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KLOOSTERMAN IDENTITIES
OVER A QUADRATIC EXTENSION I

By HERVE JACQUET!
To the memory of Yasuko Jacquet

ABSTRACT. — We prove certain identities between Kloosterman integrals. They constitute the fundamen-
tal lemma of a relative trace formula for Hecke functions. The main application of the trace formula in
question is the following result. Let/ F' be a quadratic extension of number fields. A cuspidal automor-
phic representation afL(n, E,) is distinguished by some unitary group if and only if it is the base change
of an automorphic cuspidal representation(n, Fy).
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RESUME. — Nous prouvons certaines identités entre intégrales de Kloosterman. Elles constituent le
lemme fondamental d’'une formule des traces relatives pour les fonctions de Hecke générales. L'application
principale de cette formule des traces est le résultat suivantE3ditune extension quadratique de corps
de nombres. Une représentation automorphe cuspidal&.de, E.) est distinguée par un groupe unitaire
si et seulement si c’est le changement de base d’une représentation automorphe cuspidgie ég).
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1. Themain result

Let ' be a non-Archimedean local field of odd residual characteristic and charact@risic
denote byw a uniformizer, byg the cardinality of the residual field and by|z|z or simply
|z| the absolute value of an elementWe consider the quadratic unramified extension'.
Thusw is also a uniformizer foy. We lety,» or simplyn be the corresponding unramified
quadratic character af*. When necessary we use the notatjofy: and |z|g to denote the
absolute value o’ and E' respectively. However we adopt the following convention: when we
write an inequality (or an equality) suchja$ < |«™| the same absolute value is used on the two
sides of the inequality: thus the inequality stands for eithgs < |@™|g or |z|F < |@™|F. We
denote by the Galois conjugation of /F'. We also writer(z) = z. Thus|z|g = |2Z|r. We let
¥ or simply be an additive character @f whose conductor is the ring of integefs- of F'.
Thenyg(z) :=¢¥r(z + z) is an additive character d&f whose conductor i€ .

We denote byG,, or simply G the groupGL(n). We let N,, or simply N be the subgroup
of upper triangular matrices with unit diagonal aAgd or simply A the subgroup of diagonal
matrices. We define a character

f:N,(F)—C*
by

0(u) = ¢< > ui,iﬂ).

1<i<n—1

Let S(M(n x n,F)) be the space of locally constant compactly supported functions on
M(n x n,F'). We define the (diagonal) orbital integral of a functidne S(M(n x n, F)).
Itis the function onA,, (F") defined by

Q[P :a] := /@(tulauz)G(uluQ)dm dus.

The integral is oveN,,(F') x N,,(F') and the Haar measut: is normalized by the condition
/ du=1.
N.(OF)

In fact, the orbital integral is defined on the set of diagonal matricesM (n x n, F'), with
ajas - an—1 7 0. We let®, be the characteristic function éf (n x n, Or). We remark that if
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KLOOSTERMAN IDENTITIES OVER A QUADRATIC EXTENSION II 611
we defined? by ®*(X) = ®(*X) then
Q@,v:a]=Q['®,¢:al.

Similarly, we letM;, (E/F,n) be the space af x n Hermitian matrices, that is, the matrices
x € M(n x n, E) such thatz = z. We let¥, be the characteristic function of

My(E/F,n)NM(n xn,0F).

We define a character
u— O(ui)

of N,,(F') by

O(utr) = ZZJ( Z Uiit1 + Ui,i+1>~

1<ig<n—1
The notation is justified by the fact that is the product of an element &f (F') and an element
of the derived group oV (E).
If ¥isinS(M,(E/F,n)) we define its (diagonal) orbital integral. It is the functionop(F’)
defined by
Q[U,E/F,%:a]:= /\I/(tﬂau)ﬁ(uﬂ) du.
The integral is ovelV,,(E) and the Haar measutk: is normalized by the condition
/ du=1.

NH(OE)

Again the integral is in fact defined on the set of diagonal matrices\/ (n x n, F') such that
ajas---a,_1 7 0. Again

Q['W,E/F,¢:a] =QW, E/F,¢: a).
We say thatl and® matchand we write¥ « & if
@) QU,E/F,¢:a] =7(a)Q[®,¢: a]
where~ is thetransfer factordefined by
) v(a) =:n(a1)n(araz) - nlaraz - - an—1).

We set
Kp:= GL(n,0OF), Kg:= GL(n,0g),

we denote byH(GL(n,F)) or simply Hr the Hecke algebra, that is, the convolution
algebra of bi¥ g-invariant functions of compact support aiiL(n, E). We define similarly
H(GL(n,FE)) =HE.
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612 H. JACQUET

We recall the base change homomorphism
b:H(GL(n, E)) — H(GL(n, F))
of the Hecke algebras. §(f) denotes the Satake transformjothen

S(b()) (@) =S(1) ().

Equivalently, if = is an unramified representation 6f(F') corresponding to the character
f—=S(f)(x), we write S(f)(m) for S(f)(x). Then ifIT is the representation base change of
m we have

S(HI) =S(b(f))().
Our main result is as followdi{ndamental lemma for Hecke functipns

THEOREM 1. —For any f € H(GL(n, E)) the function

3) X - / o(‘'gXg)f(g)dg
GL(n,E)

matches the function

@) X [ wlxguh(o) ds
GL(n,F)

We remark that the same result is true in the case of positive characteristic. This can be
derived from the work of Ng6 [15]. The proof we give should extend to the case of characteristic,
provided the necessary modifications be made in the global theory.

Of course the Haar measures are normalized by the condition that the meashrgsaofl
K arel. If fis the unit element of the Hecke algebra this result was proved in [6, (8)].

We remark that the second function has the same orbital integral as the function

X / Bo(gX)b(£)(g) dg-
GL(n,F)

For any functionf on a group we define the functighby f(g) = f(g~"). We first note that

b(f) =b(f). Thus, at the cost of replacing the functigrby the functionf we may formulate
the result as the matching of the functions

X / Wo(‘gXg) f(g7") dg
GL(n,E)
and

X / Dy (Xg)b(f)(9~") dg.
GL(n,F)

Now let us apply the theorem to a functigrsupported on the s¢y € GL(n, E): |detg|g =
|oo™| g }. This means that the Satake transfafify’) is a homogeneous Laurent polynomial of
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KLOOSTERMAN IDENTITIES OVER A QUADRATIC EXTENSION II 613

degreem. ThusS(b(f)) is homogeneous of degrée:, that is, the functiorb(f) is supported
onthe sefg € GL(n, F): |det g|r = |®™|r}. Next the functions

X = 1x: |det X|p=|w—2"|5} / o('gXg)f(g)dg
GL(n,E)

and
X s s [ det X o2 1) / Bo(X9)b(f)(9) dg

GL(n,F)

match because the determinant is constant on the orbits. In other words, the functions

U (*gXg) f(g)dg
GL(n,E)

and
' (X g)b(f)(9) dg
GL(n,F)

match, where we have denoted ty and ®! the characteristic functions dfz N H(n x n,
E/F) and K respectively. We have established this whgns supported on a sefg €
GL(n,E): |detg|g = |@™|g}. By linearity, it is true for allf.

Equivalently, for anyf, the functions

U ('gXg)f(g") dg
GL(n,E)
and

' (Xg)b(f)(97") dg
GL(n,F)

match. This is the result established by Ngé in the case of positive characteristic in [15]. With

minor modifications in the global theory our proof applies to that case as well.

The above result (for general Hecke functions) was first established by Ye Yangbo in the case
n = 3. His slightly different approach to the problem influenced me, as well as the notes he sent

me. The reduction formulas are directly borrowed from his notes.

| am very grateful to Erez Lapid for useful discussions and a careful reading of the manuscript.
His insistence that a global argument could be used to finish the proof was very encouraging.
Moreover, his result in [10] is used in an essential way in the present paper. | also thank the

referee for a very careful reading of the manuscript.

The material is arranged as follows. In Section 3 we explain the global consequences of
our main result. This will serve as an introduction. In Section 4 we reformulate the result as

a matching of linear combination of characteristic functions of lattices, namely

0,0 YO0 )y (X),
A
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614 H. JACQUET

with specific constantéﬁ (see below for notation). In Sections 5-11 we develop the machinery
which allows us to conclude that there is a matching of this form, where the conépaate
replaced by unknown constar{tg,. This amounts to saying there is a linear magHg — Hr

such that

X / o ("gXg)f(9)dg
GL(n,E)

and

X / o (X9)5(f)(g) dg
GL(n,F)

match. The assertion thaﬁ = fﬁ is then equivalent to the equality = b. We check tha?
coincides withb on the unit element and on a set of generators of the Hecke algebra in Section 12.
To finish the proof we discusssimple trace formulan Section 13, where the base charige
replaced by the linear map. We conclude in Section 14 thatis an algebra homomorphism.
Thus$ = b. In Section 15 we discuss three lemmas about local distributions. In Section 16 we
briefly discuss more precise global results. We also indicate how to remove the restrictions on
the global quadratic extension of Section 2.

2. General matching

For the convenience of the reader we review the general notion of matching [6, (5) and (6)].
Thus we letE/F be an arbitrary quadratic extension of non-Archimedean local fields. We let
¥ or simply be a non-trivial additive character éf. Thendx is the self dual Haar measure
on F anddz the Haar measure afi self dual with respect to the characteg (z) = ¥ p(z + 2).

We letS(F) be the space of invertible Hermitian matrices. The gréy) operates oty (F')

by
s+—tgsg.
For¥ € C*(S(F)) we define as before the diagonal orbital integral

QU E/F,¢: a).

The measurédu on N,,(E) is the product of the self dual Haar measufes ;. More generally,
we say that an elemestof S(F) (or its orbit underN (E)) is relevantif the character

U Z V(i1 + Uigig1)
i

from N(F) to F is trivial on the stabilizer ok in N(E). A system of representatives for the
relevant orbits consists of the elements;a. Here M is a standard Levi-subgroup @fL(n)
containingA, that is,M is a bloc diagonal product of general linear groups. The grbupC A
is the center of\/, the matrix belongs tal; andw;, the longest element of the Weyl group of
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M, viewed as a group of permutation matrices. In particularalso notedv,, is the matrix

00 ... 001
00 ... 010
) | 00 100
0 1 ... 000
1 0 ...000

If M isoftype(ni,na,...,n,)withn; +ns+---+n, = nthenM consists of diagonal matrices
with block entries of sizén,ns,...,n,). The matrixw,, is the matrix

wn, 0 ... 0 0 0
0 w, 0 ... 0 0
(6) wpr - — .
0 0 ... 0 wn._, O
0 0 ... 0 0wy,
We define orbital integrals
@) Q[P ¢ :wpra] = / V[t awprau]0(ua) du.

The integral is over the quotient &f (E) by the stabilizer ofvy;a.
Similarly we let the groufi7(F') x G(F') operate orG(F') by

9—"91992.

We define the relevant elements@L(n, F') for the action ofN (F') x N(F'). The above matrices
wyra form again a system of representatives for the relevant orbits. We define orbital integrals

(8) Q[®, ¢ :wpral = /<I> [tU1U}MaU2:|0(U1u2) duq dus.

The integral is over the quotient of (F')? by the stabilizer ofvy;a.
We say thatl matchesd and we write¥ « & if

QW4 : ) =~(a)2®, 1 : d
where~(a) is defined as before. Then there are transfer faettus,a, 1) such that
Q[\II7 1/1 : ’LUMCl] = ’Y(wMa/a 1/})9[‘1’7 ¢ : HJ]WG]-
Thus the factory(a, ) = v(a) does not depend ap. Every ¥ matches @ and conversely.
We also need the same notions for the trivial case whgiereplaced by @ F' with Galois
actiono(z1,z2) = (z2,71). The space(F) is now the set of pairési, s) with s; = tsy. The
action of GL(n, E) = GL(n, F') x GL(n, F) is by

(s1,52) (t9281917t918292)~
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616 H. JACQUET

We say thatl € C°(S(F)) and® € C°(G(F')) match if

/\I/[tnganl,tnlang]ﬁ(nlng)dm dng = /@[tnganl]Q(nlng)dnl dns.

This condition is verified if

or

P(g)=¥(g,'9).

The other orbital integrals are then equal.

3. Applications

Our main result plus the recent work of Lapid [10] on the fine spectral expansion of the relative
trace formula imply the following statement. LBY F' be a quadratic extension of number fields.
We letn g, p or simplyn be the quadratic idele class charactefFddttached tdv. We fix a non-
trivial character) of F /F'. For technical reasons, we assume for now that every real pla€e of
splitsin E. If H is a unitary group im-variables, andl an automorphic cuspidal representation
of GL(n, Ex) we say thall is distinguishedby H if there is an automorphic form in the space
of IT such that

d(h)dh # 0.

H(F)\H (Fp)
We have then the following result.

THEOREM 2. —Suppose thdil is the base change of an automorphic cuspidal representation
m of GL(n, Fy). Then there is a unitary groufl such thafll is distinguished by?. Conversely, if
an automorphic cuspidal representatidinof GL(n, E, ) is distinguished by some unitary group
then it is the base change of an automorphic cuspidal representatadrGL(n, Fy ).

We first prove the second statement. Indeed, supposéltisatiistinguished by the stabilizer
H of an element € S(F). If v1,vo are places of above the same placeof F' then the
tensor producll,, ® II,, admits a non-zero linear form invariant under the group of pairs
(67" R~ ). Sinceg — II,, (*g~1) is contragradient tdl,, we conclude thafl,, = TI,,.
On the other hand, if is a place ofF" inert in F', w the corresponding place d& andIl,, is
unramified, therdl,, is invariant under the non-trivial element 6hl(E,, /F,). ThuslIl andII®
have the same components at almost all places. It followdtkall?. By [1] IT is then the base
change of a cuspidal automorphic representatioibfn, ). (This is a standard argument first
found in [5].)

We describe in more detail the (relative) trace formula which gives this result. The method of
proof we follow is perhaps not the simplest. However it can be adapted to the casesiohe
but delicate relative trace formula that we need to prove completely our main result.

We let '+ be the subgroup of’,* whose finite components are and whose infinite
components are all equal to the same positive number. Fhuss isomorphic toR**. For
z € FT we often writez for z1,,. We defineE™ similarly.
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KLOOSTERMAN IDENTITIES OVER A QUADRATIC EXTENSION II 617

3.1. Therdativetraceformulaover E/F

We denote byS the algebraic variety ofi x n invertible Hermitian matrices. Le¥ be a
smooth function of compact support on the spa¢e&} ). We consider the function

Ky(g) = Z U ['geg]

e€S(F)
and the integral

9) / / Ky (uz)0(utt) dudz

Et Nu(E)\Nn(Ex)

:/ Z Ut uzeu)d(uar) dz du.
F+ No(E)\Nn(Es) “€5(F)

Of course the Haar measures have to be normalized suitably. In this article we are only interested
in qualitative results and so we do not pay much attention to the normalization of the measures.
This expression can be computed in terms of orbital integrals (for the relevant orbits). Thus it is
asum

(10) >y /Q[\Il,w:wMaz]dz.
M acAy(F)

The first sum is over all Levi-subgroupgd of GL(n) containingA. The global orbital integral
Q[¥, ¢ : wpraz] is over the quotient oV (E, ) by the stabilizer ofvj .

We consider a set of representatiy€$ for the orbits of the right action ofL(n, E) on S(F).
For each¢ we denote byH ¢ its stabilizer and we choose a functigh on GL(n, E,), smooth
of compact support, such that

1) / FE(hg) dh = ('geg).
HE(Fy)

We introduce the usual kernel function

Kpe(zy)i= > f(z7"w).

YyEGL(n,E)

Then

K=Y % / FE(hyg) dh

§ YEHS(F)\GL(n.E) ye(p,)

= / K< (h, g) dh.
C HE(R)\HE(F)

Thus (9) is equal to

(12) > / / / K e (zh, u)0(uit) dh du dz.

§ Bt HE(F)\HE(F.) N(E)\N(E,)
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618 H. JACQUET

Now we make more precise the relation between the funclicend the functionsf¢. We
assume tha¥ is decomposable. Then the functiofisare decomposable.

To that end, we consider a plac®f F' inert and unramified iy and the corresponding place
w of E. We consider & which is inK,, := GL(n,O,,). Let ¥} be the characteristic function of
K, NS(F,)andf, aHecke function. Assume thét, has the form

U, (X) = / U, ("zX2) fu(z7) da.
Gy

Since the sek,, N S(F,) is a single orbit ofK,, we can write

! (‘geg) = / £L(hg) dh
He

wheref. is the unit element of the Hecke algelia,. On the other hand,

fulg) = [ 1) fu (e g)
Thus

/ fulhg)dh = / U (1 gege) fu (o) de = U, [5g]
H5

In other words we may and will takg = f,.
If v splits intowvy, v, then the spacé(F,) of Hermitian matrices at the placeis the set of
pairs
(91792)7 gQZtgh 976 GL(TL,FU)

In particular¢ viewed as an element &f( F,) has the formg = (&1, &), 16 = & The groupH$
is the set of pairghy, ho) with by = 5{1%51&, he € GL(n, F,). The relation betweel, and
the functionfs . is

V1,2

Uy [(*g2,'91) (&1, 82) (91, 92)] :/f517v2(h1917h292)dh
or more simply

W, ['ger, £ag] = / £6 o (65116 hg) dh
GL(n,Fy)

or, after a change of variables,

,['g.g] = / F6 o, (6 hg) db.
GL(n,Fy)
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Again if the functiong — ¥[tg, g] is a Hecke function ang; € K, we may and will take for
f$, ., @ Hecke functiory,, ,, independent of. Then

,['g.9] = / 76, (WY hg) d.

Now we appeal to the result of [10]. The expression (12) adnfitsesspectral expansioiVe
only write down thediscretepart of this spectral expansion. It has the form

(13) SO ORE(F).
¢ o

The sum is over allé. The representation$l which appear are, on the one hand, the
cuspidal automorphic representations and, on the other hand, certain Eisenstein automorphic
representations. As usual the representatibase normalized by the condition that their central
character is trivial o5+ If I is a cuspidal automorphic representation, therrdtaive Bessel
distributionR}; is defined by

RE(F)=3 [ n(emdn [ it du,
b HE(P)\HE(Fy)
where the sum is over an orthonormal ba&is} of II. If II is an Eisenstein automorphic
representation then is even andl of the formII; B II{ wherell; is a cuspidal automorphic

representation of7L(n/2, E,) with II not equivalent tdl;. The distributionR’f.I is defined
similarly, except that the integral over the unitary group is now a regularized integral [10].

3.2. There€lativetraceformulaover F

Now we consider a smooth function of compact supdodn GL(n, F). We associate t@
the usual kernel

Ko (x,y):= Z fI)(Jfl’yy).

yEGL(n,F)

We consider the expression

(14) / / Ko ("uy ™t u2)0(ur)0(uz) duy dus dz

FT (Nn(F)\N(F»))?

B / / Z D[ uy zeus)0(uyug) duy dug dz.
F+ (N, (F)\N(Fy))2 e€ GL(n,F)

As before it can be computed in terms of orbital integrals

(15) ZZ/Q[@,w:wMaz] dz.
M

[0

The expression (14) admits a fine spectral expansion. The discrete part of it is equal to

(16) > B (),
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where the sum is over all irreducible cuspidal automorphic representatioAs usual the
representations are normalized by the condition that their central character is triviak'on
TheBesseHistribution3,; is defined by

Z/ U1 U1 du1/¢z U2 duz,

where the sum is over an orthonormal b&gis} of . Here again the residual discrete spectrum
does not contribute because it is degenerate.

In turn, the global Bessel function is, up to a global constant, a product of local Bessel
functionsB,, (suitably normalized).

By, (@) = Z (ﬂ'v ((I)U)Wi) (wn)Wi(e).

W;

HereW,; is an orthonormal basis of the Whittaker modekhgfandw,, is the matrix (5).

To continue we consider a cuspidal automorphic representatioh GL(n, F,). If n is even,
we assume that® is not automorphically induced from a cuspidal automorphic representation of
GL(n/2, Ey), or equivalently, that® 2 7° @ ng, p. Thus the base chan@® of 7 is cuspidal.
We want to show thalil® is distinguished by some unitary group. To that end, wélbe a finite
set of places of” containing all the infinite places, all the even places, all the inert places which
are ramified inE, all the places where the charactef, has a conductor not equal ,, and
all the finite places wherg" is ramified.

We will choose the function®,, for v not in .S to be Hecke functions. We note thatd, is a
Hecke function and! the characteristic function dt, := GL(n, O,) then

(I)U(X) = /q)})(Xg)‘I)v (g_l) dg'

By regrouping the terms for which,, has a given value, our sum of Bessel distributions can
be written as an absolutely convergent sum

> (o) Broo (Do)

It will be convenient to use a principle offinite linear independender such sums.
LEmMmA 1. —If

Z (Too)Bro, (Poo) =0

for all @, then all the coefficients(r,) are 0.
Proof. —~We defer the proof to Section 140

Now we consider the sum of the distributiofg(®) for all = such thatr., = 7%, namely,

S Ba(®)

Moo =72
We further fix®,, for v finite in S so as to have
Brrg (q)v) 7& 0.
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Then the above sumfmite. We label the representations which appear in thestind < a < r.
They are unramified at all places¢ S. Next, by the strong multiplicity one, we can choose a
finite set of placed; = {v, | 1 < a < r} notin S with the property that

Va, WSQ o 7T3;.
For eachn > 0, we choose then a Hecke functidn _ such that

S(q)va)(ﬂga) #0, S(®,,) (ﬂﬁu) =0.

With this choice of functions the above sum reduces to the single &mi®). We set
S1 =S UT;. Furthermore the single term is in fact a product

(17) Bro(®) = cBro (Po0) [ S(@)(m0)
v Sy

with ¢ # 0.
3.3. Comparison

If ¥ and® satisfy amatching conditiorwe have the equality

(18) Ky (zu)0(ua)dzdu

F+xN(E)\N(Ex)

= K@(tufl,qu) dz0(uy) duy 0(usz) dus
FTx(N(F)\N(F))?

that is, the expression (14) is equal to the expression (9) (geometric identity). We now describe
the matching condition in detail. We assuieand® are decomposable.

Consider first a place inert in £ and letw be the place above. Then the condition
of matching®, «— ¥, has been recalled in Section 2. The product of the transfer factors
~v(wara, 1p,) over all inert places is 1 for o € Ay (F).

At a placev which splits intovy, vo the condition of matching is

,(9) = \I}v(t97g)‘

Note that this definition depends on an ordering of the{setvs }.

At every placev € S; we take a functionl,, which matches the functiof®, that we have
chosen previously. We note that for an inert place T} the function®, is a Hecke function
but the function¥,, needs not be invariant undéf,, and the functiong’$, need not be Hecke
functions.

Recall that forv ¢ S; we choosed, to be a Hecke function. We make this choice and the
choice of the matching functiodr,, more precise.

Now suppose is not in.S; and inert. Letw be the place of2 abovev. We will let f,, be a
Hecke function. We take

U, [X] = / U [z X2] fo(27") da,
®,[X] :/@},[Xx]b(fw)(x—l)dx.
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Indeed our main result asserts that < ®,,. In fact we haved, = b(f,,). In particular,¥,, is
supported on the set of elements whose determinant is a norm of the ext&hsiép.

Now let = be the set of such thatlet(¢) is a norm at each placeinert and not inS;. The
setZ is finite and only the elements & appear in our formula. We will [eT}; be the (finite)
set of inert places ¢ S; for which at least on€ € = is not in K,,, wherew is abovev. If v
is such a place and the corresponding place @& we takef,, to be the unit element of the
Hecke algebra. Thes, = ! and¥, = ¥.. We note that the functionfS, need not be Hecke
functions.

If vis notinS; and splits intavy, v, then®,, is a Hecke function and we take

v, [tg, g] = (I)v(g)'

Let T4 be the finite set of split places ¢ S; such that¢; is not in K, = K, for at least
one ¢ € Z. Again, the functionsf$ , need not be Hecke functions. For¢ Ty we take

V1,V2

5, wy = fur v, t0 be a Hecke function and we get

D, (9) = / forwa (R, hg) dh.

Thus®, is the Hecke function base changefof ., .

We now setl, = T U T4 and Sy = S; U T,. Suppose that is not in Sy and inert. Letw
be the corresponding place &f Then all the functiongs, ¢ € =, are equal to the same Hecke
function f,, and®, is the base change df,. Suppose that is not in.S; and splits intov,, vs.
Then all the functiong§, . £ € E, are equal to the same Hecke functifi ., and f, is the
base change of,, .,. The functionsf,, and f,, ,, are arbitrary, subject to the condition that
they are almost all equal to the unit element. Let us §4llithe set of places of above a place

of S;. Thus we may set
fS2 = ®fw X ®f1)1.v27

the tensor product being over all finite placesfohot in S¥. This is an element of the Hecke
algebraHSzE, tensor product of the Hecke algebras over all places ngf’inThen the function

P52 = ® P,

'U¢SQ

is in the Hecke algebra/S. It is the base change ¢~ .

The functionsb and¥ being chosen in this way, we get the equality of (15) and (10). It follows
that the two spectral expansions are equal as well. We can equate the discrete parts of the spectral
expansions to get the following identity:

(19) S TB(@) =YD Ry (/).
- c o

Indeed, we recall the standard argument. Fix a placEF split and not inSs. Let v, v, be the
two places above. Takef,, ., = f, ® fo, Wheref, is in H,, the Hecke algebra fa#L(n, F,),

and fp is the unit element of{,.. Thus f, is the image off,, ,, under the base change map
homomorphism. The Satake transformfgfmay be viewed as a continuous function on the set
X, of unitary, irreducible, unramified representationgif(n, F,,) ~ GL(n, F,, ). Both spectral
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expressions can then be viewed as measurés, 0o obtain the claimed identity we equate the
discrete parts of the measures. We have just obtained the identity under some restrictions on
fu, 0. - Sincew is arbitrary, we obtain the identity in general.

The representatiorig for which the distributiorﬂ%fT is non-zero are distinguished BY<. As
before (see the argument after Theorem 2), ifv, are above the same plac¢henIl,, =11,
(this is a standard argument).

If REH # 0then we can identify7L(n, F) to the productGL(n, F, ) X GL(n, F) and write
I, as tensor product,, ® 7. In other worddI,, is the base change af,.. By Lemma 21,
viewed as a distribution at infinitgz$,(f¢) is a multiple ofB,__ (®.,). Using Lemma 1 we get

(20) S Y RE(F) = DD Be(@)=Bro().

Moo=73 ®@nY £€X Moo =T,

Recall we have fixed the functiods, at all finite places irf,. Thus the functiong?, for w finite
in S¥ are also fixed. Thus the sum on the left iréte sum. Sinceb, = ®? for everyv € T, we
get from (17)

(21) Bro(®) = cBro (Poc) [ S(®0)(x).
vESs

On the left-hand side of (20)
Fo= o .
Thus
Rii(£4) = [ S(fu)(I)CLE)

wgSP
where we have set

C(H,ﬁ) :Rsn(féf by 135)7

and157 is the unit element o#{5z . The only terms which appear on the left of (20) are those
IT for which

[T st )= I S(@.)(x2).

wgSE v¢ESs
By the strong muiltiplicity result, the onlif satisfying this condition i§1°, the base change of
0. ThustHO(ff) # 0 for at least ong and we are done.
We remark that we could also use the above trace formula to prove that a distinguished
representation is a base change.

4. Theset up

We go back to the notations of Section 1. In particulgfF' is an unramified quadratic
extension. We denote 9™ or simply P the set ofn-tuples) € Z™ such that

AZAz 2
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and byP, the subset oA € P such that\,, > 0. We set

A= D" A A= (A=A, =),

1<ign
We denote byP,,, the subset of\ € P such thai\| = m. We recall the standard partial order on
P. We write
A=

AL < e, AL+ A2 <t + po, ..
M+t A S tHpet+ pnet,
A= ul.
If AeZ™ we set
wt = diag(w)‘l,w)‘z,...,w)‘").
If fis aHecke function, we set, fore Z",
Dr(\) = @y (=) = / f(uw?) du,
N (F)
Hy(\) = @ (@)% ().
Heredr is the module of the groud (F) N (F'). Thus ifdu is the Haar measure éf,,(F') then

d(aua™") = 6r(a) du.

The function\ — H¢(\) is compactly supported and symmetric and arbitrary. It is determined
by its values orP.

Let wf' be the zonal spherical function of parameters- (z1,7,...2,). We recall its
definition. Let¢g be the function such that

¢o(uak) = (511;/2((1J)|Cl1|81|a2\52 e lanl,

Here thes; € C are determined by the conditi¢zw|*: = x;. Then

wi(g)= [ ¢ol(kg)dg.
J

For any Hecke functiorf the Satake transform is defined by

S)(e)i= [ flo1et (g)do
LetS,, be the subalgebra of symmetric elements in
ClX1, Xa, .., Xy, (X X0+ X))
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The maximal spectrurfipec[S,,] of S,, is thus the set of the orbits of the permutation group in
(C*)™. If « is the unramified representation which admits the spherical funetfoas a matrix
coefficient we also writeS(f)(x) for S(f)(z) .

Recall that

I T L G e e e

= Y 0@ (@) e

= > Hp(\)ma(z)

AEP

where we have set* = 271252 - - - z)» andm,, denotes the monomial symmetric function.

If fis a Hecke function oizL(n, F') we set

(22) Wi(g) = / F(ug)6 ™ (u) du.
Nn(F)

In particular, ifg = a € A,, then this depends only on the absolute values of the entriesTdfis
allows us to write for any\ € 7,

(23) W) =Wy ().

Of courseW(\) = 0 unless\ € P. We denote by¥V}" the elementary Whittaker function of
parameters = (x1,z2,...,Z,). ThUs

W (ug) =0(u) "W, (9), W7 (e)=1,
and, for any Hecke functioff,
JwEng) @ dg=wEw [ o)k (6)do

In particular atz = e we get

(24) / W (9)f(g) dg = / F(g)walg) dg.

Let o (x) be the Schur function attached to\ee P. Recall the Casselman—Shalika—Shintani
formula [2,17]:

wk (Q))‘) = UA(x)(S;/Q (w)‘).
The left-hand side of (24) is
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/ W (a)Wy(a)dp' (a)da=> WF (@ )W\ (=)
An(F) AEP
= ZO’)\ _1/2(w )
AEP

The right-hand side of (24) is_, . » Hy(A)mx (). Thus for anyr we have

ST a@WrNoR P (@) = D mala)Hy (V).

AEP, AEP,

Now

o) = E K{m,

P2

with K3 =1 and

my = ZA’;\LO"u

n=A

with A3 = 1. BecauseH ; and W, are compactly supported, we can write

Hy(p) =" KkWy(N)op'2 (@),

AZ

W2 (=) = Y A3 ()

n=A

In particular, giveru € P, we denote b)flf the unique Hecke function such that
(25) Wir(A) = 0x,p0-

The functionsff, u € P, form a linear basis of the space of Hecke functions.
Then

/f W (g dg = S Wy (N5 (=) o (a).

AEP

In particular, for the functiorf{", we see that

S() (@) = 0" (@) or(@).

The same applies t&, with ¢ g (z) = ¥ r(z + Z). In particular

/fua

N(E)
Let b denote the base change homomorphist( GL(E)) — H(GL(F)). By definition
(26) S(b(f)) (@) = S(f)(2*)
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where on the left the Satake transform is for the gréiidn, F') and on the right for the group
GL(n, E). Equivalently,

F(@)WE (g) dg = / b(f) (9)WE (g) dg

GL(n,E) GL(n,F)
or
/ Wi(a a)da = / Wy (a)WE (a)d5" (a) da
A, (E) A, (F)

or

Do Wi (@ WE(@)or(wY) " =3 Wag (@)W (@)dr (=) .

A A
Thus

Z Wi (\)og (=) _1/2@\ (z%) = Z Wiy (N)dp (=) _1/20,\(33).
)

A

In particular, forf = f, we get,
5;1/2(w“)au (mg) = Z Wb(ff) ()\)5;1/2 (w’\)a)\(x).
)

To exploit this relation, we appeal to a simple lemma.

LEMMA 2. —For every\ € P there are unique constant4, ; < 2\, such that

=Y Oou(x)

p=2A

In particular 63* =1.

Proof. —For the sake of completeness we give a proof. Indeed

= Z K\my(z)
H=A
Thus
= Z K{m, (352)
PR
Now

my (x2 = may(x Z A

v=2u

Our assertion follows with

05 => KAy, O

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



628 H. JACQUET

The relation

ou(af, 23, x) = Z WisE) (/\)6;1/2 (w)‘_Q“)a,\(x)
A

is thus equivalent to
Wb(ff)(A)(S;l/z (w)‘_QH) = 93

Alternatively,

(27) b =3 on0* () L

A=2p

Next consider the orbital integrals of

U(X) =/\Ifo ("‘9Xg)f(9)dg
wheref is a Hecke function. We have

Q(U,E/F,%:a) z/@[tﬂau]ﬂ(uﬁ) du

_ / W, ['gag] ( / Fo(ug)0~ (i) du) dg

= / o' gag|Wy(g) dg.

Using the lwasawa decomposition, we get

= Z og (w’\)ilwf()\)/\llo [ tauw™]0(ua) du.
AEP

This is nothing but the orbital integral of the function

X 3 0p (@) T W () T [ X,
AeP

Likewise, the orbital integral of the functioh defined by

B(X) = [ o(Xg)(f)(o) dy
can be computed as the orbital integral of the function

X — Z 517 (wA)_lwb(f)(A)% [ka]
AEP

To prove the theorem, by linearity, we may assume ﬁwatff. Then we will have to prove
that the function

X =6 (o) Uy (" X o
E
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matches the function

X — Z 6;1(w>‘)5}7/2 (wAfQ“)%(I)o(XwA).

A=2p

We will set

(28) U, (X) 1= W (" X o),

(29) Py (X) =P (X ™),

(30) ®(X) =Y 0N (@) Da(X).
)

Our main result will be the consequence of the following proposition.

PROPOSITION 1. —For everyy the functions
V. (X), ©,(X)

match.

Before embarking on the proof we make some formal remarks. We define the Fourier
transforms of Schwartz—Bruhat functions df(n x n, F') andM,,(E/F,n) respectively by

P(X) = / ®(Y )b (Tr[~w, Xw,Y]) dY,
U(X)= / (V) (Tr[~w, Xw,Y]) dY.

Then the Fourier transform af , is ¢>"/# ¥ ;. Likewise the Fourier transform af, is ¢"1*| @5
Also the Fourier transform ob/, is q2"|ﬁ|<b:1. For the last relation we need the fact that

|
>
1>

A
0,

Now let us make some remarks about the action of the scalar matrices'*. We have
~v(az) =~v(a)y(z). Thus if & « ® then the functions

X = U(X2)v(2), X—d(Xz)
match. In particular the functions
X—¥(X2%), X—o(Xz?)
match. As a consequence if we know the proposition for
o= (1, 2y - -5 Hn)
we also know the proposition for
(1 +m, o +my ..., i +m)

for anym € Z. In particular, we may assumsg, = 0.
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5. Reduction formula

Consider an element @™ of the form (u,v) with € P", v € P* andn = r 4+ s. We first
prove the following reduction formula. We letbe the matrix withr columns and rows such
that

6 (10 f) = (Te(eX)).

Thus
0 0 1
0 0 0
€=
0O ... 0 O

Likewise we lety be the transpose ef Then

(¥ 0)]|-veoa

LEMMA 3.-For A€ GL(Ju|,F)andB € M(|v| x |v|, F) set

0

B(A: B) :/%,,) {YAA BngX} O(TreX)b(Tr Yoy) dX Y.

|det A| = ¢#!
then
B(A: B) =g VD, (4)3,(B).
Proof. —Explicitly

Awh AXw
‘I’<A'B)_/q’0 [YAw“ Bw’ +YAXw"

Under the assumptions of the lemma both sides of the identity to be proved are zero unless
Aw* € GL(r,Op). Assume this is the case. Thél'|| < 1. Moreover||AX =" || < 1. Hence
lYAXw"|| < 1. Moreover

(TreX ) (TrYn) dX dY.

AXw" = Awtw * Xw”.
Thus in fact
x| < 1.
Writing X = (z; ;) we have
|a:i7jw_“"+”j’ <1
Sincep; > v;, we havel| X || < 1 which impliesy)(eX) = 1. After integrating overX andY we
find

g g,

Awh 0
0 Bw”

}qswrw@#m)@y(]g). O
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We can compute the orbital integral &f,, .y as the orbital integral ob(A : B) on the product
group GL(r, F) x GL(s, F'). We arrive at the following reduction formula:

LEMMA 4. —-Suppose

laraz - ar| = ‘detw‘“‘.
Then
Q(q)(u,y)ad} 101,02, Qpy Qr41, Ar42 - - - an)
= q—S|u|+T|V|Q(q)H’,¢ 1,02, .., aT)Q(¢V7’(/} CAr41,Ap42, ... 7an)'
Similarly let

A AX -
\IJ(A:B):/‘I}(#,V) |:tYA B+tXAX w(Tl“éX)z/}(TrtXn)dX,

LEMMA 5. -Suppose
‘ detA\F = |’(ﬂ72‘u}F.
Then
W(A: B) =g 22y, (A)w,(B).
Proof. —Explicitly

ot Aot wlt AX "
V(A:B)= /‘I’(#,u) [wytyAwu w’Bw’ + o' X AX w

x 1(Tr eX)w(TrtYn) dX.

Under the assumption bot sides of the identity @relessw* Aw* € GL(r, Og). Assume this
is the case. Then the matrix—* X w" is integral. It follows that the matrix

T XAX " ="' X Hot Aot o * X

is integral. The matriXX' = (z; ;) is itself integral with|z; ;| g < |@!* ™"/ |g. Integrating ovetX
we get our result. O
LEMMA 6.—-Suppose
a1ag - ap|p = |detw_2”fF.
Then
QY (), E/F 4 ar,az,. .. a0, Gry1, 0042, .., 0p)
= q*28|“|+2T|V‘Q(\P#,E/F,z/J ca1,a2, ..., 0) QUYL E/F ) apg1,Grya, ..., Gn).

6. The Kloosterman transform
As in [6, (5)], we introduce theormalizedorbital integrals
Q[®, v : a] = |a1||aras| - laras - - an_1|Q[®, ¢ : a),
ﬁ[\IJ,E/F,w cal =n(ar)n(araz) - -nlarag - an—1)
X |lai||laraz|---|atag - - an—1|QY, E/F, ¢ : a].
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We will denote byZ,, the space of functions on (F*)"~1 x F which are normalized orbital
integrals, that is, of the form

w(ay,ag,...,a,) = ﬁ(@,w ta),
for a suitable? € S(M (n x n, F')). Recall that it is also the set of normalized orbital integrals
Q[U,E/F,% : d].
By conjugating by an appropriate diagonal matrix, we see that the space does not change if we
replacey by . If w is in the spaceZ,, its Kloostermantransformk,, ,,(w) is a function in

the same space. To define the Kloosterman transform, we define inductively two sequences of
functions. First we set

Jo(al,ag, RN ,an) = ,ug((ll,ag, .. .,(ln) = w(al,ag, .. .,an).
Then we set

ui(ar,as, ... an_1,b1) ::/Uo(al,ag,...,an_l,an)w(—anbl)dan,

1
o1(a1,a2,...,0n_1,b1) ,Ul(alya2a-~'7an—17b1)¢( )
ap—1b1

Inductively, if 1 <7 <n — 1 and we have defined
oi(a1,a2,...,a4n_3,b;,b;—1,...,b1),
then we define
wit1(ar,ag, ..., an—i—1,bi41,bi,...,b1)
::/Ui(al,ag,...,an_i,bi,bi_l,...,bl)w(—an_ibiﬂ)dan_i
and
oir1(a1,a9,. . an_i—1,bi11,b4,...,b1)
= ui+1(a1,a2,...,an_i_l,b¢+1,b¢,...,bl)w<;>.

An—i—1bit1
In particular

Un(bnabn—la .. '7b1) = ,un(bn7bn—1a . 'ab1)~

Note that our definition of,, andoy is in accordance with the convention that an empty product
has the valueé. We emphasize that the integral definjing ; is absolutely convergentoreover,
for fixed i, the functionsr; andpu; have thesame supportWe set then

IC7L,1/)(b17b23 cee 7bn) = N’n,(bna bn—la <o 7b1)-
Forn =1 the Kloosterman transform is just the ordinary Fourier transform.
Just as for the ordinary Fourier transform, there is an inversion formula. More precisely, let us
set
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ﬂnf’i(b17b27‘"7bi7an7’i7a’n7i717'"7041) = O—i<a17a27~"7an7i7bi7b’i717"'ﬂb1)7
Fp—i(b1,b2, .. b an—iyan_i—1,...,a1) = pi(a,az,...,an—i,bi;bi1,...,b1).
Then
Op—i(b1,b2,... . bisan—i, @p_ij_1,...,a1)
. — 1
= fln—i(b1,b2, ... biyan_iyan_i—1,...,a1)0 5
i n—3

and, from the Fourier inversion formula,

/6n—i—1(b17b27-~-7biabi+1aan—i—1,-~-al)w(biﬁ-lan—i)dbi-&-l

= fin—i(b1,b2,...,bi,an_i,Gn—i_1,...,01).
In particular,

GnlGn,n-1,...,a1) = polar,as...,an).

In other words, the composmdﬁ 5 © KCn 4y is the identity.

There is a principle of symmetry we can exchange the variglalgsand (b.), the left and
the right, and the characterand the charactes.

Then the main result of [6, (5)] are the following identities:

~/\

(31) Koy Q[@, 15 0] = Q[D, ) o],
(32) Kn QU E/F, ;0] = QU, E/F, ¢ : o].

7. Definition of the diagrams

For n =1 the Fourier transform has the following property.dfis supported on the set
\a| < |@"| and its Fourier transforn is supported on the s@f < |w!| andt +r > 0 theng and
¢ are0. In other words the support @fand¢ are empty so that the above support conditions are
trivially verified. Our goal in this section is to extend this result to the Kloosterman transform.
To present the proof in a convenient way, we introduce the notiorkdbasterman diagram
Each diagram has two rows consisting of indexed boxes such as

k k

[
wherer is an integer. In the bottom row, the boxes are a shorthand notation for
|a1a2~~ak\<|wT’, \a1a2~~ak|:|w’"|
respectively. In the top row they are a short hand notation for
|brbr—1---b1| < |@"], |brbr—1 - b1| = |="|

respectively. In each diagram the indices are increasing in the bottom row and decreasing in the
top row. Indices in boxes in the same column add up te 1. For consistency we introduce
dummy boxes

0
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Thus, in the bottom row say, a diagram

k k+1

stands for

laras---ag| = ‘wr , lak+1] < ’ws—’".

All our diagrams will have the following form:

n—u n—u—1 n—u—2 v+ v+1 v
‘tnfu ‘ th—u—1 ‘ ‘tn7u72 ‘ v [ tyts ‘ tyt2 ‘ tyt1 ‘ =0
(33)
u+1 u+2 u+3 n—v—2 n—v—1 n—uv
EAFeer)[Feva] [Feva] - [amo] et [oe]

Here0 <u<n,0<v<n, ut+v<n. We shall call the integet — v — v > 0 thelengthof the
diagram. We shall say that the diagrameéducedf p = 0,6 = 0. The reduced diagram attached
to the above diagram is the one obtained by subtraétiiigm each entry in the first row and
from each entry in the second row. The bottom row is a shorthand notation for the conditions

)

(34) laras---a,| = ’wp

(35) |a1a2~~ai|<’w”, u+1<i<n—o.

Of course ifu = 0 thenp = 0, in accordance with the convention that an empty produdt is
Likewise the top row is a shorthand notation for the conditions

(36) |b1b2"'b1J|: |w0|a

In what follows we letv be a function in the spacg,. We will consider such a diagram. That is,
we will have chosen (sometimes only implicitly), as, . . ., a,, andby, b, . .., b, satisfying (34)
and (36) respectively. We will say that the diagrhoidsif the conditions indicated by the bottom
row hold on the support of the function

, v+1<i<n—u.

(au+1aau+Qa .. ';an—v) = ,va(alaa% ey Qo Q415 Ay 42,5 - - '5an—v7bvybv—17' . 'abl)

while the conditions indicated by the top row hold on the support of the function
(bnfua bnfufh sy b'u+17 b'u> bvfla sy bl)

— ,Un—u(alaa% oy O b b1, by by, '7b1)-

Of course we could replace, and y,,,, by o, ando, _,, respectively. We shall say that the
diagram holddrivially if the above functions are in fact identically That is, for the given
(al, a2, ..., au) and(bl, bg, Ceey bv),

:u’u(alaan ceey Quy Q415 Qut-25 - - 'aan—v7bv7b’u—17' . 'abl) =0

for all (ay+1,aut2,---,an—y) and similarly forpu,,_,. In fact, the vanishing condition fqu,,
implies the vanishing condition fqr,, _,, and conversely.

A simple property of the diagrams is the following one. Suppose that the diagram (33) holds.
Fix i, v <i <n —u. Choose;,b;_1,...,b,s+1 Such that

bibi—1 -+ byy1| = |wti_0’
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or equivalently

(38) |bibi—1 - by| = |

Then the following diagram holds:

n—u n—u—1 n—u—2 1+2 i+1 7

‘tnfu ‘ ‘tnfufl ‘ ‘tn7u72 ‘ oo | tigo ‘ tiv1 ‘ =1t
(39)
U u+1 u+2 3 n—i—1 n—i
[=p][rusi||[rurz]  [Tuss]| o [Tnmic1 ]|

Indeed, for the bottom row this follows from the fact thatis obtained fromu,, by repeatedly
multiplying by a non-zero factor and taking a Fourier transform. For the top row this is trivial. In
particular, if the diagram (39) holds trivially for all choices@f,b;_1,...,b,+1) satisfying the
above condition, then the diagram (33) holds witheplaced by; + 1.

By symmetry, a similar assertion is true for a diagram of the form:

n—i n—i—1 n—i—2 v v+2 v+1 v
‘tnfi tn—i—1 ‘ ’tn7i72 ‘ N ‘ Lot ‘ tot1 ‘ =0
(40)
7 1+1 u+2 u+3 n—v—2 n—v—1 n—uv
=T |ri+1 | |Tu+2 | | Tu+3 | ce |Tn—v—2 | |Tn—v—1 | | Tn—v |

We shall say that diagrams of the form (39) or (40) are subdiagrams of the diagram (33).

8. Theweight of adiagram of length < 2

We shall associate to every diagrdprof length an integetw (D), its weight By definition the
weight of D is the weight of the corresponding reduced diagran® i reduced them (D) is
the sum of the entries dp. If D has length one, that is, has the form

(41)
u u+1

with v +v + 1 =n, then
w(D)=t—0+r—p.
If D has lengtl2, that is, has the form:

v+2 v+1 c

(42)
u u+1l u+t2
then

w(D)=t1 —0+ta—0+1r1—p+r2—p.
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PrROPOSITION 2. —If the weight of the diagram of lengthor 2 is strictly positive and the
diagram holds, then it holds trivially.

Before we start with the proof and the proof of a corresponding result for certain diagrams
of length n (Proposition 3), we remark that we are only interested in the case of a reduced
diagram. We introduce the more general diagrams for the purpose of proving the propositions by
induction on the length of the diagram. As a matter of fact, the assertion for a given diagram of
lengthn — u — v < n is equivalent to the similar assertion for the spage,,_,, and the Fourier—
Kloosterman transform in — » — v variables, the integers being replaced by; — 6, the integer
r; by r; — p and the integerg8 andp by 0.

Proof of the proposition. We first prove the proposition for a diagram of length

LEMMA 7.-Suppose that the following diagram halds

v+l v

u u+1

withu+v+1=n.If r+t— p— 0> 0the diagram holds trivially.

(43)

The assumption is that the function
Aut1 '+ 0y (9, Qyt1, )
is supported on the sét, ;1| < || while its Fourier transform, namely the function
buy1 = for1(®,byy1,e),
is supported on the sét, 1| < |=*~?|. The lemma follows from the uncertainty principle.

Next, we prove the proposition for a diagram of lengthAs we explained before, this is
equivalent to the proposition with = 2 andé = p = 0. For clarity, we formulate this as a lemma.

LEMMA 8. —-Suppose: = 2 and the following diagram holds
2 1 0
0 1 2

If 71 + 72 + t1 + t2 > 0 then the diagram holds trivially, that is; = 0.

(44)

Proof. —We recall the situation at hand. We are given
W(a17a2) = U()(a17a2)
supported on the set
wl <[], o] <[]

We define
Ml(ahlh)12/00(6117a2)¢(—a2b1)da2,
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o1 (a1, b1) :Ml(alabl)i/)(i)

arby

Mz(b2,51)2/01(al,bl)¢(—a152)da1
and is supported on the set
|b1|<‘wt1’, \b1b2|<|wt2|.

Thus, viewed as a function af;, the functiono, (a;,b1) has a module of continuity equal to
|bio~ 2] (i.e. is invariant under the translations belongingXg b, ‘). Similarly, viewed as
a function ofb,, the functionu; (a1, b1) has a module of continuity equal f@, o~ "2|.

We first observe that, by Lemma 7, for a givenwith |b;| = ' *#|, s > 0, the function
u1(ag,bq) vanishes identically unless <t; +s —ts .

Now fix a; with |a;| =|=™|. Lets > 0 be an integer such that

p(ar,br) #0 = |b1| < [ 2.

In other words, the following diagram holds:

1 0
1 2

Then by Lemma 7t; + s < r; — 5. From now on we restridt; to the shellb; | = |w! T4|. We
choose: such that

t1+s—ta |
b

|e|:|w |a1+e|:\a1\:]w“|

which is always possible sindg + s — to > r; and the residual characteristic is r®tBy the
continuity ofo; we have for alb; in the shell

o1(a1 +¢€,b1) = o1(ar,b1),
that is,

1 1
pi(ar + €,b1)¢(m) = Ml(%JhW(E)-

We claim thatu (a1,b1) = 0 for all b; in the shell. We proceed by contradiction and fia
such thaiu (a1,b1) # 0. Then the above relation reads

pi(ar +€,b1) :w( € )
pi(ar,br) (a1 +€)arby )

Next, we letn be such that

Il < @™ 772, byl = (o] = .
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Again this is possible because — r, > t; + s. Then
pa(ar,by +n) = pi(ar,b1), pa(ar +€,by +n) = pi(ar +¢€,b1)

from which we get, for all such,

q/}((al + e)a?zbl n n)bl) =1

If 1 —ry >t + sthen

U
b1 +n

is an arbitrary element of the ideal
lef’Fz*tlfSOF
while

€
al(al + E)bl
We get then a contradiction since

— |w72r1 —ta ’

—2ry —to+ry —ro —t; —s5=—(r1 + 12+t +12) — 5 <0.
If on the contraryr; — ro =t; + s then
2ri+to=r1+ro+t1+to+s>0

and
€

" a(a+ b
verifies

k| = w272 > 1.
On the other hand we take| < |b1], |b1 + n| = |b1|. Thus

n
bi+n

is an integer of the form

4 _
Tre l€l<1, [E+1]=1

£\ _
o(krie) =1

for all such¢. Supposek| > |[w—2|. Any element ofwOp is of the form¢/(1 + &) with
¢ € wOp. Thus we get a contradiction. [£| = |c~!| then in the above formulga(x) depends

and we find that
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only on¢ moduloww®. Passing to the residual fieldof F' we see that, for a non-trivial additive
character), of x we have
)
— =1
Yo ( 1+¢

b(o)=1

forall € € k, £ # 0, —1. Equivalently

forall 8 #£ 1. Since
> (0)=0
ber
we gety)(1) = 1 — ¢. This is a contradiction sincg(1) is a complex rootol. O
We conclude thafu(a1,b1) = 0 for |by| = |w®T%|. Thus we may replace by s + 1.
Inductively, it follows thatu(aq,b1) = 0 for all b;. Hence in factu(a;,b1) = 0 for all
|a1| = |wo™|. Thus in the diagram of the lemma we may replacky r; + 1. The new diagram

holds and has positive weight. Thus we may repladay an arbitrary large integer. We conclude
that the support ab is empty as claimed. O

9. Slanted diagrams

From now on we suppress the indices in the diagrams if this does not create confusion. We
shall say that a diagram santed with slopen if it has the following form

‘p+m‘|r1+m|--- ‘rk,z—l—erk,l—i—mH:rk—f—m

If a diagram is slanted then the corresponding reduced diagram is also slanted (with a different
slope).

(49)

LEMMA 9. —-Suppose that the above slanted diagram holds. Suppose further thtotie
slanted diagram obtained by replacing the entry by r; 4 1 holds. Then the slanted diagram
obtained by replacing alse; + m byr; +m + 1 holds.

Proof. —~We may assumg = 0. Our assertion amounts then to saying the following. Suppose
that the following diagram holds.

‘7”]‘_2+mHTj_1+mH:Tj+m
Ti—2||Ti-1 rj+1

Then it holds trivially.
Consider first the casg= 1. The diagram at hand has length one. and weight
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Thus it holds trivially. Hence we may assume 1 and the result true fof — 1. Assume that the
diagram (46) holds. The right subdiagram of lengtbf diagram (46) has weight thus holds
trivially. Thus, in fact, the following diagram holds.

(] [ritm] - ‘rj_2+erj_1+mH=7“j+m‘
T 2 ‘r.,»,1+1‘|7”j+1‘

By the induction hypothesis the following diagram holds trivially.

v ] - e [

Thus in fact the following diagram holds.
(] [ri+m] - [rjmz+m][ro+m+1][=rj+m
=0l [ [ma+t] [r+1]

Thus we have replaced_; in the original diagram by, _; + 1. Inductively, we can replaceg _
by an arbitrarily large integer. That is, the original diagram holds trivially, as was clained.

We will use the following elementary combinatorial lemma.

LEmMMA 10.-If D is slanted of length > 2 then the sum of the weights of the proper
subdiagrams oD is equal to'52w (D).

Proof. —We may replaceé by the corresponding reduced diagrarh Indeedw(D) = w(D’)
by definition. Moreover, ifD; is a subdiagram oD and D] the corresponding subdiagram of
D’ thenw(D;) = w(D}). Thus we may assum® has the form

v [ ] -

wheren = [ — 1. We may regard the;’s andm as variables. Thus the sum of the weights of the
proper subdiagrams d? is a functions(z1, 2, ..., z,;m). Clearlys is linear:

(47)

s(z1,22,...,Tp;m) = Z Ajx; + Km.

1<5<n

To computed; we remark that there arfe — 1) subdiagrams containing the diagonal pattern
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They contributgn — 1)2x; to s. There is one subdiagram containing the pattern

(]
] [
It contributes—(n + 1 — j)x; + x; to s. There is one subdiagram with the pattern
mje
=

It contributes—jx; + x;to s. The total contribution ign — 1)x;. ThusA; =n — 1 for all 5. To
computeXk’ we remark that after changing — x; — m and reflecting the diagram we get

s(x1 —myxe —my ..., &y —m;m) =s(Tp,..., T2, T1;—M).
Thus
Km—nn—1)m=—-Km
or
K= n(n—1)
2
Thus
s(z1,29,..., 2, K)
n(n—1) n—1 -2
z(n—l)zj:azj—k 5 M="3 (Qij—an):Tw(D). O

PROPOSITION 3. —Suppose thab is a slanted diagram of positive weight. If it holds, then it
holds trivially.

Proof. —We already know the proposition if the lengthd2. Thus we may assume the length
k to be> 3 and our assertion true for any slanted diagram of shorter length. Consider a diagram
D of the form

‘p+m‘|r1—|—m|-~- ‘rk_z—l—erk_1+mH:rk+m

Assume thaD holds for a functionv. Suppose thab(D) > 0. Then, by the previous lemma, at
least one of the subdiagrams bf(of length> 1) has positive weight, that is, holds trivially. By
symmetry we may assume that it is a right subdiagram. This means that in the diagram we may
increase one entry; say, byl and the new diagram holds. But then by Lemma 9 equation (46)
we may also increase the entry+ m by 1 to obtain a new slanted diagram which also holds.
The weight of the new diagram has increase®binductively we construct a sequenty of

slanted diagrams with increasing weight; one passes foorto D, ; by increasing two entries

(48)
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(on the samel5 degree diagonal) by. Moreoverlim; .. w(D;) = +oc. It follows that there
are a subsequenge of j and an index independent of such that the entry in thah position
in the lower line tends to infinity. This implies that= 0 and proves the proposition.c

LEMMA 11.-Suppose that the following slanted diagram holds

[ [ [7) [r— k][]
j+1

=o[0)[o) --- [o) [CA)

Herej > 2,r > 0 and0 < k < r. Then in fact the following diagram holds.

[ I’lm
=0)[0]) (o] - o] [0] =

Proof. —Our assertion is vacuousfif= 0. Thus we may assunie< k < r and our assertion
established fok — 1. Consider the slanted diagram

[=0][o][0] - [0] [*]

We claim it holds trivially. Indeed, the corresponding reduced diagram is

[=0][o][o] - [0] [-#]

It is slanted with a positive weight so holds trivially. Thus in fact the following diagram holds:

1 2 J—1 J j+1
[=0][o][o] - [0] [=K][]

and by Lemma 9 and symmetry, the slanted diagram

llllm

Jj+1

=) [0)0] - fo] [I=H) (=

holds as well. Now we can apply the induction hypothesis to the integer to obtain the
conclusion of the lemma. o

10. Linear independence

In this section we prove that the orbital integrals of the functidns A € P are linearly
independent. Here and below we use the following simple but crucial factALét) be the
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minor of an x n matrix z formed with the first- rows andr columns. Then\, is constant on
the orbits of N(F') x N(F) (or N(E)). In particular, on the support 6i[®, 1) : a

“A1=Aa— A

\a1a2-~-aT|<fw , 1<r<n.

LEMMA 12.-The functiong — Q[®, 1 : a], A € P are linearly independent.
Proof. —Let i > X denote the total lexicographic order ®defined by the components. Thus
> A
means that there is an integerl < s < n such that
M1 = A1, H2 = A2, s Hs—1=As_1, s > As.
Consider a linear relation

Z C)\Q[(I))\,7/} : a] = 07

reX

where the sum is over a finite subsétof P. We have to show that atl\ are(0. The proof is by
induction on the cardinality ok . The statement is vacuousXf is empty. Thus we may assume
that X is not empty and our assertion is true for a set with fewer elementg: betthe largest
element ofX for the above order. Let us restrict the relation to the multishell defined by

|ai\:|w*’“|, 1<i<n.
If A < pthenforatleastone< n
AMA Ao+ A < pg Fp A e

Since

—A1—A2— = Ap

laras - --a.| < |w

on the support 0f2[®,, ¥ : al, this function vanishes on the shell. On the other hand the function
Q[®,, ¢ : o] does not vanish on the shell by the reduction formula. In fact, it takes a constant non-
zero value. Thus, = 0. Hence we may replace the s€tby X — {1} and apply the induction
hypothesis. Our assertion followso

LEMMA 13.—The restrictions of the functions— Q[®,v : a], A € Py, to the set
{a: laras - ay| = |w7m|}

are linearly independent.

Proof. —This follows from the proof of the previous lemmagc
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11. The main lemma

Let () be the space of (normalized) orbital integralsvhich admit the diagram defined by
A and), that is, the diagram

n n—1 2 1 0
M ‘)\2+/\3+'-'+)\n‘~--‘/\n_1+)\n‘
1

0 1 2 n— n
[=0] [ ] [-A = Ao e[ = = A | [ =]

(49)

Thus the diagram is slanted with slope. Thusw € F(\) means that the functianis supported
on the set defined by

—/\1—>\2‘ —A1— A2 =g
b

al| < |w Y, |aag| < |w sy arag-can| S |@
| <@, arasg| < | | <

b

while the Kloosterman transforiiw of w is supported on the set defined by

b1 < @[, |biba| < @t TAnr], L

b1by -+ by| < ’w,\nﬂn_ﬁ...ﬂl ’

If < X thenji =< X. It follows thatF(u) C F(\).

Since the Kloosterman transform ﬁ[@u,w :a] is, up to a scalar factoﬁ[@,;,qﬁ : b] we see
that the functior(2[®,,, ¢ : a] belongs taF () and toF (X) for u < A.

In this section we prove the following key result.

ProrPoOSITION 4. —The functions
a— Qdy,vial, N =

form a linear basis of the spacg(\).

Our assertion follows from the uncertainty principle fore= 1. Thus we may assume > 2
and our assertion established for- 1. We note that ifA = 0 then our assertion has already
been establishedundamental lemma for the unit elemgj@, (8)]). The spaceF(0) is then the
one dimensional space spannedﬁb@o,w : a]. By homogeneity, our assertion follows when
A=Ay

If A1 — A, =1 then the relation\ < X implies \" = A. Thus the proposition asserts that
F(X) is the one dimensional space spanned by the funetion Q[®y,v : a]. The proof of
Proposition 4 will occupy the rest of Section 11.

11.1. Thefirst step
Letw be inF(\). Fix a; with |a;| = |w~*1| and consider the function
(ag,as,...,an) —wlai,as,...,an).
It is supported on the set

—A2—A3 —A2—Az— = Ap
, .

|a2|<fw_’\2’, |a1a2|<|w . a2a3-~an|<’w
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On the other hand, its Kloosterman transform is the function
(b1,ba, ..., bp_1) > pn—1(a1,bp—1,bp_2,...,b1)
which is supported on the set
by| < ||, |bibg| < @ TAn=1|, L by -bpoi| < |7zA"“"—1+“‘+A2 .
In other words, it belongs to the spa&€..) where we have set
= (A2, Az, An).

By the induction hypothesis for Proposition 4, we have

(50) wlar,ag,...,an) =Y ¢ (a1)Q®y 1 az,as,...,an),
w2
where the functions”' (a,) are uniquely determined functions on the shejl = |~ 1|.

LEMMA 14. -With the above notation, the functioris (a, ) are actually constant on the shell
jax| = ==

Proof. —To prove Lemma 14, we first prove an auxiliary lemma.
LEMMA 15.—Letw € F(A). Fixb,—1,bp—2,...,b with

‘bl‘ < |w>\n , |b1b2| < |w>\n+)\n71 |’ ‘ble .. 'bn—2‘ < ‘w)\n+)\n—1+"‘+>\3 ,
|blb2'~'bn_1| = |w‘“"
Then the function
ai '_’Jn—l(alabn—labn—%"';bl)

is constant on the set
|CL1‘ < ”(D_)\l |
and the function
a1 +— pn—1(01,bn—1,bp—2,...,b1)
is constant on the shell
las| = |w7>‘1 |.
Proof. —Indeed, the function

ap — Jnfl(a17bn717bn727 . .,bl)

is supported on the set
lai| < |w_>‘1 ‘

Under the assumption on thgs its Fourier transform, that is, the function
by, — K(w)(b1,ba,...,by)
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is supported on the set
6] < ‘wkl‘.

The first assertion follows from the uncertainty principle. Since

1
On—1(a1,bn—1,bn—2,...,b1) = pin—1(a1,bp—1,bpn—2,... ,b1)¢(a1b 1)

for the second assertion it will suffice to prove that, on the support of the function, the factor
is 1 for |a;| = |z=*1], or, what amounts to the same,

|bn_1| 2 ‘LTJ)\I |

Indeed
|bn—1| _ ]w)‘"+’\"—1+"'+)‘3+’\2||bn_2bn_3 . -~b1|71.
Now
|bp—2bn_g---by| < ’w)\n+/\n,_1+---+)\3’.
Hence

b | > 2] > [
the last inequality becausg > \,. This concludes the proof of Lemma 150

We now go back to the problem of proving that the functietiswe introduced in (50) are
constant. To that end, we take the Kloosterman transform of the identity (50) with respect to the
variables(as, as, ..., a,). We get

N?L—l(alabn—labn—27 .. '7b1) = Z CHI (al)qnll—dﬁ[@ﬂ/a/& : b13b27 .. 'abn—1]~
W=

Now let us restrict this relation to the setigfs in Lemma 15. The left-hand side is independent
of a; in the shell. On the other hand, the restriction of the functthl;Mz/? 101,09, .., bp—1]

to the set of the);’s in Lemma 15 are linearly independent by Lemma 13. It follows that the
functionsc*' (a,) are indeed constant on the shell. This establishes Lemmari4.

To continue, we denote by their constant values of the functiors . Thus the relation

w(ai,ag,...,an) = Z c“lﬁ[q)“/ 102,03, ..., )
w2

holds fora, in the shellja;| = [w=*|. If 4/ < pthen) := (), /) satisfies\’ < . In addition,
by the reduction formula, on the shell,

Q[P :ay,az,...,a,] :q'“'Q[@uz 102,03, ..., a4n].

After a change of notation we see that we can writegfoin the shellja; | = ||,

w(ay,ag,...,a,) = Z c)‘/ﬁ[CI))\/:al,ag,...,an].
N AN, =2
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Let us set

(51) wi(a) :=w(a) — Z NPy 1 ay, a0, ..., an].
N =AM =X

This function is still inF(X). However its support is contained in the set

|CL1| g ”(ﬂl_Al‘.

That is, the functiorw; admits the diagram

M| Pt Fd] o At

\z_OHl—)\lH—)\l—/\z‘ ...‘_)\1_)\2..._)%71”_|)\|‘

By Lemma 9 it follows that it admits the diagram

N [T+ A ] A+ A

[=0][1=M][=M— A e[ = Ae = | [ =]

(52)

Proposition 4 will now follow from the following lemma.
LEMMA 16. —-The functionuv; belongs to some spadg(\’') with A" < A.

If A1 — A2 > 2 we can set
)\/:()\1—17)\2+1,)\3,...,)\n).

Clearly X is still in P. We have)\’ < X and the functionw; is in F(\"). The lemma follows in
this case. From now on we assume that- \s < 1.

11.2. Thecase of a fundamental weight

Suppose that
A — A, <1.Then

wi(a) =w(a) — Py : d]

with ¢ # 0. Lemma 16 amounts to saying that = 0 or, equivalently, Proposition 4, amounts to
saying thatF () is the one dimensional space spannedby, : a].

Assume first\; — \,, = 1. Note that we may replaceby A and use homogeneity. In particular,
we may assume

We have to show that the functian of (51) isO.
For instance if

A=(1,1,1,1,0,0)
then the diagram associated wihs

(0] [o]
[=0of[=1][=2)[=8] 4] [=4)[=4]

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE




648 H. JACQUET

then the diagram for the functiam, is

[0] [o]
[=oJ[o][=2][=3] [=4] [=4][4]

Applying repeatedly Lemma 11 we see that the following diagram holds.

[=0][0][o][0] o] 0] [-4]

Since this slanted diagram has positive weight it holds trivially, thatyis= 0. In general,
applying repeatedly Lemma 11 we see thatadmits a slanted diagram whose entries in the
first row are all equal to- and all entries in the last row afeexcept one which is-r. This
diagram has positive weight and the conclusion follows again.

If Ay — A, =0, as noted earlier, we have proved our assertion previously in [8, (8)]. For the
sake of completeness we reproduce the proof. We may as well agsan(i@ 0, .. .,0). If

A=(0,0,0,0,0,0)

for instance, then the diagram associated t®

[0][0] o] [0] o] [0] [=0]
[=0][0]{o][0][0][0][0]

andw; admits the diagram

0] [1][o][0][o][0] [=0]
[=0][1]{o][0][0][0] 0]

This is a slanted diagram of slopeand weigh®. Thusw; = 0 . Thus we have proved Lemma 16
or Proposition 4 when; — A, < 1.

11.3. Thesecond step
LEMMA 17.-Suppose thak € P™ verifies
A=A <1

for somer with 1 < r <n — 1. Suppose thab is an element ofF(\) such thatw = 0 for
la1| = |w=*t|. ThenKw = 0 for

|b1bg -+ by_r| = |w>\n+/\n,1+...+)\”1 |

andw = 0 for
—A1—Aa—-— Ay

a1a2-~-a,.\=’w

4® SERIE— TOME 38 — 2005 N° 4



KLOOSTERMAN IDENTITIES OVER A QUADRATIC EXTENSION II 649
Proof. —We set
= (A1, ), V=(Nrt1, Arg2y ey M)
ThusA = (u,v). Fix by, b, ..., by, With
b1, ba by | = |t AR AL
The function
(a1,a2,...,a;) = op_r(ar,a2,...,0r,bp—p,by_r_1,...,b1)
belongs taF (r). By the previous section
Onr(1,a2, .. Gy by b1y b1) = M (b1, bay .. by )QU® 1) a1, g, .., ay).

By the assumption, the left-hand side vanishelsif = |[co=*1|. On the other hanﬁl[@p,d) :
a1,as9,...,aq,| takes a non-zero constant value on the set

7)\17)\2|7 7)\17)\27~~-7)\,«|'

‘a1|:|w7)\1|7 |a1a2|:|w |a1a2"'ar|:|w

Thus in factM is identically0 and we conclude that
O'n—r(alya% <oy Ar, bn—ra bn—r—l; ceey bl) =0
for |by, by - - - b, | = |wrnFAn—1tFA1] which is equivalent to the first assertion. Moreover,

the functionyu,, - has the same property.
Now fix a1, as,...,a, with

laraz -+ ar| = |w7)‘17/\27"'7>‘r .
Then the function

(Qra1,Qrao ..y an) — w(A1,02,. . Ay Qpt1y ey Ay)

belongs taF(v). By the induction hypothesis for Proposition 4, it can be written as

(53) Z C”/(al,ag,...,ar)§[¢uz,¢;ar+1,ar+g, ey Gy

v'<v

Taking the Kloosterman transform of this identity we get

/an—r(aha% <oy Ar, bn—ra bn—7'—17 RN bl)
=Y C"(a1,a2,...,a,)* " TIQB by by, by ],
v'<v

Since this vanishes on the set
An+An—1+ At
‘b],bg . "bnfr‘ = |w
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by the first part of the lemma and the functions
Q@1 by, ba, .. byy]
are linearly independent on that set, we conclude that the functions
CV/(al,ag, ceyap)
all vanish. The lemma follows. O

11.4. Reduction to the case of a fundamental weight

Now we prove Lemma 16 for & such that\; — A <1 and\; — A\, > 1. Next, consider the
largest integet < s < n such that\; — \; < 1. Thus we can write

A= (p,v)
with
,u:()\l,)\g,...,)\s), )\1—)\3<17 )\1_>\s+1>2~
By homogeneity we may assume

S
1 S2
p=(1,1,1,...,1,0,0...,0)

s

with s; >0, s > 0 and
)\s+1 < -1

We consider aw in F()). As before, we define; by (51). Thusy, is in F(\) andw;, = 0 for
la1| = |w=*1|. Then we claim thab, is in F()\') where)\’ is obtained by replacing,, = 1 by
As; =0andXgy; by As4q1 + 1. Of course)’ < A. This will prove Lemma 16 in this case. We
illustrate the case; =2, s, =2, n=6. Thus

A= (17 1707O7>\57>\6)

with A5 < 0. We seta := A5 + A\g. The diagram associated ias

(M) (e [@ [@ [a]
=[] =2 2= %) =)

Both w andw; admit this diagram. But by the previous lemma fot 2, 3,4 the functionw,
admits in fact the diagram

|1+a||1+a||1+a||1+a|
[=of[—1][=1] [=1] [=1] [=2=Xs][-IN
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This is the diagram attached A6 where
N =(1,0,0,0,A5 + 1, Xg).

Hencew; € F(\). In general we apply the previous lemma with< r < s.
This concludes the proof of Lemma 16 and hence the proof of Proposition 4.

12. Themap g
Recall that the Kloosterman transform of the funct(@hI'M,E/F ¢ :al] is, up to a positive

constant, the funct|om[\Ifﬂ,E/F 1 : a]. Thus the functlorﬂ[\I/#,E/F ¥ : a] belongs to the
spaceF (2u). By Proposition 4 there exist unique consta@)s)\ =<2 such that

Q[U,, EB/F,1): d] Zf* 52 (@) Q@) al,

or, equivalently,
(54) v HZ@ 5% (@) Dy
Motivated by (27), we define a linear map
B:Hg—Hr

by
B =" e (=) ]

A=2u

We denote byss the corresponding linear transformation of the alge®yaof symmetric
polynomials to itself, that is,

S(8(f)) = Bs(S(f)).

Since

we have
O.M Z g;/,g)\

If we consider similarly the maps then

bs(o)(x) —J# ZG)‘JA

Our definition amounts to saying that the function

X / Vo' zXz] f{ (z)dx
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matches the function

XH/@O[Xx]ﬁ(ff)(x)dx.
By linearity, for anyf € Hg, the function
X»—>/\110 ‘zXz] f(z)dx
matches the function
X / Do[Xa](f)(2) da.

Our main result is then equivalent to the assertion thatb or, what amounts to the same,
(55) Vi, VA =20, & =0,

We first list the properties gf which follow from the definitions.

We have proved thakb <+ ¢®, wherec is a constant. Using the reduction formula we see that
the orbital integrals ofty and®, agree onA N Kr. Thus¥, <« &, that is, the image of the
unit element ofH ;. underg is the unit element of{ z.

We haveos;(z) = o, (z~1). Also from the properties of the Kloosterman transform we have

N = 53 If P €S, is a symmetric polynomial, let us sét(x) = P(z~1). Clearly fs(P) =

Bs(P). In additionS(f) = S(f). We conclude that

BUfY=B(f).

Next, let us set

We have

O X410 («T) = O'A(J?)leaig P 7

On the other hand
QY p ta) = Q[\IIM : aw2“°]
= fy(aw2”°) 252511;/2 (wQ”fA)Q[(I)A : an’“’]
A
=7(a) Y€ (@A) QP 40y ¢ a]-
X

It follows that

(56) Gl =6
and
(57) Bs(Oripo) (@) = Bs(o2) () (w122 -+ 25)°.

In particular, sincés (o) = Bs(oo) we have alsés(o,,) = Bs(o,,). More generally
bs(ou) = Bs(ou)
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if up — pn =0.

The functiono,, is homogeneous of degrék|. Thus it is clear that ifP is homogeneous of
degreem then 3s(P) is homogeneous of degr@en. Equivalently, if f € Hg is supported on
the set

{9€ GL(n,E): |detg|p = ’w"L|E}
thens(f) is supported on the set

{g€ GL(n,F): |detg|r = ‘w%”’F}.

By the same argument we used Boit follows that for any Hecke functiorf € H g the function
X — /qﬂ [tz Xx)f(x)dx

matches the function
XH/@l[Xx}ﬁ(f)(x) da.

Now the functionsr,, with 11, — 11, = 0 together with the functions, with A\; — A,, generate
the algebrd,,. The following proposition shows thals andbs agree on a set of generators.

PROPOSITION 5. —Suppose: is such thafu; — u,, = 1. Then, for all),

A _ A
u_eu'

Proof. —Again our assertion is vacuousif= 1. Thus we may assume> 1 and our assertion
true forn — 1. By homogeneity we may as well assume that

If 1 has the above form then any< 2u has the form

n
A=(2,2,...,2,1,1,...,1,0,0,...0)
—_— ——

s 2t

with
0Lt s=r—t, t<n—r.
LEMMA 18.—With the above notation
A t
0, = (=1)".
Proof. —Replacingu by i and using homogeneity we may assuzne< n. Then the inequality

t < n —ris superfluous. We first recall a property of the Schur functions. GiverP,, we say
that a\ € P,,_ interlacesy and we writeh < p if

E
\Y
>
\Y
=
[ V)
\Y
&
\Y

>,U/n71 2)\7171 >Mn
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Supposer = (y,1), vy = (y1,¥2, - - -, Yn—1). Then we have the branching formula.

(58) ou(@) =Y or(y).

A<y

This follows for instance from the fact that, can be viewed as the character of an irreducible
representationr,, of GL(n,C). The formula amounts to saying that the restrictionmpfto
GL(n — 1,C) is the direct sum of the representatians with A <1 i (branching rule, see for
instance [4, Theorem 8.11]).

The lemma is a tautology for = 1. Thus we may assume that> 1 and our assertion
established for, — 1. Consider the formula defining the consta@;}s

(59) ou(2®) = Ohoa(a).

A=X2p

We may assume that= (y, 1) because the resulting formula still defines the constants uniquely.

Suppose first that < n — r. Then if A < 2 we haves + 2t < 2s + 2t = 2r < n. In other
words A has at least one trailing. Using the branching formula for oyr, we can write the
left-hand side of (59) as

7 (%) = 0,0 (47) + 0, (47)

where
n—1
pl=(1,1,...,1,0,0,...,0)
N’
and
n—1
p?=(1,1,...,1,0,0,...,0).
N——

r—1

We can apply the induction hypothesis. We have

o ()= > (Do (y)

Al 52#1

where

with
0t s=r—t.
We stress that\!| = 2r. On the other hand,
2
02(y")= D Ohaox(y)
/\252/1'2
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with
n—1
M=\ =(22,...,2,1,1,...,1,0,0,...0)
—_— Y —
S2 2t2
with
0<ta<r—1, Sog=1—1—1s.

We stress that such)é verifies|\?| = 2r — 2. On the right-hand side of (59) we can write

>0 on)

A=20 N

For each\ < 2 there is a unique® <1 A with [\°| = |A| = 2r. If

n

A=Xx=(22,...211...100,...0)
—_— —

s 2t
where0 <t <r,s=r—t,itis
n—1
N =(2,2,...,2,1,1,...,1,0,0,...0).
A/—/ ——
s 2t

In other words)\? is obtained by dropping the last trailingfrom . Comparing termsr,, (y)

with |v| = 2r we get
Z ( O')\l Z 9 U)\O

oLtLr o<tLr

Comparing the coefficients in this formula we conclude ﬂ;}at: (—1)t as was claimed.
Now suppose =n — r. Thus

The A such that\ < 2. are of two types, thosk for which there are at least a trailifigand one
single element

The A with a trailing0 have the form

A=\=(22,...,2,1,1,...,1,0,0,...0)
—_— —

s 2t
with

0<t<r, s=r—t.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



656 H. JACQUET

We have
ou(2®) = Y Ohon (@) +6, ox (@),

otLr—1

Again we setr = (y,1) and we use the branching formula and the induction hypothesis. Here
the only element which interlaceg is

Then

oxr (2) = oxeo (y)

and |\°| = n — 1 = 2r — 1. When we compare terms, (y) with |v| = 2r this term does not
give a contribution. Thus we have aga’i}tr = (—1). Thus we may write

(60) ou(@®) =Y (=)o) +0) orr ().

where

To compute the remaining constant we apply the same approach as before, but this time we
look for terms containing y»o (). Note thaj \P°| = n — 1 = 2r — 1. Consider the left-hand side
of (60). It can be written as before

o () + 0,2 (7).

In applying the induction hypothesis tg,: (y*) we find termso, (y) with |v| = 2r. Thus we
cannot find the terns .0 (y). In applying the induction hypothesis tg,2(y?) we find terms
containingo,, with |v| = 2r — 2. Thus we cannot find the teren,o (y) on the left-hand side. We
apply formula (58) to the right-hand side of (60). We remark that there are only such that
AP0 < )\, namely)\? and

PP = (2,1,1,...,1,0).
N—_——
2r—2
Thus we find
(1) oaso(y) + 6N oam (y) =0
or
0N = (-1)".
This concludes the proof of the lemmad

It remains to prove thagﬁ = 93. Replacingu by i and using homogeneity we may assume
2r<n.

We pass to the computation of the constﬁjtsWe first compute the coeﬁicieﬁﬁ” in the
case2r = n. We state this as a lemma.

LEMMA 19. -Assumer = n. Then, with the above notation,
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Proof. —The matching (54) implies an equality of the corresponding orbital integrals of the
functions on the left and right-hand sides, up to the transfer factor. We consider the orbital
integrals for the matrixv,, z wherez € F*. We find

Q. B/F, 0 wnz] =y(wnz, 1) > 005 (@) Q@1 wn2].
A<2u

Itis immediately verified that for any of the formA = (x,x,...,,0), the integral)[® : w,, 2]
vanishes unlesig| = 1. We take|z| = |w~!|. These integrals vanish then. On the other hand we
have themM)[®» : w,z] = 1. We claim that

QP wpz] = .
We illustrate the case = 4 but the computation is general.
QU s waz]
0 0 0 zw
. 0 0 2T ZWI _
= /‘1’0 0 v are 2 P(z1 + T1)Y(w2) dry ds du dw.
20 2WI1 22U 2W

Herex,,u are inE andx,, w are inF. After integrating we find the stated result. On the other
hand, the transfer factoy(w,,z,1), viewed as a function of,, has period for an arbitrary
quadratic extension (see [6, (8)]). Here the extension is unramified so that the Weil constant
c¢(E/F,v) is 1. Thus the factor is in fact periodic of periad Its first 4 values (starting with
n=1)are

Lon(z), n(z), L
Thus herey(wy,z,¢) = (—1)". It follows that¢)” = (-1)". O

It remains to compute the remaining coefficief;)s Now consider the formula which defines
the constants;).

QU cal =7(a) Y 6% (@)@ : a].
A=X2u

Let us set
a=(a1,d), a1] = =2

and apply the reduction formulas.2f = n the term corresponding t&’ on the right is ther.
Thus in all cases the non-zero terms on the right correspoi® taf the following form. Let us
set

p=(1,1).
Then
A= (2,)), N =24
We get

q—z(n—l)u1+2\u’\Q[\y“, ca']=~(a") Zq—(n—l)hﬂz\’\gﬁ(;;/? (WQM—)\)Q[@N ad'].
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After simplification we get

QU a] =) Y Qly a6 (@ ).
N =2

In additions;/* (@) = §,/*(w' ') sincedet(w*'~*") = 1. It follows that¢) = £,. On
the other hand from Lemma 18 we haﬁlg—:-: 93;. Applying the induction hypothesis we get
52 = 93 as was claimed. This concludes the proof of Propositiont5.

We have proved thats andbs agree on a set of generatorsSyfec[S,,] as an algebra. To
show that3 = b it will suffice to show that3s is a homomorphism of algebras. This is equivalent
to saying that for any: € Spec[S,,], the map

P Bs(P)(x)

is a character of the algeb$g . Obviously it suffices to prove it far in a Zariski dense subset.
Thus we see that our assertion tf¥at b, or equivalently, the main theorem, will be established
if we prove that,

fr=8(B() (=)

is a character for alt in a Zariski dense subset. This will be taken up in the next section.

13. A smpletraceformula

In this section we consider again a quadratic extensionuofiber fieldsF/F. We assume
that every real place of' splits in £. We consider a cuspidal automorphic representation
79 of GL(n,F,). We assume that at a fixed split placg, the local component of¥ is
supercuspidal. We lef be a finite set of places df containing the places at infinity, the even
places, the places where the local component’ is ramified, all the places of inert and
ramified in F, all the finite place® where the charactep, has a conductor different frof, .

In particularS containsv,sp. Fors € S we take®, so that

871'8 ((I)v) # 0.

We take, as we may, the functidn,
we have the linear mag,:

to be a supercuspidal function. At each inert plageS

cusp

Bv: Huw — Hoy,

wherew is the place above. Recall that3, takes the unit element to the unit element. Moreover,
0, is so defined that it satisfies the matching assertion of the main theorem.

We fix a placev,. inert and not inS. We denote byw,; the corresponding place @&. Our
goal in this section is to prove the following proposition.

PROPOSITION 6. —The map

[ S(/Bvrel(f)) (T‘-Srel)

is a character ofH,,, .
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Proof. —We follow step by step the construction of Section 3. Simply we replace at each inert

placev ¢ S the base change map by 3,. The set of place%}; may be chosen not to contain
Urel. ItiS CcONvenient to have the s&t not to contairv,.;. For that purpose we appeal to a lemma.

LEMMA 20.—-One can choose the representatiggn such a way thag,,, is in K,,,, .

Proof. —Recall that the only¥ which appear havéet ¢ is a norm in the extensioB,, _, / Fy,. .
At any rate there ig € GL(n, E,,,_,) such that

£€="g9.
Thus there is a sequengee GL(n, E) such that
lim'y;6v; =1
where the limit is in the spacg(F,,.,). Sincek,,, N S(F,,,) is open, we have
"3ii € K, N S(Fo,)

forsomei. O

Since @,
supercuspidal, as function of the second variable.
Because of the supercuspidality condition the expression (12) is equal to the sum

> Ri(f)

€= TI

is a supercuspidal function the functioff can be taken to be

cusp,1:Vcusp,2

where the sum is over all cuspidal automorphic representatibnwith a supercuspidal
component abe,sp,2 (@nd hence at.,qp 1). Likewise, the expression (14) is equal to

S Be(®)

where the sum is over all cuspidal automorphic representationsith a supercuspidal
component abygp.
At this point we have the analogue of (21):

(61) S D RE(S) =cBro (Poo) [ S(@0)(7Y).

Me=79 @Y, E€E v Ss

The sum on the left is finite. We remind ourselves of the relation between the functiorig; Let
be the set of places df above a place i%,. Each functionf¢ is a tensor product. The factors
f¢ corresponding to a finite place inc U, are fixed. All the factorg$ corresponding to a place
u ¢ Uy are equal to an arbitrary Hecke functigp. If v ¢ S splits intov;, v, then®, is the
base change of,, ® f.,, thatis, the convolutiotf,, * f,, . If v & Sy is inert andw ¢ U is the
corresponding place df then®, = 3, (f,,). We fix a function®,, such that

We fix then correspondingly ., and the functiong’s, .
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We label the representations on the left-hand $ide0 < v < s. We set

C7 =Y "R, (f5, ®1%2).

£eE

Then the left-hand side takes the form

S ooor I S(fu)(my).

0<y<s ugUs
If we choosed, = @} for all v ¢ S, we obtain on the right of Equation (61) a non-zero result

namely
C[)’TrgC ((I)oo)
Thus there is a least one representafidrsuch thatC® # 0

=Y Rin(f9), w=fh ug Us.

ce=
ThenC? # 0. We can choose a finite set of placBs= {u., | 1 <~ < s} not containingwye
such that

I, 105

As before, we use strong multiplicity one. We choose then Hecke funcfipnsuch that

V’Y?S(fuw)(ngw)zlv (ftw)( uw):O'

If v, is above an inert place df we denote this place by,. If «, is above a place. which
splits into u,u’, then I, ~ H” . Thus we may as well assume thzi; is not in T3. Now

at all placesu ¢ Uy U T3 and dlstlnct fromw,. we takef, = fL. Then the left-hand side of
Equation (61) reduces to

COS(fura) (M, )-
The right-hand side of Equation (61) is then the product of the following factors

(6Urel (fwrel)) ( Urel)
CBwoo (f 00 )v

[T st (=),

v split

[T 50, () (7).

vV~ inert

SinceC" # 0 we see that the three last factors are non-zero and we conclude that

(ﬂvxel(fw,el))( v,e]) clS(fwrel)( w,e])

By taking f,,. to be the unit element we see thgt= 1. This concludes the proof of the
proposition. O
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14. End of proof

Now we let E/F be an unramified quadratic extension of local fields. We can always write
it as Fy,.,/Fy,., for a suitable quadratic extension of number fields of the type considered in
the previous section. We can choogeso that the conductor aof, ., is O, . Consider the
representations® of the type discussed in the previous section. The Langlands clasg*"
of their components;  is Zariski dense.

For the convenience of the reader we recall the proof. We have to prove fhat i6 a non-
zero element of4,,, then there exists @° of the above type such thaf (f...,) # 0. To that
end we set

Vrel Drel

er.l<> Fon @
/ 12 (29) forn(9) dg

Urel

Thus f,}rel (e) # 0. For each finite place we choose a smooth function of compact supgort
such thatf, (e) # 0. At the placev.,s, We furthermore assume that__ is a cuspidal function.

“usp

Of course, at almost all placeg, is the characteristic function df,,. We let f, be a smooth
function of compact support o, \G.. We consider the following functions, wheie- 1, 2,

fi(g):foo(goc)fziel(gv,-el) H Jo(9v),

VFEVrel
= > Fflw).

YEG(F)
If we write f1(g) = foo(900) f%°(g™°) We see thatf>(vy) # 0 implies thaty is in a discrete
subsefl” of G, containinge. We choosef., so thatf..(e) # 0 and foo () # 0,7 € T, imply
=e. Thuse!(e) #0. The functionsa;S1 and¢? belong to the closure of the space spanned by the
cusp forms. Moreovep! (g) = [ ¢*(9z) fo,.. (z) dz. Therefore there is at least one automorphic

cuspidal representauo;fP such that the image af' under the orthogonal projectia® on the
space ofr® is non-zero. We have

P (g) = / (P6?)(g2) fur, () .
that is,

Uxel (f?lrel)P¢2 ¢

This implies thatr) _(f.,.,) # 0 and we are done.
Thus the map

fr=8(6() (=)

is a character of{,,,, for = in a Zariski dense set. As we have seen this impliesghat.
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15. Threelemmason Bessel distributions
15.1. Proof of Lemma 1

We prove Lemma 1. For the proof of this lemma we drop the index infinity. We will need the
positive type Bessel distribution

Pr(®) =D m(®)W;(e)Wile).
Note that
BW((I)) = 7777((1)/)
where®’(g) = ®(w,g). Thus we can rewrite the assumption as

Z ce(m)Pr(®)=0

s

for all ®. By taking the function® to be of positive type we see that we have
D Re(m)Px(£)=0, Y Se(m)Pa(f) =0

Thus it suffices to prove the lemma when the coefficients are real. We derive a contradiction if
not all terms ar®. We can regroup together the terms wihr) > 0 and the terms with(7) < 0.
After a change of notation, we have now an identity

Y emPr(f) =Y e(m)P(f),

TeX TeY

where X andY are disjoint, in general, infinite sets angir) > 0 for all 7. We then derive a
contradiction. At the cost of changing the Hilbert normmomve can rewrite this expression in

the form

TeX TeY
Recall that to a distribution of positive tygewe can associate a unitary representation in the
following way. Indeed, on the spac&®(G )

(f1, f2) = 0(f5 * f1)

is a positive semi-definite Hermitian form, invariant under right shifts. Passing to the quotient we
get a positive definite Hermitian form on a quotientdif (G ). Then we complete the space

for this norm. We obtain a Hilbert space on whiGh, acts. Applying this construction 8, we
recoverr. In a more precise way, we can regard the Whittaker linear fognas a generalized
vector (i.e. a vector which has scalar product with smooth vectors). Then

Pr(f*+ f) = (7(f)Ar, 7(f)Ax).-

Applying this construction to the two sides of our equality we recover the direct Hilbert sums

Dr. D

reX TeY
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respectively. To see it is so consider the direct sum

le@ﬂ'.

TeX

Recall can be viewed as the spacetaiples(v,).cx such that

Z(vw,vw) < 4o00.

T

Since
ST Pl 5 ) =D (7(F)An, 7(F)Ar) < +00
TeX

we can consider the closutgin H of the space spanned yuples

(W(f)/\ﬂ)ﬂegr

Since the projection of on eachr is non-zero, we see that is the Hilbert direct sum of the
m € X. On the other hand callingthe sum of theP,, we have

0+ )= (7(H)Ar7(/)Ar).

TeX
Thusé(f* = f) =0 if and only if 7(f) A, = 0 for all 7. Our assertion follows. Thus we have
Pr-Pr
TeX TeY
SinceX NY = ( this is a contradiction.

15.2. A formal lemma

We now go back to the situation discussed before (20). Consider one of the distrimﬁons
We write f for the functionf<. Let cor be the set of infinite places d@f. Eachv € oo splits
into vy, vy andlIl,, ~IL,,. Call =, the equivalence class of this representation. The component
fu, v, OF f is arbitrary. We set

B,(g) = / Foron (€1 g).

GL(n,F,)

We can define the local Bessel distributiBp,. On the other hand we have chosen a finite set
R of finite places ofE’ and for eachy € R we have fixed the local componefit. At the finite
placesv ¢ R the functionf, is a Hecke function.

LEMMA 21.— With the above notations, there is a constastich that

Ry =c [ Br(@) [ S(f.)(L).

VECOR v finite ¢R
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Proof. —

Here
wo)= [ e
HE(F)\HE(Fy)

In view of our choice of functions, the functiors belong to a sub vector spaéé invariant

under[[, .., Gv. In turn V is a finite direct sum of subspacé$ invariant and irreducible
under[[ ... G.. The representation 4ff . ., G, on eachV; is equivalent to

&) 1, ®I1,,.

VEOOFR

The restrictiory; of 1 to V; is a constant; times a tensor product

Q) 1o

VECO R

wherey, is a linear form onr, ® 7, invariant underH§. Likewise the restriction of the linear
form

o [ otwdun) du
is a constant times a tensor product

® //41),1 ® ,va,l

VOO

wherey, ; is a linear form on the space af, transforming under the charactgy. It follows
that

Rgl'[(f)zc H Rv(fm,vz) H S(fv)(Hv)

VECO R v finite ¢ R

where

Rv(fvl,'ug) = Z/’L’U <7Tv ® Wv(fvl,vg)(bi)ﬂv,l ® ,U/v,l(¢i)

andg; is an orthonormal basis af, ® .
To conclude we apply another formal lemma, valid for any local field (see [6, (7)]).

LEMMA 22.—Suppose thatF' is a local field. Letw be a unitary irreducible generic
representation ofL(n, F'). Let\ be a linear form onr @ 7 invariant under the grougi (F).
Let i, be alinear form onr transforming under the charactér Consider the distributions

R(N =D _AMren(f)di)m @ p (i),
B(®) = Z pi2 (7 (®)$3) pa ().

Then there is a constantsuch that
R(f)=cB(®)
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where
®g) = [ (¢ hg) dh.
15.3. A lemma of Shalika

LEMMA 23.—Letn be a unitary irreducible generic representation@L(n,R). The Bessel
distribution B,; has a non-zero restriction to the open set

N(R)A(R)N(R).

Proof. —We may replacés,; by the positive type Bessel distribution

Pr(f)=>_w(f)Wile)Wi(e).
Our assertion is then that the restrictior/df to the open set
N(R)w, A(R)N(R)

is non-zero. Suppose it is. Théy, is a distribution supported on the complement of that set.
Moreover it is an eigenfunction of the Casimir operator and transforms on both sides under
non-degenerate characters &f,(F'). By Proposition 2.10 of [16] it follows thaP, = 0, a
contradiction. O

16. Concluding remarks

We briefly indicate how to obtain more precise global results. Assuia@ven. LetH¢ be the
similitude group corresponding td¢ and\: H¢ — > the similitude ratio. Lety be an idele
class character df. We say that an automorphic representatibis distinguished by H¢, x) if
the central character &t is the charactet — x(zz) and the following integral is non-zero for
at least one in the space ofI.:

Z(En)HE(F)\HE (Fy)

PROPOSITION 7. —A representatiorl is the base change of a representatiorof central
characterw if and only if it is distinguished by a paiti ¢, wn™/?).

Proof (Sketch). We simply indicate which modifications must be made to the proof of
Theorem 2. At a place of F' inertin £ we have

(az) = vo(a)n}/?(2).
Thus globally if¥ < @ then for each: € F* the function
X - U(Xz)

matches the function
X —n(2)"2®(X2).
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For eachz € F,* we have

/Kq,(zu)ﬂ(uﬂ) du=n"?(z) / Ko (u1,u22)0(u1) " 0(uz) dus.
Integrating over: we get instead of (18)

/ Ky (zu)0(uu)x(z)dz du

FJXN(E)\N(Ej)

_ / Ko (1, 122)0(ur) 1 0uuz) dugxn™?(2) dz.
FYX(N(F)\N(Fp))?

Now we choose a set of representatif€$ for the orbits of ’* x GL(n, E) in S(F), where
F* operates by multiplication. For ea¢hwe replace (11) by

/ff hg dh /\I![tgfzg]x(z)dz.

We now define a new kind of relative Bessel distributions

MRS (1) = 3 [11()6:(0 dh/@

We now get instead of (19)
(62) ZZMRf () ZB

The end of the proof is the same as beforel

Historical remarks — Forn = 2, the study of the poles of the Asai L-function in [5] proves that
the base chandé of a representation with central character is distinguished by the character
wn o det of the groupGL(2, F,) andnot distinguished by the charactero det of GL(2, Fy)
(this fact is used explicitly in [6, (1), middle of p. 388]). Equivalently, the representdiids
distinguished by the character, of the split unitary similitude group but not distinguished by
the charactew. We recall the proof. Let, be an idele class characterBf Let I be a cuspidal
automorphic representation 6fL(2, E,) with central charactef2. Assume that the restriction
of Q to F is w?. Recall the Asail-function L (s, IT,w; ', Asai). In this context, it is essentially
defined by the condition that an integral of the form

d(9)E(g, ®, s)wy *(det g) dg
Z(FA) GL(27F)\GL(2,FA)

is an entire multiple of thé& function. Herep is in the space dfl andE(g, ®, s) is the Eisenstein
series onGL(n, Fa) associated with a Schwartz—Bruhat functinon F}'. In particular the
(partial) AsaiL—function has a pole at= 1 if and only if IT is distinguished by GL(2, F ), w1 ).
Now if IT is the base change afwith central charactev then we have the following relations
between (partiall functions:
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- 3 ~ L(S 1F)
L(s,TL,w ', Asai) = L(s,7 X # @ 1) ———2,
( ) T

L
L(s, 1w, Asai) = L(s, 7 x ﬁ)%’

L(s, I x II) = L(s,m x @) L(s,m X & @ 7).

The functionL(s,m x 7) has a pole ak = 1 while the last relation shows that the function
L(s,m x 7 ®mn) does not have a pole at= 1 and does not vanish at= 1. The assertion follows.

The result of Proposition 7 is conjectured in [8, (1)] in the contex&afrn) and reproved by a
relative trace formula as in the original work of Ye [18, (1)] in the context ef 2. At the time,
the general conjecture with the exponerie was motivated by the results of [5] as referenced
in [6, (1)] in the case: = 2 and by preliminary computations of Ye in the case 4.

On the other hand, the author of [3] discusses distinction by the unitary group, first in the
context of GL(2). Earlier, he had proved the result of [5] that we recalled in the case; but
not in the casey = 1. For the case = 1 he only discusses an example in [3].

It is natural to conjecture that one can choose the unitary group which distingliistoelse
quasi-split.

THEOREM 3. —Suppose each real place 6f splits in E. Suppose: is even. Ifll is a base
change thenl is distinguished by a quasi-split unitary group.

Proof. —The groupH?¢ is quasi-split if and only if at every inert plaag det¢ is equal to
detw,, = (—1)"/2 times a norm ofE,, /F,,. We restrict the functionr,, by demanding that it
be supported on the sét, of elements whose determinant(is1)"/2 times a norm. We take
the function®, to be supported on the séf, of elementsy such thatdet g is (—1)"/? times a
norm. As before, we introduce the functi® defined byd’[g] = ®[w,,g]. We now get a spectral
identity

STRE(f) =D Pr(@)
II T

where

,PT[‘((P/) :Z/¢Z(u)6(ul)dul/(]S(U)é('LLQ)dUQ
The function®!, is now supported on the grou@; of elements whose determinant is a norm.
Moreover,
Pr (') = Prgn(®).

To conclude we have to see that the local Bessel distribifipnhas a non-zero restriction to
GF. This is checked in [6, (7)].
If the quadratic extensioR'/ F' is arbitrary we have only a partial result.

THEOREM 4. —Suppose thafl is an automorphic cuspidal representation 6L(n, Ey).
ThenlIl is distinguished by a unitary group if and only if it is a base change.

We proceed as before except that at any inert real plaoe choose the functiof, supported
on the open setN,A,N,. Let w be the place ofZ abovev. It is elementary that there is a

2In connection with this example the author makes a claim of priority. However, he does not acknowledge earlier
references [5] and [6, (1)].
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function ¥, supported on the open set Hf, of matrices of the form

thau, w€ Ny, a€ A,

which matche®,,. Equating the discrete parts of the spectral expansions in the standard way, we
get again:

63) D B(®) =) > Ry (f9).
T ¢ II

Fix a representatiom, of GL(n,Fy) such thatry ® ng,p is not equivalent tary. Thus the
base chang#, of = is automorphic cuspidal. Sayis even. Then using the principle of linear
independence of the characters of the Hecke algebra we get

Bﬂ'o ((D) =+ BWU@HE/F ((I)) = ZRIE'IO (ff)
§

As before
Bz, (®) = H Bﬂo,u (®v), Bﬂo@nE/F (®) = H Bﬂo,v®m (D).

At areal placev inertin E, by Lemma 23 we choosg,, so that

Br, ,(P0) #0.

There is at least one finite plaegnert in £ such that

T0,u ;ﬁ T0,u b2 TN -

We chooseb,, so that

B‘ﬂ'o,u (q)u> 7é 07 Bﬂ'o,u®nu ((I)u) =0.

Then we find

By (@) = ZRfl'Io (fg)
3

We conclude thait%fHO (f¢) is non-zero for at least orgeand the theorem follows. I is odd the
proof is similar but simpler. O
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