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REGULARIZATION OF CURRENTS AND ENTROPY

By TIEN-CUONG DINH AND NESsSIMSIBONY

ABSTRACT. — Let T be a positive closedp, p)-current on a compact Kahler manifolli. We prove
the existence of smooth positive closga p)-forms 7,7 and T,; such thatT)t — T,; — T weakly.
Moreover,||T:E|| < ex||T|| wherecx > 0 is a constant independent @t We also extend this result to
positive pluriharmonic currents. Then we study the wedge product of positive dlbsedcurrents having
continuous potential with positive pluriharmonic currents. As an application, we give an estimate for the
topological entropy of meromorphic maps on compact Kéhler manifolds.
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RESUME — Soit 7" un (p,p)-courant positif fermé sur une variété kahlérienne compacteNous
montrons I'existence dép,p)-formes lisses, positives ferméds" et T, telles queT,f — T, — T
faiblement. De plus, on B’ || < cx||T|| ol cx > 0 est une constante indépendantddélous montrons
aussi ce résultat pour les courants positifs pluriharmoniques. Nous étudions également le produit extérieur
de (1, 1)-courants positifs fermés & potentiel continu avec des courants pluriharmoniques positifs. Comme
application, nous donnons une estimation de I'entropie topologique des applications méromorphes d'une
variété kahlérienne compacte.
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1. Introduction

Let (X,w) be a compact Kahler manifold of dimensiénDemailly [7] has shown that for a
positive closed1, 1)-currentT’ on X, there exist smooth positive closét 1)-forms T, which
converge weakly (i.e. in the sense of currents)'te¢- cw wherec > 0 is a constant. Moreover,
there is a constanty > 0, independent of’, such that|7 || andc are bounded by ||T||. We
refer to Demailly’s papers [6,7] for the basics on currents on complex manifolds. Recall that the
mass of a positivép, p)-currentS is defined by||S|| := [, S A w"~P. Our main result is the
following theorem where positivity can be understood in the weak or strong sense.

THEOREM 1.1. —Let (X,w) be a compact Kahler manifold of dimensibnThen, for every
positive closedp,p)-currentT on X, there exist smooth positive closéd p)-forms7F and
T7 such thatT;} — T;; converge weakly to the currefit. Moreover, || 7| < cx||T|| where
cx > 0is a constant independent Bt

We deduce from this theorem the following corollary which is proved in [10] for projective
manifolds.

COROLLARY 1.2. -Let(X,w) be a compact Kéhler manifold of dimensibriThen, for every
positive closedp, p)-currentT on X, there exist smooth positive clos@dp)-formsT, which
converge weakly to a curreft’ with 77 > T'. Moreover,||T.7|| < ex||T]] and |[T7|| < ex||T||
wherecx > 0 is a constant independent 6f
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960 T.-C. DINH AND N. SIBONY

Let (X’,w’) be another compact K&hler manifold of dimensidrn: k and letll: X’ — X be
a surjective holomorphic map. We want to define the pull-back of the cuftdyt the mapll.
WhenllI is a finite map, this problem is studied in [19,12]. In general, the Fhigpa submersion
only in the complement of an analytic sub&§edf X'. Let denote the restriction dl to X'\ C.
Then,7*(T) is well defined and is a positive closéd p)-currentonX’\ C. Let (T.}) andcx be
as in Corollary 1.2. Definé,, := IT*(T)}). The(p, p)-forms S,, are smooth and positive ok’.
Their classes i H??(X’,C) are bounded sincf|7,"||) is bounded. It follows that||S,]|) is
bounded. Taking a subsequence, we can assumé&jthetnverge to a currerf. We also have
S > n*(T) on X'\ C. In particular,7*(T') has finite mass. Following Skoda [22], the trivial

extensiont* (T') of 7*(T') on X' is a positive closed current. So, we have the following corollary.

COROLLARY 1.3.-Let X, X', TI, m and T be as above. Then, the positive curreri{T’)
is well defined and closed. Moreover, there exists a congtant 0 independent of” such that

—~—

|7 (T)|| € cul|T||. The mapl’ — 7*(T) is l.s.c. in the sense thatff, — T, then any cluster
point 7 of (7*(T;,)) satisfiesr > 7*(T).

In [19], Méo gave an example which shows that, in general, wiemd X’ are not compact,
the currentt*(7T") on X \ C is not always of bounded mass né€ar

Consider a dominating meromorphic self-mpX — X of X. Define f*:= fo---o f
(n times) thenth iterate of f. We refer to the survey [20] for the theory of iteration of
meromorphic maps. Lef, be the indeterminacy set gf*. Then I, is an analytic subset of
codimensior> 2 of X. Denote by(); the set of points: € X \ I; such thatf"(x) ¢ I, for every
n > 1. AsubsetF’ C Q; is called(n, €)-separatede > 0, if

c (i i S i
OgI}lgag(ildlbt(f (z), [ (y)) =€ fora,ye F distinct

Thetopological entropyh( f) (see [5]) is defined by

h(f) :=sup <lim sup 1 log max{#F, F (n, e)-separate}l> .

e>0 \ n—oo N

LetT',, be the closure irX™ of the set of points

(maf(x)v"'vfn_l(x)), Z‘EQf.
This is an analytic subset of dimensiérof X”. LetII; be the canonical projections &f™ on

its factors. We consider oA ™ the K&hler metriav,, := > II7(w). Define, following Gromov
[17],

1) lov(f) :=limsup 1 log(vol(T',)) = limsup % log( /ws) .

n—oo n n—oo
r,
Define alsahe dynamical degree of orderof f by
1/n
2 d,:= limsup( / F(wWP) A wk_”) .
n— 00 Peta
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REGULARIZATION OF CURRENTS AND ENTROPY 961

Using an inequality of Lelong [18], Gromov [17] proved thetf) < lov(f). Following Gromov
and Yomdin [23,16,17], we have

h(f) =lov(f) = max logd,

1<p<k

when f is a holomorphic map. Using Corollary 1.2, we prove, in the same way as in [10], that
the sequences in (1), (2) are convergent and that the dynamical degrags bimeromorphic
invariants off. More precisely, ifll: X’ — X is a bimeromorphic map between compact Kahler
manifolds, the dynamical degreesléf! o f o I are equal tal,. Using Corollary 1.2, we also

get the following result.

THEOREM 1.4. —Let f be a dominating meromorphic self-map on a compact Kahler manifold
X of dimensiork. Letd, be the dynamical degrees 6f Then

h(f) <lov(f) = max logd,.

1<p<k

This theorem gives a partial answer to a conjecture of Friedland [15] which says that
h(f) = maxi<p<r logd,. Theorem 1.4 is already proved in [10] for rational maps on projective
manifolds. Corollary 1.2 permits to extend the proof to compact Kéhler manifolds. One can also
extend some results on meromorphic correspondences or transforms, which are proved in the
projective case in [11] (see also [8]).

In the last two sections, we extend Theorem 1.1 to positive pluriharmonic currents and currents
of class DSH. We also study the intersection of such currents with positive dlbsgdcurrents.

We thank the referee for his constructive observations that helped to improve the exposition.

2. A classical lemma

We give here a classical lemma that we use in Section 3BLa@¢note the unit ball ifR™.
Let K (z,y) be a function with compact supportih x B, smooth inB x B\ A whereA is the
diagonal ofB x B. Assume that, for everfx, y)

3) K (z,y)| < Alz — g™
whereA > 0 is a constant and = (x4, ..., z,,) are coordinates ™. Observe that for every
) 1oyl aes < A
for somed > 0 and A’ > 0. Assume also that for eveny, y
5) VK (2,y)| < Az -y~

In this section, we identify, a current of degre@and of orden, with the current of degree.,
vdy; A+ Ady.,. Let M denote the set of Radon measure®Rdh We define a linear operator

P on M by:

Pu(x):= / K(z,y)du(y).
yeR™

Observe that the functioRu has support i3. We have the following lemma.
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962 T.-C. DINH AND N. SIBONY

LEMMA 2.1.-The operator® maps continuously into L' It also maps continuousky?”
into L7, L into C° andC into C!, whereq = o if p~ 2+ (1+5)" ' <landp '+ (1+6)" !t =
14 ¢~ ! otherwise.

All the assertions are easy to deduce from (3), (4) and (5) and the Holder inequality.

3. Proof of Theorem 1.1

Let A denote the diagonal ok x X. We first give aweak regularizationof the current
of integration[A] Let X x X denote the blow-up o x X along A. Following Blanchard
[4], X x X is a Kahler manifold. Letr: X x X — X x X be the canonical projection and
A=n" LA). ThenA is a smooth hypersurface i x X. If ~ is a closed strictly positive

(k—1,k—1)-form on X x X, thenm, (y A [A]) is a non-zero positive closed, k)-current on
X x X supported orA. So, it is a multiple of A]. We choosey so thatr, (y A [E]) = [A]. We
will use the following regularization dfA].

Since[ﬁ] is a positive closedl, 1)-current, there exist a quasi-p.s.h. functioand a smooth
closed(1,1)-form ©' such thatdd®y = [A] — ©'. Recall thatd® := ;- (3 — 3). Demailly’s
regularization theorem [7] implies the existence of smooth functignand of a smooth positive
closed(1,1)-form ® on X x X such that

b ddc()@n = _@;

® (, decrease to.

In this case, independently of Demailly’s theorem, we can construct the functipres
follows. Observe that is smooth out ofA and ! (—o0) = A. Let y:R U {—c0} — R be
a smooth increasing convex function such thét) = 0 on [—oo, —1], x(z) =z on [1,+oo|
and0 < x’ < 1. Definex, (z) := x(z +n) — n andy,, := x, o ¢. The functionsy,, are smooth
decreasing te and we have

dd®pn = (xn 0 9) dp A d @ + (X, 0 p) ddp
(6) > (Xpop)dd®p=—(x,0p)0" > -6
where we choose the smooth positive closed fériig enough so thad — ©' is positive.

Define®; := ddyp,, + © and®;, := © — ©’ then®; — O, — [A]. We have||0F| < ¢
wherec, > 0 is a constant. The form®:;" are smooth. Define

KF:=yA0F and K':=r,(K}).

n

The (k, k)-forms K= are positive closed with coefficients in* and smooth out ofA. We

also haveK; — K, — [A] weakly and||KF|| < ¢, ¢; > 0. This is what we call aveak

regularizationof [A]. We will use K;F to regularize the currenff. The following lemma shows
that the coefficients of* satisfy inequalities of type (3) and (5) fon = 2k. Then, the
singularities of * are the same as the singularities of the Bochner—Martinelli kernel.

LEmMmMA 3.1.-Let(x,y) = (z1,..., Tk, Y1,---,Yk)» |T:i] <3, |yi] < 3, be local holomorphic
coordinates of a chart ok x X such thatA = (y = 0) in that chart. LetH = be a coefficient of
K:* in these coordinates. Then, there exists a constant- 0, depending om, such that

[H, (2,9)| < Aulyl**% and  [VH;| < Anly|' "
for |z;| < 1, |y;| < 1andy #0.
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REGULARIZATION OF CURRENTS AND ENTROPY 963

Proof. —By symmetry, it is sufficient to considér, y) in the open sectof defined by the
inequalities|z;| < 3, |y;| < 3, |y;| < 3|y1| and prove the estimates in the secférdefined by
|z < 2, |y1| < 2 and|y;| < 2]y1| (we can assume thai is the largest coordinate of the point
y #0). Let S and S’ be the interiors ofr—1(S) and ofwfl(S ) respectively. We consider the
coordinate systerfz, Y) of S with |z;| < 3, Y1 =1 andY; = y; /y1, [y1] < 3, |yi| < 3|y for
i=2,..., k. We haver(z,Y) = (z,y) for (z,y) € S. The equation ofA in S'is ¥; = 0.

SmceKjE are smooth orb, they are finite sums of forms of type

(I)(LL', Y) = L({E7Y) dey AdzTp AAY s A d?]/
whereL is a smooth functionl, I’, .J, J' are subsequences ff, ..., k} and
dI]:dl’il/\"'/\dZ‘im |fI:{7,1,,Zm}

Hence, inS the formsKF are finite sums of forms of type, (®).

Observe thatr, (®) is obtained from®(z,Y") replacingY; by y; andY; by y;/y:. There are
here at mos2k — 2 factors of the formi(y; /y1) = dy; /y1 — v: dy1 /y? or their conjugate. Hence,
the coefficients ofr,.(®) on S are finite sums of

m——"n

L(x,y1,92/y1, - ye /1) P(W)yy "7,
where P is a homogeneous polynomial inandy such thatdeg(P) + 2k — 2 > m + n. Since
S’ € S, Lis bounded ort” and L(x, y1,y2/v1,---,yx/y1) iS bounded ort’. The first estimate

of the lemma follows.
For the second estimate, it is sufficient to observe that the coefficients in the gradient of

L(x,y1,92/Y15 - Ye /Y1) P(y)yy "0 "

are combinations of functions of the same type with homogeneous polynomiaigh that
deg(P)+2k—1>m-+n. O

Define

@) T (2) = / K(z,y) AT().
yeX

Let 7; denote the canonical projections ®fx X on its factors. We have
®) T, = (m)« (K A3 (T)).

Observe thatr;(T) is well defined sincer, is a submersion. The current§* A 3(T) are
positive closed and well defined ok x X \ A. They are of finite mass since, for eagh

|K (., y)|lL: is uniformly bounded. A priori, the mass dependsrarBy Skoda’s extension
theorem [22], their trivial extensions are positive and closed. It followsTfaare well defined
and are positive closed currents 60 The use of Skoda’s theorem can be replaced by an
argument similar to the one in the proof of the following lemma.

LEMMA 3.2.-The currentsT] — T, converge weakly td’ whenn — oo. Moreover,

n

|7 < ¢||T|| wheree > 0 is a constant independent afand 7.
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964 T.-C. DINH AND N. SIBONY

Proof. —Definell := m, o m. Observe thall is a submersion frorﬂ(/;j( onto X andHlZ is

a submersion fron\ onto X . Indeed, consider charts € V/ C X that we identify with open
sets inC*. Assume that/ is small enough and € U. We can, using the change of coordinates
(z,w) = (2 —w,w) on V' x U, reduce to the product situatidn x U, U € V c C* whereA
is identified to{0} x U. The blow-up alond0} x U is still a product. SAI* of a current is just
integration on fibers. We can use this local model for the assertions below. _

The potential ofA is integrable with respect id* (7") since its singularity is likéog dist(z, A)

and this function has bounded integral on fiberslofn particular,[A] A II*(T') is well defined
(we use here tha is closed) and is equal (OI‘Z)*(T), and[A] has no mass fdi*(T") nor for

K= ATI*(T). We then have
9) KEAm3(T) = m, (KE ATTH(T))

since the formula is valid out o\ and there is no mass af. The potentials ofk" are
decreasing and the currerit§, are independent of, hence

(10) K} AT (T) = K, ATE(T) =y A [A] AT(T) =5 A (T 5)*(T)

Sincew‘z is a submersion ontd, we have(le)*(T) = (W‘Z)*(ﬂ'mA)*(T). Hence

7 (7 A (I Z) (1)) = (maya)* (T).
This and (9), (10) imply that
Ky Am3(T) = Ky Am3(T) = (m214)"(T).

Taking the directimage undey, givesT,” — T, — T.

Sincell is a submersion|IT*(T')|| < c2||T|| wherecs > 0 is independent of . Observe that
since K= are smooth we can compufig<= A IT*(T')|| cohomologically. The cohomological
classes of(;f are bounded, hence there exists a constant 0 such that

| KE AT (T)]| < e Tl

It follows that
ITE ] = || (r0)ume (K ATI(T))|| < €| T
wherec > 0 is independent of, and7. O

The proof of Theorem 1.1 is completed by the following three steps.

Stepl. We show first that we can choose in Theorem 1.1 foiffiswith L! coefficients.
DefineTF as in (7) and (8). We use partitions of unity &fand of X x X in order to reduce the
problem to the case @™. Following Lemmas 2.1 and 3.1, the forii§ haveL.! coefficients.
Lemma 3.2 implies thef, — 7, — T and||T:F| < ¢||T||. Of course, in general; — T, do
not converge ifl.! since the constants,, in Lemma 3.1 depend om.

Step2. We can now assume thdt is a form with L' coefficients. Definel’t as in (7)
and (8). Lemmas 2.1 and 3.1 imply tH&f are forms with coefficients ifh.!+°. We also have
T+ —T, — Tand||TF| < ¢||T||. Hence, we can assume tHais a form withL.!  coefficients.
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REGULARIZATION OF CURRENTS AND ENTROPY 965

We repeat this proces¥ times with N > 6~'. Lemmas 2.1, 3.1 and 3.2 allow to reduce the
problem to the case whefiéis a form withL>° coefficients. If we repeat this process two more
times, we can assume tHatis aC' form.

Step3. Now assume thdl is of classC!. We can also assume thatis strictly positive. Let2
be a smooth real closég, p)-form cohomologous t@". Using standard Hodge theory [6], there
is areal(p — 1,p — 1)-form u of classC? such thatl’ = Q + dd“u. Let (u,,) be a sequence of
real smoothp — 1,p — 1)-forms such that,,, — u in C?> norm. The current}, := Q + dd“u,,
converges td@” in C° norm. Moreovery;, is positive forn big enough sincé is strictly positive.
This completes the proof of Theorem 1.1

4. Pluriharmonic and DSH currents

In this section, we extend Theorem 1.1 to positive pluriharmonic currents, i.e. positive
dd®-closed currents, and currents of class DSH. We have the following result which is new even
for bidegreg(1, 1) currents.

THEOREM 4.1. —LetT be a positiveld®-closed(p, p)-current on a compact Kahler manifold
(X,w). Then there exist smooth positivel°-closed formsT'F such that7,f — 77 — T.
Moreover,||TE|| < ex||T|| wherecx > 0 is a constant independent Bt

We deduce from this theorem the following corollary.

COROLLARY 4.2.—LetX, X', II, # and C be as in Corollaryl.3. If T is as in Theorerd. 1,
then the positiveld®-closed currentr*(T') is well defined. Moreover the operat@t— 7*(1")
is I.s.c. and|7*(T)| < en||T'|| wherecr; > 0 is a constant independent Bt

To prove the corollary, observe that by Theorem 4.1, the positive pluriharmonic cuf@nt,
which is well defined onX’ \ C, has finite mass. Following Alessandrini and Bassanelli [1],

(T satisfiesld°7*(T) < 0. Then, Stokes Theorem implies thkt°7*(T") = 0.

Proof of Theorem 4.1. We use the same idea as in Section 3. Cledjjygiven by (7), (8)
and (9) are pluriharmonic positive currents. We only need to checkthat 7, — T'. The rest
of proof is the same as in Theorem 1.1.

Let p andyp,, be quasi-p.s.h. functions as in Section 3. We want to prove the analog of (10):

(12) (ddCp, +©') ATI*(T) — (I 5)*(T).

The problem is local. Defing& := (H\Z)*(T)' We choose as in Lemmas 3.1 and 3.2 local

holomorphic coordinate@&ey, . .., xox) Of an open setV C m |z;| < 1, so that inWW/
o A = {x9, =0}; hencey := ¢ — log |z | is smooth andld®y = —©;
o Il(zy,...,x0k) = (21,...,Zk).

Definer(x1,...,x2) == (21,...,%2k-1). Sincell = H\Z o7, we havell*(T) = 7*(S) in W.
Observe thatdd®p,, + ©') A 7*(S) is supported iy < —n + 2) and, by (6),

(dd®p, + O)AT*(S) = (1 — X}, 0 )0 AT(S).

The definition of x,, implies that the measurgd — x/, o ¥)©" A 7*(S) tend to 0. Hence,
every limit value of(dd®p,, + ©’) A 7*(S) is a positive curren? supported inA. Following
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966 T.-C. DINH AND N. SIBONY

Bassanelli [2], it is a current oA (this is true for every positive currefit supported inA such
thatdd®R is of order 0). Hence, in order to prove (11) we only have to check that

/\Il(xgk)(ddcapn+®/)/\T*(<I>/\S)—>/<I>/\S
w A

for every test(2k — p — 1,2k — p — 1)-form ® with compact support i\ N W and for every
function ¥ (z5) supported in{|zox| < 1}, such that¥'(0) = 1. Observe that since*(® A S)
is proportional tadz; A dZy A -+ - A dzag_1 A dTax_1 only the component add®y,, + © with
respect talzoy, A dToy is relevant. Wherixy, ..., xor—1) is fixed, we have

/ W(ddS,, pn +0') > 1

T2k

sincedds,, ¢, + ©' converges to the Dirac magsand ¥ (0) = 1. The last integral is uniformly
bounded with respect to andz,...,zo;_1 because by (6) one can prove that the masses of
the measuredds,, ,, +©" on a compact set dflzar| <1, 1,..., 22,1 fixed} are uniformly

bounded. This implies the resulto

Remark4.3. — Theorem 4.1 implies that on an arbitrary compact Kahler manif&ldv)
positive pluriharmonic current’ of bidegree(1,1) have finite energy. We then havé =
Q + 08 + 0S + i00v with  smooth closedsS, 95, 05 in L2 andv in L. The energy ofl’
is equal tof S A 0S A w*~2. The case of the projective space is treated in [14]. To extend the
result to an arbitrary compact Kéhler manifold, one has to use the approximation Theorem 4.1,
to go from a priori estimates on smooth positive pluriharmonic forms to the estimates on positive
pluriharmonic currents.

Let DSHP(X) denote the space ¢p, p)-currentsT” = T; — T, whereT; are negative currents,
such thadd“T; = Q; — Q; with Q positive closed. Observe thg®;" || = ||, ||. We define
theDSH-normof 1" as

IT|psw := min{| 71| + | 2]l + Q7| + 1951l, T:, ©F as abovg.

We say thafl;, — 7' in DSH? (X)) if T,, — T weakly and(||T:,||psn) is bounded.

The space®DSH?(X) are analogous to the space generated by quasi-p.s.h. functions. They are
useful in order to study the regularity of Green currents in dynamics [11,12]. The proof of the
following theorem, which gives the density of smooth form$¥8H” (X), follows the lines of
previous approximation results and is left to the reader. In this case, for the control of the mass
of TF we need to estimate the massdoF¢,, A IT*(T;). It is sufficient to estimate the mass of
o IT*(dd“T;) using the definition ofp,,.

THEOREM 4.4. —Let T' be a current inDSH?(X). Then there exist smooth regb, p)-
formsT,, such thatT;, — T. Moreover,||T,|psu < cx||T|lpsu Wherecx > 0 is a constant
independent of .

Remark4.5. — We haveK;™ — K — v A [A] = v A dd®(¢, — @) ande, = ¢ out of the set
(¢ < —n + 2). Hencesupp(K;" — K,;) converge toA, supp(K;" — K) converge toA and
supp(T,F — T, ) converge tasupp(T).

We also have the following useful proposition.
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PROPOSITION 4.6. —LetT" be a continuous form anf@l* be the forms defined i{7) and (8).
ThenT,, := T} — T, converge uniformly td". WhenT is closed(resp.dd®-closed thenT.f
are closedresp.dd®-closed.

Proof. —We can approximaté uniformly by smooth forms. We then assume thas smooth.
The formT,, — T is the push-forward of K, — K, — vy A[A]) ATI*(T) by ' :=m o
(see Lemma 3.1). The last current is equalllo:= dd®(¢, — ) Ay wherey’ is a smooth
form. Using a partition of unity, we reduce the problem to a local situation with the coordinates
x=(2',2") = (1, .., Tks Tht1, - - -, T2p), II'(x) =2/, A = (x9r, = 0) and 4’ of compact
support as in the proof of Theorem 4.1. We have to checKThét, ) (') = S T, (z) converge
uniformly to 0.

Observe that the last integral is taken in the neighbouri{god —n + 2) of (z9; = 0) and
the formT), — ddS, (¢n — @) A+' is of orderl/|z4| since in the difference we get at most one
derivative with respect t@,;. Hence, it is sufficient to estimate

/dd;”(@n —Q)AY = /(@n — @) AddS.

2! x!!

It is clear that these forms converge uniformlyoto O

5. Intersection of currents

We want to consider a class of positive pluriharmonic currents which are of interest in some
problems of complex analysis and dynamics. Some of their properties are given in [21,1,2,13,9,
14]. Given a compact Kahler manifo[d, w) of dimensionk, we want to define the intersection
S AT of a positive closed1, 1)-currentS with a positive pluriharmonic currerff of bidegree
(p,p), 1 <p < k—1. We have seen a special case of this situation in the last section.

We write S = a + dd“u with o smooth andu a quasi-p.s.h. function. We say thatis a
potentialof S.

THEOREM 5.1. —Assume that: is continuous. The®' A T' is well defined and is a positive
dd°®-closed current. Moreove$s A T' depends continuously afiand 7" in the following sense.
Let T}, be positive pluriharmonic currents converging weaklyftolf S,, = a + dd“u,, with u,,
continuous converging uniformly tothenS,, A T, converges weakly t§ A T'. In particular, it
holds when the.,, are continuous and decreaseio

We first prove the following proposition for smooth potentials. We will see later that it can
be extended to continuous quasi-p.s.h. functishsand thatdv™ A R andd®v® A R are well
defined in this case.

PROPOSITION 5.2. —Let v* and v = v* — v~ be smooth real functions oA such that
dd°v* = ©F — o where o is a smooth closed1,1)-form and ©* are positive closed
(1,1)-currents. LetR be a positive current iDSH” (X) with dd°R = QT — Q~ whereQ*
are positive closed currents. Then

/dv Ad A RAWFP™L L lv||pee <2/oz/\R/\wkp1 +3(lo* lLe + ||v||Loo)||Qi|>
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968 T.-C. DINH AND N. SIBONY
In particular, if R is positive pluriharmonic, we have
/dv AdDA RAWFPTEC2|v||Le /[a} A [R] A [w]FP~1,

Proof. ~Observe thaf|v|jL= < [[v* L= + [[v™[lL=, [[©F] = [|©7] and [QF] = |2~ .
Hence

/dv AdCv A RAwF P!

1
< 2‘/dd%2 ARAWFP1

+ ‘/vddcv ARAwrFP1

1
= 2‘/1;2 Add°R A wFP~1

+ ‘/U(@Jr — O )ARAWFPE

<glol~ @ +07) Ak i ol [(©F @) ARALK P
= ol 2% + 200l / A AR AWEP
+ ||UHL°°/ddc(v++v_)/\R/\wk_P—1
< ol (ol + o e ) 195+ 2ol / a AR AP
e [@F o)A (@ - 0) Ak r

<ol (2 JanRAG (ot o+ ||v||Lw>||szi|>. :

Proof of Theorem 5.1. ©bserve that, when,, decreases ta, the Hartogs lemma implies
thatu,, converges uniformly ta. By Demailly’s regularization theorem [7], we can assume that
u,, is smooth and uniformly convergent to So, S,, A T,, is well defined. We will prove that
Sn AT, converges. This also implies that the limit depends onlyy@ndT'.

We first consider the case whefg = T'. We then have

(12) Sp AT =a AT +d(d%U, AT) —d(du, AT) — dd®(u,, T).

Proposition 5.2 applied to,, — u,,, and the Cauchy criterion imply thdt:,, andd“u,, converge
in L2(T Awk=P~1). HenceS,, A T converges andu A T, d°u A T are well defined.
To complete the proof we write

Sp ATy —SAT=dd(uy —u) AT, +ddun (T, = T)+an(T, = T).

The last term tends to zero. Proposition 5.2 implies fhétu,, — u) Ad®(u, —u) AT, Awk—P—1

has zero limit. An identity as in (12) and Cauchy—Schwarz’s inequality show that the first term
tends to 0. For the second term, we use again (12). We only need estimates of the following
type. If v is a test 1-form@ is a smooth positivgk — p — 1,k — p — 1)-form andv is a smooth
quasi-p.s.h. function withju — v||L~ < e anddd®v > —cw, then
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/du/\v/\(T—Tn)/\(a:/dv/\v/\(T—Tn)/\6

+/d(u—v)/\’y/\(T—Tn)/\@.

The first integral tends to zero. Cauchy—Schwarz'’s inequality and Proposition 5.2 imply

2

’/d(u—v)/\’y/\Tn/\@ <const| d(u —v) Ad°(u—v) AT, ANO

< constlu — vl|pe || Tl
<e

and similarly forl". O
In the same way, using the full strength of Proposition 5.2, one can prove the following
theorem.

THEOREM 5.3. —Let T be a current inDSH?(X) and S as in Theoren5.1 ThenS AT is
well defined and belongs ©SH? ™! (X). MoreoverS A T depends continuously ofiand 7.
The topology on th& variable is the topology dDSH? (X).

It is enough to assumg positive and to modify (12) into
Sp AT =a AT +d(d%u, AT) —d(du, AT) — dd®(u, T) + 1w, dd°T.

Remarks5.4. — If S; are positive closed1,1)-currents with continuous potentials, then
S1 A -+ NSy, AT is symmetric inS; since this is true whets; andT' are smooth. Let: be
a quasi-p.s.h. function on an open b@llc X. By the maximum regularization procedure as
in [6], if « is continuous we can extendto a continuous quasi-p.s.h. function h Hence,
dd®u A T is well defined o).

WhenT is only a (positive pluriharmonid)p, p)-current ont2, we do not know how to define
dd®u A T without additional hypothesis om Assume thaf", dT" anddd“T" are of order 0 and
u is locally integrable with respect to the coefficient measureg,efT’ anddd®T". Then we can
define

dd°u AT :=dd°(uT) + ©dd°T — d(wd®T) + d°(udT).

If u,, are p.s.h. and decreaseutar if u,, converge uniformly ta;, we have
dd®u, AT — ddu A T.

WhenT is positive, we also have an inequality of Chern—Levine—Nirenberg type (see [6, p. 126]).
More precisely, ifK, L are compact sets i1 with L € K, then

Hddcu /\THL < CK,L(HUT”K + HUdT”K + ||UddCTHK)

Note that positive harmonic currents associated to a lamination by Riemann surfaces satisfy the
above hypothesis (see [3]).

If T is of bidegreg(1, 1) we can extend Theorem 5.1 to curreftsiith bounded potential.
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970 T.-C. DINH AND N. SIBONY

PROPOSITION 5.5. —Let T" be a positive pluriharmonic current of bidegrée 1) in (X,w).
If « is a bounded quasi-p.s.h. function thét“u A T is well defined. If{w,,) is a bounded se-
guence of quasi-p.s.h. functions converging pointwiseutowith dd°u, > —cw, then
ddu, AT — dd“u AT.

Proof. —We can assume that, are smooth and positive. Itis easy to checkﬁﬁbfgare quasi-
p.s.h. and converge t@’. It follows thatdu,, (resp.du,,) converge tadu (resp.du) weakly in
L3(X).

As in Theorem 5.1, we only need to show tldat, AT’ (resp.Ou, A T) converges weakly.
Recall that we can writd = Q + 95 + 9S + iddv with Q smooth closed)sS, 95 in L2, v in
L' [14]. If ~ is a testl-form, we have

/8un/\T/\’y/\u)k_l:—/unaT/\v/\wk_l—/unT/\av/\wk_1

:—/unaﬁ/\v/\wk_l—/unT/\ay/\wk_l.

The second term tends §ouT’ A 9y A w*~1. The first term is equal to
7/5'11” /\%/\’y/\wk*1 Jr/un%/\ﬁfy/\wk*1
which converges to
—/auAﬁAyAw’H +/uﬁAayAw’H

sinceu,, — u anddu,, — du weakly inL?,
The convergence afu,, AT is proved in the same way.OO
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