AL) T ALR)) = det Ay/(det B2 det AL) #0,

so that in are nondegenerate rest points of (2.35). With Assumption (HS) this implies that (2.39)
has no purely imaginary eigenvalues. Therefore, wéﬁ are hyperbolic rest points, from which
exponential decay follows by classical ODE theory [3]. Likewise, 0, w2(z) # 0 follows from
uniqueness of solutions of ODE. Uniqueness up to translation follows from the relation

2.41) sy +s_—s=Np+N_—N [37, Appendix A.2],
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where s denotes the number of eigenvalues with negative real part of (2.39) at w;' and s_
denotes the number of eigenvalues with positive real part of (2.39) at w, ; this quantity equals
one for Lax shocks. O

Remark 2.14. — (1) Profiles for viscous shock solutions of the Navier—Stokes equations are
transversal if they exist [24]. Such shocks are in general extreme shocks.
(2) We prove the relation (2.41) in Corollary 3.45.

From Proposition 2.13, we obtain as in the proof of Proposition 2.6, [12] the following local
verification of (H7).

PROPOSITION 2.15.— (See [12].)

(i) Suppose that p is a planar Lax shock. Then there is a neighborhood w of p in U x U x R?
such that the set of shocks in w form a smooth manifold C of dimension N + d and each
p € C is a Lax shock.

(ii) Suppose in addition that w is a shock profile associated to p and that w is transversal.
Then, shrinking w if necessary, there is a C> mapping Wy from R x C to U* C RN
such that Wy(z,p) = w(z) and for all p= (u~,u*,h) € C, Wo(-,p) is a shock profile
associated to p. This connection is unique, up to a translation in z by a smooth shift k(p).

In (2.24) and Proposition 2.10 we have already introduced a more general type of profile. We
formalize that notion in the next definition.

DEFINITION 2.16.— Let p = (u~,u™,h) € C be as in (H6) and let Wy(z,p) be a shock
profile as in (H7). For parameters (u/,h’) € RY x R? and ¢ = (p,u’,h) we define the function
W (z,q) = Wo(z,p) + v to be a profile associated to the front h + b’ if

(a) W(z,q) e U* forall z;

(b) there exists Z > 0 such that |z| > Z = W (z,q) € U;

(c) for|z| > Z, Ay(z,q) is invertible;

(d) for all z one of j:Z:ll (z,q) has only strictly positive eigenvalues.

Remark 2.17. — From Proposition 2.10 we see that for parameters (u’, h’) contained in a small
enough neighborhood of 0, W (z,q) as defined above satisfies conditions (a)-(d) with a Z that
can be taken independent of gq. Moreover, it follows as in [12, Proposition 2.6] that for some
6 > 0 we have estimates

(2.42) lafagW(z, 9)| < Crae™ 1 on £2>0.

Note that we distinguish between “shock profiles” as in (H7) and more general profiles as in
Definition 2.16.

2.3.1. The uniform Evans condition
For a fixed ¢ = (p,u’, h’) we consider a profile W (z, q) as in Definition 2.16. We consider the
linearization of Eq. (2.20) around

(2.43) w(t,y,x) =W(x/e,q),  (t,y)=(h+1")-(ty).

For simplicity, we have changed the notation Z to z.
We first compute the “partially linearized” operator with respect to u alone (we compute the
fully linearized operator in Section 2.4, following). This has the form

(2.44) Lis:= —£0y (Ba,a0ytt) + 9, (A1) + %Mﬁu
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where
{ Anv = ﬁdv — Zj;ll (Bj’d -+ Ed_j)sajv — (Vugd,d . U)@ZW,
Mty = Agedpv + Zj;% Agsajv — Z?;ik Bj €200k,

with
(2.45) A= A0 = (VuBja-v)0.W + (VuBja- 0. W), j=1,...,d—1,

N d N d

Bj,d(uay):ZVkBj,k(u)a Bd,j(uﬂy):ZVkBk,j(u)v jzla"'7d_17

k=1 k=1

where v(h) = (—hg, —h1,...,—hg—1,1) and matrix coefficients are evaluated at u = W (x /¢, q).

The coefficients are smooth functions of ¢ and z = x /¢, and A% and M? are differential operators
in €0, and €0,,.

Since the coefficients of L are independent of the tangential space—time variables (¢,y), one
can perform a Fourier—Laplace transform with respect to (¢,y). This leads to symbols A(z, ¢, ()
and M(z,q,(), depending on (z,q) and ¢ = (7,7,7) € R x R¥~! x R, obtained by evaluating
the coefficients at (z, ¢) and replacing 9; and 0; in the definitions above by in;, j =1,...,d —1,

and ~ + ¢7 respectively. Denoting by u (respectively, f ) the Fourier-Laplace transform of
(respectively, L), one has:

(2.46) f(x,gt) = —£0, (B(E,q) 83011) + Oy (A(iq,s(ﬁ)ﬂ) + l/\/l(f,q,sé)ﬁ.
€ € € €

Denote by L the operator in the right-hand side acting on #. It is then natural to rescale the
variables. After setting

@47 (=< z=zfe, w(Q=a(x0), (20 =ef(x.0),
and

2.48)  L(z2,q,(,0)u" := -0, (B(z, q)@zu*) + 0, (A(z, q, C)u*) + M(z,q, )u”,
Eq. (2.46) reads

(2.49) ff=L(2,q,(,0,)u".

Dropping the stars, we now consider the well posedness of the equation
(2.50) L(z,q,¢,0:)u=f.

This is a degenerate second order differential equation, and the equation is equivalent to the
transmission problem where one looks for solutions 4+ and v~ on {z > 0} and {z < 0}
separately, which satisfy the transmission conditions

(2.51) u™(0) = u™(0), D,uy (0) = ,ug (0).

Note that these are equivalent to (1.11), by the block structure assumption (2.5).

DEFINITION 2.18. - Given a profile W (z,q) as in Definition 2.16, we denote by E*(q,()
(respectively, E~(q,()) the set of initial data (u(0),0,u2(0)) such that the corresponding
solution of £(z,q,¢,0,)u =0 on {z > 0} (respectively, {z < 0}) is bounded as z tends to +o0
(respectively, —o0).
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In the sequel, we denote by K(fl the set of parameters ¢ = (7,7,7) € R x R¥~! x R such

that v > 0 and by Eiﬂ\{()} the set of { # 0 with y > 0. The proof of the next lemma is given
in Section 3.3.

LEMMA 2.19.— Assume (HO)—(H2) and (H5)—-(H8). Let W (z,q) be a profile as in Defini-
tion 2.16. Then for

(2.52) qg=(p,u',h)eQ:=Cx 0O,

with (v, 1) in a small enough neighborhood O of 0, E*(q,() and B~ (q, () are smooth vector
bundles of fixed dimensions K, N + s — K in CN15 over Q x R‘fl\{O}. In fact, K = N when

—11
the eigenvalues of A, (z,q) are all positive, and K = s when those eigenvalues are all negative.

There are nontrivial bounded solutions of Lu = 0 if and only if ET N[E~ # {0}. The distance
between these two spaces can be measured via the Evans’ function

(2.53) D(q,¢) =det(E*(¢.¢),E™(¢,¢))

where the determinant is obtained by taking any orthonormal basis in the given spaces. Note that,
by Lemma 2.19, the function D is smooth on Q x R4\ {0}.

There is an alternate way of computing the Evans function D. Considering the transmission
problem as a boundary problem, the natural space of initial data of bounded solutions is
E~ x Et ¢ CN*+s x CN*5. Its dimension is N + s. The boundary condition can be written
L(U~,U™) =0 where I is the mapping (U~,U")+— UT — U~ from CN** x CN*+s 1o CNFs,
Thus dimkerI' = N + s and

(2.54) D(g,¢) = det(E™(¢,¢) x E (g, (), kerT).

The weak Evans condition requires that D does not vanish when ¢ # 0 and - > 0. The uniform
condition requires in addition an optimal control when ( is small or large. It turns out that for
large ( appropriate control follows already from the assumptions (HO)—-(HS), and so no explicit
assumption is necessary in this regime; see Remark 3.29. For small ¢, we know from [37,39] that
the determinant D is O(|¢|). Following [36] the uniform stability condition reads:

DEFINITION 2.20 (Stability conditions). —
(i) The shock profile Wy(z,p) associated to a Lax shock ¢ = (p,0) is spectrally stable

(satisfies the weak Evans condition) if the Evans function D(p,0, () does not vanish for
—d+1

¢eR {0}

@i1) It is uniformly stable (satisfies the uniform Evans condition) if in addition there is a
positive constant ¢ such that for all ¢ € ETl\{O} with |¢| < 1,

(2.55) |D(p,0,¢)| = cl¢].

ASSUMPTION 2.21 (H9). — For all p € C, the planar profile Wy(z, p) is uniformly stable.

Remark 2.22.— In [34]itis shown that profiles associated to a large class of weak Lax shocks,
including weak shocks for the Euler equations, are uniformly stable. See also [6] for a similar
result in the one-dimensional case.

The following proposition extends a result of [39] in the case of artificial viscosity to the
real viscosity setting. The proposition refers to Majda’s uniform stability condition for inviscid
shocks, which is recalled in Appendix A along with the proof of the proposition.
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PROPOSITION 2.23. — Suppose that assumptions (HO)—(H2) and (H4)-(HS8) are satisfied and
that Wy is a shock profile associated to a planar Lax shock p.
(1) If Wy is uniformly stable, then Wy is transversal and the planar shock p is uniformly
stable in the sense of Majda [26].
(i) Conversely, if Wy is transversal and the shock p is uniformly stable, then (2.55) holds for

e Eiﬂ\{O} small enough.

COROLLARY 2.24.— Under the assumptions of Proposition 2.23, a profile Wy associated to
a Lax shock p is uniformly stable if and only if .
(1) it is spectrally stable,
(i) Wy is transversal,
(iii) p is uniformly stable in the sense of Majda.

Remark 2.25.— We shall adopt the convention from now on that hypotheses (HO)-(H1) and
(H6)—-(H7) are automatically assumed in every theorem, proposition, etc. of the paper. Thus, in
Proposition 3.8 for example, where the only explicitly stated assumption is (H2), our intention
is to highlight the fact that (H2) is the only extra assumption needed beyond the automatically
assumed ones.

2.4. The fully linearized equations

The vanishing of the Evans function associated to a Lax shock profile Wy at ¢ = 0 is the main
source of difficulty in the low frequency analysis. It reflects the translational degeneracy in the
partially linearized operator £ expressed by the fact

(256) ‘C(Za qvovaz)azWO =0 when q= (p7 O)

This degeneracy leads to an L? estimate for the transmission problem (2.50), (2.51) that is too
weak for our purposes here. In addition, having introduced the extra unknown ° in (1.10), we
should expect the transmission problem (1.10), (1.11) to be underdetermined without some extra
boundary (or transmission) condition. The key to the low frequency stability analysis, here as in
[12], is to work with the fully linearized problem and to choose the extra boundary condition in
a way that removes the translational degeneracy in the low frequency regime. This strategy then
commits us to working with the fully linearized equations in the medium and high frequency
regimes as well, even though the partially linearized problem is well behaved there.

Consider again a profile W (z, q) with ¢ = (p,u’, h’). The fully linearized equation from (1.10)
around w® = W(x/e,q), ¥(t,y) = (h+h') - (t,y) reads

(2.57) Li—Kip=Ff,

where L is given by (2.44) and

d—1
(2.58) Ktp = 010 fo (w®) + Y _ 9500, f; (wF)
j=1
d—1 . _ _ d—1 )
— > €0;90:((Bj.a + Baj)0aw®) —& > 0;04)Bj 0pw®.
j=1 j,k=1

The key idea introduced in [12] is to consider the problem (2.57) with transmission conditions

(2.59) [i] =0, [0,12) =0,  Oyth—eAyp+L -t =0 onz=0,
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for £ = £(q) € R®. The special choice of the heat operator in the extra boundary condition is not
essential. It can be replaced by any parabolic operator of the same type, possibly depending on p.
There is also a large freedom in the choice of £. We assume /(q) satisfies

(2.60) 0(g) - 9-W»(0,q) > 0.

Such a choice is always possible for profiles close enough to shock profiles since 9, W2(0,¢q) # 0
when ¢ = (p,0) by Proposition 2.13.

The operators L and K are closely related. Denote by & (u, 1) the left-hand side of (1.10) and
consider for a moment the full and partial linearizations of (1.10) about an arbitrary choice of
(u, 1)), together with the original transmission conditions:

(2.61) @ & (u, )i+ E)(u, )= f, [a] =0, [0p112] =0,
) E(wyya=f  [i]=0, (9] =0,
where &/, and Ejp are the linearizations of £ with respect to u and 1 respectively.

LEMMA 2.26. - We have

(2.62) L (u, )i+ &)y (u, )1 = €} (u, 1) (1 — Y0yu) + Y0, (u, ).

Proof. — Denoting by F (u) the left-hand side of Eq. (1.1) in the original coordinates, and by *
the substitution u*(¢,y, z) = u(t,y,x — ¥(t,y)), one has

(2.63) Fu*)={E(u,v)}"

Through linearization, one has §(u*) = (du — 610, u)*. Moreover, differentiating in u alone,
one checks that (&), (u,¥)v)* = F, (u*)(v)*. Linearizing (2.63) implies (2.62). O

Remark 2.27. - The identity (2.62) was pointed out by S. Alinhac [1] along with the role
of what he called “the good unknown” @ — ¥y u. Consider the example where u = Wy (%, p)
and ) = h - (t,y) are an exact solution of the problem (1.10), (1.11). In this case, the error term
02€(u, 1)) is exactly equal to zero in the right-hand side of (2.62) and the original transmission
conditions for @ and v = @ — 1 J,u are equivalent. Hence, the transmission problems (2.61)(a) for
u and (2.61)(b) for © are equivalent. This observation is useful in the medium and high frequency
regions, where the partially linearized problem (2.61)(b) is well-behaved. There we may prove
estimates for the good unknown o satisfying (2.61)(b), and then use the extra boundary condition

(8 — €AY + (€ - Dyug) = —L- 09 onx =0,

to estimate ¢ after estimating the trace of vs.

This approach has to be modified in the small frequency region because of the translational
degeneracy at ¢ = 0. By making a more subtle choice of good unknown as explained in Sec-
tion 3.3, one can again reduce to proving estimates for the partially linearized operator £/,. The
original transmission conditions are replaced by new (pseudodifferential) boundary conditions
arising from (2.59) on the good unknown, and these conditions have the effect of removing the
translational degeneracy.

The coefficients of K (2.58) are independent of (¢,y), so we again perform a Fourier—Laplace
transform with respect to (¢,y). Denote by g the additional term — K in (2.57) and by ¢ and g
the Fourier—Laplace transforms of 1) and g respectively. Parallel to (2.46) there holds
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S 1
(2.64) i(2,0)=—=

€

96 (L)
where

d—1
(2.65) K(2,,¢) = 8- fo(W)(y +i7) + Y _ 0. f;(W)in;

j=1
d—1 N 5 d—1

— > 0:((Bja+ Baj)o:-W)in; + Y Bjrd-Wnyms
j=1 jk=1

and the coefficients are now evaluated at u = W (z, ¢). The natural rescaling for § and 7,/; which
supplements (2.47), is:

* ~ * 1~ 2
(2.66) 9 (.0 =¢gz.¢), Q) =¥,
so that
9" (2,Q) = =¢*(OK(z,4,¢).
Similarly, the Fourier—Laplace transform of the extra boundary condition reads
(3 + 7 + ) $(O) + € iz (C) = 0.

Adding up, after Fourier—Laplace transform and rescaling as in (2.47) and (2.66), we see that the
linearized equations read:

(2.67) L(z,q,¢,0:)u" —¢*K(2,q,¢) = [,
a(Q)Y* +L€-u3(0)=0 onz=0,
with a(¢) = v + i1 + |n|>.

LEMMA 2.28. - Given a profile W (z,q) with ¢ = (p,u’,h’) as above, the following identity
is satisfied:

K(z,q,¢) = L(2,4,¢,05)0.W + azP(VV, v(h+ h/))7
where P(W,v) := 0, (Bg.a(W,v)0,W) — 8, (fa(W,v)).

Proof. — This is easily checked by direct computation; it can also be deduced from the identity
(2.62). O

Remark 2.29.— In the case when W) is a shock profile associated to the front s, we have
P(WO, l/(h)) =0.

3. Frozen coefficient L? estimates
3.1. Transmission problems depending on frequency
Consider an approximate solution (u5™ 15*) as in (1.12). It can be written
3.1 ug ™ (x) %(jp(t,y)) +u'(ty,@,6),
dyp M = dy°(t,y) + B (ty, x,¢),
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where

3.2) p(t,y) = (uS.(t,y,0),u’ (t,y,0),dy°(t,y)) € C

is the given inviscid shock and u’, h' are perturbations that can be read off from (1.12). We also
allow u’ and /' to include additional corrections of the form % (v,,,d®,) like those that will
appear later in the iteration scheme for the exact solution. Let us now freeze ¢ = (p,u’,h’) and
consider the rescaled, Fourier—Laplace transformed, transmission problem (2.67):

(33) ‘C(Z7qvgvaz)u7wlc(za(b<):f7
[u] =0, [0,u2] =0, a(Q)Y +4(q) -u2(0) =0 onz=0.

The problem (3.3) is a transmission problem in z depending on (g, ¢) as parameters. In this part
we show how to obtain estimates for this problem, uniform with respect to the parameters, in each
of the three frequency regimes where || is small, medium, or large. This ODE question already
contains most of the main difficulties. The frequency-dependent conjugators and symmetrizers
constructed here will serve as symbols of the paradifferential operators we will use in the next
part to obtain estimates for the variable coefficient linearized problem.

The following propositions give the frozen coefficient estimates in the three frequency
regimes.

PROPOSITION 3.1 (High frequency).— Consider solutions (u,v) of (3.3) where q¢ =
(p,u',h') with p € C and (u',h') small. There exist constants R, & such that for || > R,
0 <y < 6|¢|, we have

34 (L lluall + Azl + 19:uz ]| + /147 [ur(0)] + AY2[uz(0)|
+ATV2[0.u2(0)| + A <O+ AL,
where ||f]| = |flzacey and A(Q) = (1+~2 +7 + n|*)/%
For v = 0|C|, |¢| = R, we have the stronger estimate
(3.5) [Clllenll + Allus]| + 19zl + V1T [ua ()] + A2 ua (0)]
+ ATY20:un (0)| + A2 < C (12 + AT £l

PROPOSITION 3.2 (Low frequency). — Consider solutions (u,v) of (3.3) where ¢ = (p,u, h')
with p € C and (u', h') small. There exists a constant py such that for || < po we have:

(3.6) N2 [lull + M9z uzll + Alu(0)| + A[dzu2(0)| + Al [v| < Cllfy, £,
where \(¢) = (v +¢[*)"/>.

PROPOSITION 3.3 (Medium frequency). — Consider solutions (u,v) of (3.3) where q =
(p,u',h") with p € C and (u',h") small and let py and R be as above. For py < |(] < R we
have:

(3.7) l[ul| + [|0zu2]| + [u(0)] + |02uz(0)| + || < C|| f1, f2]I-

Remark 3.4.— As we show explicitly later, there is another route to the problem (3.3).
Linearizing (1.10) about the approximate solution (3.3), one obtains, in addition to terms like
those appearing in L (2.44) and K (2.58), a number of other terms that are small in the sense that
they turn out to be negligible in the proof of the L? estimate (4.11). Throwing the small terms
away leaves us with the principal part of the fully linearized operator. Freezing ¢ = (p, ', h’) in
the principal part, Fourier transforming, and rescaling yields (3.3).
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3.2. High frequency estimate

Our goal in this section is to prove the estimates (3.4) and (3.5). We begin with the more
difficult case 0 < v < 4[(].

3.2.1. Reduction to the partially linearized case
The estimate (3.4) will be deduced from an estimate for the partially linearized transmission
problem:

(3'8) E(Z’ q,C’ az)u:f7
[u] =0, [0,u2] =0 onz=0.

PROPOSITION 3.5.— There exist constants R, § such that for 0 <y < 6|C|, |¢] > R, solutions
u of (3.8) satisfy

(3.9 (I 4+ lur|l + Afluz| + [|0-uall + \/m‘ul(o)’ +A1/2|U2(0)| + A71/2‘32U2(0)|
C(If I+ A7 f)-
To derive estimate (3.4) from Proposition 3.5, define the good unknown
(3.10) u? =u— Yo, W
for (u, ) satisfying (3.3), and observe using Lemma 2.28
(3.11) (@) Lu” =f+v0.P,
®) (a(Q)+€-0.Wo)p=—C-uf onz=0.

The coefficient of 4 in (3.11)(b) is ~ A2, and 8,W is exponentially decaying as z — 400, so the
estimate (3.9) for u# implies the estimate (3.4) for (u, ). So now we concentrate on the proof
of Proposition 3.5.

Remark 3.6. — The same good unknown is used to reduce the proof of the estimate (3.5) to
showing the following estimate for (3.8):

(3.12) (¢l ]| + Alfus|| + [[0-uz]| + v/1¢] [ur (0)] + A2 [uz(0)] + A~12]0.us (0)|

(Il + A7 £all).

3.2.2. Spectral properties of the symbol of £

We begin by writing out the explicit form of £(z,¢,(,d.). We will use notation like that in
(2.24), where g = (p,u/,7’) and all matrix coefficients are evaluated at (z,¢), with the (z,q)
dependence entering entirely through W (z, ¢) and v(h + h’). The matrices Ag, Bd 4 (2.18) and
Bj 4, Bq j (2.45) are as before, and when convenient we write
(3.13) Aj=A; forj=1,....d—1,

Bjr=Bj, forj<d—1, k<d-—

We have

d—1
(3.14) L(2,¢,¢,8.)u=—Bg 40%u+ <Ad - Z(éj,d + Ed’j)inj> 0.u

j=1

+ <E+Ao iT +7) ZA in; + Z Bmek)u

J,k=1
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where
(3.15) Ajo= A0 — (.W -dyBa;)v — (v-d,B;)o.W, j=1,....d,
Bvo=(v-dy,Ag)d,W — (v- dyBa,a)0?W — d? By.a(v,0,W)d, W.
We also set £ = Ay ' £ and, for ¢ € R?, write its symbol

d d
(3.16) L(z,q,7—i7,8) = (it + NI+ Y _Kji¢;+ Y Bjré& +FE,
j=1 j,k=1

= (it + ) +iA(2,q,€) + B(2,q,€) + E(z,q),

where now
(B.17)  A;j=Aj'4;,  A;j=A7'A;,  Bjx=A;'Bj.,  E=A;'E.

As before set
d
(3.18) A(z,q,6) = _A;¢;.
j=1

Remark 3.7.— (1) In the statement of hypotheses (H2)~(H5), the matrices A;, B; are
defined differently from (3.17) (for example, /Nld in (3.17) is replaced by A, in the original
definition (2.13) of A4). However, it is easy to check that whenever (H2)-(HS5) hold for those
matrices with their original definitions, the same hypotheses hold when the matrices are defined
asin (3.17).

(2) We shall prove the estimate (3.9) by separate arguments for the regions 0 < v < 4|¢| and
~ = 4|¢|. In the first region we may not treat E'v as a negligible lower order term.

(3) Observe that A and A are functions of (z,¢,&), while A; and A; are functions of (z,q).

We will label each proposition, corollary, etc., in this section with either a (P) or an (E) to
indicate, respectively, either that it holds all along the profile (i.e., for all z) or just near the
endstates (i.e., just for |z| sufficiently large).

The first proposition will allow us to reformulate the strict dissipativity condition (HS) and
verify it for £ when [£] is large enough. Throughout this section we let O be a bounded open
neighborhood of 0 as in Proposition 2.10, and for ¢ = (p, v/, h’) with

(3.19) pecC, (u',h) e,
we take W (z, ¢) to be a profile in the sense of Definition 2.16.

PROPOSITION 3.8 (P). — (a) Assume (H2) (ellipticity of the block B-~(z,q,€)) and (3.19).
For (€| large enough there are C* matrices V (z,q,§), symbols of degree 0 in &, such that

(3.20) V—l(iK+§+E)V=(A;1 E()Qz),
with
32)  AV(zq.8) =ik (24,6 + R BP)TAT +ET) +0(E ),
B?(2,4,6) =B (2,4,6) + O(I€]),
—12 —22
B 0 iAT(BT)! _
Vi(z,q,§) =1+ (i(§22)1A21 0 ) +0(l¢[7?).

(b) The same result holds when E is set equal to zero and A is replaced by A.
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Proof. — A direct computation and simple perturbation argument shows that (3.20) holds for a
V of the given form. O

COROLLARY 3.9 (P). - Asgme (H2) aid (3.19). There exist R > 0 and c > 0 such that for
|€] = R, the eigenvalues X of 1A(z,q,£) + B(z,q,&) satisfy R\ > ¢ if and only if

(3.22) spec{id (z,q,&) + A (B™) A"} C {RA > ¢}
Proof. — Given (H2), this follows from part (b) of the above proposition. O

COROLLARY 3.10 (E). — Assume (H2), (HS), and (3.19). There exist R > 0 and Z1 > Z such
that for |£] > R and |z| > Z, the following equivalent properties hold:

(3.23) (a) spec{izll(z, 7,6+ A’ (E”)‘IZ”} C{R\> ¢},
(b) spec{i&ll(z, q,€) +A7? (EQz)_1K21 +E11(z, q)} C{RA> ¢},
(©) spec{iA(z,q,§) + B(2,¢,§) + E(z,q)} C{RA > ¢}
for some constant ¢ > 0 which may vary from line to line.
Proof. — Hypothesis (H5) and Corollary 3.9 imply that (3.23)(a) holds for |£| large and |z| > Z.
Since &' (2,¢.€) = A" (2,¢,£) and
(3.24) |K12 (FQQ)_IKﬂ B Z12(§22>_1zz1| i ‘EH‘ < Cel

for some § > 0, (3.23)(a) is equivalent to (3.23)(b) for |z| > Z; large enough. The equivalence
of (3.23)(b) and (3.23)(c) then follows from part (a) of Proposition 3.8. O

Example 3.11. — Assume s = N — 1 or, more generally, that

d
(3.25) ' = <z‘r+7+25j(z,q)z‘§j +E>I
j=1
with a;, e scalar. Then (3.23) holds for |z| and |¢| large if and only if
(3.26) spec(A7(B™) 1A c {RA> ¢}

By (H3) the eigenvalues of a (z,q,€) are real and semisimple with constant multiplicities,
and we can push further the diagonalization process. Denote by Ay(z,¢,&) the distinct

eigenvalues of A4 (2,q,6) = Al (2, q,€) with multiplicities 7. Then, locally in &, there exists a
smooth, homogeneous symbol Vi (z, g, &) of degree zero in & such that

(3.27) (V) YA Vi = diag(Me I, ),

where I,. denotes the r X r identity matrix (see Remark 3.13). By perturbation there is, for |¢]
large, a matrix Wy = V1 + O(|¢| 1) such that for A'! as in (3.21) we have

(3.28) (W) TLANW, = diag (ArY), AR =i\, + CLY,

where the i, x 7, blocks Ci'(z, q,€) are symbols of order zero in €. This yields the following
additional corollary of Proposition 3.8:

COROLLARY 3.12 (E). — Assume (H2), (HS), and (3.19). There exist positive constants R, c,
and Zy such that for |£| > R and |z| > Z, the following property, equivalent to those in (3.23),
holds:
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(3.29) specCit C{RA > ¢} forall k,
with C,il as in (3.28).

Remark 3.13. — The results of Section 3.2.2 still hold for W(z, ¢) satisfying only conditions
(a) and (b) of Definition 2.16. This observation is used later in estimating solutions supported
away from the front, where we must allow v’ to be large.

3.2.3. Reduction to a first-order system
Separating the equation

(3.30) L(z,q,¢,0:)u=f
into its first and second components and using
(3.31) AP = A k=12,
we obtain
(3.32) @) AMo.u' + AR0.u? + BNl + B0 + A (i + )ul
d—1
+ D (Aftingut + AjPinu’) = £,
j=1
(b) — B0+ A3 0.u' + <A32 -> (B + Bﬁ?j)z‘nj> d.u?
j=1

+ B2yt + B220? + A2 (i + y)ut + AR (i + y)u?

d—1 d—1 d—1
+ ZA?%TUUI + <Z A?zi'f]j + Z Bfi”ﬂ”“) u2 = f2.

j=1 j=1 Jik=1
Let
wl (Avél)—lfl
(3.33) U= u? and Jf= _ 0 _
0:u” —(BE) (P - AG ALY

We can now rewrite the second-order /N x N transmission problem (3.8) as an equivalent first-
order (N + s) x (N + s) transmission problem:

(3.34) 0.U - G(2,,QU=Jf,
[U]=0 onz=0,

where
Gll G12 GlS
(3.35) G=| 0 0 I ],
G31 G32 G33
with

d—1
336) G'(2,4,0)=—(A}) " (,9) (E”(z, Q)+ AN T+ + > ﬁ?z‘m) :

j=1
G2 = —(Abl)_l <E12 + ZA;ZZ'%),
j=1
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v ]~
GlS — _(Aclll) A}l2,

d—1
G = (B2 <E21 + A )+ > ATV + A§1G11> :

j=1
d—1 d—1
D -1 . . =~
G*? = (Bﬁ?d) <E22 + A2 (it +7) + ZA?“U + Z B?’anjnk
Jj=1 j,k=1

+ Agl G12> ,

d—1

o1 ey o

G* = (B3%) (A? —> (B4 + BE)in; +A31013>.
Jj=1

We note that:

G is first order in ,

G2 is first order in 7,

G'3 is independent of ¢,

G3! s first order in ¢,

G3?% is first order in i7 + ~y and second order in 7,

G33 is first order in 7.

3.2.4. Decoupling

In the proof of the estimate (3.9), a key step is to obtain a decoupling of GG into hyperbolic and
parabolic blocks. We will see in Section 3.2.7 that this can be done without any further change
of dependent variable for frequencies in any region of the form ~ > C|(|. In this section we
concentrate on the region 0 < v < 6|¢|, where ¢ is some small enough constant to be chosen.

For later error control in the variable coefficient estimates, it is desirable to accomplish
the decoupling with a conjugator whose entries are homogeneous symbols (like |(]). After
decoupling, the estimate for the hyperbolic block will be carried out using homogeneous
symbols, but for the parabolic block we introduce a rescaling based on the parabolic symbol
A(¢) to obtain an optimal estimate.

The decoupling is easier when G is rescaled as follows. If U = (u!,u?,43) in (3.34) is
replaced by U = (u, |¢|u2,u3), then G must be replaced by

Gll G12K|_1 G13

" 11 12
(3.37) G= 0 0 ICI L, | = ( G21 M22> )
GSl G32‘<|_1 G33 M M

a zero-order perturbation of the first-order matrix (El;l e ). Note that M?? and

0 I
(3.38) M7} = <G32 G33)
have the same eigenvalues.

LEMMA 3.14 (P). — Assume (H2), (H3), (H8), and (3.19). There exist positive constants c,
3, and R such that for |(| > R, 0 < v < 0|C| and all z, the distance between the spectrum of
G (z,q,¢) and the spectrum of M??(z,q,() is larger than c|(|.
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Proof. — The dependence on (z,q) enters only through W(z,q) and v(h + k'), so we may
reduce by compactness to considering a single choice of (z,¢). Since we are concerned only
with large ||, it suffices to consider just the principal terms (homogeneous of degree one in ()
in these matrices, and to show that the principal parts G' and M2? have no common eigenvalue
when |[¢| =1 and ~ is small enough.

Suppose v = 0. Then by Proposition 2.10 the eigenvalues of Gll,1 are purely imaginary. If
n # 0, (H2) implies that eigenvalues o of M52 satisfy Juo # 0. Moreover, when n = 0, we
have M?2? =0 and

(3.39) Gl = — (A At

has nonzero eigenvalues. Thus, for v = 0 and |¢| = 1, the matrices G}jl and MI?Q have no
common eigenvalue. This remains true for v small. O

DEFINITION 3.15. - Let { = (7,7,7) and for a multi-index o = (-, o)), set || = o + |y |
and ||a|| = 20 + |y
Denote by I'"* the space of homogeneous symbols of order m

I‘m:{h(z,q,C)ECOO: ’86 o h’ <Cga|(j\m_‘a|, IC| =1, any a,ﬁ}.

2,7 T,M

Denote by PI'™ the space of parabolic symbols of order m

PI™ = {h(z,q,¢) € C=: |02 0%, h| < Caa| A"V, ¢ 21, any a, 8.

2,7T,M

We use the same notation for spaces of homogeneous or parabolic matrix symbols of any fixed
dimension.

The following corollary of Lemma 3.14 gives a partial decoupling of G.

COROLLARY 3.16 (P). — Under the assumptions of Lemma 3.14, there is a homogeneous
symbol

In_s O
(3.40) W(z,q,¢) = < Vj[\/['Qi I2s> er’
such that
i~ Gll + M12w21 M12 -
(341) WIGW = <_W21M12W21 M2 w2z ) T Goell,

where the off-diagonal blocks belong to T°.

Proof. — A short computation using the explicit forms of W, é, and CNJO shows that we just
need to choose W?2! satisfying

(342) W21G11 _ M22W21 —_ M21.

Now W2l is a 2s x (N — s) matrix, so we can identify it with an element of CP, where
p=2s(N —s). Let

(3.43) h:CP — CP

be the linear map defined by the left side of (3.42) using this identification. The eigenvalues of h
are differences 11 — 10, where p; (respectively, ji2) is an eigenvalue of G1 (respectively, M?2).
The map h is given by a p x p matrix whose entries belong to I'* and whose determinant satisfies

(3.44) |det h| = CICP
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by Lemma 3.14. Thus, h~' € I'"! and

(3.45) wH=p"t(M*")er’. O
From Corollary 3.16 we deduce readily the following partial decoupling of G itself.
COROLLARY 3.17 (P). — Under the assumptions of Lemma 3.14 and for W2 as in (3.40), let

W21 W21 -1
(3.46) w2t = ( “21> and W' = ( : |2<1| ) ;

Wi Wi
where the a and b entries are each of size s X (N — s). Then
(3.47) W= (V\fﬂ ?) er?
satisfies

Gll +M12W21 G12 G13
(3.48) W 'GW = G —W2H¢TIG? I, - WECITIGY | =G,
Ggl G32 _ WleG12 G33 _ Wb21G13

where
(3.49) G2l = —W2(|¢| 2GR W2 + ¢TI GBWRY) e T,

G = W2 (¢ GR2WR + GPWR) e T°,
Proof. — For each (i, j) the equation expressing equality of the (7,7) entries in GW = WG|
is a multiple of the corresponding equation for GW = WGy, O

Remark 3.18.— We will use the partial decoupling given by Corollary 3.17 in the high
frequency estimate. The complete decoupling of G given in the next proposition is useful for
the spectral analysis of the block
(3.50) G+ MW =Gyl

PROPOSITION 3.19 (P).— Under the assumptions of Lemma 3.14, there is a matrix
W(z,q,¢) € T° such that

(3.51) WlGW = (GOH M022> =G,
where
(3.52) G =G+ MW =Gt er?,
M2 =M*+gel', gel®.

Proof. — Set
(3.53) W= <€41\;2f Ilz)s )
where b € IT'1, and solve for b and g by equating corresponding entries in
(3.54) GW = WQ@.

Define g in terms of b using equality of the (2, 2) entries, substitute into the equality for the (1, 2)
entries, and solve the resulting nonlinear equation for b using invertibility of

(3.55) h(b) = G*b — bM?2,

as follows from Lemma 3.14. O
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3.2.5. Spectral properties of G

Let i1, (2, ¢, ¢) of multiplicity s, k =1, ..., ko, denote the distinct eigenvalues of G}, (z, ¢, (),
the principal part of G'!. By Proposition 2.10 the y, are purely imaginary and semisimple with
constant multiplicity for v = 0. In addition we have:

PROPOSITION 3.20 (P). — Assume (H3), (H8), and (3.19). There exists a § > 0 such that
Jor 0 < v < 4[], the py are C™ in (z,q,m), analytic in T — i~y and semisimple with constant
multiplicity. Moreover, for v > 0, Ruy, # 0 and has the same sign for all k, namely —sgn((),
where (3 is any eigenvalue ofﬁil (2,9).

Proof. — The uy(z,q,-) are real analytic in (7,17) € R?\ 0 and homogeneous of degree
one, so can be extended analytically in 7 — ¢ near v = 0 as smooth functions of (z,q,n).
The eigenvectors associated to puj extend analytically as well. Semisimplicity and constant
multiplicity of the extended py follow from analyticity.

Hyperbolicity of ZH(Z, q,€) (H3) implies Ry # 0 for v > 0. Setting (7,17) =0 in Gzl,l and
using (H8) shows that the signs are as described. O

Using Proposition 3.20 and arguing as in (3.28), we obtain, for |(| large and 0 < v < 4[|,
matrices V(z,q,¢) € ' such that

(3.56) VIGMY = diag(p s, + Ri),
where Ry, € I'%is an 55, x sp, block, k=1,..., k.

Remark 3.21.— At first sight the matrices V(z,q,() and Ry can be chosen smoothly only
locally in (z,q,¢). A classical result of Kato [20, pp. 99-102] implies that for (g, () with ||
large and lying in a conic neighborhood of an arbitrary basepoint (g, () such that 0 <4 <6, such

conjugators can be chosen smoothly in (z, ¢, ) for all z. Here (=¢ /|¢|. We use this observation
later in the variable coefficient analysis.

The main result of this subsection, needed for the estimate of the hyperbolic block, is that for
all k, the real part of spec Ry, is bounded away from zero and has the same fixed sign, namely
—sgn(B) = sgn(RNpuyx), where 3 is any eigenvalue of Z;l (z,q) (recall (H8)). Recalling that (z,q)
dependence enters only through W (z, q), we let

(3.57) R;;*(¢.¢)= _lim Ry(2,q.¢).

PROPOSITION 3.22. — Assume (H2), (H3), (H5), (H8), and (3.19). Let uy(z,q,¢) denote the

distinct eigenvalues of Gzl,l, the principal part of G'', and let 3 be any eigenvalue of Z;l. Let
vy denote the eigenvalues of Ry,. There exist positive constants R, Z1, ¢, and § such that:

i) (P) (—sgnB)Ruy = ey for 0 < v <6|C|, all (z,q), and all k.

(ii) (BE) For |¢| = R, |z| = Z1, and 0 <y < 4[|, we have

(3.58) sgn(Rvy) =sgn(Rux) = —sgn(B)  forall k1,
|Rvk| = ¢ forall k,l.

The proof is given below.
In view of (3.58), after modifying V if necessary, we may assume for ¢ as in (3.58)

(3.59) —sgn(B)RR; > c>0 for|z| > Z; and all k.

Together with part (i) of the proposition, this gives
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COROLLARY 3.23 (P). — With assumptions as in Proposition 3.22, we have for all k,
0< v<90[¢|, and all (z,q),

(3.60) P —sgn(B)R(uk(2,4,0) s, + RiEZ(q,€)) = ely +1).

Remark 3.24.— The proof of Proposition 3.22 depends on the next lemma. In preparation

<|>R1

note first that for |(| large and § small, the functions G and Ry in (3.56) are analytic in 7 — 4y
for 0 < v < 0|¢|. Writing A\,(2,¢,&) = Ai(z,q,71,&4) for A as in (3.28) and letting £; denote
a complex variable now, we see by arguing as in Proposition 3.20 that the A can be extended
analytically in &g to 0 < |S€y| < 61|n, &q| for 61 small enough, as semisimple eigenvalues of

A (z,q,1,&4) with constant multiplicities. Moreover, for large |1, ;| the functions A! and
C}in (3.28) extend analytically in &, to 0 < |S¢q| < 61]n, &al-

LEMMA 3.25 (P). — Assume (H2), (H3), (H8), and (3.19). Fix C; > 0 and assume |iT +ivy| <
C1|n,&a|?. There exist positive constants R and & such that for |n,&4| > R, 0 < v < 6|¢|, and
|S€al < 6[n, &l we have

(361) dEt(igd - all(za q, C)) = C(Z’ q, C,gd) det (iT ++ A\ll (Z, q,1, fd))v

where

(362) C(Zaqvgagd): (detgil)il+o(|g,£d|il)'
Proof. — 1. With £ as in (3.16) we have

(3.63) det(i€q — G(z,q,¢)) =det(iq — G) = c1(z,q)det £,  with
c1(2,q) = (~1)* det(AL) ™" det (B2%) ™" det Ao,

as follows by performing obvious row and column operations on det(i; — G). Propositions 3.8
and 3.19 thus give

(3.64) det(i&d — éu) det (igd — ]/W\ZZ) =c1(z,q) det (iT +v+ 211) det(iT + v+ §22).

2. We would like to cancel the final factors on each side of (3.64). First, with Mﬁf as in (3.38)
we have

(3.65) det (i€ — M?2) = det (i€s — M?2) + O(|¢, &4>7Y)
= det(iga = ME?) +O(I¢. &™)
= ea(z.q) det (it +7 + B (2,¢,6)) + O(I¢. &)
=ca(z,q) det (it + v+ B*(2,4,€)) + O([¢, &a**71),

where ¢3(2,q) = (—1)* det(éﬁ?d)_l det A22, as follows by performing row operations on
det(i€q — M22).

3. By (H2), for £ = (1, &4) real and i an eigenvalue of B> (2,q,&) we have
(3.66) Ru > (€%

For ¢ small (3.66) continues to hold for 0 < |3¢€4| < |, &q|. Thus, for 0 < [I&y| < 0|, &q
it + ] < C1|n,€q)?, there holds

, and

(3.67) |det (it +~+ B (2,4,€)) | ~ In, €a|**.
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We may now cancel in (3.64) and obtain (3.61) with

(3.68) cl(2,4,C, &) = cf;’i +0(¢&l ™) = (detAy) " +O(IC &™) B

Before proving Proposition 3.22, we first illustrate it in an important special case that includes
the Navier—Stokes equations.

Example 3.26. — Assume s = N — 1, so that
d
(3.69) E =iT+7+ Z zqz§]+E

Lo—11 —11 ..
with A", E scalar. Writing

(3.70) AM(2,q,6) =iA" (2,0,0) + B (2,9) + R(2,4,€),
Gll(z 7,¢) =G"(2,¢,0) + R1(2,q,¢)

we have R, = —(Zd )~ 1~ now and, by Corollary 3.12,

(3.71) R(z,q,§) 2 c¢>0 for || and |z]| large.
Eq. (3.61) is

d—1
(372) Zé-d _ (Gll + Rl) = C(Z,q7 C,fd) <ZT + Yy + szll,”,}j +leilz§d + Ell + R) )
j=1
Using (3.62) and setting

d-1
- 11, -1 ) 11 —11
Ca=—(44) (T—w—i—ZAj nj —ikE )
j=1
we find

Ri(2,4.Q) =~ (A) 'Rz a.n.€0)l¢,_¢, + O(IC| 7).

With (3.71) this implies the conclusions of Proposition 3.22 for this example. In particular,
sgnMR) = —sgnff = —SgnAd and |[RR;| > ¢ > 0.

Proof of Proposition 3.22. — 1.1f i¢4 € spec G} (2,4, ), then

d—1

(3.73) —(iT + ) € spec izll(z7q,n,§d) = spec(ZZilinj + Z}ilifd>,
j=1

SO

(3.74) it + v/ < Cn,&a| and [0, &l =~ (|

for some C' > 0. Thus, (3.74) holds also for i&; € spec G*(z,q,¢) for || large, so we may
assume (3.74) in the proof of Proposition 3.22. In particular, Lemma 3.25 applies.
2. Introducing polar coordinates ¢ = p{ = p(7,4, 7)) and setting

(3.75) e=1/p,  &a=&a/p,
we may use the block decompositions of A1! (3.28) and G1! (3.56) to rewrite Eq. (3.61) as
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(3.76) [T det((ia — pn(z,0.7 — i5,2) I, — eRe (2,4, — i4,1,¢))
k

= c[det((it +4+iX;(2,¢,7,6a)) Ir, + £C} (2, 4,7, 6, ).
J
Here
(377) Rk(za q’i— - Z."A)/,’IA],E) = Rk(za q, C) = RkO(Za (LCA) + O(E),
C}l(’za q, ﬁvéd,s) = C}l(zvqanagd) = C;&(Z, Q7ﬁaéd) + O(E)a

where Ry (respectively C}&) is homogeneous of degree zero in ¢ (respectively (17,£4)).
3. We work near a basepoint (7,0,7) # 0, £ = 0. Consider an eigenvalue (necessarily purely

imaginary) ﬁk = igd of G},l(z,q,j,(),ﬁ). By (H3) there exists a unique eigenvalue \; of
A (2,q,€) such that

(3.78) 2+ Az,q,0,€,) =0
Moreover, by (2.32) (%, 7, § d) is nonglancing:

(3.79) e, \i(2,¢,1,€,) = a €R\ 0.
From (3.76) we obtain

(3.80) Ay =det((i7 +4 +1iXj (2, 4,7, €a)) I, +CH (2,09, 64,€)) = ¢ Dy,
= C/ det((iéd - Nk(za q, T — Z:)/aﬁ))-[sk - ng(qua’f_ - Z"S/vﬁa‘(':))a
with ¢/(z, ¢q, ¢, éa, g) # 0 near the basepoint.
4. Taylor expanding (3.80) about the basepoint with {;; = &; — £ and 7/ =7 — iy — 7 both
complex gives
(3.81) Aj(zvqa%_i’%ﬁagdag)
= det(i(T/ +ag)) I, + Ele-l) + O(|T', &, 5|Tj+1)
= Qlﬁk(’za q, 7A- - ’L’?a ﬁa Ed7 8)
= Ql det (l(é-(/i - Tla’}’%,uk(za qaia ﬁ))lsk - EE]@) + O(|T/7 g:ja E“gk+1>7

where underlining indicates evaluation at the basepoint. Taking e = 0 and 7/ = —i% in (3.81) and
equating leading terms gives
(3.82) i (=i + )™ = i (Eg + 10, Ry ),

from which we conclude
1
(3.83) rj=s and O,Ru(z,q,7,79) = - eR\ 0,

giving, in particular, part (i) of Proposition 3.22. (We knew 1; = s}, already from part 3 of the
proof of Proposition 2.10.)
5. Now take 7/ = 0 and equate leading terms in (3.81) to get

(3.84) det (iagyl,, +eCi') = ¢ det(i§) I, — eRy,).

Thus, the eigenvalues of R, are the same as the eigenvalues of —é le-l. By Corollary 3.12 this
implies that for |z| large, if v is an eigenvalue of Ry (z,q,7,7), then
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(3.85) Rvig #0 and  sgn(Rvy) = sgn<—é> =sgn (0, Npx) = —sgn(s).

The last equality is a consequence of Proposition 3.20. By continuity and compactness, (3.85)
implies part (ii) of Proposition 3.22. O

3.2.6. Spectral properties of the parabolic block /22
Introduce “parabolic polar coordinates at infinity”

(3.86) Ao(Q) = (72 +2 + [nl*) /2,

. o T v N
C:(Ta77n): <_7_a_)7
A% Ag Ay
and write

(3.87) G*(2,q,0) =AJG®, G =NAG%,

0 I - 0 I
ManQ = <G32 G33> ) ManQ = (é:ﬂ 633> .

In the next proposition we allow ¢ to vary in a set @* which may be larger than Q =C x O as
in (3.19).

PROPOSITION 3.27 (P).— Assume (H2) and that for all (z,q) € R x Q*, W(z,q) € U*.
There exist positive constants R and C' such that for || = R and all (z,q), the 2s X 2s matrix
M?2 (respectively M?2?) has s eigenvalues, counted with their multiplicities, in Ry > 0 and s

eigenvalues in Ry < 0. They satisfy |Ru| = CAg(C) (respectively [ Ru| = C).

Proof. — The proof is identical to that of Lemma 2.5(G1) in [30]. Hypothesis (H2) and
compactness imply the result for M?22. The result for M?? follows since

(3.88) spec(MiQ,f) = spec(AoMff). O

The following immediate corollary of Proposition 3.27 will be used in the construction
of symmetrizers for the parabolic block. Let A = 1/Ag and for any z let II,(z,q,(,\)
(respectively Hp(z,q,f ,A) denote the spectral projectors onto the s-dimensional invariant
spaces F°(z,q,¢, \) C C?* (respectively F>(2,q, ¢, \)) of M?2? associated to eigenvalues with
negative (respectively positive) real part. Proposition 3.27 implies the projectors are defined and

smooth for A € [0, \o] for some small ). Define
(3.89) I:C* —C?, Ivg,v-)=vy —v_,
foo (Z7 q? 57 A) = ]F‘Tolo (Z7 q’ Cv’ )\) X Fgo (Z7 Q7 57 >\) C C4s'

COROLLARY 3.28 (P). — Under the assumptions of Proposition 3.27, there exists Ao > 0 such
that the following two equivalent statements hold for A € [0, \o] and all (z,q):

(3.90) C* =F2(2,q,(,\) ©FX(2,4,(, M),
F>(z,q,¢,\) NkerI' = {0}.

Remark 3.29. - We use (3.90) only for z = 0 in the construction of symmetrizers. In that case
the statement implies that an appropriately rescaled Evans function (as in [12, Proposition 2.12])
is bounded away from zero for || large. The construction can be done without introducing such
an Evans function, so we do not define it here.
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3.2.7. Estimates
In this subsection we complete the proof of Proposition 3.5, using the reduction to a first-order
system (3.34). Let f = (f1, f2) be as in the estimate (3.9).

Proof of Proposition 3.5. — 1. Reductions; the case 0 < v < 4|¢|. For U = (uy,us,u3)
satisfying the transmission problem (3.34):

9
(3.91) 0.U~Gl2,q,QU=7f:=| 0 |,
g3
[U]=0 onz=0

to prove the estimate (3.9) it suffices to show

(3:92) (1+7)ljusl] + Azl + s+ /T 13 (0)] + A2 ua(0) + A=/2]u (0)
<C(lgrll + A gsl),

since [lg1[| + A= [lgall < LA + A~ o).

We first treat the more difficult case where the frequency ( satisfies 0 < v < 6/(|.

For the conjugator W as in (3.48), set U = WV to derive the equivalent problem for
V = (v1,v2,v3):

91 91 0
(393) V.—GoV=w=1[0 |- W)v=[ 00 Mg | +[0Ox N |,
93 O(1)g1 + g3 O(1)v
[V]=0 onz=0,
where
1 O(Inl) 0(1)
(3.94) Go={ O(¢c|™) O(1) I+0([¢I™)

o) G*2+0(n) G*¥»+0(1)
Estimating the components of U in terms of those of V', we reduce to proving the estimate
(3.95) (L +9)|lor]l + Aflva|| + [[vs]] + /1 + 7 [01(0)] + A2 |ua(0)] + A7H2|w3(0)|
<C(llgull + A lgsl)

for (3.93).
Next use (3.94) to rearrange (3.93)
G 0 0
(3.96) V, - 0 0 I 14
0 G32 G33
g1+ O(|n)vz + O(1)vs hy
= [ O(¢I7Mg1 + O([¢| Hvr + O(1)va + O(I¢| s | == | he
O(1)g1 + g3 + O(1)v1 4+ O(|n))vz + O(1)vs hs

The estimate (3.95) follows directly from the estimates

(B9 @ A+ [vill+V1+7|v(0)| <Cllhall,
(b)  Alfva + [l + AY2|va(0)] + A7 |uz(0)| < C([|ha]l + A7 5]
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for (3.96), after absorbing a few terms from the right by taking || large. It remains just to prove
(3.97).
2. The hyperbolic block. Consider the (N — s) x (N — s) transmission problem

(3.98) d.v1 =G +hy, [n]=0 onz=0.
With notation as in (3.56) let

(3.99) A = diag(uw1s, + Ry), v =V(z,q,{)w,
and rewrite (3.98)

(3.100) dw=Aw+V1h —V IV,

[w]=0 onz=0.

On +z > 0 we have Rj — R,foo = O(e %) and V=1V, = O(e7?#l) for > 0 as in
Definition 2.16. Let

(3.101) w=(wg,...,wg,) and V7 'hy=(hy,... hy).

Then the equation given by the k-th block in (3.100) is, say when k =1,

(3.102) 0wy = (1 + RE™ +0(e”"*))wy + hy + > O0(e™ ) wy.
k>1

Since we want an estimate valid for 0 < v < §|¢|, we cannot simply absorb the O(e~?I2l)
terms in (3.102) by taking ~ large. Instead, we take advantage of the exponentially decaying
factors by introducing exponential weights e?(*) as follows.

Consider the case —sgn () = 1. By Corollary 3.23 we have then

(3.103) R(ur + REX) > c(y+1) forall k.
For a uniformly bounded weight function ¢(z) to be chosen, set
(3.104) W= (W1,..., W) =e?w=e?(wy,...,Wg,).

Letting wE = w|4->0 we first estimate w™. From (3.102) we have for z > 0:

(3.105)  O.wi = (u+ R +0(e™%) + ¢ )wi +ehi+ > 0wy
k>1

Denote the inner product in C** by ( , ). Pairing (3.105) with w; and integrating fooo yields

(3.106) |wi (0)[° + 2% / (1 + BF®)wf i) + 2R / ((0(e7%) + ¢')wi i)
0 0

o [ () 20 [ (w00 o)

o k>1

Using (3.103) we find

(3.107) WO + 2e(y + 1)||wi || +2§R/((O(e‘92) +¢)wi wi)
0

+112
S B i

where C\, depends just on v and V.
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The O(e~%%) term on the left in (3.106) depends on R; as well as V. Anticipating similar
estimates for the other w,j and noting that « and C, can be fixed independently of k£ ahead of
time, we now choose ¢ uniformly bounded on [0, 00) such that

(3.108) 2R(0(e™%%) + ¢') > Coe % forall k,
and cancel terms in (3.107) to obtain

2 b [ 2
I* <l oo

Adding (3.109) to similar estimates for the other components w,:', we find, provided o was
taken small enough,

(3.109) |wi (0)]7 + ely + 1)|Jwit

(3.110) V17wt (0)] + (v + D)ot < O]
The boundedness of ¢ implies

(3.111) V147wt (0)] + (v + D]|w*|| < C||hT |-
A similar argument on (—o0, 0] yields

(3.112) (y+ Do | <C(Ih | + V1 +7|w™(0))).

Combining the estimates (3.111) and (3.112) using w*(0) = w~(0), and recalling v; = Vw
gives (3.97)(a) in the case —sgn(f) = 1. The case —sgn(3) = —1 is essentially the same.
Remark 3.30. — The exponentially weighted estimate used for the hyperbolic block is similar

to estimates that appear in some papers dealing with the one-dimensional case; see for example
[15,16].

3. The parabolic block. To prove (3.97)(b) we set @& = (v2,v3) € C2* and consider the
transmission problem

ha

(3.113) azaszfaJr(h ) [@] =0 onz=0.
3

With G = M?? as in (3.87) and u = (ug, u3) := (Ag(¢)va, v3), we have the equivalent problem

Aohs
hs

We can use the spectral projectors 1I,, II,, defined just below (3.88) to construct a smooth
conjugator V' (z,q,¢, \) for A € [0, \o] such that

(3.115) Vigy = (P” 0 >

(3.114) azu—Aogqu( >7 [uj=0 onz=0.

0 P,

where the spectrum of P, (respectively P,) lies in a compact subset of Rpx > 0 (respectively
Rup < 0). Modifying V' if necessary, we arrange to have
(3.116) RP, > ClI;, RP, < —-ClI,,
for some C' > 0.

Remark 3.31.— We claim that the conjugator V(z, ¢, ¢, A) can be chosen smoothly for ¢ in
a small ball about an arbitrary basepoint ¢, € S¢ ={C: 4 >0}, and X € [0, \g]. Choosing a
smooth conjugator is equivalent to choosing a smoothly varying basis for the fibre space of a

bundle, so this follows from the fact that contractible base spaces admit only trivial bundles [35,
Corollary 11.6].
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Using =+ to denote functions defined on or restricted to +2 > 0, we next construct self-adjoint
symmetrizers ST (z,q,(, \) with the properties

(3.117) @ R(SFGF)>IL, on £z>0,
() (S*a,a) = (57b,b) > |a,b|* — C|I'(a,b)
for some C > 0, where I': C4* — C25 is defined by

]2 onz=0
(3.118) I'(a,b)=a—b

and (-,-) is the inner product on C2°. For large enough positive constants k;t, k,ﬂf, property
(3.117)(a) is clearly satisfied by

(kXL 0 -
(3.119) SE=(vih) (po kﬁs)vil.

To arrange (3.117)(b) observe first that for some positive constants ¢, C, we have on z = 0:
(3.120)  (S*a,a) = (57b,b) = c(k;} Mpal? + ky, [11,b%) — C (K [yal® + k) [T,0]7).
For F>(z,q,¢,\) as in (3.89) we have at z =0
(I,,a, TI,b) € F>°(0,4,¢, ),
so the transversality condition (3.90) implies
(3.121) Hya, b < T (I1,a, I,b) | < C(|T(a,b)| + [,a,11,b])

for some C' > 0. Using (3.120) and (3.121) we obtain the property (3.117)(b) by taking the ratios
kf/k} and k,; /k, large enough.

Adding the identities
(3.122) /((23%(S+A0g+) + 0.5 ut, ut)dz+ (ST (0)ut(0),u™(0))

0

v +
= _zm/(ﬁ (AzﬁQ ) ,u+) dz,
3
0

/ (2R(S™A0G ™) + 0.5 Yu~,u~) dz — (S~ (0)u~(0),u™(0))

— 00

0
=2 / <S (AO}_LQ ) ,u) dz
hs

and using the properties (3.117), we obtain for |(| large the following estimate equivalent to
(3.97)(b):

1 1
(3.123) HUH—FWW(O)’ <CA—O||A0h2,h3||-

4. The case v > C|(|. Let C' > 0 and consider again the transmission problem (3.91) for
U = (u1,uz,u3):
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g1
(3.124) 0, U —-G(z,¢,Q)U=1] 0 |,

93
[U]=0 onz=0.

For frequencies ¢ such that

(e Z:={¢v=C[l, [(| >R},

we will prove a stronger estimate than (3.92), namely
(3125 [¢[[luall + Alluz| + lusll + V/I¢] [ur (0)| + A2 [uz(0)| + A~ [ug(0))|
C(llgall + A gsll).

The argument now does not require any subtle conjugations or exponential weights like ¢(z) in
(3.104). With the larger weight on ||u1|| we can easily absorb larger errors.

Let G be the principal part, homogeneous of degree one in ¢, of G''. First rewrite (3.124)
as

Gzl,1 0 0
(3.126) o,U — 0 0 I |U
0 G32 GSS
g1+ O(1)uy 4+ O(|n])uz + O(1)us hy
= 0 = 0
93+ O([¢))w hs
The estimate (3.125) will follow directly by adding the estimates
(3.127) [l + V/I¢] Jur (0)] < Cllhall,
Alfus || + lus|| + AYZ|uz(0)| + A2 |uz(0)| < CA||hs||

after absorbing a few error terms from the right by taking || > R large enough. In particular to
absorb the A~1O(|¢|)|u1 || term we use A(¢) = /[C].

It remains to prove (3.127). The (usz, u3) estimate is done exactly as before.

Before estimating w1, we note that for v > C|{| we do not know that the eigenvalues ju, of G, 1

are semisimple with constant multiplicities. Hyperbolicity of at implies Ruyp # 0 whenever
~ > 0, so by homogeneity we have

(3.128) Ry (2,4,Q)] = el¢] fory > CC].

This is the simplest “elliptic” case for the construction of Kreiss symmetrizers.
From Proposition 3.20 we deduce that for { € Z, Ry, has the same fixed sign for all k, namely

—sgn(B), where (3 is any eigenvalue of Zzll(z, q). We take —sgn(3) = 1, the other case being
similar.

The argument is closely parallel to the earlier treatment of the parabolic block, but simpler.
Let( = |C\CA and write G})I = |¢|G!L. There is a smooth conjugator V (z, g, é) such that

(3.129) Vg =G,  where RG!! > CIy_,

for some C' > 0. The positive and negative invariant spaces of G!! are respectively,
(3.130) Fp(2,4,()=CN~* and F,(zq,()=0,

and, defining
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(3.131) 0:C2W=) N~ TD(a,b)=a—0b,

we have the exact analogue of Corollary 3.28.
We construct symmetrizers

(3.132) S*(z,q,0) = (Vi) (kEIn_s) VY,
where k7 > 0 is large enough and &, = 1, satisfying
(3.133) R(STGH) > In_s on £2>0,

(S*a,a) — (S7b,b) = |a,b]* — C|T(a,b)|?

onz=0.
Repetition of the proof for the parabolic block gives the estimate
(3.134) (¢l + V/I¢Hua (0)] < CllAa |
in place of (3.123). O
Remark 3.32.— As we explain later in the proof of Proposition 6.6, the fully linearized
operator that we actually use in the nonlinear iteration scheme has a principal part in the

high frequency regime that differs slightly (after freezing coefficients, Fourier transforming, and
rescaling) from the operator appearing in (3.3):

(3135) 5(2,q7C»3z)U_WC(Z7Q>C):f-

The correct high frequency operator is defined by replacing £ in (3.135) by L, where £ is defined
just like £ except that the (2, 1) entry of the matrix coefficient A4(z, q) (3.15) is replaced by

(3.136) A2V = A2z, q) 41,

where r is a (frozen) s x (N — s) matrix of small norm.
The identity in Lemma 2.28 now becomes:

T 83 W1

With this change the reduction carried out in Section 3.2.1 goes through just as before, except
that the partially linearized problem is now

(3.137) ZaZW:IC—azP+( 0 >

(3.138) Lu=f,
[u] =0, [O,u2]=0 onz=0
instead of (3.8), and (3.11)(a) should be replaced by

(3.139) Lu# = [+ 0. P~ (7"820W1>’

where the profile W = (W7, Ws).

Moreover, for arbitrary sufficiently small 7 all the constructions and estimates of Sections 3.2.2
to 3.2.7 go through exactly as before for the new problem (3.138). This is because the change in
Aﬁl has no effect on the validity of hypotheses (H2), (H3), and (H8). Also, Corollary 4.1 implies
that with such a change, hypothesis (H5) still holds for || large. The hyperbolicity hypothesis
(H4) may no longer hold, but (H4) was not used in Section 3.2.

It is convenient then to redefine the parameter ¢ = (p, u’, h’) (2.24) to include r. So henceforth

(3.140) q=(p,u' W)
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and we drop the tildes on £ and A%'. When working in the low and medium frequency regimes,
we always take r» = 0. This reflects the fact, demonstrated in Section 4.4, that the perturbation
produced by r. in the low and medium frequency variable coefficient estimates is a negligible
one.

3.3. Low and medium frequency estimates

In this section we discuss the estimates of Propositions 3.2 and 3.3 for the fully linearized
transmission problem (3.3):

(3141) E(z,q,(,az)ufzblC(z,q,C) :fa
[u] =0, [0.uz2] =0, a(Q)Y +£(q) -u2(0)=0 onz=0.

The low and medium frequency analysis for the systems of Navier—Stokes type that we study
in this paper has much in common with the analysis of [12] for the fully parabolic case; so we
will give proofs when different arguments are needed, but otherwise shall refer to previous work.
We first describe the reduction to the partially linearized problem for this range of frequencies.
All the results depend on the conjugations to limiting and block forms explained later.

3.3.1. Reduction to the partially linearized case
In the medium frequency regime the same choice of good unknown that worked for high
frequencies,

(3.142) u =u— 0. W,

allows us to prove estimate (3.7) for solutions (u, ) of the fully linearized problem (3.3) by
showing that solutions of the partially linearized problem,

(3143) E(ZaQ7<aaz)u:f7
[u] =0, [0,u2] =0 onz=0,
satisfy
(3.144) ull + 10zl + [u(0)] + |0:u2(0)| < ClL fr, foll -

The proof of (3.144) does not differ essentially from that of [30, Lemma 2.12]. This works
because the Evans assumption (H10) implies that the Lopatinski determinant for the transmission
problem (3.143) is nonvanishing for medium frequencies. In fact, for ¢ # 0 the latter determinant,
which is given by (2.54)

(3.145) det(E_(q,C) X E+(q7§)7ker1"),
is equal to the Evans determinant D(q, (). Here T': CV ¢ x CV*# is given by
(3.146) F(U_,U+)=U+—U_.

The argument that accomplishes the reduction to (3.144) is just as in the high frequency case;
recall (3.11).

Note that the problem (3.143) is singular at ¢ = 0. Indeed, when ¢ = (p,0,0) for p € C,
the derivative of the shock profile, 9,Wy(z,p), is a nontrivial solution for f = 0 that decays
exponentially fast as z — £oo. Thus, a more subtle choice of good unknown is needed in order
to reduce to a nonsingular partially linearized problem for low frequencies. We define the new
unknown using the next lemma.

Recall that in the low and medium frequency regions we define ¢ = (p,u’,h’), where p € C
and (u’,h') € RN x R? as in (2.24).

4° SERIE — TOME 39 — 2006 — N° 1



NAVIER-STOKES REGULARIZATION OF MULTIDIMENSIONAL EULER SHOCKS 115

LEMMA 3.33.— (See[12, Lemma 3.14].) Let p € C and set ¢ = (p, 0,0) and take ( = 0. There
are a neighborhood Q of (q,0) and C* functions R*(z,q,¢) = (RE,RY) on {2 >0} x Q,
respectively, such that

(3.147) L(z,q,(,0.)RT = cK*(2,q,() on £2>0,
g(q) Rét(o»an :_a(C)v Ri('zquo) =0.
Moreover, R* and all their derivatives are exponentially decaying as z — +00.

For (u, ) as in (3.141) define the good unknown

(3.148) pt=ut —yRE
Then (u, ) satisfies (3.141) if and only if 4 satisfies the transmission problem:
(3.149) Lp=f,

(W =—y[R],  [D:po] =—2[0-Ra], £(q)-p3 =0 onz=0.

Observe that by (3.147), £(q) - 13 (0) = 0 <= £(q) - 15 (0) = 0.
The next step is to eliminate the front and obtain nonsingular boundary conditions for u alone.
Since R* (z,¢,0) = 0 we can use polar coordinates to write

(3.150) R*(2,4,¢) = pR*(2,4,C.p).

Setting ¢ := p1p we can rewrite the transmission conditions in (3.149) as

GASD )= —@[R], [Oupa) = —0l0:-Ro]. L) pF =0 onz=0.
Define the CV+4-valued function

(3.152) R(2,4.¢,p) = (R,0.Ry).

The following proposition is a consequence of uniform stability of the shock profile Wy (z, p).

PROPOSITION 3.34. — (See [12, Proposition 3.15].) There is a neighborhood w of ¢ = (p, 0,0)
and po > 0 such that [R] does not vanish on w x ?i x [0, po]. Here gi ={¢ |¢|=1, v>0}
Thus, we may define a smooth orthogonal projector m(g, é, p):CN*Ts — CN*s onto

[R(0,¢,¢, p)]*. Applying 7 to the jump condition in (3.151) we obtain a transmission problem
for . with new transmission conditions:

(3.153) L(z,q,¢,0.)u=f,

7(g,¢.p) ([88220 =0, /l(q)-pug =0 onz=0.

We claim that the Lopatinski determinant for this problem, D (q, é ,p), is bounded away from
0 uniformly for p small. To define D let U = (Uy,Us,Us) € CN*+* with U; € CN—%, U3 € C*
and define ' (q,(, p) :CNT5 x CN*+s — CN+$ x C by

(3.154) Do(U™,U%) = (n(q,C,p) (UT = U7),g) - U5).
Then for 0 < p < po the Lopatinski determinant for the transmission problem (3.153) is
(3.155) D (q.C,p) :=det(E(q,{,p) x ET(q,¢, p) ker (4, C, ).

Lemma 2.19 implies that the dimensions of E* sumto N + s and dimker ", = N + s, so the
determinant makes sense.
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In fact the argument of [31, Theorem 3.3] shows that E* (q,gt ,p), which are C'*° vector
bundles on w x gi x (0,00) by Lemma 2.19, extend continuously to w X gi x [0,00). Thus,

D, extends continuously to w x §i x [0, po]. The uniform stability of the shock profile Wy(z,p)
implies, by the argument of [12, Propositions 3.15 and 3.16]:

PROPOSITION 3.35.— There is a neighborhood w of ¢ = (p,0,0) and positive constants po,
c such that

(3.156) |Dﬂ(q,é,p)| >c onwXx gi x [0, po].

This should be contrasted with the first-order vanishing of the Evans function D(q, () at { = 0.
Thus, the choice of the unknown g and the extra boundary condition in (3.141) has allowed us to
remove the translational degeneracy. Once the conjugations described in the next subsection are
performed, one can proceed to construct symmetrizers for the transmission problem (3.153) and
derive the estimate

(3.157) Nl + MOzpal + A u(0)] + X210 12(0)] < Cl f1, foll,
where A(¢) = (v + [¢[*)V/2.
Remark 3.36. — To prove (3.156) it suffices, by continuity, to prove
(3.158) Dr(q.C,0)#0 for( € ST.
The first-order vanishing of the Evans function D(g, é ,p) at p =0 as assumed in (H9) implies

(3.159) (E~(¢,¢,0) x E¥(q,{,0)) Nker T
= Span{ (6ZW(0, Q)7 8§W2 (07 Q))a (8ZW(O7Q)7 83W2 (07 Q)) }
We have £(q) - 9.W2(0,¢) # 0, so no nontrivial element (U~,U™) of E~ (g, (,0)x EY (g ¢,0)

satisfying £(¢) - Uy = 0 can belong to kerI'. To prove (3.158) one must show that (U~,U™)

does not belong to the larger space ker(7 (g, ¢,0)T); this follows from uniform stability of the
inviscid shock.

The transmission condition (3.151) and nonvanishing of [R] imply

(3.160) plvl < C([1(0)] + [0:p2(0) ).

Using (3.160) and the exponential decay of RT as z — 00 respectively, we immediately derive
the low frequency estimate of Proposition 3.2 for the fully linearized transmission problem
(3.141) from the estimate (3.157).

3.3.2. Conjugation to a limiting constant coefficient problem
We have seen that the partially linearized transmission problem (3.143) can be written in first
order form as

(3.161) 8.U - G(z,¢,0)U=7Jf, TU=[U]=0

for G as in (3.35) and J as in (3.33). Recalling that for ¢ = (p,u’,h’) and W(z,q) =
Wo(z,p) + u' we have

(3.162) lim W(z,q) =u* +/,

z—+to0

so we can define the limiting matrices

4° SERIE — TOME 39 — 2006 — N° 1



NAVIER-STOKES REGULARIZATION OF MULTIDIMENSIONAL EULER SHOCKS 117

(3.163) Gi(q.0):= lim_G(=.4,0).

A key step in the construction of symmetrizers for bounded frequencies is the local conjugation
of (3.163) to a problem defined by G+ provided by the following lemma.

LEMMA 3.37.—(See [30, Lemma 2.6].) Let Q = C x O as in (2.52). For each q € Q and
C€E @iﬂ there is a neighborhood Q2 of (q,() in Q x Riﬂ and there are matrices YWy defined
and C™ on {£z > 0} x Q satisfying:

(@) W4 and (W4)~! are uniformly bounded and there is a 6o > 0 such that for (q,() €

and all o,

102 0. c Wi(2,¢,¢) —1d)| < el on £2>0.

(b) On £z > 0 we have, respectively

(3.164) 0 W4 (2,4,¢) = G(2,¢,()Wx(2,4,() = Wx(z,4,()G+(gq, ().
An immediate corollary is that U satisfies (3.161) if and only if Vi := (W) 71U satisfies

(3.165) 0. Ve =GV + W) 'Jf on £220,
FwVZ:WJrVJr—W,V,:O on z=0.

3.3.3. Spectral properties of G (q,()
The entries of G+ (q,() are given by the same formulas as the G%(z, ¢, ¢) (3.36), except that
now E =0, A; = A;, and matrix coefficients are evaluated at (z,q) = (£00, ¢), respectively.

NOTATION 3.38.— We will sometimes write (A4;)1(g) = A;(+00,q) and use similar
notation for the A;, B, etc.

In place of £(z,q,7 —i7,£) = Ay 'L as in (3.16) we have now in the limit as z — +oo,

(3166) Z:I:(qa T—= 277 5) - (ZT + 7)‘[ + ZZ:ﬁ: (qa f) + E:ﬁ:(qv 5)7
where £ = (1, £q).

LEMMA 3.39 (The case ( #0). — Assume (H2), (H5), (H8). Let H be the number of positive

eigenvalues onfil (2,q). Forq€ Qand ¢ € Eiﬂ \ 0 the matrices G+ (q,¢) have no eigenvalues
on the imaginary axis. G (q,() has s+ H eigenvalues counted with multiplicity in Ry < 0, and
G_(q,C) has N — H eigenvalues counted with multiplicity in fou > 0.

Proof. — 1. To see that G4 (g, () has no eigenvalue on the imaginary axis, note that x is an
eigenvalue of G (¢, () if and only if —(iT + ) is an eigenvalue of 14, (q,&) + B (g, &) with
& =(n,—ipn). Now v > 0, so if  is purely imaginary, strict dissipativity (H5) implies v = 0 and
¢ =0, and thus ¢ must be 0.

2. From above we conclude that the number of eigenvalues of G in Ry < 0 is independent
of ( € @iﬂ \ 0. To count them it is easiest to consider ¢ = (0,+,0) with ~ large [36]. Again

writing U = (Uy, Us, Us), the eigenvalue problem (ul — G4 (q,¢))U = 0 can for such ¢ be
rewritten using £ as

IUJZ;I +1 ,uZif Uy 0
(3.167) o1 22,22 U, ) —\o0)-
pAy I pAy — By g+l ) N2

We look first for p = fi(y)y where fi(y) ~ 1. A perturbation argument yields N — s such
solutions close to solutions i, of the problem

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



118 C.M.LO. GUES, G. METIVIER, M. WILLIAMS AND K. ZUMBRUN

—i1 12
M*Ad +1 ,U*Ad U, 0
(3.168) 99 v, )=\
0 —uiByy)  \7?

that is, close to p, such that —p 1 € spec(Zle). This gives H eigenvalues of G in $u < 0.
Next, looking for solutions y = i(y)y'/? with fi(y) ~ 1, we similarly obtain 2s solutions
close to solutions (., of the problem

I 0 U, 0
3.169 _ _ (9,
(169 (I —uiBZZH) (Uz) (0)

that is, close to j, such that u;2 € specgz?d. This gives s additional eigenvalues of G in
Ry < 0, for a total of s + H.
The same argument for G_ yields (N —s — H) + s= N — H eigenvalues in Ry > 0. O

An application of the previous two lemmas is:

Proof of Lemma 2.19. —For ¢ € R'"! \ 0 let F*(g,¢) denote, respectively, the generalized
eigenspace of G* (g, () associated to eigenvalues in {+-Ry < 0}. By Lemma 3.39 we have

(3.170) dimF*(¢q,¢) =5+ H, dimF~(¢,{) =N — H.
Using the properties of W4 (0, ¢, () in Lemma 3.37 and in particular (3.165), we see

(3.171) E*(q,¢) = Wx(0,4,)F*(g,¢),
so Lemma 2.19 follows with K = s+ H. 0O

LEMMA 3.40 (The case { =0). — Assume (H2), (H5), and (H8). For q € Q each of G+ (q,0)
has 0 as a semisimple eigenvalue of multiplicity N and s eigenvalues, counted with multiplicities,

in Ru #0.

Proof. — Inspection of the formulas for the G* (3.36) shows that

0 0 =
(3.172) Gi(¢,0)=(0 0 I ,
0 0 P N
where
(3.173) B (q) = (BR) ' (A% - A3 (A 1AR) .

Py is nonsingular because Eﬁ?d, Ay, and g}il are, so we observe from (3.172) that 0 is a
semisimple eigenvalue of G (g,0) of multiplicity V.

On the other hand, if y is a purely imaginary eigenvalue of G (g, 0), then 0 is an eigenvalue of
iA(q,€) + By (q,€) with € = (0, —ip). By strict dissipativity (HS) this requires that £ = 0, and
thus o = 0. So the nonvanishing eigenvalues of G (g,0), which are the eigenvalues of Py (),
do not lie on the imaginary axis.

The argument for G_(gq,0) is the same. O

3.3.4. Conjugation to block form

Another essential step in the construction of symmetrizers is the conjugation of G4 to
appropriate block forms. We will derive such conjugations in the medium and low frequency
regions as consequences of Lemmas 3.39 and 3.40. This is quite easy for medium frequencies.
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PROPOSITION 3.41 (Medium frequency).— For q € Q and ¢ € @iﬂ \ O there is a
neighborhood Q of (q,¢) and a C*™ invertible matrix V. (q,C) on S such that

_ G 0
(3.174) VI'GiVy = ( B Gﬁ) on Q,
where
(3.175) RG>0, NG <0.

The same result holds with ‘4 replaced by ‘—.

Proof. — The spectral separation demonstrated in Lemma 3.39 implies the existence of a
smooth ) such that (3.174) holds with matrices G}, G;© whose eigenvalues p all satisfy,
respectively, R > 0, Ry < 0. Modifying V if necessary (e.g., as in [4, Chapter 6, Lemma 5.5])
we obtain (3.175). O

Remark 3.42 (Medium frequency estimate). — Given (3.174), the construction of symmetriz-
ers for the constant coefficient problem (3.165) in the medium frequency region proceeds just as
in the treatment of the parabolic block in Section 3.2. Note that the properties of the conjuga-
tors W4 imply that the Lopatinski determinant for (3.165) is nonvanishing since the determinant
(3.145) is. The properties of W, allow the estimate (3.144) for the problem (3.143) to be deduced
immediately from the same estimate for the conjugated problem (3.165).

In preparation for the next proposition we rewrite £(g,7 — i7y,£) in (3.166) as

(3.176) L(q,7 —i7,6) = (Ba,a(9)&3 + Alg, ¢)ika + M(q,0)) ..,
where € = (n,&4) and

d—1
(3.177) A+ (g, €)= (Zd > inj(Bja+ EJ)) ;
+

j=1
d—1 . d—1 .
Mi(q,¢) = ((iT+v)I+Z“7jAj + > ﬂkaj,k> :
j=1 jk=1 4

The system L£(q,(, D.)u = f reads, with U = (u, 0, us):

(3.178) Gq40.U - MU = <f> =F,

Gata.o) = (7 PND) = (M),

Os XN Is X s
where

- O(Nfs) X s )
3.179 Balg) = = . J=(Ogx(v_s) Lsxs).
( ) a(q) ( Bz,zd(Q) (Osx(N—s) xs)

Observe that invertibility of G follows from that of A, and By 4. Thus, the system (3.178)
can be rewritten
(3.180) 0.U~-G;'MU=G,'F.

It is perhaps not immediately obvious that the matrices (G, ' M) coincide with G+ (q,¢) as in
(3.163), but a short computation confirms this:

(3.181) (G M), (q,¢) = G+(q,0)-
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PROPOSITION 3.43 (Low frequency). — Let q € Q. There is a C* invertible matrix V. (q, ()
defined on a neighborhood 2 of (q,0) such that

_ H. 0
(3.182) V+1G+V+< 0+ P+> =Gp, onQ,

with H, (g, ) of dimension N x N and P (q,() of dimension s X s. In fact we have:
(@ Py(q,¢) = Py (q) + O(C|) for Py as in (3.173); in particular; the eigenvalues of Py
satisfy |Ru| = ¢ >0 on Q.
() H.(q,) = Hy (4,0) + O(CI), where

d—1
(3.183) Hy (g,¢) =—(Aa)7" ((ir tNI+Y Z’mzﬂq)) :
+

Jj=1

(c) At ( =0 V4 has the triangular form

I v
(3.184) Vi (q,0) = < NOXN I : )

The same result holds with ‘+’ replaced by *—’.

Proof. — 1. The spectral separation described in Lemma 3.40 and the fact that 0 is a semisimple
eigenvalue of multiplicity /V imply that there is a smooth matrix V; defined on a neighborhood
of (¢,0) such that (3.182) holds with H(q,0) =0 and P, (g,0) invertible with no eigenvalue
on the imaginary axis.

The span of the first N columns of V., span(V 1), is an invariant subspace for G, and at
¢ = 0 this space is

(3.185) ker G4 (¢q,0) =CY x {0}*.

Thus, performing a smooth change of basis in span(V; j), we can arrange so that the first V
columns of V; have the form

(3.186) Vir(a:¢) = (Mff(jfo> :

with W of size s x N and vanishing at { = 0.
The span of the last s columns of V., span(V4+ j7), is also an invariant subspace for G1. At
¢ =0 we must have

(3.187) Venla0=(37)

where the columns of the s x s matrix V, span C®. Thus, performing a smooth change of basis
in span(Vy j7), we can arrange to have

(3.188) Vi11(q,0) = (IV+ ) .
sXs
This proves (3.184).
2. Writing G4 V4 =V, Gp 4 at ¢ =0 using (3.172) and (3.184), we find that the lower right
block of G 4+ at ( =01is P (q) as in (3.173).
3. Here we use the notation (3.177)—(3.179) and suppress ‘+’ subscripts. By (3.182) GV; =
Vi H, hence MV; = G4V H and equating components gives
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(3.189) M=—-AH + B4WH.

Taking the first order term in (3.189) at ( = 0 gives (3.183).
4. The argument for G_ is the same. 0O

Remark 3.44.— One can just as easily read off an explicit second order term for H from
(3.189), but we shall not need that here.

COROLLARY 3.45.— Let s1 be the number of eigenvalues |1 ofPOjE (q) (3.173) with FRp > 0,
respectively. For N as in (H6) we have

(3.190) st +s_—s=N,+N_—N.

Proof. — Using (3.182), (3.183) and taking ¢ = (0,+,0) with v > 0 small, we see that the
number of eigenvalues of G in R < 0is sy + (N — N;). By Lemma 3.39

(3.191) s+ 4+ (N—Ny)=s+H.
Similarly, s_ 4+ (N — N_) = N — H. These equations imply (3.190). O

Remark 3.46. — The above proof and properties of W.., V. imply that for F*(q,¢) (3.170)
and E*(¢,¢) (3.171), we have

(3.192) dimE*(¢,¢) = dimF*(q,¢) = s+ 4+ (N — Ny).

3.3.5. Generalized block structure, low frequency symmetrizers, estimates

From this point on arguments from earlier papers go through with no essential changes to
prove the frozen coefficient, low frequency estimate (3.157).

One first performs another conjugation of G + as in (3.182) to generalized block structure
using the argument of [30, Appendix A.1]. The hypothesis (H4) of hyperbolicity with constant
multiplicity is used here. Next, the construction of [30, Appendix A.3], yields symmetrizers for
the modified low frequency problem (3.153). Finally, the argument of [12, Appendix A.1] shows
how those symmetrizers imply the estimate (3.157).

4. Variable coefficient .2 estimates

4.1. Regularity assumptions and results

In this section we prove estimates for the variable coefficient transmission problem corre-
sponding to (3.3):

(41) C(qua47az)u_wK(ZaQ7C):f7
[u] =0, [O.u2]=0, a({)w+£(q)-us(0)=0 onz=0,

where £ has been modified in accordance with Remark 3.32. Our effort in the first few
subsections will concern the case where v and f are supported near the front.
Setting D = 0 we consider

1 1
(42) g£<§7q575Dt75%5Dy7581>u - 6_216(§7q675Dt75’775Dy)w = f7

W] =0, [Dyus]=0, O+ NV—elyb+L(¢°) -uf =0 onz=0,

where
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4.3) ¢ (t,y, ) = (p(t,y), ul(t,y,x,€), h(t,y),r=(t,y,x)) with

pt,y) = (u (t,y,0),u’ (t,,0),dy°(t,y)) €C,
ul, h. represent perturbations of uY. and di/° respectively, and r. is a perturbation of A%! which
we turn out to non-negligible only in the high frequency estimate. When (p, u., h.) is constant
and r. = 0, the transmission problem (4.2) is the same as (2.57), (2.59). The principal part of the
linearized operator that we use in the nonlinear iteration scheme turns out to have precisely the
form of the operator in (4.2).
For the purposes of the L? estimate we make the following regularity assumptions, all of which
are satisfied in the later application to the nonlinear iteration scheme. Set
4.4) Wheee (Rd) = {v(t,y): 87,v e L™ for |a| <k}
and define W (RE) similarly.
ASSUMPTION 4.1 (H10). -
(a) p(t,y) € C; the functions u. (¢,y,z) are C? up to the boundary, take values in a compact
subset of U, and belong to W2 (REH); 40 € W32 (RY).
There exists an £ > 0 such that for ¢ € (0, &g]:
(b) The families {u/*},{V;, cul*}, {e02u.F, V} (Vi »ul™)} are bounded in L (RE™).
(c) The traces u’*|,—q are O(e) in W1 >°(R?) and satisfy u/*|,—o = u." | z=0.
(d) The family {hs—;} is bounded in W2 (R9).
(e) The families {Z=,V; , (%), V7 (Z=)} are bounded in L= (REM).
(f) For all (¢,y,r) € R¥! and ¢° as in (4.3), we have W(%,q°) € U*. There exists Z >0
such that for [£| > Z, W(%,¢°) € U.

The main step in the proof of Theorem 1.1 is a weighted L? estimate. Define weights

@ A(Q) = A0 = (14 (er) + () + fenl) %,
_ (v +el¢*)2, when [e¢| <1,

(4.6) A (€)= { L when<l¢] > 1

and

47 [€IAe, when [e¢| < 1,

4.7) pe(C) = (A/e)S/Z, when |=C| > 1.

Observe that the expressions defining A, in the two frequency regimes are of the same order
when |eC| & 1, and similarly for .. Moreover, on any set of frequencies such that 0 < |e¢| < R,
we have 1 <A, < Cg.

Given a weight function ¢(¢) we use the notation

1/2
48 ful = ( / ¢(T,%n)2|ﬂ(m7)|2de?7> .
R

When u* also depends on x, we set

, 1/2
(4.9) ], = ( / \ui(.,x>y¢dx) ,
+x>0
lulls = llu™llg + llu™llo-
When ¢ = 1 we write |u| or ||u]|.

4° SERIE — TOME 39 — 2006 — N° 1



NAVIER-STOKES REGULARIZATION OF MULTIDIMENSIONAL EULER SHOCKS 123

THEOREM 4.2 (L? estimate). — Assume (H0)—(H10) and fix ko > 0. Suppose (u*,1)) is a

solution of the transmission problem (4.2), where u*, f* are C> with compact support on
_d+1 . e
Ry N{|z| < 2ko} and ¢ € C°(R?). For kg small enough, there exist positive constants C,

~o0, and g independent of (u, 1), such that for v and € satisfying

(4.10) Y=, €€ (0,&)]
there holds
(4.11) lutllnz + lluzllxza, + Ve l0suzlla, + [ur(0)], + [u2(0)], 412

+ E‘@,;U2(0)|>\EA;1/2 + |w|NaAa
<C(IAl+ ||f2HA;1)'

The proof of Theorem 4.2 will occupy most of Section 4. First we make an easy reduction by
introducing a cutoff supported near the front. For any x¢ > 0 choose x € C§°((—ko, K0)) and
equal to one for |z| < 5. Since all the coefficients of K involve at least one derivative in z of W,
they are exponentially decaying in Z. Thus, we have

4.12) i(1—ﬁ(x))/c T FoeDyevieDy o= (F1)  with
: e2 5’ ) ty ’ Y . k;
)]+ N1R2 ]|y o0 < Cre®Val
for any L > 0. Here

(4.13) Voo = (0 +7)1, 009, ..., da—1))

and we have used the fact that only k5 involves two derivatives of 1. (4.12) implies that
the estimate of Theorem 4.2 follows immediately from the same estimate for the modified
transmission problem:

1 1
(4.14) EE (g,qa, eDy,ev,eDy, 689;> u— s—zﬁ(x)IC (g, q°,eDy, e, gDy> =T,

W] =0, [Dyus]=0, O+ —elyv+L(¢°) uf =0 onz=0.

THEOREM 4.3 (Estimate near the front). — Assume (HO)—(H10) and fix ko > 0. Assume u™*,
f* are C> with compact support on @iﬂ N {|z] < 2k}, ¥ € CC(RY), and (u,1) satisfies
(4.14). Then for ko small enough, there exist vy, €9 such that the estimate (4.11) holds for v = o,
0<e<ep.

Theorem 4.3 is a direct corollary of the next theorem. For positive constants py < R to be
chosen, let x1(¢), xar(¢), xz(¢) be low, medium, and high frequency cutoffs in C>°(R9+1)
such that

(4.15) XL +xm+xa=1 onR*
suppxr C {[(|<po},  suppxm C {[¢| > R},
and define the semiclassical multiplier

(4.16) T u= / Ty p (eQ)a(T,n, x) dr dn

(usually we will suppress the superscripts €,y on T3, ). For 6 > 0 as in Lemma 3.14, let
Bi(¢) €T, i =1,2, be chosen so that
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30 )
@17 supp S CY0Sy < ICh I =1, supp B2 €3 SICI < I =1,

4] 30
si=1 on{o<y<gidldz2h m=1 on{Fi<a 2],

Bi+pB2=1 on|(]>2.
Thus, in particular we have

(4.18) Bixw + Poxr =xu forall (.

THEOREM 4.4 (Estimates near the front by frequency size). — Assume (HO)—(H10). Suppose
(uT,2b) is a solution of the transmission problem (4.14), where u*, f* are C> with compact

support on Ei’_l N {|z| < 2ko}, and ¥ € CC(RY). If kg is small enough, then provided p
(respectively R) in (4.15) is small (respectively large) enough, there exist positive constants C'
and eq independent of (u,1) such that for v > 1 and ¢ € (0,0 there holds:

19 HTXLUH)‘g + \/(EHQQJTXLUQHAE + |TXLU(0)‘)\E +5’61TXLU2(0)’)\5 + |Twa|\C\)\a
< C(”fl” + | f2l +a.t.),

1
(4.20) EHTXJWUH + 1|02 Ty, u2 || +

< C(||f1|| + [ f2l +a.t.),
L 1 1 1/2
4.21) (E +7) 1T, x| + g”TngHuQHAE 180Ty 2| + (g +7> Ty 0)

1 1
+ %|T51XHU2(O)|Aé/2 + \/g’axT&XHuQ(O)’A;lﬂ + EST|T61XH¢|A§/2

1 1
%’TXMU(O” + \/E|8-TTXMu2(O)‘ + @|TXM¢|

<SC(AN+ 1 Fllazr + | + lluzll + el Dl + [0y +at),
1
4.22) [ Thoxsuallic) + gHTﬁQXHWHAE 4+ 1102 Ty i || + ‘Tﬁszul(O)‘Klw
! 1
T 7l T w2 (O] 22 + VE [0:Taxs w2 0) |y 272+ 575 Taxn Voo
SC(IAN+ N f2llyor +ar).

Here a.t. stands for a finite sum of “absorbable terms”, terms that can be absorbed by the sum
of the left sides of (4.19)—(4.22) by taking ~ large and € small. Four such terms are written out
in (4.21).

The low frequency estimate does not use (H3); the medium frequency estimate does not use
(H3), (H4); and the high frequency estimate does not use (H4), (H9).

Proof of Theorem 4.3 assuming Theorem 4.4. — 1. Add the low (LF), medium (MF), and high
frequency (HF) estimates and absorb a.t. terms by taking ~y, large enough and ¢ small enough
to show that the sum of the left sides of (4.19)-(4.22) is <

(4.23) Ol + 112l oz 1)-
2. Use (4.15), (4.18), and the fact that

(4.24) A\~ on MF, HF,

1
NG
A.~1 onLF MF
to see that the left side of (4.11) is < C([[f1[| + [| f2[[5-1)-
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Remark 4.5.— We have stated the estimates (4.19)—(4.22) for the transmission problem
(4.14) with homogeneous transmission conditions, but the proofs automatically handle the
nonhomogeneous case as well. Suppose that in (4.14) we take

(4.25)  [u]l= (Z;) , [Opus) =ks, (O +7)u—elyu+ ﬁ(qe) cu=ks onz=0.

Then in the estimates (4.19)—(4.22) we just need to include boundary norms of the k; on the
right. In each estimate the weight on k; is the same as the one that appears on the left side on
|u1(0)]|, the weight on ks is the one on |uz(0)|, the weight on k3 is the one on |9, u2(0)|, and the
weight on ky is the one on |u3(0)|. The same comment applies to the composite estimate (4.11).
For example, the version of (4.11) with k4 # 0 has the term

(4.26) \k4|/\EA;/2

on the right. O
4.1.1. First order system

Set U = (u1,u2,0,u2) = (u1,uz,us). With 7 as in (3.33) and G(z,q,() as in (3.34), we
may rewrite (4.14) as a first order system:

1
4.27) O U — EG<§7qE,5Dt,5%€Dy) U

1
= j(;f) (f + E—zﬁ(l‘)’C<§,q6,6Dt,€%6Dy>w>
[U]=0, O+ —elyp+L(q°) ug=0 onz=0.

Here
1 1

(4.28) E—znle = gms(t,y,z,eDt,sfy,aDy)Vyw, where

d—1
MmNV =m§(t,y, ) (0 + V) + Y mS(t,y,x,eDy, £7,6Dy)0;,

j=1

and

~ X ~
(429) mﬁ(t,y,x) = KmO(gaq€>7 m0(27Q) = 8zf0(W(ZaQ))7

- T
m;(tayvxvg) =Ry <_7q6)7

€
N _ d—1
mj(z,q) == <3zfj —8.((Bj,a+ Ba,j)0.-W) — Z Bj,kﬁzWile>
k=1
(recall Ej_yd = Ej,d(W(z, q),v(h+ h'))). Observe that

d—1

(4.30) K(2,4.¢) = 1o (2,q) (i +7) + Y 110 (2,4, Q)i
j=1

Similarly, we set
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<€ x £
15 € €
g (t7y7x7<):G<gaQa<>a

97 (t,y,2,Q) =GY (f,qe,c),
where the G/ are the entries of G (3.36).
Thus (4.27) becomes
(432) 0.U ~ ~g°U=j° (f + émfw}) ,
[U]=0, O+ —elyp+L(¢°) - uz=0 onz=0.

Remark 4.6. — Depending on the context, we use expressions like g° or m® sometimes to
denote a symbol, and sometimes to denote the associated semiclassical operator.

Using the definition of J (3.33), we define h; and n$, i =1,2, by

hl nﬁ
(4.33) iff=101, ifmf=1 0
hg TL;
and rewrite the system (4.32) as
1 h1 1 niV, 4
4.34) 0, U — EgEU =|0|+- 0 ,

hos E\ngv,u
[U]=0, (+NY—elyp+L(¢°) - uz=0 onz=0.

Remark 4.7.— (1) To prove Theorem 4.4 it clearly suffices to prove the estimates (4.19)—
(4.22) for the system (4.34), with (hq, ha) in place of (fi, f2). Note that the coefficients of n$
are exponentially decreasing in £. Also, ni is of order zero, while n5 is of order one with 9,,
derivatives only.

(2) A partition of unity allows us to assume that the support of (U,) is as close as we like
to any prescribed basepoint (¢,y,0). It is easy to check that smooth cutoffs ¢(¢,y, z) introduce
only absorbable errors (a.t. terms in the sense of Theorem 4.4).

4.2. Semiclassical paradifferential calculi

We collect here the facts about the paradifferential calculi that we will use in the variable
coefficient estimates. We refer to Appendix B of [30] for detailed proofs. We shall use both
homogeneous and parabolic calculi. With each calculus there is associated a scale of Sobolev
spaces on which the operators naturally act.

First, we introduce homogeneous and parabolic weights. With ¢ = (7,v,7n) as before and
a = (a;,a,) € N x N=! a multi-index, set Rf‘l ={¢: >0} and

(4.35) €)= (1+1e)?
AQ) = (1472497 + o),

ol =ar oyl laf =2a: +|ay.
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DEFINITION 4.8 (Symbols). —
(1) Let o € R. The space of homogeneous symbols I'fy is the set of locally L> functions
a(t,y,x,¢) on R4T1 x Riﬂ which are C'*° in ¢ and satisfy:

(4.36) 02, a] < Ca(C)P71°1, forall (t,y,2,¢) and .
) F0|r k=0,1,2,..., T} denotes the space of symbols a € T'fj such that df*,a € T for
ol <k.

(3) The spaces of parabolic symbols PT'j and PI'} are defined in the same way, using A(C)
in place of (¢) and ||«|| in place of |«/|.

We keep the same notation for the spaces of symbols defined just for &z > 0. Observe that
symbols in I} which are independent of x constitute a subspace of I'}’, and similarly for the
spaces PT;.

The spaces I'; are equipped with the natural seminorms

(4.37) |a|u kN = sup sup sup <C>‘°‘|7“|85y8?a(t,y,x, Q).
la|<N |BI<E (ty,2,0)
The seminorms on the spaces PT' are defined in the same way by the substitutions described
earlier.
We consider a semiclassical quantization of symbols. When a € T} is independent of (¢, )
the associated homogeneous paradifferential operator acts in (¢,y) and is defined by the Fourier
multiplier a(x,e(¢):

(4.38) T u(t,y,x) = /ei””yna(x,e()ﬁ(az,ﬂ n) dr dn.

1
(2m)
For a € PI'}j the associated parabolic operator P:»7 is defined by the same formula. When
the symbols depend on (¢,y), the corresponding operators are defined by formulas similar to
(4.38), except that the symbols are first smoothed in (¢,y) using an idea of Bony [2]. The
smoothing process in the homogeneous case differs from that in the parabolic case (see [30,
Proposition B.7]). When a(t, y, x, () and u are continuous up to = = 0, we have
(4.39) (Tj’”u) |le=0 = Tj";’:ouh:o
and similarly for parabolic operators. We use superscripts = on a and u to indicate limits at
xz =0 taken in £z > 0. We shall often drop the superscripts €,y and write the operator defined
by (4.38) simply as T},.

4.2.1. Sobolev spaces
For s € R let H® denote the space of functions (¢, ) such that

1/2
(4.40) |ufgcry = < / (5{)25|a(7,n)|2drd77> < 00,

Rd

and let H* be the space of functions u(t,y,x) such that

1/2
2
(441) lullocry = ( [lutof2.., dm) <oo.
Similarly define spaces PH*® and PH*® by substituting the weight A(z¢) for (¢¢) in (4.40) and

(4.41), respectively. We will use the same notation ||u||s,. ~ for norms in H* and PH?®. It should
be clear from the context which weights are being used.
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4.2.2. Action on Sobolev spaces, symbolic calculus

PROPOSITION 4.9 (Action). — For any a € T'f and s € R there is a C such that for ¢ € (0,1],
v>=21and u e H®:
(4.42) |75 | < Clulls -

S—p,ey
The constant C' is bounded when a remains in a bounded subset of T;.
For a € PT'fj the operators PSY have the same mapping property on the spaces PH?.

PROPOSITION 4.10 (Compositions). — Consider a € T and b € T¥. Then ab € T"™ and
there is a C such that for € € (0,1], v > 1 and u € H*:

(4.43) (T o Ty — T ul| < C¢|lul

s—p—v+le,y 5,67

The constant C'is bounded when a and b remain in bounded subsets of T and T'Y respectively.
Moreover, if b is independent of (t,y) then T o T, =T..7.
The same inequality holds for compositions of operators P57 and PbE "V acting on u € PH®.

PROPOSITION 4.11 (Adjoints). — Let a* denote the adjoint of the matrix symbol a € T and
let (TSY)* be the adjoint operator of TS . There is a C such that for € € (0,1], v > 1 and
u € H:

(4.44) (Z57)" = 7o u < Cefulls e

s—pu+1,e,y
The same inequality is true for adjoints of operators PS"7 acting on u € PH?.
PROPOSITION 4.12 (Commutators). — For a € I} and u € H® we have

(4.45) 0, T Ju=T5"u,

for 0 =0y or 0,,. A similar result holds in the parabolic calculus.

PROPOSITION 4.13 (Gdrding inequalities). — Consider symbols a € T} and w € T'Y. Suppose
that there is x € T and ¢ > 0 such that x > 0, yw = w and

(4.46) Xty @, ORalt,y, @, C) = ex(ty, 2, Q)(C)" forall (t,y,,C).
Then there is C such that for all ¢ € (0,1], v > 1 and u € H"/?:

e SR(TEVTE u, T ), + CEfu2 . -

C
(4.47) §HT5MHH Jaem S

The same inequality holds for operators P;"" acting on u € PHHM/2,

4.2.3. Paraproducts

Paraproducts are paradifferential operators associated to symbols independent of (. The
following two propositions are used to estimate the errors introduced in the passage from
differential operators to their paradifferential counterparts. They can also be used to estimate
errors caused by passage from one calculus to the other.

DEFINITION 4.14. - For k € N, let W* denote the space of functions a(t,y,z) on R4*!
such that 85 ,@ € L% (R9*+1) for | 3] < k. We use the same notation for functions defined just on
+z > 0.

Observe that

(4.48) wkc 9 n PTY.
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PROPOSITION 4.15 (Homogeneous paraproducts). — For any a € W! there is a constant C
such that for all ¢ € (0,1], v > 1 and u € H*:

(4.49) Hau — Tj’”u”l,sﬁ < Cellulloe,y,
’y”au — T;”u”o)sﬁ + Ha@u — Tj"’@u”o’aﬁ <Cllulloe,y, for d=0; or dy,.

PROPOSITION 4.16 (Parabolic paraproducts). — For any a € W! there is a constant C' such
that for all € € (0,1], v > 1 and u € PH*:

(4.50) Hau—Pj’Vqusﬁ < Cellu
Haayju o Paaﬁayj

0,e,7s

ullg.o., < Cllulloe,qs

_ P& _ P& o, PETYHY
o= P2l + ladu— B, + 5 elladgu - P2rag
|a|=2

u”O,s,’y

< Cllullen-

Remark 4.17. — The difference between the above two propositions is due to the fact that the
symbol i7 + y is of order two in the parabolic calculus, but of order one in the homogeneous
calculus.

4.3. High frequency estimate

4.3.1. Paralinearization

The first step is to replace the problem (4.34) by its counterpart in terms of homogeneous
paradifferential operators. We will continue to write g*/ for the entries of (i, suppressing the
e-dependence. The regularity hypothesis, Assumption 4.1, and Remark 4.7 imply

LEMMA 4.18.— The families of symbols g'', g'2, ¢3!, ¢33, and n§ are bounded in T'3. The
families g** and n5 are bounded in T', while g®? is bounded in T'3.

Thus, Proposition 4.15 gives (suppressing superscripts €, v on 1)
1 g
4.51) =g = Tyis)u;|| < Clluyll, except for the case g*2,
€

1 .
—| (05 = Tos) Vo S Clolyg, - forj=1,2.

To handle g2 we write

d—1

(452) g32(t,y,x, C) = 922(t7y,1’, <) + Z aij(tvyax)ninja
J,k=1

where g3% is bounded in I'} and the a;; are bounded in W? (4.14). For the g3? we have an
estimate like (4.51). To estimate the second term on the right in (4.52), we use the next lemma.

LEMMA 4.19.— Let a(t,y,x) € W2 Then for u € H?* we have
(4.53) ell(a = T)dy,0y,ul| y—1 < Cllull.

Proof. —Let A.(D) denote operator given by the Fourier multiplier A.({). From Proposi-
tion 4.12 we have

(4.54) e[ (a—T0)dy, 0y, ul] -1
<e||[AZN (D)0 (a — To)Opul| + || A1 (D) (950 — To,a)Oul-
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The second term is < Ce||u|| by Proposition 4.15. Since |en;|AZ1(¢) < 1, Proposition 4.15
implies the first term is < Cllu||. O

Remark 4.20.— The lemma implies
1
@55 Y0~ Tyl o < ).
In addition ¢° := ¢(¢*(t,y,0)) is bounded in W, so by Proposition 4.16
(4.56) 0% - ug — Preug|, < Celugl.
From (4.55), (4.56), and (4.51) we conclude that if (U, ) satisfies the problem (4.34), then it

satisfies
1 hy 1 Tnz Vi
(4.57) 0,U — ngaU = 0 | + z 0 ,
hl TnsVayp
Ul=0, (Or+7)¥—elyp+ Prrug=e onz=0,

where

(4.58) B3l + 1R5 ] p=r < C (IRl + 2llyor + | (urs uz, us) || + []1¢)),

CElUQ‘.
In particular it suffices to prove the high frequency estimates (4.21), (4.22) for (U, 1)) satisfying
(4.57) with (R, h%) in place of (f1, fa).

For cutoffs 8 = 31 or B and gy as in (4.21), (4.22), to find the problem satisfied by

(T3x 5 U, Ty, ) we apply Ty, to (4.57) and use Proposition 4.10 to estimate commutator
errors. We find

<
lefa, <

1 h/l 1 TnivaBX;ﬂ/J
(4.59) 0T U= Ty T U= | 0 | +2 0

hy Tns Vo Toxu

Ty, Ul =0, (0 +~v—ely)Psyyt)+ Pr=Pgyus=e onz=0,

for a new (hf,h5) and e satisfying the estimates (4.58); note T3, ,, = Pg,,, since the symbol
depends on ¢ alone. The commutator involving T;s> again requires special treatment; it is
handled by an argument similar to the proof of Lemma 4.19.

4.3.2. Reduction to the partially linearized case
We begin by rewriting the identity (3.137) in first-order form:

W, \ _ 0
(4.60) (0. —G) <8§W2> —j(IC—aZP—F (r@?VVl))’
for J(z,q) as in (3.33). Setting
NI(Z7Q7C) T 1
(4.61) 0 =JK, NP :=k(z)N; (—,qE,C), and 0:=-Tp, .1,
NQ(Z7Qa<) c ©

we may rewrite the front term in (4.59)

L [(TosVa T\ [ T:0
TV Tyt T 0
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Introduce symbols

61(2, q7C> 0
e2(2,4,¢) ro:

e -1 (% e
ei =€ H(l')eZ(gaq )7

x
s°=(s],s5) == ﬂ(x)@zW<g,q6).

LEMMA 4.21. -

(@) The families €5, €5, s¢, and £0,s5 are bounded in T; Nt is bounded in T and N5 is
bounded in T%.

(b) The families

- 1 1 . 1
(4.64) €5 : =085 — ggnsi — ggus; — 130,85 — - T,
1 1 1
~ 2 32 33
€y =058y — P S5 — g0y — gst
are bounded in T and T'1, respectively. Moreover, s¢ is C* in x across x = 0.

Proof. — The statement for s° and €0,s° is clear from the definition of ¢° (4.3) and the
regularity assumption (H10); for NF recall Remark 4.7. To see the boundedness of the e, recall
that W(z,q) = Wy(z,p) + v/, so when v’ = 0 and b’ = 0, IV is an exact solution of the profile
equation P(z,q) = 0. Thus

(4.65) JO0,P(z,q) = u'Wy(z,q) + K’ Wy(2,q),

where W,, W), are smooth with exponential decay in z. The h. W} contribution to €5 is bounded
by part (d) of (H10). We have

(4.66) ul (t,y,x) = ul|z—o0 + zve(t,y,z)

so boundedness of the u.W, contribution follows from parts (b) and (c) of (H10) and the
boundedness of ZW,(Z,q%). The r.02W term is bounded by part (e) of (H10).
The identity (4.60) implies

(4.67) e =e]j+ (amazwl + m@qul@qg + ¢'30, k0, Wy + glgliaquQaqu),

where the sum in parentheses is bounded in T'Y by the regularity assumption (H10) and the fact
that '3 is of order zero. The term &; is treated similarly, but recall that ¢33 is of order one.
The regularity of s° in x follows from 9, W (z,q) = 0, Wy(z,p). O

Next we make a change of unknown corresponding to u™ = u — 1%, W (3.10) in the frozen
coefficient argument. Again with 5 = 31 or B2 and 0 = %Tﬂx LU set

(%} €
(4.68) V=| v | :=TpsyuU—Ts6, S :( N )
vs €0555
and introduce the bounded family in PT'%
(4.69) E(ty, Q) =i+ + nf* + £ 9. W2(0,4° (1,9, 0)).-
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PROPOSITION 4.22.— V and 6 satisfy
L
(4.70) (@ 0, V—-TgeV=|0], [V]=0,
€ B
2
(b) PO+ Prvo(0) =¢,
where (in place of (4.58))
@70 RN+ Rl < Ol + helly-r + || (uryuz, us) || + Tyl
le'|a. < Celuz(0)| + [Ty, -

Proof. — Using (4.59) we compute

1 h} Tt 1
4.72) 0,V — ng.sV =10 |+ z 0 — (&E — ngs)TSEH
hf Tt
b} T Eq hy
=1 0]+ 0 )JO+] 0 )O:=] 0],
5 Te Es hy
where by Lemma 4.21
4.73) [Te; 01l < Cl0] < ClTsxp 9l/2 < ClTpxn Ve
[Te50ll -2 < Cl|Tegbl| < Cl0) ) < ClTpxn¥lic)s

and || E10| + || E20| -+ < C|0|. £y and E3 are sums of composition errors like

1 1
(4.74) g (Tgn Tsi — Tgllsf) and g (Tgs2 Tg; — Tg323§)

respectively. The second term in (4.74) is again handled by an argument like the proof of
Lemma 4.19.
The smoothness of s in x and [T, U] = 0 implies [V] = 0.
Finally, since Pgy,, = 13y, , We may write
(4.75) P.0+ Ppvg = (PiT+'y+|7]|29 + Py PﬁXHUQ) + (Péfs; — Pgapsg)e + Py (Psg — T5;)9
=e+E +E",
for e as in (4.59) and

(4.76) |E'|A. < Celf] (by Proposition 4.10),
|E"”|A. < Celd| (by Propositions 4.15 and 4.16). a
The next proposition, an estimate for the partially linearized problem (4.70)(a), is the main

step in the proof of the high frequency estimate of Theorem 4.4. The proof is given in the next
section.

PROPOSITION 4.23. — Under the assumptions of Theorem 4.4, consider V = (v1,v2,v3) as
defined in (4.68) and satisfying (4.70)(a). There exists €y such that for y > 1 and 0 < € < € the
following estimates hold. When (3 = 31,
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1 1 1 1\
(4.77) — ) loll + Zloslla + Zlles + { - +v)  |o(0)]

1 1
+ %‘UQ(O)IAi/Z + %‘U3(0)|A;1/2

<SC(IRY ) + 15l +at.).
When 3 = (3,

1 1 1 1 1 1
@78 Zlonlleq + Zlloala, + Zlosl+Zon )] epsa o2 0] s + 2 [es(0)] o

< CO(IIRY 1] + R3]l +at.).

Here, as in Theorem 4.4, “a.t.” stands for a finite sum of terms that can be absorbed by the sum
of the left sides of (4.19)—(4.22) by taking ~ large and € small.

Next we show how to use the extra boundary condition (4.70)(b) to estimate 6 in terms of the
trace of vs.

PROPOSITION 4.24. — Under the assumptions of Proposition 4.23, for 3 = 31 or B2 and ¢

small enough there holds

4.79) #\Tm%g/z - 51%\9@2 < c<51%|uz<o)yw +a.t.).
Proof. — The choice of £(g) (2.60) and (H10) imply that for & small
0q7) - 9. W2(0,¢°) 2 1,
and hence
L+ |r|+v+Inf* S|

Thus, ¢° is elliptic and 1/¢° € PFI_Q. Applying Py /.- to (4.70)(b) and using the parabolic
calculus we obtain

(480) \Pl/chcse—H\Ag/z §5|9|A§,/2,
|9‘A§/2 S |P1/CE€,|A§/2 + !PI/CEP,@E’UQ(O) Ag/z +E|0|Ag/2.
Thus,
1 1 1 1
(4.81) m\ewz < m”vz(O)‘Ai/z + mwﬁmw\@/g + mkfwﬂ,

from which the result follows by (4.71). O

We conclude this section by showing how Propositions 4.23 and 4.24 imply the high frequency
estimates of Theorem 4.4.

Proof of estimates (4.21) and (4.22) assuming Proposition 4.23. — The case § = (5. Adding
the estimates (4.78) and (4.79) and recalling (4.71), we deduce

1 1 1 1
(4.82) Mol + Zloallac + Closlh + 201 O] gy

1 1 1
+ 7E‘U2(0)|Ai/2 + %|’U3(0)|A;1/2 + mlTBXHQMAE/z

SC(IAN+ N fallyor +at).
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Note first that

(LN )

(4.83) Ae o (e€) A
g g g

Write Tjs, ;U =V + Ts-0 and use the exponential decay of S€ in £ to see that for each x

1 —O0|T
< e 0 .

1
(4.84) | Ts=0(2)] ) 5

Taking the L? norm in x gives

1 1 1 1
(4.85) SITs<0llcr S —=lliee) S 575 Toxn¥lices S 1 Toxa¥laz:
For the trace at x = 0 we have
1 P < 1 0 1 < 1
(4.86) %|TSE lecyrre S %' lecyrrz = EPW|T5XH¢|(E<>1/2 < Eg,T|Tﬁwa|Aa~

Together with (4.83) and (4.82), the last two estimates imply estimate (4.22) of Theorem 4.4.
The case 3 = (3;. We have 1 (¢C) 2 v+ 1, so the above estimates imply (4.21) as well. O

4.3.3. Estimate for the partially linearized problem

In this section we complete the proof of the high frequency estimates by proving Proposi-
tion 4.23. We will do this by quantizing the arguments of Section 3.2.7; in particular, we must
show that the errors introduced by use of the paradifferential calculus are always absorbable. We
begin with the more difficult case.

1. The case 3 = [3;: decoupling. We use the conjugator W(z, ¢, () (3.47), which is initially
defined only for |¢| > R, 0 <y < 4|¢| and ¢ = (p,«,1/,r) with |u/,h’, | small. Extend W21
and W21 to all (g,¢) as elements of I'° which vanish for |¢| < 1 (here R > 1). Then

(4.87) We(t,y,2,¢) ::W(g,qa,g) e1y.

We will often drop the superscript € in this section and, for example, write simply W2!|¢|~! and
W2 for the (2,1) and (3, 1) components of YW¢. We have then

(4.88) w2t¢|~teryt, wHer?.

The special structure of YV immediately implies the following convenient identities:
(4.89) TwTyw-1 =Tyw-1Tw =1,

there is no composition error in this case.

Remark 4.25.— The regularity assumption (H10) implies that |hL,r.| is small for & small,
while |u.| is small for ¢ and || small. Recall that in Theorem 4.4 we assume u® and f* are
supported near x = 0.

It will be useful to have a notation for error operators.

NOTATION 4.26. — An operator 7, on the homogeneous scale of Sobolev spaces H* is said
to be of order p if for any s € R there is a C such that for v > 1 and € € (0, 1] the following
estimate holds for u € H*:

(4.90) (|77 ul| < Cllulls.e -

S—,ey

The same notation is used for operators of order 1 on functions u(t,y) € H*.
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We will usually drop the superscripts €, 7, and the identity of operators denoted r, may change
from term to term, line to line, etc. We will use the same notation (when the context is clear) for
analogously defined operators of order i on the parabolic spaces PH?®.

For V as in (4.70) we define V = (v1,va,v3) by V = T,V and with (4.89) obtain, parallel
to (3.93),

h/l
1 1
4.91) 0:V = Ty 1 Ty TwV =Tyyr | 0 | =Ty T V.
n
Setting g5 = Go(Z,¢°, () for Gy as in (3.48), we have

1
(4.92) Ty T, Ty
6 .

1 1 0 0 0 r—1 0 0
=Ty + = Tz wai¢|-1gn 0 0)+|ror 711 1o
3 3 @
Tg:51+g32wa21|<|71+g33Wb217Wb21911 0 0 To To T—1

1
= ngn + FE1 + Es.

Remark 4.27. - (1) Note that errors of size |i—’| are too large to be “a.t.” terms because
of the contribution from the low frequency regime. We avoid such errors below by setting

Xmh ‘= XM + Xz and observing
(0 Y
(4.93) Toixen — = Toven T -

With ¢y, :=1T,,, 1, we have lw’gh" is an a.t. term.
(2) Tracing back the definition of v;, we can now write

wmh
(4.94) vi=v1 =Tgyzu1 — Tsep,xn -

By (3.42) and Remark 4.25, the symbols defining the entries of the first error matrix £; vanish
for € + |x| small and ¢ € supp(51xx). The homogeneous calculus therefore gives for € small

wm h

(4.95) E%lvl =r_qju; + 7‘_1@; Ef’lvl =7rou1 + 7o P

where the error operators in the terms involving i) have compact support in the parameter x by
(4.63). The second error matrix £ contains all the composition errors. For example,

496)  eBY = —Tywzi¢-1 Tyn — Tz g1 Ty Tywzrj -1 — Twzrye-1 Tyrs Ty

- (7W§1‘<|719117W31‘<|71912W31Klfliwgl‘g‘—lgl?,wgl) =Er_1.

We have Tyy-1Tp,v = Tyy-15,)y With again no composition error, so a short computation
shows the right side of (4.91) is

!
1 1 0
(497) Tflhll/ + g r_1Vi
roh!] + hy rovi

Putting all this together we may rewrite (4.91) parallel to (3.93) as:
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h//
(4.98) 0,V — éTgOV =E1V+ EV+T)- (31/ —Tyw-1TywV
hy
0 T_1V1
= | roiw +T—1w?h + | r—avi Froqve +r_gvs
rouy + 1o Lmh ToV1+ToVe +7_1V3
hi A
+ r_1hf + - r_ivi
rohy +hY ToV1

Next, for G!! as in (3.52) and M?2 asin (3.38), we set

R ~1f T x
(4.99) g =G“<g,q€,<) and gp=M£3<g,qi<>
and consider the block diagonal symbol
~11
g 0
(4.100) = ( ) .
9o 0 g

Denoting the right side of (4.98) by F and recalling the form of G (3.48), we can rewrite (4.98)
as a problem in terms of T}, parallel to (3.96):

TgIZVQ “+ roVv3

1 1
(4.101) 0,V — =T,V =F + - r_1Vi +1roVe +1_1V3
£ roVi + T_Wb21912V2 + roVvs
Hy
=H=|Hy |, [V]=0.
Hj

As in the frozen coefficient case, it is now easy to check that the desired estimate (4.77) of
Proposition 4.23 is implied by the following estimates for V = (vq,va, v3) satisfying (4.101):

1 1 1/2
@.102) (24 I+ (249)  pa@] < pnl +as,
L L L 0 L 0 < ||H H t
EHV2||AE + g”VSH + $|V2( )’A;/z + E‘VS( )|A;1/2 SHzl[ + [[Hs| -1 +act,

where “a.t.” has the same meaning as in Proposition 4.23. In reducing to (4.102) we have used
the special structure of g'2, which yields (since [n|A=1(¢) < 1)

1 1 1
(4.103) I Tgvall S Zlivall +[18yv2ll S Zlivalla.,

1 1
ST wargavallpor S < Vsl

Thus, we have reduced the proof of Proposition 4.23 in the case 8 = [3; to proving the following
proposition.

PROPOSITION 4.28 (The case 3 = 31). — Under the assumptions of Theorem 4.4, consider
V =Tyw-1V = (v1,ve,v3) satisfying (4.101). If R is large enough, there exists g such that for
v 2 1and 0 < e < g the estimates (4.102) hold.
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2. The hyperbolic block. Consider the problem given by the (1, 1) block of (4.101):
1
(4.104) Opvi — ~Tguvi=Hy, [vi]=0.
We will perform another conjugation using the matrix V(z, ¢, () as in (3.56):

(4.105) VIGUY = A = diag(urls, + Ri)|k=1.... ko>

where V is chosen so that (3.59) also holds.
The functions V and R, are, initially, smoothly defined and satisfy (4.105) for z € R and for

(4.106)  0<y<d|¢], |¢| > R, and ¢ = (p,u, 1, r) with [u', A’ 7| small and (p, {)
in a conic neighborhood of (p, § ),

where é € gi N{0 <4 <0} and pis a fixed but arbitrary point of C (recall Remark 3.21).

So first we extend these symbols to all (z,q,() as elements of T'°, T'!, and T'° respectively
so that V=1 € T'%; the equality (4.105) still holds just for (z,q,¢) satisfying (4.106). Set
Ve =V(£,¢°,¢) €I'{ and define the symbols x5 € T’ and R;, € T') similarly.

Define w = T),-1v; and observe that the homogeneous calculus gives
4.107) vi =Tyw+er_jvy.

A short computation using (4.107), Eq. (4.104), and the homogeneous calculus shows w
satisfies the following problem:

1
(4.108) Opw = gTv—l Tgu Tyw+Ty-1H + Tazv—lTv’u) + roVi

= ETV_IQMV w + T(awv—l)v w +TV—1H1 + row + rovy.

Let us use eg to denote a symbol in I'{, whose precise identity may change from term to term,
such that for # > 0 as in (2.42):

[z]

(4.109) ep=e€g (g,t,y,%() with |85y8geo| <e 0% (C}“al for |5] < 1.
Then we have
(4.110) Tio,p-1yy = éTeO .

By (4.105), (4.106), and Remark 4.25,

4.111) V71"V =A° fore + |z| small, ¢ € supp(Bixz), and p(t,y) near p-

Remark 4.29 (Another reduction). — As noted in Remark 4.7, we can suppose U and 1) are
supported in a small neighborhood of a basepoint (¢,y,0) such that p(t,y) = p. Let ¢(t,y, x) be
a smooth cutoff supported near (¢,y,0) such that

4.112) oU=U and ¢(k)) =kt

for k(x) as in (4.14). Use of the calculus and the paraproduct estimate of Proposition 4.15
shows the estimates (4.102) follow from the same estimates when V is replaced by T4V only
absorbable errors are introduced by commuting T through (4.101). Indeed, we have

1 ToVi
(4.113) [T, 0]V =roV,  =[Ty,Tp]V= 0 ,
€ %[Tti?’ 932}V2 + roVs
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where, because g2 has the structure (4.52),
1
(4.114) E||[T¢,T932]VQHA;1 < lvel|-

Thus, the components of H in (4.101) are modified only by absorbable terms.
Recalling the definition of V and using ¢U = U, we also have

(4.115) 1TV = Vlia. SNT6V = Vlliee) S €U + [¢mnl
for (() as in (4.40), so estimates for T4V imply estimates for V. Similarly, a partition of unity

in ¢ allows us to replace T3V by TV, where X is supported in a conic neighborhood of a

basepoint é as in (4.106). In the remainder of the proof of Proposition 4.28 we therefore suppose
that V is replaced by T4V in (4.101) and (4.102), and we write the components of the latter
again as v,. That is,

Ym
(4.116) (Vi,v2,v3) = Ty Tyy—1 V = Ty Ty (Tﬁ1XHU — T5¢ By xar Th )

In view of (4.111) and this remark, an application of the calculus gives in place of (4.108):

1 m
(4.117) arw:g(TAJFTeo)wJFTV*lHlﬂLTom +T0¢6h.
With R,f‘x’ = (lim, 400 Ri(2,4,())|q=q= We have R5 — R,f‘x’ = eg k+. Thus, setting

(4118) w = (Wl, . ,Wko) and Tv—lHl = (hl, ey hko)

we can write the problem satisfied by w; as

1 1o i
(4.119) Opwy = (T + T + T+ + - > Tepwi +rous + ro%h,
k=2

parallel to (3.102). Now e 1+ depends on both R; and (V,V,), while the ep+ on the right depend
juston (V,V,).

Consider the case — sgn(3) = 1, where 3 is any eigenvalue of Z;l. Letting w® = w|4,>0 we
first estimate w™. As in the frozen coefficient analysis (3.104), we need to introduce exponential
weights. For a uniformly bounded weight function ¢(z) to be chosen, set

(4.120) w=(wi,...,Wk,) := et = e‘ﬁ(wf, el ,W;ro).

From (4.119) we have

1
(4.121) Opwi = E(TM + Tppoo + Teo, + ¢ w1 + e®hy

ko

1
+ Z gTeowk + rour + 1o

wmh
b

where ¢’ = ¢.(%).
Denote the inner product in L*(R¢ ) by (, ). Pairing (4.121) with w; and integrating I
yields

oo

2 T 2
(4.122) |w1(0)‘2 + ES%/((TH1 +TRT°°)W17W1> + g%/((Tem + ¢ wr,w1)
0 0

2
= _2%/@%17&11) - géR/Z(Teowkvwl) —2%/(T0U1 +To@,w1)-
0 0 k=2 0
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Now the rule for adjoints gives for each x

1 1
(4.123) E(Teowkawl) = g(wk»Te(’;wl) + (wg, r—1w1)

o C
< 2nl? + 2 T + Ol

The right side of (4.122) is thus easily estimated by RHS <

1 C
@124 1 (74 2 )l 4 =S (Il + P+ )

c
+ 2l + S Tl + Ol
From Proposition 3.22 and (3.59) we have for & small, 0 < < 0[¢|, I¢] = R, and (t,y,z,()
in a conic neighborhood of (¢, y,0,¢) (¢ as in (4.106))
(4.125) Rus(t,y,x,¢) =i for jiy € TY such that ji; > ¢ >0,
RRT° > c>0.
Let b(t,y,,¢) € T'Y be a cutoff supported in the region where (4.125) holds with

(4.126) b(t,y,z,{)=1 on supp(¢) x supp(XB1x#)

for ¢, X as in (4.116). Let ((, )) denote the inner product on L? (Riﬂ). Then, since T, =

eyTy, and wy = Tywy + T1_pwi, the calculus gives
@120 Jel] < [Tl + © (<l g+ 1222250,

’7%((7—}11 wal 5 wal))

L |wmh|2, e
< IR((Tperen) + (Sl + Co (Sl o415 ) )

€ g2
1
g%((TR?—oc wal s wal))

1
<=
g

R((Trpwr,wn)) + - <51 lwr [ + Cs, <€2||U1||2_1,5,Y Fe? LY ) ),

3

Garding’s inequality and the first inequality of (4.127) imply the lower bounds
i
@128)  AR((Tp, Town, Town)) = 5 llonll* = vC (¥ lun |21 ey + [mnl2 1),
|¢mh21,s,'y>

1 c
SR Tion, Toon) 2 5P = € (el 22

Next we must deal with the % | Tesw||? term on the right in (4.124). The calculus gives
C Co
(4.129) gl < R((Tepegwr,wn) + Callen |,
Note that egef) decays like e 20z /e Anticipating the analogues of (4.122) and (4.129) for the

other wy, and noting that v (small) and C,, can be fixed independently of k& ahead of time, we
now choose ¢(z) uniformly bounded on [0, 00) such that

(4.130) R(2(eor + @) — Caeoe) = e %/¢ forall k.
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Now Tyrwy = ¢’'wy so an application of Gérding’s inequality gives
1 1 —0z /e 2 2
4.131) g5}%((( (Teo, + ') = CaTeper )wi,w1)) = gz | ¢ Flnl"de = Cellwn ™.
0

Combining the estimates (4.124), (4.127), (4.128), and (4.131) we obtain from (4.122) by
taking §; small:

1
(4.132) <’7+g>||w1||2+‘°”1(0)|2
Cs, C*a
< (Il 2 o) + <— e >||w||2

g

1
#0(74 )l s + 9mn 1),

where C'* depends on c in (4.128). Adding (4.132) to similar estimates for the other components
wg, of w and using the boundedness of ¢, we obtain for € small and provided o was fixed small
enough:

1 + 1 1/2 + + |¢mh|
@133) (4 )[lwtll+ () et O <O JES] mll+ =25

A similar argument on x < 0 yields

1 _ - 1 1z |7/}mh|
@130 =+ )l <CUHTT+ (- +7) o7 O]+ lul +

Combining the estimates (4.133) and (4.134) using w™(0) = w™(0) and recalling v; =
Tyw + er_jvy, we finally obtain the first estimate of (4.102) in the case —sgn(3) = 1. The
other case is done the same way.

3. The parabolic block. We now complete the proof of Proposition 4.28 by proving the second
of the estimates (4.102) for v/ := (vo, v3) as modified in Remark 4.29 and satisfying:

Hj

To get optimal estimates we need to switch now to the parabolic calculus. Since

1
(4.135) Oav' = Ty, V' + <H2> . V]=o0.

1 . 1 .
@136 (T - gl + [T~ sl S el sl

by Lemma 4.19 and Proposition 4.15, and

(4.137) -H( 5 — g%?)

1
[1(Pyss = g%)va ]l o1 S lvalla. + v

by Proposition 4.16, we see that v’ satisfies (4.135) if and only if it satisfies

1 H. 0 H!
r 2t I 2 — 2 " =
(4.138) OpV 5ngv <H3) + <h3> : (Hé) , [v] 0.
with
(4.139) [hsllp-r S llvalla. + [lvsl]-

Next set v/ = Py—1v’ and commute P, -1 through (4.138) using the parabolic calculus to see
that
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1 H/ 0 H//
n L "_ . 2 = 2
(4.140) Opv" = — Py V' =Py <H§) * <r0v’2 +r1v§,> (Hé’> ’

where r¢ and r_1 have orders 0 and —1 on the PH?® spaces now.

Let p = p(t, y) be a basepoint such that for z € R, || large, and ¢ near ¢ = (p,0,0,0) we have
a conjugator V as in (3.115) and symmetrizers ST as in (3.117). As before we can suppose that
U and ¢ are supported near (¢, y,0) and we let ¢ be a cutoff as in (4.112). Choose smooth cutoffs
¢'(t,y, ) and X' (¢) supported, respectively, near (t,%,0) and in |¢| > R, such that

(4.141) do=¢,  X'xmw=xn
If we set v/ = Py, »v"”, then we can apply the high frequency estimate of [30], Proposition 4.6,
to conclude for large enough R that
1 1 1 1
(4.142) S8 llaz + 2 Il + =V ) gz + = V3 (0)] 202

SIS |a. + IHS | + I3 lla. + V5] + V3 (0)] + V5 (0).

We remark that the proposition cited here is a quantized version of the frozen coefficient estimate
given for the parabolic block in Section 3.2.
Using (4.140) and the definition of v/ (4.116), we see that the right side of (4.142) is <

(4143) ||Hé|| + ||Hi/’)||A;1 + ||u1,u27u3|| + ‘Ul(O),UQ(O),U?,(O)’ + WJmh/El

Finally, we need to estimate the error v/’ — v"’. Some care is needed because operators from
both the homogeneous and parabolic calculi enter into the definition of v"”/. We have

@.144) V" =" a2/ = [1P1—grxV" llaze SIPa-1 PrograrV llazge + ller—2v'[laz/e
< ||Pa-1 (Progry — Tl—d"x’)v/HAg/g [Py Ti—grxV' l|azge + IV
=A+B+|V|.
The paraproduct estimates of Propositions 4.15 and 4.16 give A < ||V/||. Recalling (4.116),
(4.141) and using the homogeneous calculus, we get
(4.145) BS|Ti-pxV'llacse SNTa-greV legyze SNUIN+ 1¥omn/ell,

where () is the homogeneous weight as in (4.40).
Combining this and similar estimates of v/”/ — v/ in terms of the other norms appearing on the
left in (4.142) with (4.143), we find

1 1 1 1
(4.146) ZIVzllaz + Zlivsla. + = Iva (O)] arz + = v (0)] 12

S AR A

This is equivalent to the desired estimate for v/ = Ppv”.
This concludes the proof of Proposition 4.28 and thus also the proof of Proposition 4.23 in the

case 8 = (31.

4. The case 3 = (5. Finally, we prove Proposition 4.23 in the case § = (32, where (35 is

supported in vy > % (recall (4.17)). Let g}' be the principal part, homogeneous of degree one,
of g''. Then we can rewrite the problem (4.70)(a) equivalently as

1 1
(4147) 8mv1 — ngilzl’Ul = hlll + E(To’l}l + Tg12’U2 + Tgl3v3) = Hl, [’Uﬂ = 0,

(%) _l (%) _ 0 L _ o
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We have the estimates

1 1

(4.148) = (Irovr | + I Tgrzvall + 1 Tyssvsll) S < (lloall + ozla. + llos]),
1 1 1
gHTgBIUlﬂA;l = EHT(EQTOWHA;l < g||’U1H<eg)1/2,

since A; > /(e(). Thus, estimate (4.78) of Proposition 4.23 is implied directly by the following
estimates for (4.147):

1 1
(4.149) Il + 75\@1(0)!<501/2 S |H +adt,

1 1 1 1
g||U2HAa + g||1)3|| + %‘U2(0)|A;/2 + $’U3(0)‘A;1/2 S Hs|[y-1 +at

Let ¢(t,y, ) be a smooth cutoff supported near (¢,y,0) with p(Z,y) = p, a fixed but arbitrary
point of C. Choose also a smooth cutoff x(¢) supported in || > R with xx g = x . As long as

(4.150) pU=U and o¢r(x)y = r(x)y,

we can again make the reduction of Remark 4.29 and replace V' by T4, V.

The second estimate in (4.149) is proved exactly like the earlier estimate for the parabolic
block (4.135).

For the estimate of v; we use symmetrizers associated to symbols constructed from S*(z, ¢, (A )
as in (3.132). The symbols S* are defined for ¢ near ¢ = (p,0,0,0), so we choose cutoffs

¢1(t,y, ) and x1(¢) supported, respectively, near (t,y,0) and in |(| > R/2 such that

(4.151) Pr19=0,  XIX=X
and define self-adjoint symbols o< (t,y,z,¢) € I'1 by

@152) o = b5 (L),

We have for UT € CV~% and (t,y,z,¢) € supp(¢) x supp(x):
(4.153) R(oLgh' U=, U*) = (O)?|UP,
(U, UY) = (02U, U") +C{O|T (U, U)|* = C{OIUP ona=0.

Taking as Kreiss symmetrizers the self-adjoint operators

1 *
(4.154) ST =RT,: = 3 (Toe +(Tre)"),

we can now repeat the proof of Proposition 4.6 of [30], which uses properties (4.153) and
Garding’s inequality, to obtain the first estimate of (4.149). This argument is a quantized version
of the frozen coefficient argument given in Section 3.2.

This concludes the proof of Proposition 4.23 and therefore also the proof of the variable
coefficient, high frequency estimates of Theorem 4.4.

4.4. Low and medium frequency estimates

In Section 3.3 we have discussed the low and medium frequency estimates (3.6), (3.7) for
the frozen coefficient linearized problem, assuming that the » component of ¢ = (p,u’, h',7) is
zero (recall Remark 3.32). The corresponding variable coefficient estimates near the front, (4.19)
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and (4.20), can be proved by quantizing the arguments in the frozen case with semiclassical
paradifferential operators, provided we show that the perturbation r.0,v' is negligible in the
proof of those estimates. For this we need to work with the paradifferential form of the
problem (4.57):

1 h} 1 Th=Voo
(4.155) 0, U — ngsU =10 |+ z 0 ,
h Ths Voo
[U1=0, O+ —elydp+L(q°) -va=e onz=0,
where U = (u1, uz,0,uz). We define 7. € T'y and g§ and by

0 0 0
(4.156) Tye=Tye+| 0 0 0 | =T+,
dersgll denglz Czjbdregl3

where by 1= (Eﬁ?d)_l(g, q°). For low and medium frequency cutoffs x7,(¢), xas(¢) as in (4.15),
set Xim = X1 + X, apply T},,, to (4.155) and then shift

1
(4.157) T, TnU

to the right as a new forcing term. Since %lefg is bounded in I‘g, the term (4.157) can be
absorbed by the left side of the composite estimate (4.11); thus, it is an “a.t.”” term.

It remains to prove the estimates (4.19), (4.20) for the problem (4.155) with g§ in place
of ¢°. This part of the analysis is essentially identical to arguments in [12]. We refer to [12,
Appendix A.2] for the low frequency estimate and to [12, Section 5.4] or [30, Section 4.4] for
the medium frequency estimate.

Remark 4.30.— (1) If the perturbation r.0,v! were not negligible in the low and medium
frequency regimes, we would have to incorporate it into the main operator; but then it would, for
example, destroy hyperbolicity (H4), which is needed for the low frequency analysis.

(2) Note that r.9,v* is not negligible in the proof of the high frequency estimate. The weight
AZlon Hf?”A;l in (4.21) can be used to absorb the contributions from 7}, ,,_g12 and T} ,_g13
in (4.156), but it only “absorbs half” of the ¢ derivative in the contribution from T3, _gi1.

Fortunately, (H4) is not used in the high frequency estimate.
4.5. Estimates away from the front

THEOREM 4.31 (Estimate away from the front). — Assume (HO)-(H7) and (H10), and let

ko > 0 be as in Theorem 4.3. Assume u*®, f* are C° with compact support on Eiﬂ N
{|lz| = Ko}, ¥ € CCRY), and (u,) satisfies (4.2). Then 1) = 0 and there exist o, o such
that for v = 7o, 0 < € < gg we have:

(4.158) Yl + VA€ 10z yuall < C| £]-

Remark 4.32.— (1) The extra boundary condition in the transmission problem (4.2) and the
fact that u vanishes near z = 0 imply ¥ = 0. Thus, we just need to consider u with support as
above and satisfying

1
(4.159) g£<§7q5,5Dt,€%5Dy,58$)u:f.
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(2) Observe that away from the front, the u. component of ¢° as in (4.3) is no longer
necessarily small. On the other hand we do assume W (Z,q%) € U* and W(%,¢%) € U for | %]

large ((H10), part (f)).

The proof of Theorem 4.31 has much in common with the proof of Theorem 4.3, but is much
simpler since there are no boundary conditions, no glancing modes, and formerly singular terms
like %E(f, ¢°)u are now negligible. The Evans hypothesis (H9) is now irrelevant, there is no
need to write the problem as a first order system, and the only part of Section 3.2 that is needed
is Section 3.2.2.

The proof of the estimate away from the boundary in [30, Section 5.3] for the fully parabolic
case can be used here almost verbatim, but there are a couple of new points in the symmetrizer
construction for the partially parabolic case that we now discuss.

The symmetrizers are given by matrix symbols s°(¢,y,x,n,&q4). Set & = (n,&q4). The low,
medium, and large frequency regimes are defined by

(4.160) lesl<po,  po<leg| <R, R<IE

respectively.

In the low and medium frequency regimes, our strict dissipativity condition (HS) is equivalent
to the condition in the strictly parabolic case where the right side of (2.16) is replaced by
c|¢|?. Thus, the symmetrizer construction of [30, Proposition 5.6] applies without change for
bounded frequencies, provided we check that the perturbation r.d,v!, which is present now but
not in [30], is negligible for bounded frequencies. Indeed, ££; is bounded so ||r.0,u'|| can be
absorbed by the left side of (4.158).

The main new point is in the high frequency regime where one should first conjugate to block
form as in (3.20). The symmetrizer for the B22 block may now be constructed just as in the
high frequency argument of [30, Proposition 5.6]. After another conjugation of the A*! block as
in (3.28), with blocks C! satisfying (3.29), a symmetrizer s!! = diag(s}!) for the (11) block is
easily constructed satisfying

(4.161) sit=(sth)", s> I,
R(sL' M) > 1,,.
With these symmetrizers the estimate (4.158) follows in the usual way.

Remark 4.33.— The argument we have given in the high frequency regime uses the
observation made in Remark 3.13 that the conjugations of Section 3.2.2 are valid for profiles
W (z, q) satisfying only conditions (a), (b) of Definition 2.16. The parameter ¢ is also allowed to
have a nonzero r component in Section 3.2.2.

5. Approximate solutions

In this section we adapt the construction of high order approximate solutions in [12,17] for
the case of positive viscosity to the partially parabolic case considered in this paper. A precise
statement of the properties of the approximate solutions is given in Proposition 5.7.

We seek an approximate solution (uZ,2) to the N x N system (1.1)

d d
5.1) D 0ifi(w) —e Y 05(Bju(u)dhu) =0,
j=0 §.k=1

given a shock solution (u°,°) to the associated hyperbolic system.
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As before we introduce the unknown front © = v (¢, y), change variables Z = z — . (t,y),
drop tildes and epsilons, and rewrite (5.1) in our usual notation (2.20)

d—1 d
(5.2) Z Aj(u)oju+ Ag(u,dip)dqu — e Z 0; (Ej’k(u, dip)Opu) = 0.
j=0 jk=1

We are also given a leading profile U°(t,y, x, z), which in the new coordinates is given in
+x > 0 by

x x
(53) uO (tv Y, x, 5) = WO (Eap(t7 y)) =+ uO (ta Y, T + T/JO(ta y)) - UO (ta Y, ¢0(t7 y))
In particular we have

(5.4) U(t,y,0,2) =Wo(z,p(ty), U= U U,

Recall that we view (5.2) as representing two problems for (u, 1)), one on x > 0 and one on
z < 0 with transmission boundary conditions

(5.5) [u] =0, [Ozu2] =0 onz=0.

We add the extra boundary condition on {x = 0}:

(5.6) Op —eDyth + L(t,y) - us|s—o = O0° — e Ay + L(L,y) - U>(t,y,0,0)
where ¢(t,y) has been chosen so that

(5.7) 0(t,y) - U2 (t,y,0,0) > 0.

We seek an approximate solution (ug, %) of the form (dropping epsilons)

(5.8) =90t y) + et (ty) + -+ MM (L, y),
(5.9) u® = (Z/{O(t,y,l', Z) + Eul(tvyaxa Z) T+t €MUM(t7y7xa Z)) |z=zv
where

U (ty,x,2)=U(t,y,x) + VI(ty,z),

UL (t,y,z) = uO(t,y,x + ¢O(t,y))|+s>0, and the VI(t,y,z) are boundary layer profiles
exponentially decreasing to 0 as z — £oo.

5.0.1. Interior profile equations
We substitute (5.9) into (5.2) and write the result as

M

(5.10) Y FF(ty,a,2) =z + M ROM (L y,2),
-1

where

(5.11) Fi(x,2) = Fi(x) + G (2, 2),

and the G7 decrease exponentially to 0 as z — 4-00.
In writing out the F7, G’ we use the following notation.
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NOTATION 5.1. —

(D fa(u,dg) = fa(u) — N f]( u)0;.

) H(U®,dy*)d=Y0" Uo)a + Ag(U°, dep®)d,.

3) duAd(L{O,dwo)(v,w) 21 00y, Aq(U°, d®)w = 8, Ag(U°, dp°) (w, v), by symmetry
of Hessians.

() Bu)dd == 4;(w);6.

) B(u )d¢—— o fi(w)d;.
6) [A(u)] = h(us) — h(u—) on & =0, where uy denote the limits from the right/left at
Td = 0.

Next we recall our notation for viscosity matrices:

NOTATION 5.2. —

(1) Letv = (l/o, Vlyeun, l/d) = (—80w, ey —6d,11/), 1), VO = (—801&07 ey —ad,lwo, 1), and

111:(_607#17"'7_8(1—11?171)'

2) Bj,k(u) = Bng(U) if j < d, k<d.

(3) Bja(u,v)= Y1 Biw(uv if j < d; Bag(u) = Y1_; Bjs(w)v; if k < d.

4) Baa(u,v)= ij 1 Bk (w)vjv.

5) B0 1, is defined just like B; & except that (U, %) is substituted for (u, ).

(6) dBd (v,w) = Zl 0; O, Bd7dw.

The interior profile equations are obtained by setting the 7, G/ equal to zero. In the following
expressions for G7 (¢, v, z), the functions U’ (¢,y, z) and their derivatives are evaluated at (¢, y,0).
We have
(5.12) F~Y(t,y,z)=0,

Gl (t,y,2) = —8.(BY 40.U°) + 0. fa(U°,dy°),

(5.13)  FO(t,y,z)=H(U°, dy")oU",
GO(t,y,2) = —0.(BY 40:V"') + 9. (Aa(U°, dy°) (U + V)
—dBY J(U + V1, 0.V + BU )dy') + Q°(U°, VO, dy°, dy'),
where Q° = Q°(t,y, z) (for short) is exponentially decaying in z. In fact

d—1
G.14) Q=) A;U%)o;V°
0

U

-1
_|_

o

+

(A4;U°) — A;(U°))0;U° + (Ag(U°, dy®) — Ag(U°, dy°)) 0aU°

-]

1

(]

d—1
0; (B 40:V°) + " 0.(BG 1 0kU°)
k=1

1

V00R0,BY . (0.V°,04U°) + Z V9100, BY , (04U°,0.V°)

J,k=1 k=1

_|_

ﬂﬁgﬁTﬂ&“

d
Bjk(y Vk+l/k1/ Nozve + Z v; I/k—l—l/klj 10, Bok(anO,ﬁzVo)}.
J,k=1 k=1
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Forj>1
(5.15)  Fi(t,y,x)=H(U° dy")oU’ — P~} (z),
GI(t,y,z) = =0, (BY 40.VI+1) + 0, (A (U°, dy®) (U1 + VIHT)
—dBY (U7 + VIt 9.V0) + B(U®)dyi*!) + Q7 (t,y, 2),
where P7, ()7 depend only on (¥, dy*), (U*,dyk, dip*+1) respectively, and their derivatives,
for k <.

Remark 5.3.— (1) Recall that a term like (4;(U°) — A;(U°))9,;U° in (5.14) is evaluated
at (t,y,x,z) = (t,y,0, z). This introduces a fast decaying error which can be incorporated into
G'(t,y,2) in view of the fact that z = 7. This kind of observation is applied to all such errors.

(2) Define Q°(t,y, z) for z > 0 by fjoo Q°(t,y,s)ds and for =< 0by [°_ Q°(t,y,s)ds. As
we will see shortly, it is essential that the terms involving ' do not contribute to the jump of Q°
at z = 0. These terms come from the last line in (5.14), which can be expressed as

d
@( S () +u2u;>32kazv0) hegs).
J

k=1

Since this derivative is smooth at z = 0 and fjoos h(t,y,z)dz = 0, the desired conclusion
follows. The same remark applies to the terms involving ¢/ in the jump of Q7 at z = 0.

5.0.2. Boundary profile equations

In the boundary profile equations (t,y,x,z) is evaluated at (¢,y,0,0). These equations are
obtained by substituting the expansions into (5.5) and (5.6) and setting coefficients of the
different powers of epsilon equal to 0. Here U or V{ denote limits as x (respectively z)
approaches 0%.

From (5.5) and (5.6) we obtain the conditions:

(5.16) @ % U v =v2"4vo
b % UV =02 4 V02
© e Lo vii=0,v"2
@ % o’ — Lt y) - U =0 — U(t,y) - U,

(5.17) @ UMV =Utt v
b e U+ vi=ut? v
© €% 8,0 +0.v?=0,U0"+0.v'?
@ &' ot — AW+ U =—A 0.
and for j > 2,
(5.18) @ & UV =utt v
by & UP+vi2=07?+ V72,
© &7 o Ui? 0.V =0, + 0.V,
d) &l ol — ATt U2 =0.
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5.0.3. Solution of the profile equations

NOTATION 5.4.— (1) Set B, := Bg,d = Bg,aU°,1°), an N x N matrix, and B, := B2, an
s X s matrix (the reduced normal viscosity matrix).

(2)Set A, := Ag(U°,1°), an N x N matrix, and A = —(AL)"1 A2, an (N — s) X s matrix.

We will postpone a careful discussion of regularity of solutions until Proposition 5.7. Here we
note simply that we need to assume

(5.19) U° e H* ([-Tp, To] x RY), ¢ € HW ([=Ty, Tp] x RY)

for some large enough sy depending on M.
1. Note that F° = 0 already by our assumption that (U°, d4?) is a shock.
2.V, and the reduced profile equation. Recall that G~! = 0 represents equations on £z > 0.

Define
. F G7I(t,y,s)ds forz>0,
G/ (t,y,2) = ftoo :
f_OOG*J(t,y,s)ds for z < 0.

The equations G~1 = 0 are now
(5.20) 0= fi(® dy°) = f3 (U°,dy°),
B.0.U™ = f7(U°,dy°) — f2(U°,dy°).

We are given the lead profile and inviscid shock, so we may simply take VO(t,y,z) =
U°(t,y,0,2) = U°(t,y,0).

To establish notation used later, we solve for /%! in terms of 2/%-2, Y91 = w(lU 0’2), and obtain
the reduced profile equation for %2

(5.21) B.0.U™ = 7 (w(U?),u’?,dy°) — f3(w(U™?),U%2,dy"),
where B, is the reduced normal viscosity matrix defined above. Observe
(5.22) LU = A0, U2, Iyo2w = A.

3. Compatibility condition for V'!. With Q° as in Remark 5.3, the equations G° = 0 can be
written

(523) @ 0=ANUY + V) + AU+ V2) + (BU)dy')
— (A4 (U°,dg*) U + B(U°)dy") ' + QL.
(b) 33282V1’2:A31 (U1,1+V1,1) +A’2/2(U1,2+V1,2) —dB32(U1+V1,8ZVO’2)
+ (BUO)dy')” — (A4(U°, dy®) U +B(U%)dy')” + QP2
=D(t,y,2).

U° clearly satisfies the boundary condition (5.16). Suppose for a moment that [U/}?] =
[U%2 4+ V12] = 0. Then (5.23) shows that [i/!'!] = 0 if and only if

(5.24) [A4(U°,dy°) U +B(U°)dy']" = [Q%].

We seek a condition on [Aq(U°, dy)°)UL + B(U®) dip']? that will imply (5.17)(c) assuming
that (5.23) and (5.17)(a)(b) hold. Using (5.23)(b) and

(5.25) (U] =0, [0.V°] =0, U'+Vv'] =0,
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we compute

(5.26) [B,0.V"?] = D] = — [A4(U°, dy°) U + B(U°)dy']* + [@°]*.
Thus, (5.17)(c) holds if and only if [B,. V2] = —[B,d,U"2], that is, if and only if
(5.27) [A4(U°,d0)U" + B(U°)dy']* = [Q°)% + [B.onU"?].

Egs. (5.24) and (5.27) give us the boundary conditions for the problem satisfied by (U, dy!).
For later reference note that we can use (5.23)(a) to express

(528) U+ VM =AU +V"?)+H(t,y,z), where
(529) H(t,y,2)=— (AN ' K(t,y,2),
with K (t,y,2) = (BUO)dy")" — (Aq(U°,dy®) U + B(U°)dyp")' + QL.
4. Solve for (U!,dy!). These are determined by solving
(5.30) H(U%)oU" = PO(x),
[B(U°)dw' + An (U°, d¢®) U] = [Q%1],
[BU%)dy" + An (U°,dp)UY)* = [Q°)° + [B2H(ALY) 7' Q%] + [B,onU"?].

The right sides in the boundary and interior equations of (5.30) are initially defined for ¢ €
[—To, Tp]. We can modify them to be zero in t < —Tp + 0, say. We thereby obtain a problem for
(U',dyp) that is forward well-posed in the sense of Majda [26], since (U°,dy°) is uniformly
stable and 1! does not appear on the right side of the boundary equation (Remark 5.3). Thus, we
obtain a solution to (5.30) on [— 7;’ ,To]-

5. Stable and unstable manifolds. Let W§(¢,y) C R™ and W' (¢,y) C R” denote the stable
and unstable manifolds of the reduced profile equation (5.21) for the rest points U. i’Q (t,y,0). Our
assumptions (Lax shock, Evans condition) imply they intersect transversally in a smooth curve
containing U%2(t,y, 0, 0). With obvious notation let us rewrite (5.21) as

(5.31) B, o.UY = f2 (U2, dy°) — (U2, dy?).

The tangent spaces to W (¢,y) and W (t,y) at U%2(t,y,0,0), denoted W3 (¢, ) and W(t,y),
are the stable and unstable subspaces for the equations

(5.32) B0,V = A (U2, dy°) V2 — dyo2 B, (V'2,0.U°?),
where
(533) A, (U2, dy°) = By fr = (A2 — A2H(AL) THAL) (w(U02), U2, dy°)

and we use U = w(U®?) to regard B, as a function of (%2, d)°) now.

6. Solve for V', We first obtain V12 exponentially decaying to 0 as z — oo and then use
(5.28) to solve for V11, It is clear from (5.28) that 8,V 1! must decay exponentially to 0, and a
closer examination of (5.28) shows the same is true for V1:! itself. In fact, (5.29) implies

(5.34) H(t,y,+00) = U" (t,4,0) — (Als=100) U2

The equation for V12 is (5.23)(b). Because of the compatibility conditions that have been
arranged by the choice of (U!,4!), in order to obtain V! satisfying (5.23) and the boundary
conditions (5.17)(a),(b),(c), it suffices now to find an exponentially decaying solution to (5.23)(b)
such that (5.17)(b) holds: [U12 + V12| = 0.
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The solution is based on the observation, which can be verified by direct calculation, that
(5.23)(b) has the form

(5.35) B0,V = A, (U2, dy°) V2 — dyo2 B, (V'2,0.U%?) + F(t,y, 2),

where F is known (expressible in terms of already determined profiles) and exponentially
decreasing to 0 as z — *o0o. Now we can solve (5.35) with the correct initial conditions by
an argument based on transversality.

Let W7 (t,y) and W1*(t,y) be the linear submanifolds of R® consisting of initial data at z =0
of solutions to (5.35) that decay as z — +oo. Standard ODE facts [3] imply that W7 (¢,y) and
Wi (t,y) are translates of W§(t,y) and WY (¢,y). The sum of the dimensions of W7 (¢,y) and
Wi (t,y) is s + 1 and they intersect transversally, so their intersection is a line in R® with
direction 9,U%2(t,y,0,0).

Thus, we should choose initial data

(5.36)  (V2(t,y,0), V! 2(t,y,0))
€ (Wit,y) x W (t,y)) N{(v1,v2) ER*: vy — v =UL?(t,y,0) — Uy (t,y,0) }.

The above paragraph implies this is a transversal intersection of linear submanifolds of R?® of
dimensions s 4 1 and s respectively. Call this intersection (which is necessarily nonempty)

(5.37) L(t,y), the line of connection initial data for Vi’Q (t,y,2).

For a given (¢,y), any point on this line gives a choice of initial data for (5.35) corresponding
to a decaying solution that satisfies (5.17)(b). In view of the above discussion we now have V'
satisfying (5.23) and (5.17)(a), (b), (c).

To arrange (5.17)(d) as well, note that £ (¢,y) has direction

U%2(t,y,0) = (8:U"*(t,y,0,0),0.U">(t,y,0,0)).
So
(5.38) L(t,y) = {K(t,y) + sU(t,y,0), s € R},
for some initial point K(¢,y). The boundary condition (5.17)(d) holds provided
(5.39) OO (t,y) + Lt y) - (UL (t,y,0) + VI3 (t,,0)) =0.

Since £(t,y) - 9,U%2(t,y,0,0) # 0, there is a unique smooth choice of s(t,y) that gives V"
satisfying (5.39). We now have exponentially decaying V! satisfying (5.23) and (5.17).
7. (Continue). The solution of the remaining profile equations follows the same pattern:

(5.40) (U o) = V= (U ?) - V2 — .

The boundary condition for the problem satisfied by (U7,17) is always the compatibility
condition for V7. In view of Remark 5.3 the boundary problems for the (U7, 47) are all Majda
well-posed, linearized shock problems. The line £7(t,y) of connection initial data for V{ always
has direction U%2(¢,y,0).

Provided the index of regularity so in (5.19) is large enough, this process yields arbitrarily
high order approximate solutions with the properties summarized below.
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5.0.4. Summary
Let £(u, 1)) be the operator in the left side of (5.2). Our approximate solution (u®,®) as in
(5.8), (5.9) satisfies

T —
(5.41) E(u, ") =eMR=M(t,y,2) on [—?O,TO] X Ri,
[u“] =0; [&ug} =eMpM(t9) onz=0,
I —elyp" +L(t,y) - u3
= 0p° — eyl + L(t,y) - U (1,9,0,0) onz =0,
with remainders e RM and eMr™ as described in the next step. We can make [0,u3] = 0

without changing the other conditions in (5.41) by adding —zp(z)e™r™ (t,y) to ug ., where p
is a smooth cutoff equal to one near z = 0.

Remark 5.5.— (1) The construction does not require the full strength of the uniform stability
assumption on the profile Wy(z,p(t,y)). We need only the properties that follow from this
assumption by the Zumbrun—Serre theorem, Theorem A.2, in the low frequency limit; namely,
transversality of the connection and uniform stability of the inviscid shock (U, 1°).

(2) Observe that with the extra boundary condition, the higher profiles are uniquely
determined by this construction once the leading profile U°(t,y,0,z) and inviscid shock
(U°(t,y,z),v (¢, y)) are fixed.

In the next proposition we use the following spaces:

DEFINITION 5.6. —
(1) Let H* be the set of functions U (t,y,z) on [Ty, Tp] x RY such that the restrictions U

belong to H*([—Tp, To] % Ki).
(2) Let H* be the set of functions V' (t,y, z) on [~Tp, Tp] x R4~ x R such that the restrictions
Vi belong to C*° (R4, H*(t,y)) and satisfy
k —6]z|
(5.42) |05V (t,y,2)] 4. () S Chise for all k
for some § > 0.
PROPOSITION 5.7 (Approximate solutions). — For given integers m > 0 and M > 1 let

7 d+1
(5.43) 50>m+§+2M+%.

Suppose the given inviscid shock (U°,4°) is uniformly stable in the sense of Majda and
satisfies U° € H%, UY (t,y,0) € H* (t,y), and ¢°(t,y) € H*F1(t,y). Suppose also that the
connection given by Wy(z, p(t,y)) is transversal. Then one can construct (u®,1*) as above,

(5.44) 2 =90t y) + el (t,y) + -+ MM (t,y),

(545  u'=U(ty,z,2) +eU Ly, 3, 2) + -+ M UM Ly, 1, 2)) |,

where now Uﬁj’z(t, y,x) is replaced by U_Jy’Q(t, y,x) — xp(x)rM(t,y) for r™ as in (5.41). The
approximate solution (u®,¥®) satisfies

(5.46) E(UQ,wa) =eMRM(t,y,x) on [-%,Tg} X Efb
[u“] =0; [&cu;] =0 onz=0,
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O —eDyp + (L, y) - ug
=00 — e N0 + £(t,y) - U (t,y,0,0) onz=0.

We have

(5.47) Ul(t,y,x) € H2,  pI(t,y) € H* 2T (ty),
Vi(t,y,z) € H¥0~2,
Mt y) € HOT*M 73 (1),

and RM (t,y, x) satisfies

d+1
+

<Cq forlal < 5

(5.48) @ [(9,0y,20,)*RM] o,

t,y,z)

m
(b) ’(8t,8y,581)aRM’Lm( <Cq for|al <m.

t,y,x)
DEFINITION 5.8. — We will refer to (u®,4®) as in Proposition 5.7 as an approximate solution
of order M.

Proof of Proposition 5.7. — It just remains to check (5.47) and (5.48). (U°, ") has the given
regularity by assumption and V' by construction since U0|x=0 belongs to H®°.

In the linearized shock problem (5.30) satisfied by (U%, '), the interior forcing term
PO(t,y,x) involves terms in which U° is differentiated twice, and so belongs to H®0~2.
Similarly, the boundary data lies in H*°~2(t,y). Thus, Majda’s estimates for (5.30) imply
Ule Ho 2 U ;g€ H® 2 and ¢p' € H*~ 1,

V12(t,y, z) satisfies an ODE in z, (5.23)(b), in which the coefficients and boundary data
at z = 0 depend on (U, 4'); so V! € H*0~2. Following this pattern establishes the stated
regularity of (U7,17) and V7 for any j.

From the boundary profile equation (5.18) we obtain

(5.49) rM(t,y) = 0,U"? — 0, UM

Since UM (t,,2) € H*0~2M we have rM € H*0~2M~3 (¢ y). This finishes (5.47).
Finally, since zp(z)r™ (t,y) € H*0~2M~3 and the least regular terms in RM involve two
derivatives of zp(x)r™ (t,y), we obtain (5.48). Observe that we do not deduce (5.48)(b) from

(5.48)(a). (5.48)(b) is verified separately using (5.47) and the Sobolev embedding theorem. O

Remark 5.9.— (1) Let m and M be given nonnegative integers, and set
(5.50) ui=UL(ty,x),
ul® = (UL(t,y,2) — UL(t,y,0)) + Ui <t,y,x, g) o eMyM (t,y,% §>a
h.=edy' + - +Mdyp,

where the terms on the right in (5.50) are as in Proposition 5.7. It is now easy to check, using
(5.47) and the Sobolev embedding theorem, that uoi, 1/)0, u’f, and h. have the regularity stated
in Assumption 4.1 when m in (5.43) is taken to be 0. These functions are defined by our
construction just on the time interval [—Tp, Tp], but they can easily be extended to all time with
the extensions satisfying Assumption 4.1.
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6. Nonlinear stability
6.1. Error problem, iteration scheme, and L? estimate

We seek an exact solution of the transmission problem

d

6.1) (@ E(u ZA )05+ Ag(u,dip)dgu—e Y Dj(Bjx(u)Dyu) =0,
7,k=1
(b) [u] =0, [aqu]_o onz =0,

) — ey + £t y) - uzla=o
= 0" — A0 + (¢, y) - U3 (t,4,0,0) onz=0

that is close to an approximate solution (u%,1*) of order M as constructed earlier and satisfying
(5.46). Here as in (1.10)

(6.2) Dj=08; — (9;4)0, forl<j<d, Dy =0,.

We noted in Remark 2.8 that (6.1)(a) is the same as (2.20).
Looking for an exact solution of the form

(6.3) u=u®+elv, =1 +elo,
we obtain by subtracting (5.46) from (6.1) the following error problem for (v, ¢):
©4) (@) e F(E(u*+elv,p +el¢) — E(u, ) =—MERY,
(b) [v]=0, [0zv2] =0, Op—elyd+L(t,y) - valeg=0=0 onz=0.

The interior equation (6.4)(a) can be solved, at least formally, by the following iteration scheme,
which we shall call scheme I:

d—1
(6.5) Z A; (ua + €Lvn)8jvn+1 + gd (ua +elv,, d(z/Ja + Equn))@dvnH
=0
d—1
+ (Un+1 /d Aj(u+ se vn)ds>8u
7=0

1
+ (vnH . /duﬁd (u“ + svan, d(wa + 5L¢n)) ds) Oqu®
0
(9; — 0; (V" +€"¢y) 0a) (Bji (u* + "0, (O — O (v + €% ¢1) 0d) Vint1)

1
((9]- - 8j1/)“6d) ((vnH . /dquk (ua + svan) ds)
1 0

X (O — Ok (V* +e"¢n)0a)u ) Zag¢n+1z4( “)Oqu*

7=0
d
+e Z ajgbn-i-lad (Bjk: (ua + 5Lvn) (8k - 6k (¢a + EL¢TL)8d)ua)
Gk=1
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d
te Z (aj - 3j1/1“8d) (Bjk (ua)8k¢n+1adua) — _M-LpM

Jik=1

On the boundary we require

(6.6) [Vns1] =0,  [0uv24] =0,
Orbns1 — eLyPns1 + Ut Y) V2 1le=0=0 onz=0.

Remark 6.1.— (1) If all the subscripts n and n + 1 are removed in (6.5), we have exactly
(6.4)(a).

(2) If (v, dp) is set equal to zero in (6.5), the resulting linear operator appearing on the left
in (6.5) and acting on (v, 41, ¢n+1) is identical to the linearized operator used in the nonlinear
stability argument of [12].

(3) Note that many other schemes are possible; for example, one could switch a certain n with
n + 1 in some of the terms of (6.5). It turns out that scheme I leads to a difficulty with higher
derivative estimates (see Remark 6.3), so we replace it in the next section by a new scheme.

We can rewrite (6.5)
(6.7) Lo (u® + 50n, 0% + % ¢y ) vnta
+L, (ua t ek, 00 4 5L¢n)¢n+1 — _M-LpM
thereby defining £,, and L. The nonlinear error problem (6.4) can now be written
(6.8) Lo (u®+elv,p* +et¢)v+ Ly (u* + 50,0 +e¢) o
=—eM=ERM  on[0,Tp] x RY,
[v] =0, [Opv2] =0, Op—elydp+L(t,y) volg=0=0 onxz=0.

The problem (6.8) needs some initial conditions in order to be well-posed. Choose a C° cutoff
function 6(t) such that

1 fort>=p,
(6.9) o(t) = i< =

and for an arbitrarily large fixed K > 0, let x x (z) be a C§° cutoff such that xx =1 on |z| < K.
We will solve the following forward error problem:

(6.10) (@) Lo(u”+c"v, 0" +eb¢)v+ xx Ly (u® +elv, 9" +5¢) o
= —eM=LYt)RM  on [Ty, Ty] x RY,
(b) [v]=0, [0zv2] =0, Op—elyp+L(t,y) valg=0=0 onz=0,

-T
(©) v=0, ¢=0 int<TO.

A solution (v, ¢) to (6.10) is then a solution to (6.8) on [0, Tp] X Rz_l x {|]z| < K}.

Remark 6.2.— The cutoff x is introduced in order to allow us to treat front terms ¢,, on an
equal footing with interior terms in the Moser estimates below. With these cutoffs we can always
assume that ¢,, or ¢,,+1 has been replaced by x(x)¢,, or x(z)d,+1, where x(x) is any smooth
cutoff such that xxx = xx. We will usually suppress the x attached to fronts in writing the
estimates.
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6.1.1. New iteration scheme: scheme II
Consider again scheme I (6.5), where now a cutoff x x is always inserted as in 6.10(a). We
will describe scheme II by prescribing a simple rule for obtaining it from scheme I.
Corresponding to the splitting (v!,v?), there is a “first equation” and a “second equation”.
Changes are made only in the second equation of (6.5). Let Js denote one of the spatial
derivatives 0, 0. Consider the following products, which always occur with matrix coefficients
and powers of £’ attached:

(611) asvrrlLasU721+17 asvrllas(anrh 6svrlLvn+1>

652-¢7L8SU72L+17 6§¢nas¢n+1a 8§¢nvn+1~

The rule is: whenever such a product occurs in (6.5), switch the n and n + 1; keep the boundary
scheme (6.6) as before. This rule defines a new iteration scheme which converges, formally at
least, to the problem (6.10)(a)—(b).

Remark 6.3.— (1) When we refer to “products” 8SU}L85U,2L 41, for example, we mean, of
course, vectors whose entries are products of scalar components of the given factors. Such
products appear in the fourth line of (6.5) after the differentiation 9q(Bj (u® + fv,,)) is
performed.

(2) The products in (6.11) do not present any difficulty in the proof of the L? estimate for
the linearized problem corresponding to scheme I. This is because the size of the terms with
subscript n is controlled by Assumption 4.1. The difficulty occurs only in the higher derivative
estimates.

Let 0 = (,0,). To estimate §%v} 11, for example, we would apply the L? estimate to the
problem obtained by differentiating scheme I & times. A product like 9,v. 0502 41 in scheme I
gives rise, after OF is applied, to a commutator term involving the product

(6.12) (0%0v) (9502 ,1).

Since k + 1 derivatives fall on v} and we are trying to estimate 9*v}} 11, such a commutator is an
unacceptable forcing term in the induction argument. The L? estimate gives better control over
v2 than v}, so the switch resolves this problem. In the case of positive viscosity the control over
both components is equally good, so switches are not needed and scheme I is adequate.

We can write the new scheme more explicitly as follows. With £,, and Ly, as in (6.10) define
(6.13)  Lovppr = Lo (u® + P00, 0% + 860 ) vnt
+ ELBlasUiH + el Byvp iy + €L.A185v711+1,
qubnﬂ =Ly (ua + el v + ELan)qan + e B30, bns1 + X A2 Pt

Here the matrices B; are of varying sizes, have vanishing first row, and depend smoothly on
their arguments

(6.14) B; = Bj(u®,d*,e0,u”, 0yu®, vy, Ospn, 050y, 02 oy €)

for € € [0,1]. The matrices A; also have vanishing first row and depend smoothly on their
arguments:

(6.15) Aj = A; (u®, dyp®,e0,u”, 0yu®, vy, D5y, 052, €).

Remark 6.4. — Each switch precised by the above rule corresponds to making two changes
in the original scheme. A bad term of one of the types listed in (6.11) is subtracted, and a
corresponding switched term is added. The B; terms in (6.13) are the subtracted bad terms,
and the A; terms are the added switched terms.
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We will obtain the solution to (6.10) as a limit of solutions (v,+1, ¢,+1) to problems:

(6.16) @  Luvpi1 + xxLydnir = —MLOORM  on [Ty, Tpy] x RY,
(b) [Un-‘rl] =0, [8$U721+1} =0,
at¢n+1 75Ay¢n+1 +€(tay) '1)721-4—1 =0 OIIZZJZO,
To

(©) Vns1=0, ¢ns1=0 int<_T,

where the coefficients depend on (v,,, ¢,,) and other known arguments as described in (6.13)-
(6.15). We take the first iterate (vg, ¢g) = 0.

6.1.2. L? estimate for scheme II
It is not yet clear that scheme II (or even the simpler scheme I for that matter) satisfies the L?
estimate (4.11) of Theorem 4.2:

(6.17) lurllxz + lluzllxza. + VEllduz|x, + |ui(0)]
+ ’uQ(O)’AsAi/Z +€]8zu2(0) AATY2 + WJ
SC(IAN+ 1 f2llp-r)-

To see that it does, we need to relate the interior operator in (6.16) to the operator in the problem
(4.2) for which we have proved (6.17).
For £,, L as in (6.16)(a) with coefficients depending on (u®, 1%, vy, ¢, €), define

pele

(6.18) L(u, ) = Loyu~+ xxLypth,
LY = e Let
and consider the following transmission problem on R+1:
6.19) @ L£(u9)=f,
®) [u=0,  [0:.u’] =0, (d+N—elyp+L(ty) u’=ky onz=0,
© u=0, ¥v=0 int<-Tp/3,

where we suppose now that (v,,, ¢,,) has been extended to R%+1. Observe that when

(6.20) (u,9) := e (1, Gngr),  fi=eH(=eMTRO(RY),
then (6.19) is equivalent to (6.16) on [~Tp, Tp] x R,

NOTATION 6.5.— (1) Let D = (04,0y,05), 0s = (0y, 05), 0 = (04, 0y). Sometimes, we use
D, 9, or O to denote just one component of the corresponding vector operator.

(2) Let 9% denote the collection of operators g0 -+ Ozs=} such that ag + --- + ag_1 = k.
Sometimes d” is used to denote a particular member of this collection of operators. We treat D¥
and % similarly.

PROPOSITION 6.6.— Fix M > L > 1 and let sy be the index measuring Sobolev regularity of
the inviscid shock (as in Proposition 5.7). Suppose f € L?,

7 d+1
(6.21) so> — oM 4 2

2 2
and that there exists £g > 0 such that for € € (0,eq]:
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(6.22) |vn, @nl|™ = |Un,DUn,D v2, 00,0}, €020, 020,02, 020,02

n? n»-y n’
Gy OG0, G0, 0, . <

There exist positive constants 7y and €y such that for v > vy and 0 < € < €¢, the a priori
estimates of Theorems 4.2 and 4.31 for smooth data supported, respectively, near and away
from the front, hold for the transmission problem (6.19). In the estimate near the front (6.17), an

extra term C'|ky| A al/2 Should be included on the right.

Remark 6.7.— (1) With notation as in Proposition 5.7, observe that if we now take
(6.23) uf = U (t,y,2),
= (Ui(uy,x) - Ui(t,y,o)) + EZ/{jE (t,yw7 g) I
€

B =edypt 4 -+ eMaypM + eldg,,

then Proposition 5.7 and (6.21) imply that (ug,u.,h.) satisfies the requirements of Assump-

€1r’ve
tion 4.1. For r. to be determined (6.47), let us now set

(6.24) ¢ (ty,x) = (p(t,y), ul(t,y,z,€), hL(t,y), r(t,y,2))
with p(t, ) = (u3.(¢,y,0),u’ (t,y,0),dy°(t,y)) €C,

for (u.,u’,h’) asin (6.23).
(2) We need to allow k4 # 0 in order to carry out the higher derivative estimates below.

Proof of Proposition 6.6. — First we concentrate on the estimate near the front.
1. Principal parts. We shall write £7(u,)) as the sum of a principal part and a negligible
part

(6.25) LY (u, ) = L (u, ) + L (u, ),

where £ (u,1)) = (h1, hy) is negligible in the sense that ||hs]| + [h2|| 5= can be absorbed by
the left side of the estimate (6.17) by taking + large and e small. It then suffices to prove the
estimate for the operator £ in place of L£7. We will specify £ by showing how it relates to the
operator L) := e~ L,e", where L, gives the principal part of scheme I (6.5). Writing

(6.26) L (u, ) = L3 yu+xx Ly, 0,
L3 (u, ) = L] ju+ XKELPW

we will derive explicit expressions for the four operators on the right in (6.26) after providing
some notation.

NOTATION 6.8.— Given (d + 1)-tuples v, v defined in terms of fronts 1%, 1)* by v* =
V(d¢a)~: (—3“/)“,—31111“, ooy —04—19%, 1), we set:

(1) Bji(u,v*v°) = Bjx(u ) ifj<d k<d

(2) Bja(u,v®,v’) = ZZ B;. k( W if § < d; By (u, v, v0) = Z?:1 Bj r(w)vy if k <d.
(3) Ba,a(u,v®, ") = Zj i (W,

) Byalu0) = Byn(u.n.0%).
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(5) Let (u®, %) be the approximate solution and set
(6.27) ub =u® +elu,,
9b =90 + b,
u® =u + selv, forse0,1].
We first rewrite the total operator for scheme I,
(6.28) LY (v,¢) = Lyv+ xx L),

in a form that makes it easier to compare with the operator in (4.2). Here

d d
- 1
(6.29) Llv:= AL (0 +v)v + Z Aéajv —€ Z Bj (ub, Vb)ﬁjzkv + gEtv,
j=1 jk=1

where, with superscript “t” for total and ﬁj (u,v) :=A;(u) for j <d,

(6.30) Al = Ay (u?),
d
Azajv = gj (ub, Vb)ajv —¢ Z Ok (Ekj (ub, Vb))ajv

4 1
— sz (@v ‘ /dUEM (us, ve, l/b) ds) opu®, j=1,....d,
k=1 3

The front term in (6.28) is

631)  L]¢=—0ufo(u") (0 +7)¢

d—1 d
— Z (&;fj (u“) — Z €0, (Ejk (ub, l/b)(?kua)
j=1

k=1

S

d d-1
—Za&k(ékJ (ua,ua)a@.ua)>aj¢+e Z B 1 (u®) 0u 03,

k=1 G k=1

To derive the principal parts, we note that
632 wt(ty,2)=W(zq(ty2))me  ford:(t,y.z) = (p(t,y),al, hL,0)
with @, iL/s given by (5.50). For 7. to be determined and u’, h. as in (6.23), set

(6.33) q- = (p(t,y), ul, hl,re)
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and, recalling W (z, q) := Wy(z,p) + v/, observe

(6.34) Dpu® = C@W + 0, W - 6.@)

Z:%JZ:&E

1
= (gazw +0,W - azqg)

Z:qu:qs

Thus, in the expressions below, it makes no difference whether derivatives of W are evaluated at
(%,4c) or (£,q.); we choose the latter option.
‘We also use the fact that differences like

(6.35) (8jv . duéjyd(ub, Z/b))8ZW — <3jv . /duéjd(us, ve, Vb) ds) a.W, j<d
are negligible. To see this for terms involving 9;v", use the weight AZ! on the right in (6.17).

‘We have for the principal part of £ :

d d

636) L] ,v=Ao(u’) (@ +7)v+ ;A‘jaju - ej;1 Bk (ub, V") 030 + éEv,
where for 1 < j < d,
(6.37) A;0jv=A (u v )8 v — (6 W-d Bd](u Vb))ajv

— (00 duBra(u >>

Ev—(v d Ad(u VP ) (v d de(u v ))82
— din’d(ub, l/b) (v,0,W)0, W,

and
(6.38) AgOqv = Ay (ub7 Vb) Ogv — (8ZW : auéd,d(ub, Vb))adv

— (8gv - dyBa,a(u®,1°)) 0, W + Coqvt,
where

1
(6.39) eCoqvt=—¢ <8dvl : / By Ba,a (u®, v, 0°) ds> O,W 0,4

d-1 1
_s<8dv Z/@ulek(u v V)dS)@ku

k=17

1
+ <3dv1 . <3u1§d7d(ub,l/b) — /8u1§d,d(us,Va,l/b)d8>>azw.
0

Similarly, the principal part of £, is

d 1

1
(6.40) £, 6 =—=0:fo(W)(& +7)é — —Za f;(W)o;6
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0 ((Bj.a(W, 1) + Baj (W,v*))0.W)0;¢

+ Z B x(W)0. W36,
k=1

where W(z,q) is evaluated at z = £, ¢ = ¢°.

Since
(6.41) ub=W<g,qa>, VP =v(dy’ +ny),
by inspection of (6.36) and (6.40) we may conclude

1 T
(6.42) L) v+ xKrL) 6= EL'O <5’ q%,eDy,ev,eDy, 58x> v

1
- 6_2XKICO (gaqE7EDt7€77€Dy>¢+ Ecaw’ljl7

where £y and Ky coincide with the operators appearing in (4.2) when the entry r. of ¢° is set
equal to zero, and

(6.43) c= ( C%)

is given by (6.39).
Returning to (6.13) we see that all the terms involving matrices .A; or 53; there are negligible
(in the sense defined below (6.25)) except for e& A, 9,v} 1. This implies for scheme II:

~ ~ 1 x
(6.44) Ly v+ XKL, 0= gﬁo (g,qe, eDy,ev,eDy, 58x> v

1
- 5_2XK’CO <§aq€a€Dt7€75<€Dy>¢ + 6-’481‘@17
where
(6.45) e Ad vt = eCOvt + el A9 0 =€ (AOQI> v,

and 42! is a smooth function of its arguments
(6.46) APt = AP (u, dip®, €00, Dyu” vy, Os b, Osv2, DL, €).
2. Definition of r.. For A%" as in (6.46) set
(6.47) re(t,y, ) = A (u“, dip®, edpu®, Oyu®, vy, Os P, 0502, Oyl e)

and note that r. satisfies the requirements of Assumption 4.1. With this definition of r,
the transmission problem defined by the operator on the right side of (6.44) together with
transmission conditions (6.19) has exactly the form of the problem (4.2) for which the L2
estimate of Theorem 4.2 holds. We may allow a nonhomogeneous transmission condition in
view of Remark 4.5.

3. Estimate away from the front. A similar but much simpler argument shows that away
from the front, the principal part of the operator £ in (6.19) is precisely the operator
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1
(6.48) gﬁ(;qa,sDt,emsDy,s&ﬁ)u
in (4.159) for which the estimate of Theorem 4.31 was shown to hold. O

6.2. Induction step and higher derivative estimates

6.2.1. Preliminaries

The fractional weights in the estimate (6.17) are not convenient for the nonlinear stability
argument, because they lead to difficulties with Moser estimates. So we extract a weaker estimate
involving only integral weights on interior norms that is still good enough for the nonlinear
stability argument.

Consider again a linear transmission problem like (6.16) on €2 := [T}, Ty] x R?

(6.49) (@) Lyu+xxLly=f on,
(b) [u]=0, [amuﬂ =0, O —elyp+L(ty) u*=ky onz=0,
(©) u=0, ’(/)n_H =0 int<—T0/3,

where now we allow a nonhomogeneous transmission condition.
We continue to use Notation 6.5.

PROPOSITION 6.9. — We make the same hypotheses as in Proposition 6.6, but take all norms
on §) now. There exist 7y, €g such that for v = o and € < g9 with ey < 1, the problem (6.49) has
a unique solution (u, 1)) satisfying:

650 alleull+ VAl (Ve )|+ Ve (O] + VAl (26,06)

<c<||evtf||+ e”t<%k4,7k4,8k4>‘).

Proof. — 1. Estimate. The weights in (6.50) are derived directly from those in the estimates
(6.17) and (4.158) of Proposition 6.6 after recalling the definitions of A. (4.5), A. (4.6), and .
(4.7). For example, the weight u. A, on v in (6.17) satisfies:

(6.51) pele Z /7¢I

This is immediate for || < 1. For |e(| > 1, we have

5/2 5/4 5/4
c I ol
(6.52) pele ~ —3/2 ~ 372 + 174 + 1/ +€ln

|5/2.

The inequality a? + b > a*/°6%/° implies p. A, > /7|7, 7|, while a® + b? > a%°b*/° implies

peAe 2 /7|l Similarly,

1

(6.53) Jealy_q12 S 7

1
IS =+ I

for v < %

2. Existence, uniqueness, causality. A standard density argument [30, Section 5.1] using
the a priori estimate (6.50) gives uniqueness. For existence, observe that for a fixed ¢ the
(nonstandard) linear transmission problem (6.19) can be solved by the following scheme:

(6.54) LY ynsr = f =XKL, n,

[Un+1] =0, [Oyu2,1]=0 onz=0,
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’LL7L+1=O int< —TO/37
(6.55) Obn1 — eDyni1 = —L-u2 +ky onz=0,
wn+1 =0 int< —T0/3,

with (ug, o) = 0. We then apply the uniform estimates (6.50) to the solutions of (6.19) so
obtained.

A classical argument [30, Lemma 5.2] using the estimate (6.50) shows that causality holds: if
the data f and k4 vanish in ¢ < Tp in (6.19), then so does (u, ). This allows us to restrict the
norms in (6.50) to Q. O

DEFINITION 6.10. - (1) Let sz = 2. On € set

P
(6.56) [lp iy =D 17|V U] 1y g
7=0
P

p/_L'y Z - j‘e_’Ytaju(O)’[ﬂ(t,y)’
7=0

where we always suppose 0 < e <1 <.
(2) Set |uls = [u[ o (q),

(657) v, éull*™* == |vn, Dvn, D*v7, 00,0, 5831}%,858 02, 020,v2, b, O,
2 ¢n, 000,
and define ||v,,, ¢, ||** by the right side of (6.57) with €92v} removed.
Observe that

(6.58) |U|p Ly X M| |p,u7\7‘ |p,;w

The following version of the standard Sobolev estimate is easily proved using the Fourier

transform after taking extensions from Qi to R‘fl and observing that e~ 7" ~ C(v) on
[~To, To]-

PROPOSITION 6.11 (Sobolev estimate). — Let 0 < § < p — g. Then on 2 we have:
(6.59) |ul. < Niécl (7) (|u|p,u~/ + |8xu|p7u7’v)'
DEFINITION 6.12 (Norms for iteration). — For nonnegative integers k define
_ 2 1 2 1
(6.60) 1o, éllkpr = [0, VEVay0?, L+ 000!y, + 1020y,
2, 2 3,2
+’8 ’k 2,u’y+‘8 ‘k 3/_L'y+’v ¢’d¢’kﬂ'y

where a norm |u|; , ~ is defined to be zero if j < 0.

6.2.2. Induction step
The following proposition, proved below, is the main higher derivative estimate.

PROPOSITION 6.13. — Consider the linear transmission problem defining scheme II (6.16).
Assume L > 2, k>0, M — L — k >0, and suppose that sg, the index measuring Sobolev
regularity of the inviscid shock as in Proposition 5.7, satisfies

d+1

7
(6.61) so>k+ < +2M+T
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Suppose also that

(6.62) [[0n, @nl|" < 1.

For ~y fixed large enough there exists £o(7y) such that for 0 < € < eo(7y), the unique solution
(Vn+1, Pnr1) of (6.16) satisfies

M—-L—k

1 ok
(663) an-&-la ¢n+1 Hk,u,'y < C(k) (— + ||Un+1a ¢n+1 || ) ||Un7 ¢n| Ko,y + C(’Y)E

val

Assuming the above proposition for the moment, we now prove

PROPOSITION 6.14 (Induction step). — Assume L > 2,
d
(6.64) §+4<k<M—L,
and s satisfies (6.61). For C(v) as in (6.63) assume
(6.65) @ |lvn, onl" <1,

(b) ||vnv¢n||k,#;y < 2C(’Y)€M_L_k

for v large enough and e(vy) sufficiently small. There exists yy such that for fixed v > o and
0 < e < egg(y) small enough, the same estimates hold for (Vy11,¢n+1). The choices of vy and
eo(7y) are independent of n.

Proof. — Recall ;1 = T and note that by the Sobolev estimate

(6.66) v, )" < C1(m) ™|V, Bl ka1

WhereO<§<k74fg.
Let ap, = ||[Un, nllk,puy < 2C(7)e™~L=F_ The estimates (6.63) and (6.66) imply

667 ansi <C(k) (i n cmm‘*am) 20(7)MEk MLk (),

Vel
Choose 7y and £¢() such that for v > v and 0 < & < go(y) we have
1 1
(6.68) 2C(k)ﬁ <3
20(H)C1 ()P C )M < 5
Then
(6.69) ani1 < 20(y)eM—E7k,

Shrinking €o(7y) if necessary and using (6.66), (6.69) we have |[v, 41, Pnt1|** < 1. Solving
for e0%v} 1 using the first component of Eq. (6.16)(a) and shrinking €, (y) once more, we obtain

41, Gnsi || <1. O

Proof of Proposition 6.13. —

1. Preliminaries. Observe that the case k = 0 follows immediately from Proposition 6.9.

The main extra tool we need for the higher derivative estimates is the following weighted
version of the standard Moser estimate [9, Lemma 2.1.2].
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LEMMA 6.15 (Moser estimates).—For k € N=1{0,1,2,...} let a1 + -+ + a, < j <k,
a; € N. Then

(6.70) pI(0%wn) - (07w, ) g, < Ole,lk,w(lejl)

J#i

2. Tangential higher derivative estimates. The first step in proving (6.63) is to show

1 sk
(6.71) lVnt1s Pntalll pq < C(ﬂ + lvnt1, Pntall > Vi, &n iy
+ E||’Un+17 ¢n+1 K,y + C(IV)EM_L_k7
Val
where
(6.72) 10, 8llk .y = [0, VEVa 0?4 [0(0),0,09), -

To estimate [|vn 41, Pnt1lly ., We apply the L? estimate (6.9) to the problem satisfied by
=107 (Vi 1, dny1). Commuting #7979 through (6.16)(a), we obtain forcing that is a sum of

(6.73) —eM=E 197 (0(t)RM)

and commutator terms. In addition there is a nonzero commutator coming from the third
transmission condition in (6.16)(b); this is why we allow k4 # 0 in (6.49).
Thus, the L? estimate gives

674)  p" I vnr1,VEVL, T |, + R TI070(0),87 60,0709

< % (uk_j }EM_Lﬁj (G(t)RM) ’0%7 + p*~I|interior commutators|0%7)
C [ )
+— J 0?2 o v o[o7,0]v2 . (0 .
ol Gl PG ERURT R E NOR CRE ST

We treat the interior commutators below. The RM term on the right in (6.74) is < C/(y)eM— L~k
and the last term is < f |v(0)|k,u,~; both estimates are compatible with (6.71).

NOTATION 6.16. — (1) Let wy, = (v, /0y 402, G, dpr,).
(2) Let U™® = (u®, dv®, Oy (u®, dyp®),e0u”, \/E) and let A denote a smooth function

(6.75) A=AU¢ n)
Denote by B,, a smooth function
(6.76) B=B(U"*,ed2u”, 0,u,e" 'w,),

where the second and third arguments only occur linearly in terms where they appear. A and B
may change from term to term.

(3) For s € {1,2,3,...} and a function u with components u;, denote by 9‘*)u the set of
products of the form (9% w;, ) ... (0° u;, ) where s;+-- -+, = 8,8, > 1. If s =0, set A0y =1.

For the purpose of tangential higher derivative estimates we can write (6.16)(a) in the much
simpler form

(6.77) ADwy i1 4+ Bw, 1 = —MLo(t)RM.
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This is because the L? estimate gives the same interior control over all components of w,, |
(recall Remark 6.2).
Consider the commutator term

(6.78) PN [AD, & wngaly, -
This leads to a sum of terms of the form
(6.79) WA (U)W (e wn )0 D,
Yalell (Ebflwn)atDwn+1|07M,

where r +s+t=j and t < j.
If s # 0 we estimate

k—jla(s—1) a(.L—1 ¢
(6.80) 171047V (e w,, ) 0 Dwpy 1| 0
with (s — 1) + ¢ < j — 1. By Moser this is <

(6.81) C(|o(e" wn) |Dwp it |s + [Dwnit [k—1,7 |0 (" w0n)|[,)

|k—17u-ﬁ/
< C(H (U’ﬂv ¢n) ||k?“U«,"/ ‘Un-‘rla ¢n+1 ‘** + ||Un+1 ) ¢n+1 ||k,u,'y) .
If s =0 we obtain immediately (6.79) <

(6.82) C|Dwn+1|k—17unf < C”“n-s-l’(bn-i-l”k,uﬁ'

After dividing by /7 as allowed by (6.74) we see that the commutator (6.78) gives terms on the
right compatible with the intermediate estimate (6.71).
Next consider

(653 | B,
which yields terms
(6.84) phk=i ’8<T> (eafua, 8wua) o) (5L_1wn) 0wy 41 ’0 iy

where r +s+t<j,t<j— 1.
If s 40, (6.84) is <
(6.85) pFI010") (e03u®, 0,u) 0TV (M wy) 0w,
< O|(aut o) (92w, i,
+[0(e" 2 wn) [, [wnt1lk—1,7)-

If s=0,(6.84)1is <
(6.86) pFICIO (02u, 0,u®) D wna |y, < COT (202u, Dpu®)| st k-1,

< %|a<r> (e20%u”, £0,u) |, [ Wit |k, pusn-

In both cases the estimate is compatible with the intermediate estimate (6.71).
3. Normal derivative estimates. For the normal derivative estimates it is more convenient to
write (6.16)(a) in the form

(6.87) () vk, +ADw,yy +Buw,yy =M PARM,

(b) €d2vl,, +AD* w1 +Bwyyy =M FARY,
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where
(6.83) 5wn+1 = (811,}L+1,D’U72L+1, D¢n+1)5
D*wn—i-l = (D'Un-i-l ) anam,yU»rQHJ ) D¢n+1a a§¢n+1) .
One first shows directly from (6.87)(a) that
(6.89) |0vn 1,4 iy S C(llvns1, ns1ll 0, + (RHS of (6.71))) :=TR.

Note that we already have

VE

e V41, Pnta

(6.90) 10202 1],y < \QL Vit |y e

Next show using (6.87)(b) that

6.91) |0207 1], o S C(R+ 020511, 1%7).

For example, let us check the term
(6.92) \AD Wrt1 k= 2 S |AD Wny1 k- Lopyye

This leads to terms like

1 k—1—3 s L—1 t y*
(6.93) S 10 (" wp) 0" D wia |y, s
with s+t <j<k—1.1f5=0(6.93)is <
1
(6.94) ;ID*wn+1|k71,u,v~
If 5 # 0 (6.93) is

1 oy _ \
(6.95) ?ﬁ 11909 (8 M, )0 D w |,

1
< ;(|8(5L*1wn) |k727u,7|D*w"+1|* + |8(6L71wn) |*|D*wn+1|k_27uﬂ).

In both cases the estimate is compatible with (6.91).
Next we differentiate (6.87)(a) to show

(6.96) |8m 7l+1|k 2,1, C(RJF |8 Un+1‘k 1,0,y + | T n+1|k—2,u7'y)'
For example consider the term

(6.97) |A0200p 41,y
This leads to terms like

(6.98) ©F279)08) (eh " w,, ) 010,00
withs +t<j<k—2.If s=0(6.98) is <

”+1|0uv

(6.99) Clo,0v,

n+1 |k 2,1,7"
If s # 0 (6.98) equals
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(6.100) pF=279]00 Vg (- w, )9 0,00
< (|8(£L ~w

In both cases the estimate is compatible with (6.91).
Finally, we differentiate (6.87)(b) to show

n+1|0 Y

") ’k:73,/1,,'y|axavn+1|* + ’8(6 )| |6 81}""!‘1’]@ 3 u,’y)

(6.101) |83 Y PP,

(R+ |amvn+1|k—l,p,,’y + |837/U721+1|k:—2,u,,’y + |a§v}l+1|k—2,u,'y)'

This estimate seems to require a little more care.
Consider for example

Loz 1
(6.102) = |A8xvn+1{k73,u,'y
which yields terms
1 ; ;
(6.103) gﬂk_3_30|a<é> (EL_lw")ataivrlerl ‘0,#,’*/’

where s+t < j < k—3.
If s=0, (6.103) is <

(6.104) ‘ai n+1|k 3,H’Y v |a§ n+1|k 2,0,7"
If s # 0 (6.103) equals
(6.105)  pF 39100V (eM P w, ) 0" 920, 4|, .

-

C(’a(EL—an> ‘* |aﬂivn+1 ’k74,,u,'y + ’a(SL_2w”> ‘k74,;¢ % |a

Now taking the derivative of (6.87)(a) we get

1 ~ ~
(6.106) 020) ] < O<E|Dwn+1* 10, Dyl
1 1 i
+€—2‘wn+1‘*+g|5an+1|* +eM-tb 1)

1 _L—
<O Sl gl +475).

Since

(6.107) |0(e" 2w €

)|k: 4[L"{ 3| "|k,;¢,’y’

we obtain also from (6.105) an estimate compatlble with (6.101).
The other terms in the expression for §2v2 | are similar but easier to handle, so this concludes
the proof of Proposition 6.13. O

6.2.3. Contraction
NOTATION 6.17. — (1) Recall wy, = (v, /05 yv2, P, dpr,) and set (1 = Wi t1 — W
(2) As before let U™® = (u®,dy®, 0y (u®, dip®),e0,u”, /) and let A,, denote a smooth
function

(6.108) A, =A, (U, e wy,).
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Denote by B,, a smooth function
(6.109) B, =B, (U"*,02u”, d,u®,e" w,),

where the second and third arguments only occur linearly in terms where they appear.
(3) Let D,, and [E,, be smooth functions

(6.110) D, =D, (U, " (wp, wn_1)),
E, =E, (U"%,e02u®, 0,u®,e" (wn, wn—1)),

where the second and third arguments of [E£,, only occur linearly in terms where they appear.
(4) Let

©.111) Tty wasr = ([Vas1]s [0evi41], 0bni1 = eDySnir + £(L,Y) - vnia).-
The transmission problem satisfied by w,,+1, (6.16), can be written
(6.112) Ppwni1 := Ay Dwy 1 + Brw, 1 = -7 L0(t)RM
lvpy41=0 onz=0,
Wp+1 =0 int<—Ty/3.
Thus, the problem satisfied by (,,4+1 = wyp4+1 — Wy, 1S
(6.113) PnCot1 = —(Pp — Pp_1)wy,
I'¢hy1=0 onz=0,
Cnt1=0 int<—Ty/3.
The interior equation is
(6.114) Pnnt1=—(Ap — Ap_1)Dw, — (B, — Byo1)wy,
=el 1D, Dwy, + ¥ G Epwy, =Ty

The iterates satisfy the uniform estimates (6.65) for a k such that g +4<k<M-—L.Let

(6.115) ISl = |Cn|0-,u,’v + |vn(0) - Un—l(o)fo%w-

The L? estimate gives

C C c
(6116) C g = Fn Sy g 751/72 <n S, g 75[172 Cn 9
lSn+ll ﬁl 0.7 ¥ |¢n o,y Ve ISl

where L > 2. For + fixed large enough and 0 < € < £¢(+y) small enough, the iterates converge in
the [|w]| norm to some (v, /20, ,v?, ¢, dp). In view of the estimates (6.65), a standard argument
using weak convergence and interpolation shows that (v, ¢) solves the nonlinear error problem

(6.10) and also satisfies the estimates (6.65).
We summarize the results of this section and the paper in the following theorem:

THEOREM 6.18. —

(1) Assume (HO)—(H9) and (H10)(a). Let (U°,4)°) be an inviscid shock and (u®,*) an
approximate solution of order M as described in Proposition 5.7. Suppose L > 2 and

that the constants k, M satisfy

(6.117) g+4<k<M—L.
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Suppose s, the index measuring Sobolev regularity of the shock, satisfies

7 d+1
(6.118) So>k+§+2M+%.

Fix K > 0 arbitrarily large. For v fixed large enough and eo(vy) small enough, the
nonlinear forward error problem (6.10) has a unique solution (v, ¢) for 0 < e < go(7y)
satisfying the estimates

(b) H’Uv(b”k»u,'y < QC(V)EM—L—k,

with norms as in Definition 6.10.
2) Ifwe take

(6.120) u=u®+elv, =1 +elo,

then (u,) is an exact solution of the nonlinear transmission problem (6.1) on [0,Tp] %
]Rg_l x {|z| < K}.

Remark 6.19.— (1) Recalling the form of (u®,%®) (5.44)—(5.45) and using the estimates
(6.119), we derive Theorem 1.1 of the Introduction as an immediate corollary.

(2) It may appear that because of the use of the cutoff §(¢) in the forward error problem (6.10),
we have only proved convergence of parabolic solutions to the inviscid shock on a time interval
that is strictly shorter than the given time of existence of the inviscid shock. However, a uniformly
stable shock on a given time interval [—Tp, Tp) can always be extended to a strictly larger time in-
terval by [26,27]. If the given inviscid shock is so extended, then our result gives convergence of
parabolic solutions to the shock on the original time interval [—T{, Tp]. Our result does not give
convergence near the boundary points of the maximal time interval of existence of the inviscid
shock.

Appendix A
A.1. Low frequency expansion of the Evans function

In this section we derive a low frequency expansion of the Evans function D(q,() (2.53),
which implies Proposition 2.23 as an immediate corollary. Earlier versions and proofs of the
result were given in [36,37,39].

We give an expansion that is uniformly valid for ¢ € gi and ¢ = (p,’, h’) in a neighborhood
w of ¢ = (p,0,0), where p = (u*,u~,h) € C. To describe the expansion we need some
preparation.

A.1.1. The Majda uniform stability determinant
The partially linearized, transformed, inviscid shock problem associated to g considered by
Majda [26] takes the form

(Al) aZ’U*HO(27C)IU:g7
d—1
(0 (A[fo} +) inj [fj]> —[Agv]=h onz=0,
j=1

where \ = (it + ), HE is given by (3.183), [f;] := f;(u*) — f;(u™), and Ay is evaluated at
(£00, ). The transmission condition in (A.1) is the (full) linearization of the Rankine—Hugoniot
condition.
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Forgewand( € S4 ={C = (#,%,7): |(| =1, 4> 0} let FHOi (¢,¢) denote, respectively, the
generalized eigenspace of H, g[ (g, é ) associated to eigenvalues p with =Ru > 0. By hyperbolicity

(H4) these spaces have dimensions independent of f with 4 > 0, and are C*° on w X Sj‘f_. By an
argument of [19] (or [4, Chapter 7, Theorem 3.5]) combined with the block structure result of

[29], they extend continuously to w x ?i. Set

U

-1

(A2) m(q,C) = Alfol + )i Lf5].
1

<.
Il

By the proof of Corollary 3.45, F+ (g, f ) have dimensions N — N respectively, for a total
~ 0 - A~ ~
dimension of N — 1. We write AdjE Fy, (g, Q) for the images of the spaces under Ag(+00, ).
F\q 4

DEFINITION A.l.-[26,27] The Majda determinant associated to q is the N x [N determinant

(A3) A(g,6) = det(Ay Fiy- (,0), A7 Fry (a,€),mig; €)).-

The shock p is uniformly stable in the sense of Majda if A(g, f ) # 0 for CA € gi.
Majda showed, for example, that when the planar shock p is uniformly stable, there exist

nearby, piecewise C'!, curved inviscid shocks for a finite time.

A.1.2. Main result
The following theorem immediately implies Proposition 2.23. Recall

(A4) D(q,¢) = det(E*(¢,¢),E™(¢,¢))
and set D(g,, p) := D(q, p¢) for [¢| > 0.

THEOREM A.2. - Assume (H0)—~(H2) and (H4)—~(H8). There exists a neighborhood w of q,

po > 0, and functions ¢(q,C,p), Dm(q,C, p) both continuous on w x gi x [0, po] and C™ in
p > 0 such that

(A5) D(q.¢,p) = pe(a; ¢, ) Din(a: €, p)-
Here ¢(q,C, p) is nonvanishing on w x ?i x [0, po] and
(A.6) Din(4,€,0) = B(a) Mg, ),

where A is the Majda determinant, and (3(q) is C*° on w and nonvanishing at q if and only if
the connection W (z, q) is transversal in the sense of Definition 2.12.

A.1.3. Slow modes and fast modes a1
To compute D(q, ¢) for |¢| small, we make a special choice of basis. For ( e R™ "\ 0 let

(A7) F*(q,¢) = Fu.(¢,) & Fp,(,0),

where F'y, are the generalized eigenspaces of Hy (3.182) associated to eigenvalues y with
FRu >0, and Fp, are defined similarly. The properties of the conjugators W4 (z,¢,¢) (3.171),

Vi(q,¢) (3.182) imply

(A.8) Ei(QaC) = Wi(O,(],C)Vﬂ:(q,C)Fi(q,C)
The spaces Fp, (q,() are C* for ¢ € w and |{| < po small. By the analysis of [31] the spaces
Fi.(¢,C, p) = Fr, (g, pC) are O for p € (0, po] and extend continuously to [0, po]. Since
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(A.9) Hy(q.C.p) = pHy (¢,C) + O(p?),
we have in particular

We now choose bases {sjjE (g, ¢, p)}i=1,..n-n. for Fr, (q, ¢, p) with the same regularity as the
spaces, and bases {c}, } j—1,... s, for Fp, (¢,0).

Remark A.3.— Here as in Remark 3.31, after taking w to be a small ball, for example, we
obtain global bases {s, (q,(, p)}j=1,.. . ~v—n, with the stated regularity by applying the fact that
contractible base spaces admit only trivial bundles [35, Corollary 11.6]. Indeed,

(A.11) wx % %[0, po]
is contractible.

Next, in =2 > 0 we define N — Ny slow modes

. R zHy (q,C,p) oJ -
(A12) Ui(z,%CaP) = W:I:(Z7q7C)Vj:(Qa C) <e o pOSi(q’g,p)> )
j=1,...,N =Ny,
and sy fast modes
j 0
(A13) UZE(Zﬂq7C) = W:E(Z7Q7C)V:|:(q7<) (ezPi(q,C)ﬂ_i(q7C)cz’t) 5

jzla"'78ia

where 7 (g, () are projections onto the F generalized eigenspaces of Py (g, (). In addition we
may choose ¢* so that

0:W(z,q)
2Wa(2,9)

(A.14) U (2,¢,0) = ( ) in +£2>0,

where W (z, q) is the shock profile associated to p.
Since Wy — T as z — 00 and V4 (q,0) has the structure (3.184), we obtain immediately
from (A.12), (A.13):

. . J -
(A.15) Zgrfoon_L(z,q,C,O) = (si(q(,)C,O)> , j=1,...,N— Ny,

. i 0 .
luinooUZt(z,q,O): (O)’ j=1,...,54¢.

z—

Proof of Theorem A.2. — 1. We may write
(A.16) D(q,{,p) = e, ¢ p)det({U7 ) oy AU} Loy
{Ui}1<j<N—N+’ {Ui}1§j<s+) =0

= ¢(q,¢,p)D1(q, ¢, p),

for a function ¢(g, l, p) as described in the theorem.

2. For L(z,q,(,0.) as in (3.14) we first rewrite the linearized problem Lu =0 on +z > 0
in a form that will allow us to use the conservative structure to simplify the determinant. For
q = (p,0,0) and with A B] k asin (3.14), (3.15) set
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(A.17) A;(W(z,q),v(h)u:= Zj(z, Qu— (u- duéj,d)Wz, ji=1,...,d.

Then £L(z,q,(,d.)u =0 can be rewritten:

d—1
(A.18) 0= —(deuz)z + MMou + Zi?]j.AjU + (Adu)z
Jj=1
-1 d—1 N d-1
- Zinij,duz - Zink(Bd,kU)z + Z Bj knjneu.
j=1 k=1 Jk=1

3. Taking ¢ =0 in (A.18) and integrating fioo in £z > 0, we find

(A.19) —f?d}duz + Agu is constant on £ z > 0.

By (A.15) this constant is 0 for fast modes and Zd(j:oo, q)si(q, (A,O) for slow modes. Taking
components and rearranging slightly in (A.19), we find that the jth fast or slow mode satisfies,
on £tz > 0:

(A.20) (fast) AlLluy + Alluy =0,
~B3up. + Ayup =0, where A, = A — A3 (AL) AL
and

(A21) slow)  Abtuy + Aftus = (Ag(£00,q)5% (¢,€,0))
_ég?duzz + A"'UQ = (Avd(:l:ooa Q)Si (Q7 gv O))2

1°

4. The matrix coefficients on the left in (A.20), (A.21) are continuous across z = 0, so we
can use these row operations to simplify the first and third rows of the determinant in (A.16).
Let the slow (respectively fast) columns of the new determinant so obtained be denoted by V7
(respectively Vft), where VY, = (u?q, uftQ, uig). (A.20) implies that p can be smoothly factored
out of the entries of the fast N x (s + 1) submatrix,

Uj_ Uj
(A.22) ( j1> ( ;“) )
U3/ 1gigs. \Y3/ 1igsy

Since every term in the expanded full determinant contains at least one factor given by such an
entry from (A.22), this implies (A.5) with D,,, continuous up to p = 0.

5. To see how the jump column in D,,(q, f ,0) arises, we examine the variation in U}* with
respect to p near p = 0. Suppose v = u™ in (A.18) gives the first two components of the fast
mode U, and on z > 0 set

(A.23) P (2.4.C) == 9u"(2,4,C,0).

In (A.18) write (\,7) = p(\, 7)) and apply 0p|p=0 to get

d—1
(A.24) 0=—(Baap?), + (Aap™), + Mou™ + > inAu’
j=1
d—1 . d—1 _
=Y i Byaul =Y i (Bagu®) .
j=1 k=1
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Now recall (A.14) and the definition of A; (A.17) to see that the right side of (A.24) is a
perfect derivative. Integrate fjoo on z > 0 to find

(A25)  0=—Bgap? + At + A(fo(W(z,q)) — fo(uT))
d—1
Z”U f[i(W(zq) = fi(u") - B W) - Ziﬁkéd,sz-

j=1 k=1

With u~ being the first two components of U°~, we can obtain a similar equation for p~ =
9plp=ou". Setting p := p* — p and subtracting the equation for p~ from (A.25) at z = 0 we
obtain

d—1
(A.26) —Bd dP» + Aap = )\ f() + ZZ?]J fj (g C)7
j=1
or in components
(A.27) Al'py+ Al p2 = mi(g,€),

_Bd,dp2z + Arp2 =ma(q, Q).

6. We proceed finally to compute the determinant D1 (g, f ,0) for Dy as in (A.16). Subtract

the U®~ column from the Ui* column, recall (A.14), and apply the row operations using (A.20),
(A.21), and (A.27), to obtain

(A28) Di(q,C,p)
= det(A}Y) ~det (—Eﬁ?d) -
(ZJS—(Q,@O))ﬁO(P) 0(p) (A} 54+ (2,,0))1+0(p) O(p) p(m1(g:$)+0(p))

x det —2 u_2 U2 ur2 p(P2(2:$)+0(p))
(A7 5 (a:$,0)2+0(p) O(p) (A7 54 (2,€,0))2+0(p) O(p) p(m2(4,$)+0(p))

Here, for example, the five submatrices in the second row of the large matrix each contain s
rows and, respectively, N — N_, s—, N — N4, St — 1, and 1 column(s). Factoring p out of the
last column, we obtain (A.5) at (g, ¢, p) with ¢(g, C, p) the same as before. Recalling (A.10) and

computing Dy, (g, é ,0) using (A.28), we get (A.6) after a few switches of rows and columns,
where

(A.29) B(q) = det (A}ll)fl det(f/BvdZ?d)fl det(u_suy o)

up to a sign. The linearized equation (A.18) coincides with the linearized profile equation at
p = 0. Thus, recalling (A.14) we see that the last factor on the right in (A.29), an s X s determinant
of fast modes, is nonvanishing at g exactly when the connection 1 (2, q) is transversal. O
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