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RIESZ TRANSFORM ON MANIFOLDS AND
HEAT KERNEL REGULARITY

By PascaL AUSCHER!, THIERRY COULHON?,
XUAN THINH DUONG? AND STEVE HOFMANN

ABSTRACT. — One considers the class of complete non-compact Riemannian manifolds whose heat kernel
satisfies Gaussian estimates from above and below. One shows that the Riesz transfobmurded on
such a manifold, fop ranging in an open interval abo if and only if the gradient of the heat kernel
satisfies a certaid? estimate in the same interval p'6.
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RESUME. — On considére la classe des variétés riemanniennes complétes non compactes dont le noyau
de la chaleur satisfait une estimation supérieure et inférieure gaussienne. On montre que la transformée de
Riesz y est bornée sur”, pour un intervalle ouvert de au-dessus dg, si et seulement si le gradient du
noyau de la chaleur satisfait une certaine estimakibpour le méme intervalle d'exposants
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1. Introduction

The aim of this article is to give a necessary and sufficient condition for the two natural
definitions of homogeneous first ordé® Sobolev spaces to coincide on a large class of
Riemannian manifolds, fgy in an interval(qo, po), where2 < py < co andgqy is the conjugate
exponent topy. On closed manifolds, these definitions are well-known to coincide for all
1 < p < co0. For non-compact manifolds, and agaipn = oo, a sufficient condition has been
asked for by Robert Strichartz in 1983 [92] and many partial answers have been given since.
We shall review them in Section 1.3 below. The condition we propose is in terms of regularity
of the heat kernel, more precisely in terms of integral estimates of its gradient. We are able to
treat manifolds with the doubling property together with natural heat kernel bounds, as well as
the ones with locally bounded geometry where the bottom of the spectrum of the Laplacian is
positive.

1.1. Background

Let M be a complete non-compact connected Riemannian manifoldhe Riemannian
measureV the Riemannian gradient. Denote by the length in the tangent space, and by
I.ll, the norm inLP (M, 1), 1 < p < co. One defines, the Laplace—Beltrami operator, as a
self-adjoint positive operator ob?(M, 1) by the formal integration by parts

(Af D=1V £l
forall f € Cg°(M), and its positive self-adjoint square rast/? by
(Af, )= 1A F13.

As a consequence,

2
(1.2) IV A1l = 1AY2£13.
To identify the spaces defined by (completion with respect to) the semin@y¥hs|||, and
A2 ||, onCge (M) for somep € (1,00), it is enough to prove that there exisk ¢, < C), <
oo such that for allf € Cg° (M)
(1.2) ol A2 11, <[V, < Coll AV 1.

Note that the right-hand inequality may be reformulated by saying that the Riesz transform
VA~1/2 is bounded fromL.? (M, ;1) to the space of.? vector fields! in other words

(Ry) VA2 1, < Coll fll

for some constant’, and all f € C§°(M). Note that(R,) is trivial from (1.1). It is well-known
(see [6, Section 4], or [20, Section 2.1]) that the right-hand inequality in (1.2) implies the reverse

In the case wher@/ has finite measure, instead bP (M), one has to consider the spabE(M) of functions in
LP (M) with mean zero; this modification will be implicit in what follows.
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RIESZ TRANSFORM AND HEAT KERNEL REGULARITY 913

inequality
1AY2 flly < Gl [V 1],

forall f € C§°(M), whereg is the conjugate exponentpfHence, (1.2) foralb with 1 < p < 0o
follows from (R,,) for all p with 1 < p < co. More generally, if R,) holds forl < p < po (with
2 < pg < 00), one obtains the equivalence (1.2) and the identification of first order Sobolev
spaces fory < p < po, go being the conjugate exponentpg.

Under local assumptions on the manifold, one can hope for the inhomogeneous analog of the
equivalence (1.2), namely

(1.3) cp(IAY2Fllp + 1£1p) < NIV AL, + 171 < Co (1A £l + 11 £110)

forall f € C5°(M). It suffices then to study the boundednesdérof the local Riesz transform
V(A + a)~'/2 for somea > 0 large enough. If, in addition, the bottom of the spectrum of the
Laplace—Beltrami is positive, that is, if

(1.4) IV £, = Al fll2

for some positive real number and all f € Cg°(M), one can recover (1.2) from (1.3) (see
[18, p. 1154]).

1.2. Main results

Let us first recall the result of [18] which deals witi,) for 1 < p < 2. Denote byB(z,r)
the open ball of radius > 0 and centet: € M, and byV (x,r) its measure:(B(z,r)). One says
that M satisfies the doubling property if for alle M andr > 0

(D) V(z,2r) < CV(x,r).

Denote byp,(x,y),t > 0, z,y € M, the heat kernel o/, that is the kernel of the heat semigroup
e~'A. One says thal/ satisfies the on-diagonal heat kernel upper estimate if

(DUE) pi(z,2) < ——=

for all z € M, t > 0 and some constadt > 0.

THEOREM 1.1. — Let M be a complete non-compact Riemannian manifold. AssuméZthat
and (DUE) hold. Then the Riesz transform is bounded@rfor 1 < p < 2.

It is also shown in [18] that the Riesz transform is unbounded.bifor everyp > 2 on the
manifold consisting of two copies of the Euclidean plane glued smoothly along their unit circles,
although it satisfiegD) and (DUE). A stronger assumption is therefore required in order to
extend Theorem 1.1 to the range- 2.

It is well-known [46, Theorem 1.1] that, undéD), (DUE) self-improves into the off-
diagonal upper estimate:

x Lex _CdQ(x,y)
(UE) i ( ,y)<v(y7\ﬁ) p( ; )
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914 P. AUSCHER, T. COULHON, X.T. DUONG AND S. HOFMANN

forall x,y € M, t > 0 and some constants, ¢ > 0. A natural way to strengthen the assumption
is to impose a lower bound of the same size, that is the full Li-Yau type estimates

m exp (—CCP(?’ y)> <pe(z,y) < % exp (—ch(f’ y) ) ,

forall x,y € M, t > 0 and some constants, ¢ > 0. It is known since [63] that such estimates
hold on manifolds with non-negative Ricci curvature. Later, it has been proved in [84]thgt
is equivalent to the conjunction ¢f0) and the Poincaré inequaliti€®) which we introduce
next.

We say thatM satisfies the (scaled) Poincaré inequalities if there exists0 such that, for
every ballB = B(z,r) and everyf with f, V f locally square integrable,

(LY)

(P) /Wf—féﬁdu<<%2/WVdem
B B

where fr denotes the mean gfon E.

However, it follows from the results in [58] and [22] that evdn) and(P) do not suffice for
the Riesz transform to be bounded Bhfor all p > 2.

In fact, there is also an easy necessary conditiotiRy) to hold. Indeed(R,) implies

%
Vi

forallt >0, f € LP(M, ), since, according to [89], the heat semigroup is analyti€®m\/, 1.).
And this estimate may not hold for all> 2, even in presence ¢f) and(P).

Our main result is that, und€iD) and (P), this condition is sufficient fo(R,), 2 < ¢ < p.
Denote byi|T'||,—, the norm of a bounded sublinear operatbirom L? (M, p) to itself.

H|v€_tAf|||p < Cp||A1/2e_tApr < HfHPv

THEOREM 1.2. — Let M be a complete non-compact Riemannian manifold satisfying
and (P) (or, equivalently,(LY)). If for somepy € (2, 0] there exists > 0 such that, for all
t>0,

_ C
(Gr) 191, < <

then the Riesz transform is boundedighfor 2 < p < pqg.
We therefore obtain the announced necessary and sufficient condition as follows.

THEOREM 1.3. — Let M be a complete non-compact Riemannian manifold satisfying
and (P) (or, equivalently(LY")). Letp, € (2, oo]. The following assertions are equivalent
(1) Forall p € (2,po), there exists”,, such that

—tA
’HV@ |Hp~>p< %’
for all ¢ > 0 (in other words(G),) holds for allp € (2,po)).
(2) The Riesz transforf A~1/2 is bounded orL.” for p € (2, po).
Notice that we do not draw a conclusion fpr= py. It has been shown in [58] that there
exist (singular) manifolds, namely conical manifolds with closed basis, suclf&hathold if
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RIESZ TRANSFORM AND HEAT KERNEL REGULARITY 915

1 < p < po, but not forp > py, for somep, € (2, 00), and it has been observed in [22] that these
manifolds do satisfy(D) and (P); in that case(G,,,) does not hold either. Strictly speaking,
these manifolds are not complete, since they have a point singularity. But one may observe
that our proofs do not use completeness in itself, but rather stochastic completeness, that is the

property

(15) [pepdut) =1, vzer >0,
M

which does hold for complete manifolds satisfyifi@), or more generally conditiofZ) below
(see [43]), but also for conical manifolds with closed basis.

It follows from Theorems 1.3 and 1.1 that the assumptions of Theorem 1.3 are sulfficient for
(R,) to hold forp € (1,py), and for the equivalence (1.2) to hold fpre (¢o,po) Wheregg is
the conjugate exponent {g. In the caseyy = co, one can formulate a sufficient condition for
(Rp) and (1.2) in the full rangé < p < oo in terms of pointwise bounds of the heat kernel and
its gradient.

THEOREM 1.4. — Let M be a complete non-compact Riemannian manifold satisfying
and(DUE). If there exists” such that, for allz,y € M, t >0,

C
(@) Vepi(z,y)| < m7

then the Riesz transform is bounded@hand the equivalencgl.2) holds forl < p < cc.

We have seen that undéb), (DUE) implies (UE), which, together withG), implies the
full estimate(LY") (see for instance [63]). We shall see in Section 3.3 thgtimplies (G,) for
all p € (2,00). This is why Theorem 1.4 is a corollary of Theorems 1.3 and 1.1.

Our results admit local versions. We say thatsatisfies the exponential growth propetfy)
ifforall 1o >0, forallz € M,0>1,r <rg,

(E) Vi, 0r) <m(0)V(z,r),

wherem(6) = Ce? for someC > 0 andc > 0 depending omy. Note that this implies the local
doubling property D, ): for all vy > 0 there exists”,., such that for alk: € M, r € (0,r9),

(D1oc) V(z,2r) < Cpry V(z,r).

We write (DUE),.) for the property DUE) restricted to small times (say< 1).

We say thatM/ satisfies the local Poincaré prope(®,..) if for all v > 0 there exists,,
such that for every balB with radiusr < ro and every functiory with f, V f square integrable
on B,

(Ploc) / 1 = ful2dp < Cpr? / V712 dp.
B B

THEOREM 1.5. — Let M be a complete non-compact Riemannian manifold satisf/ig
and (Pj..). If for somepg € (2, 00] anda > 0, and for allt > 0,

Ce®t
< R
Po—Po \/E
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916 P. AUSCHER, T. COULHON, X.T. DUONG AND S. HOFMANN

then the local Riesz transforfi(A + a)~'/2 is bounded orL? for 2 < p < py anda > a.
As a consequence, we can state the

THEOREM 1.6. — Let M be a complete non-compact Riemannian manifold satisfyiig
and (Pi.). Letpg € (2, 00]. Then the following assertions are equivatent
(1) Forall p e (2,po), all t >0 and somex > 0

at
I1ve 2], -, < <2
pP—p \/g
(2) The local Riesz transfor (A + a)~'/? is bounded onl? for 2 < p < py and some

a>0.

Taking into account the local result in [18], and denoting 6Y,.) condition(G) restricted to
small times, the main corollary for the full range< p < oo is

THEOREM 1.7. — Let M be a complete non-compact Riemannian manifold satisfyig
(DUE1,) and (G, ). Then, fora > 0 large enough, the local Riesz transfoRifA +a) /2 is
bounded on.? and the equivalencél.3)holds forl < p < co.

Finally, thanks to the argument in [18, p. 1154], one obtains

THEOREM 1.8. — Let M be a complete non-compact Riemannian manifold satisfyig
(Pioc) and (1.4). Assume thatGy>°) holds for somep, € (2,00]. Then(R,) holds for all
p € (1,p0), and(1.2) holds for allp € (g0, po), Wheregq is the conjugate exponent tq.

and, in particular,

THEOREM 1.9. — Let M be a complete non-compact Riemannian manifold satisfyiig
(DUE)¢), (Ghoc) and(1.4). Then(1.2) holds for allp, 1 < p < oo.

The core of this paper is concerned with the proof of Theorems 1.2 and 1.4 and of their local
versions Theorems 1.5 and 1.7. Before going into details, we comment on anterior results, on the
nature of our assumptions, and on our method.

1.3. Anterior results

The state of the art consists so far of a list of (quite interesting and typical) examplesdwith
hocproofs rather than a general theory. These examples essentially fall into three categories:
I. Global statements for manifolds with at most polynomial growth
1. manifolds with non-negative Ricci curvature [7,8];
2. Lie groups with polynomial volume growth endowed with a sublaplacian [1];
3. co-compact covering manifolds with polynomial growth deck transformation group
[32];
4. conical manifolds with compact basis without boundary [58].
II. Alocal statement
5. manifolds with Ricci curvature bounded below [7,8].
lll. Global statements for manifolds where the bottom of the spectrum is positive
6. Cartan—Hadamard manifolds where the Laplace operator is strictly positive, plus
bounds on the curvature tensor and its two first derivatives [65];
7. unimodular, non-amenable Lie groups [68].
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RIESZ TRANSFORM AND HEAT KERNEL REGULARITY 917

Note that, for results concerning Lie groups in the above list, one can consider not only the
case where they are endowed with a translation-invariant Riemannian metric, but also the case
where they are endowed with a sublaplacian, that is a sum of squares of invariant vector fields
satisfying the Hérmander condition. For more on this, see for instance [1]. Although we did not
introduce this framework, for the sake of brevity, our proofs do work without modification in this
setting also, as well as, more generally, on a manifold endowed with a subelliptic sum of squares
of vector fields.

In cases | and lll, the conclusion is the boundedness of the Riesz transform, hence the
seminorms equivalence (1.2), for alE (1, c0).

In case ll, the conclusion involves local Riesz transforms, or the equivalence (1.3) of
inhomogeneous Sobolev norms. Note that an important feature of Bakry’s result in this case (say,
[7, Theorem 4.1]) is the weakness of the assumption: neither positivity of the injectivity radius
nor bounds on the derivatives of the curvature tensor are assumed. By contrast, for bounded
geometry manifolds, (1.3) follows easily from the Euclidean result by patching.

We feel that there is a logical order between I, I, 1ll: the results in Il are nothing but local
versions of |, and Il follows easily from Il if one uses the additional assumption on the spectrum
of the Laplace operator. One may observe that the above results were in fact obtained in a quite
different chronological order.

The resultsin | are covered by Theorem 1.4, the one in Il by Theorem 1.7, and the ones in lll by
Theorem 1.9. Let us explain now in each of the above situations where the required assumptions
come from.

In case 1, the doubling property follows from Bishop—Gromov volume comparison [12,
Theorem 3.10], and the heat kernel bounds includi@g from [63]. Note however that an
important additional outcome of Bakry’s method in [7,8] (see also [6] for a more abstract setting)
is the independence of constants with respect to the dimension. See the comments in Section 6.

In case 2, the doubling property is obvious, the heat kernel upper bound follows from [98] (but
one has nowadays much simpler proofs, see for instance [21] for an exposition), and the gradient
bound from [83]. The proof in [1] is much more complicated than ours; it requires some structure
theory of Lie groups as well as a substantial amount of homogeneization theory.

In case 3{D) is again obvious since such a manifold has polynomial volume grq\@tbiF)
is well known (it can be extracted from the work of Varopoulos, see for instance [99], but
nowadays one can write down a simpler proof by using [16] or [24]; see for instance [47,
Theorem 7.12]) andG) is proved in [32]. Added after acceptatioranother simpler proof of
(G) has been proposed recently in [34].) The boundedness of the Riesz transform is directly
deduced in [32] by using further specific properties of this situation.

In case 4, the boundedness of the Riesz transform is obtained for a(iapggeof values ofp,
and is shown to be false outside this range. It follows from [59] tligf) holds forl < p < po,
hence yielding with our result a simple proof of the main results in [58]. By direct estimates from
below onVe ™2 as in [59], one can also recover the negative results fop, (see [22]).

Cases 6, 7 are covered by Theorem 1.9. In case 6, we get rid of specific regularity assumptions
on the curvature tensor. As far as case 7 is concerned, for more recent results related to Lie groups
with exponential growth, see [69,70,42,52]. Note that the groups considered there are either non-
unimodular or non-amenable, which allows reduction to a local problem by use of the positivity
of the bottom of the spectrum.

Let us finally mention a few results which anet covered by our methods: in [58], conical
manifolds with compact basis with boundary are considered; in that case, the conical manifold
is not complete. The case where the basis is non-compact has been considered in [58], and
studied further in [61]; here the volume of balls with finite radius may even be infinite. In [60],
the L? boundedness of the Riesz transform foral (1,00) is obtained for a specific class
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of manifolds with exponential volume growth, namely cuspidal manifolds with compact basis
without boundary. In [64], Theorem 2.4, the boundedness of Riesz transfopm>faris proved

for a class of Riemannian manifolds with a certain amount of negative curvature; here doubling
is not assumed, and the main tool is Littlewood—Paley theory, as in [20].

1.4. About our assumptions

We discuss here the meaning and relevance of our assumptions.

Let us begin with the basic assumptions on the heat kernel. The two assun{giipasd
(DUE) in Theorem 1.1 are equivalent, according to [44], to the so-called relative Faber—Krahn
inequality

c z,1)\ "
(FK) > 5 (UE)

for somec,v > 0, all z € M, r > 0, Q smooth subset oB3(z,r). Here \;(2) is the first
eigenvalue of the Laplace operator @rwith Dirichlet boundary conditions:

fQ |Vu|2
Jou?

In the sequel, we shall sometimes denote(BY) the conjunction of D) and (DUE). Also,
we have recalled that the conjunction(db) and(P) is equivalent to LY"). It is worthwhile to
note that, contrary to the non-negativity of the Ricci curvat(fe) and(P) are invariant under
quasi-isometry, which is not obvious to check directly(dry").

We may question the relevance of this group of assumptions to Riesz transform bounds; as a
matter of fact,(G,) is needed but neithgFK) for p < 2 in [18] nor (D) and(P) for p > 2
are known to be necessary. However, it seems out of reach as of today to prove such bounds
without some minimal information on the heat kernel. These assumptions are reasonable for the
moment but we think they can be weakened. One direction is to replace the doubling condition by
exponential volume growth (without positivity of the bottom of the spectrum). This would mean
extending the Calderon—Zygmund theory to the exponential growth realm. A very promising
tentative in this direction is in [52], although the method has been so far only applied to a (typical)
class of Lie groups having a positive bottom of the spectrum. Another direction is to pursue [20]
by using Littlewood—Paley—Stein functionals and prove the conjecture stated there. Again, see
the comments in Section 6.

Concerning(P), a minor improvement of our assumptions is that, ur{dex’) and (G, ), it
may certainly be relaxed tb” Poincaré inequalities far large enough so as to guarantee some
control on the oscillation of the heat kernel. We have not tried to go into this direction here.
On the other hand, if the manifold has polynomial volume growth, then as soon as such weak
Poincaré inequalities holdP) is necessary for the Riesz transform to be bounded®for p
larger than the volume growth exponent (see [17, Section 5]).

We continue with estimates on the gradient of the heat kernel.

First, we can reformulate the necessary and sufficient condition in Theorem 1.3 in terms of
integral bounds on the gradient of the heat kernel, thanks to the following proposition proved in
Section 3.3.

AL(Q) = inf{ L ue ch(Q)}.

PrRoOPOSITION 1.10. — Assume thatM/ is a complete non-compact Riemannian manifold
satisfying(FK). Let2 < py < oo. The following assertions are equivalent
(1) (Gp) holds for all2 < p < po.
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(2)Forall 2 < p < py, forally e M and¢ >0

Cp

1.6 Vil S——— 71
(1.6) 1V i ( y)l!!p<ﬁ[v(y’ﬁ)]1_;

As one can see, the cage= co is excluded from this statement. When= ~o, (1.6) is
precisely(G) in Theorem 1.4 on which we concentrate now. Consider two other conditions on

vzpt(wvy):

(1.7) sup ,\/5/|prt(x,y)|du(y) < oo0.
t>0, z€M &
c d*(z,y)
(1.8) ‘prt(x’y” < WGXP <—C 7 ),

forallt >0, z,y € M.
It is easy to show that, undéFK), (1.8)= (1.7)= (G). Indeed (1.8)= (1.7) is immediate
by integration using D). Let us note that (1.7) is equivalent to

C
\V/ —tA

Note in passing that, by interpolation wifli’z), (G ) implies (G,) for all p € (2,00). Then,
(1.7)= (G) follows by writing

Vepe(e,y) = / Vapt/2(@, 2)piya(z, ) dulz)
M

and by direct estimates usirfd/E). One can see that in fact, und@p), (1.7) is equivalent to
(1.8), but this is another story (see [25]).

Next, it is interesting to observe that the size estimgte¥) do include already some
regularity estimates for the heat kernel, and @i} is nothing but a slightly stronger form of
this regularity. More precisely, the estimatds”) are equivalent to a so-called uniform parabolic
Harnack principle (see [85]) and, by the same token, they imply

() e -] < (4520) "€

Vit y, V)

for someC,c > 0, a € (0,1), and allz,y,z € M, t > 0. The additional assumptiof7) is
nothing but the limit case = 1 of (1.9). One can therefore summarize the situation by saying that
the Holder regularity of the heat kernel, yielded by the uniform parabolic Harnack principle, is
not enough in general for the Riesz transform to be bounded df albaces, whereas Lipschitz
regularity does suffice.

Unfortunately,(G) does not have such a nice geometric characterizatigasnd (P). In
fact, it is unlikely one can find a geometric description(6f) that is invariant under quasi-
isometry. It may however be the case th@y, and even mor¢G,,), are stable under some kind
of perturbation of the manifold, and this certainly deserves investigation.
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Let us make a digression. We already observed (8gtand (FK) imply the full (LY)
estimates, hence, undgfK), (1.8) is equivalent to

(1.10) |Vapi(2,y)| < %pm(w,y)

for some constant§', C’ > 0. Note that, in the case whe€& = 1, this can be reformulated as

(1.11) |V logpe(z,9)| < %

which is one of the fundamental bounds for manifolds with non-negative Ricci curvature
(see [63]).

Known methods to prove pointwise gradient estimates include the Li—Yau method ([63], see
also [79] for generalizations), as well as coupling [26], and other probabilistic methods (see for
instance [76]) including the derivation of Bismut type formulae which enable one to estimate the
logarithmic derivative of the heat kernel as in (1.11) (see for instance [39,95,96] and references
therein). Unless one assumes non-negativity of the curvature, all these methods are limited so
far to small time, more precisely they yield the crucial facf%ronly for small time. One may
wonder which large scale geometric features, more stable and less specific than non-negativity of
the Ricci curvature, would be sufficient to ensure a large time version of such estimates. A nice
statement is that it/ satisfies #K') and if for allt > 0, z,y € M,

Ve pi(,9)| < C|Vype(,y)]

then (1.8) (thereforéG)) holds ([45, Theorem 1.3], see also the first remark after Lemma 3.3

in Section 3.2). Another interesting approach is in [32], whgre is deduced from a discrete
regularity estimate, but here a group invariance is used in a crucial way; see also related results
in [54]. The question of finding weaker sufficient conditions for the integrated estirf@}gds

so far completely open.

We note that our work is not the first example of the phenomenon that higher integrability of
gradients of solutions is related to thé boundedness of singular integrals. Indeed, the property
that the gradient of the heat kernel satisfied&rbound can be thought of as analogous to the
estimate of Norman Meyers [75] concerning the higher integrability of gradients of solutions,
which in turn is connected to Caccioppoli inequalities and reverse Holder inequalities. It has been
pointed out by T. lwaniec in [56] thal? reverse Holder/Caccioppoli inequalities for solutions
to a divergence form elliptic equatioiw = f are equivalent (at least up to endpoints) to ilfe
boundedness of the Hodge projectok —* div.? Our result, which says that tHe’ boundedness
of the gradient of the heat semigroup is equivalent (again up to endpoints),i8 bmindedness
of the Riesz transform, is thus in the same spirit.

Let us finally connect (1.8) with properties of the heat kernelldiorms. In [19,20], the
boundedness of the Riesz transform bh is proved for2 < p < oo under (FK) and the
assumption that the heat kernel dfiorms is dominated by the heat kernel on functions: for

2 Added after acceptatiotin fact, a recent work by Z. Shen [87] shows that reverse Hélder inequalities are equivalent
to LP boundedness of the Hodge projector and also toltheboundedness of the Riesz transfoRiL —1/2 when
p > 2 andL is a real symmetric uniformly elliptic operater div(AV) on Lipschitz domains oR™. For this, he states
a general theorem akin to our Theorem 2.1 and attributes the method of proof to ideas of Caffarelli-Peral [10]. In a
subsequent paper [5], the two first-named authors of the present article will extend these ideas to the manifold setting
and prove actually that there always is sopge> 2 for which our Theorem 1.3 applies.
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allt>0,welC>T*M,
\e_t&w\ < Ce_cm|w|

(the caseC = ¢ =1 of this estimate corresponds to non-negative Ricci curvature). It would
certainly be interesting to investigate the class of manifolds where this domination condition
holds; unfortunately, this is in general too strong a requirement, since for instance it does not hold
for nilpotent Lie groups, as is shown in [80,81], whereas on such groups the Riesz transforms are
known to be bounded oh? for all p € (1, c0) [1].

It is conjectured in [20] that the same result is true under a weak commutation between
the gradient and the semigroup (since commutation is too much to ask, of course) that is the
restriction of the above domination condition &xactforms: for all¢ > 0, f € C5° (M),

|v€7tAf| g CGiCtA‘Vf‘,
and even its weaker, but more natuta?, version:
(112) |v€7tAf|2gcefctA(‘vf‘Q)‘

(Added after acceptationve mention a paper by Driver and Melcher [31] where Eierersions

of such inequalities (withc = 1) are proved on the Heisenberg groHp for all p > 1 by
probabilistic methods.) This is what we prove here, in the class of manifolds(Wih), as a
consequence of Theorem 1.4, since then (1.12) is equivalent to (1.8) as we show in Lemma 3.3,
Section 3.2, when we give a simpler argument for proving Theorem 1.4 with (1.8) instg@gl of

1.5. About our method

Let us emphasize several features of our method.

First, we develop an appropriate machinery to treat operators beyond the classical Calderén—
Zygmund operators. Indeed, our operators no longer have Hélder continuous kernels, as this is
often too demanding in applications: the kernel of the Riesz transform is formally given by

T dt
/vzpt(x7y)_7

t
0 \[

and condition(@) is just an upper bound which does not require Holder regularity pp, (x, y)

in a spatial variable. Geometrically, this makes a big difference since pointwise upper bounds on
the oscillation inz of V, p:(z,y) seem fairly unrealistic for large time (see [62]). The loss of
Holder continuity is compensated by a built-in regularity property from the semigroif.

Such an idea, which originates from [51], has been formalised in [35] for boundedness results in
the rangel < p < 2 and is actually used in [18] to derive Theorem 1.1. However, this method
does not apply to our situation as> 2; a duality argument would not help us either as we would
have to make assumptions on the semigroup acting on 1-forms as explained in Section 1.4; this
would bring us back to the state of the art in [20] (see [88] for this approach to the results in [20]).
But recently, it was shown in [72] that this regularity property can be usedfaesults in the
rangep > 2 by employing goodx inequalities as in [41] for and hocsharp maximal function;

this may be seen as the basis tolali to BMO version of theL! to weakL! theory in [35].

Note that, in this connection, the usual BMO theory requires too strong assumptions and can
only work in very special situations (see [13]).
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Second, our method works for the usual full rarge p < oo of values ofp and also for a
limited range2 < p < po. This is important as in applications (to Riesz transforms on manifolds
or to other situations, see [2]) the operators may no longer have kernels with pointwise bounds!
This is akin to results recently obtained in [9] fpr< 2 and non-integral operators, which
generalize [35]; in this circle of ideas, see also [53]. Here, we state a general theorem valid
in arbitrary range op’s above2, and its local version (Theorems 2.1 and 2.4, Section 2).

Third, we use very little of the differential structure on manifolds, and in particular we do not
use the heat kernel onforms as in [7], [8], or [20]. As a matter of fact, our method is quite
general, and enables one to prove fiteboundedness of a Riesz transform of the fovih—'/2
as soon as the following ingredients are available:

1. doubling measure,

2. scaled Poincaré inequalities,

3.e7tl1=1,

4. ellipticity, a divergence form structure, and “integration by parts” (in other words, the
ingredients necessary to prove Caccioppoli type inequalities),

5. L? boundedness of tVe L,

6. L? bound for the Riesz transform.

In particular, the method applies equally well to accretive (i.e. elliptic) divergence form
operators orR™, in which case thel? bound is equivalent to the solution of the square root
problem of Kato [3]. One of the present authors (Auscher) will present the details of this case (as
well as related results) in a forthcoming article [2].

The method is also subject to further extensions to other settings such as general Markov
diffusion semigroups on metric measure spaces, or discrete Laplacians on graphs. See Section 6.

2. Singular integralsand a variant of the sharp maximal function

In this section{ M, d, i) is a measured metric space. We denote as abov& byr) the open
ball of radiusr > 0 and centerr € M, which we assume to be always of finitemeasure.
We state and prove a criterion fé# boundedness, with > 2, for operators such as singular
integrals or quadratic expressions. We also give a local analog of this criterion.

2.1. Theglobal criterion

We say thatV/ satisfies the doubling property (that(i%/, d, 1) is of homogeneous type in the
terminology of [15]) if there exists a constafitsuch that, for alk € M, r > 0,

(D) w(B(z,2r)) < Cu(B(z,r)).

Consider a sublinear operator acting bt M, ;). We are going to prove a general statement
that allows one to obtain a bound for its operator normZ&M, 1) for a fixedp > 2. Such
techniques originate, in a Euclidean setting, in [41] (see also [94]) by use of the sharp maximal
function and goodk inequalities. It is proved in [72] that, in the definition of the sharp function,
the average over balls can be replaced by more general averaging operators depending on the
context, and that the ideas of [41] can be adapted. Our method is based on that of [72].

Denote byM the Hardy—Littlewood maximal operator

1
Mf(x) —;gr;m!fldu,
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whereB ranges over all open balls containimg

THEOREM 2.1. — Let (M,d, ) satisfy (D) and letT be a sublinear operator which is
bounded onL?(M, ). Letpy € (2,00]. Let A,., r > 0, be a family of linear operators acting
on L?(M, u). Assume

1/2
2.1) (ﬁ / !T(I—AT(B>>f|2du) <CM(f12) (@),
B
and
1 1/po 1/2
2.2) L ira, ) <oMTHR) @),
(M(B)! )

forall f € L?>(M,p), all z € M and all balls B > x, r(B) being the radius of3. If 2 < p < pg
andTf € LP(M,u) whenf € LP(M, ), thenT is of strong typgp,p) and its operator norm
is bounded by a constant depending only orf2t®2) norm, on the constant ifD), onp andpy,
and on the constants i{2.1)and (2.2).

Remarks—

— If pg = o0, the left-hand side of (2.2) should be understood as the essential supremum
sup,e [T'Ar(g) f (y)]-

— The operators4, play the role of approximate identities (as— 0). Notice that the
regularized versioff'A,. of T'is controlled by the maximal function ¢ f|> which may be
surprising at first sight sinc€ is the object under study. The improvement frano pg in
the exponents expresses a regularizing effect,of

— Define, forf € L?(M, ),

B3x

1 1/2
M#»Af(x)SuP(@BﬂT(IAr(B))ffdu) ;

where the supremum is taken over all ballsin M containingz, and »(B) is the
radius of B. This is (a variant of) the substitute to the sharp function alluded to above.
Assumption (2.1) means thdM#,Af is controlled pointwise by M (|f]?))'/2. In fact,

rather than the exact form of the control, what matters ismﬁ 4 Is of strong typ€(p, p)
for the desired values of. '

— Note that we assumed thdt was already acting ol?(M, ) and then we obtained
boundedness and a bound of its norm. In practice, this theorem is applied to suitable
approximations off’, the uniformity of the bound allowing a limiting argument to deduce
L? boundedness df itself.

— A careful reader will notice that in the proof below, thé bound forT is explicitely used
only if M has finite volume; but in practice, the verification of the assumptions (2.1) and
(2.2) requires thd.? boundedness df (and A,) anyway.

Let us now prove two lemmas inspired from [72] but with modifications to allow a treatment at
a given exponent and for a right regularization (see the remark after the proof). The first one is
a so-called goodkinequality. For simplicity, we normalize in the following proof the constants
in assumptions (2.1) and (2.2) to one.
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LEMMA 2.2.—Let(M,d,u, A.,po) andT be as above. Assume th@t2) holds. There exist
Ky > 1andC > 0 only depending omp, and the constant iiD), such that, for every > 0,
everyK > K, and~ > 0, for every ballBy in M and every functiorf € L2(M, i) such that
there existsrg € By with M(|Tf|?)(x) < A2, then

2.3) p({z € Bo; M(TFI?)(x) > K202, ME 4 f(x) <yA}) S (72 + K 7)u( By).
Proof. —Let us assume first that < co. Set
E ={z € Bo; M(ITf|*)(z) > K*\*, MZ. , f(z) <7A}.
From (2.2) and the hypothesis th&t (|7 f|?)(x) < A%, one has
[ s < ),
3Bo
whererg = r(3B,). Denote
Q= {zeM; M(ITA,f’x3B,) (x) > J*X*},

where J is a positive constant to be chosen. By the weak tgg/2,po/2) of the maximal
operator, we have

C

W@ < o [ AL i< CT By

3By
Now, we want to estimate(E \ 2). We remark that by definition, if € E'\ 2, then
(2.4) M(IT A, fPx38, ) (2) < T2A2,

We first prove that there existg only depending oriD) such that, ifcg K2 > 1, then for every
zeF,

(2.5) M(ITf1*xs,) () > K2X2.
Indeed, letz € E. SinceM(|T f|?)(x) > K?\?, there is a balB containingz such that

(2.6) / ITf|>dp > K2\ u(B).
B

If r =2r(B), one hasB C B(z,r) C 3B, hence for, only depending on the doubling condition
(D) one hasu(B) = cou(B(z,r)). Therefore,

2.7) / ITf1>dp > co KN p(B(z,1)).
B(z,r)

Since M(|Tf|?)(x9) < A2 andcoK? > 1, one can infer that, does not belong td(z,r).
Thereforer < 2r(By) and one concludes th& C 3B,. Together with (2.6), this yields (2.5).
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Next, choose/ such tha(J2 + 1) = K2. Then we have, for € E'\ ,
2(J% + DN < M(ITf|*x3B,) (2)
L2M(|T(f - Arof)|2X3Bo) () + 2M(IT Ar fIX38,) (%)
S2M(|T(T = Ay f| xamo) (@) + 27202,
and so
M(|T(I - Aro)f|2X3Bo)(JC) > A2,
Therefore
E\QC {zeM; M(|T(I - An)f|xsm) () > A2},
The weak typd1, 1) inequality for the Hardy—Littlewood maximal function yields

(BN Q) < p({ze M; M(IT(I = Ay [ Xs5,) (2) > A?})

c c
<5 [10@ = A Pramdu = [ 170 - 41 a
M 3Bo
¢ # 2 2
< FN(3BO)(MT7AJC($)) < Oy p(3By).

In the last two inequalities, we have used th&}, containse, and that: € E. Note thatC' is the
weak type(1, 1) bound of the maximal operator and, therefore, only depend£on
Altogether, we have obtained that

p(E) < C(J 77 ++*)u(3Bo)

providedK > 1, coK? > 1 andK? = 2(J? + 1). This proves the lemma wheg < cc.
If po = 0o, one deduces from (2.2) that

T Ay f ()] < M(IT S22 (@0) < A

for u-a.e.x € 3By. Hence
M(IT A, fI*x38,) (x) < N
for all x € M, and the sef) is empty if J > 1. The rest of the proof proceeds as beforel

As in [91, Lemma 2, p. 152], the goaklinequality yields comparisons df’ norms as used
in [72, Theorem 4.2].

LEMMA 2.3.— Let (M,d,u, A.) and T be as above. Assume th@.2) holds. Then, for
0 < p < po, there existg”, such that

(2.8) [(MATF2) 2, < CollMEAF I+ 1£1)

for every f € L?(M, u) for which the left-hand side is finit@f 1(M) = oo, the termC, || f]|,
can be dispensed with in the right-hand sidg21B)).

Proof. —Let f € L2(M, ) be such thaf (M (|T f|?))'/2||, < oc. For A > 0, set
Ex={zeM; M(|Tf?)(z) > \*}.
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Sethg = 0if p(M) =00, Ao = iy Joy MUTfI?) du if (M) < oo. In the latter case, by the
Kolmogorov inequality (see [74, p. 250])D), and the weak typé€l, 1) of M,

[ MZE) 2 d < a2 7P = CuO) 2 7
M
Using then thel.? boundedness &, we obtain

C C’

Ao < WW”Q < Wuf”p-

Now fix K > 0 to be chosen later, and write

IM(TF2) 2 =1+ b,

with
n= [ TP an
M(ITfI2)<E22
I = / (M(TF1)" dp.

M(TfI2)>K2AG

Clearly, I is bounded above by
KPXSu(M) < KPCP| fI15

with C depending only on the constant(i) and theL? norm of T". One can treaf, as follows.
The Whitney decomposition [15, Chapter Ill, Theorem 1.3] fryields, for A > Xy, a family
of boundedly overlapping ballB; such that', = | J, B;. There existg > 1 such that, for alt,
¢B; contains at least one point outsideF, that is

M(TFPP) (i) < A2
Therefore, according to Lemma 2.2 for the balis;, for everyy > 0 and K > K|
(2.9) u(Uxi) <C(Y* + K77)u(By),

whereUy ; = {z € cB;; M(ITf[?)(z) > K2\2, M%. , f(z) <A}
Let
Un={z e M; M(ITf*)(z) > K>\, M¥. , f(x) <A}
Then, since > 1,

UyCFE),C U(CBi),
%

thus, for all\ > )\,

u(Uy) = ZM(UM) <O(2+K7) Zu(Bi) <C'(V+ K7P)u(Ey).
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Now

I, =KP /pApflﬂ{M(|Tf\2) > K2\ }dA

Ao

oo

<K [0 (u(O) + (M 4T >92))) A

Ao

oo

< Kp/mp_l(cl(72 + K P u(Ex) + (M7 4 f > 3A})) dA
Ao

:C’(K”_”O +Kp72)H(M(|Tf\2))1/2H£ —i—Kp’Y_pHM#,Ang

Sincep < pg, one obtains the lemma by choosing fidst large enough and thefy small
enough. O

Now we are ready to prove Theorem 2.1. Ifet L?(M, )N LP(M, ). ThenT f € LP (M, )
and by Lemma 2.3

1/2
ITFlp < | (MAT )2, < CUMEAF L+ 11F])-
Using (2.1) and the strong tygde/2, p/2) of the maximal function yields

1T fllp < Cll A1l

and the conclusion follows by density.

Remark— We implemented an algorithm with a right regularization of the oper&tdny
looking atT' A, andT'(I — A,). It is also possible to obtain a result with a left regularization
by making assumptions ao#, and (I — A,.)T.

If one can use duality (that is, if is linear), one can try to prové? boundedness df* for
somep < 2. Then one can invoke a result in [35] if one wants a result for the full range < 2
or its generalization to a limited rangg < p < 2 in [9].

Another way (which covers the sublinear case as well), would be to mimic what we just did
using instead the sharp function introduced in [72]. DefineffarL?(M, 1),

# _ ].

ME S (@) = s — |17 = A
B

where the supremum is taken over all balisn M containingz, andr(B) is the radius ofB.

Regularizindgl” from the left means considerinmf(Tf).

However, if we were to apply left regularization to the boundedness of Riesz transforms on
manifolds, sincel” takes functions to vector fields (or teforms), A,. would have to be vector-
valued, say, the heat semigroup difiorms instead of the heat semigroup on functions as in
Section 3 below. Since only the action4f on the image of’ comes into play, one sees that the
needed assumptions on the heat semigroup-farms would only concern its action axact
forms; this fits with our purpose, see the discussion at the end of Section 1.4. The advantage of
the right regularization is that it is susceptible to be applied to more general situations, where the
notion of differential forms is not available.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



928 P. AUSCHER, T. COULHON, X.T. DUONG AND S. HOFMANN

For more on the applications of the above sharp function, the associated space, and its potential
uses in harmonic analysis, see [37].

2.2. Thelocal criterion

The theorem above admits variations towards localization.
Denote byM g the Hardy—Littlewood maximal operator relative to a measurable subsét
M, thatis, forz € E and f a locally integrable function o/,

1
Mpf(r)= W BN / | fl dp,

BNE

where B ranges over all open balls @ff containingz and centered ik. If in particular, E is a
ball with radiusr, it is enough to consider balB with radii not exceedingr.

We say that a subsét of M has the relative doubling property if there exists a constgnt
such that for alke € E andr > 0 we have

w(B(z,2r)NE) < Cpp(B(z,r) N E).

In other words,E2 endowed with the induced distance and measure has the doubling property.
The constanC' is called the relative doubling constantBf On such a setM g is weak type
(1,1) and bounded oi? (E, 1), 1 < p < o0.

THEOREM 2.4. — Let (M, d, 1) be a measured metric space. lpgte (2, co]. Suppose thaf’
is a bounded sublinear operator which is bounded.30M/, 1), and letA,., r > 0, be a family of
linear operators acting or.?(M, 11). Let E; and E5 be two subsets af/ such thatE, has the
relative doubling propertyy(Es) < co and E; C Es. Assume thaf — Mﬁ,} 7 4f is bounded
from LP(Ey, u) into LP(Es, ) for all p € (2,po), where o

(210) (M, 74f)%(2)

1
= sup

2
- T(I— A, dy, € B,
Bball in M, Bsz (BN E>) / I )| du 2

BNEs
and, for some sublinear operatérbounded fromL?(E;, 1) into LP(Es, ) for all p € (2, po),

(2.11) (; [ ira fmd)l/pow(/w (IT7P) + (55)2) (@)
. u(BﬂE2) r(B) 1% X E> )

BNE>

forall f € L?(M, n) supported inEy, all balls B in M and allz € B N Es, wherer(B) is the
radius of B. If 2 < p < pg andT'f € LP(E,, ) wheneverf € LP(Ey, ), thenT is bounded
from LP(E4, i) into LP(Es, 1) and its operator norm is bounded by a constant depending only
on the operator norm df’ on L?(M, 1), CE,, p, po, the operator norms QMﬁ%T.A andS on

LP, and the constant i(2.11)

Again, if py = oo the left-hand side of (2.11) is understood as the essential supremiiim on

The proof of this result is almost identical to that of Theorem 4 once we make some
adjustments. The first one is to forget abddtand to work directly in the relative spade,
by replacing systematically’ andT' A, by truncationsyg,T'x g, andxg,T A, xE,. Thus the
maximal operator relative t&>; becomes the maximal operator é5.

The second one is that Lemma 2.2 becomes
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LEMMA 2.5.— Let (M,d,u, A, po, E2, E1) and T be as above. Assume th@ 11) holds.
There existi, > 1 andC > 0 only depending o'z, andpy, such that, for every > 0, every
K > Ky andy > 0, for every ballBy in M and every functiorf € L?(E;, 1) such that there
existszy € By N By with Mg, (|Tf|*)(xo) + (Sf)*(z0) < A%, then

pu({z € Bo N Ea; Mp, (ITf1%)(x) > K*X*, M, 7 4 f(x) <yA})
< 0(72 + K7P)u(By N Es).

The proof is the same sin€gf > 0 implies M g, (|T f]?)(z0) < A2
The third one is that the terisif brings a modification in Lemma 2.3 which becomes

LEMMA 2.6.—Let(M,d,pu, A, E2, E1) andT be as above. Assume th{@t11)holds. Then,
for 0 < p < po,

(M, (ITF2) |y < CUME, sl sy + 1S Lo + 1/ 2o(m)).

for everyf € L?(E;, ) for which the left-hand side is finite, whetedepends only op, p, and
the doubling constant df» (but not onu(Ex)).

Sinceu(E;) < oo, the Whitney decomposition in the proof of Lemma 2.3 can be performed
for A > A\ with X\ = mf&/\/lEQQTf\z)l/2 dp. Again, by Kolmogorov inequality, the
doubling property ofE,, and the weak typél, 1) of Mg, (with constant independent of the
size of u(E»)),

1/2
[ M2 i< OB TP s,y = OB T 2

E>

Using then theL? boundedness dof” and the support condition of (this is where we use
E, C E5), we obtain

C

C
Yo < ST < oy
0 ,M(EQ)UQ ||fHL2(E2) /L(Eg)l/p ”fHL (E2)

Now write with the notation of the proof in Lemma 2.3

1/2

H(ME2(|Tf| HLP(E2 / (ME2(|Tf| ))P/2 dy

M, (ITFI2)SK2N2
2
+ / (M, (ITF2))" du.
M, (ITF12)> K22

The last integral can be treated as before, using Lemma 2.5. The first integral is bounded above
by

KPXNou(E2) < KPCP|| 170

with C' depending only on thé? norm of T and the doubling constant &,. Further details are
left to the reader.
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3. Application to the Riesz transform

In this section,M is a complete non-compact Riemannian manifdidjenotes the Laplace—
Beltrami operatorg —*4, ¢ > 0, the heat semigroup ang(z,y), t > 0, z,y € M, the heat kernel.
The measurg: is the induced Riemannian volume. The measure of theB@ll ), z € M,
r > 0is also writtenV (z, ).

We prove the statements corresponding to the (global) Riesz transfakm!/2. We set
Tf =|VA~1/2f| (remember that, in the finite volume case, we restrict ourselves to functions
with mean zero; in other words, in order to apply verbatim Theorem 2.1, we défixie!/? by
zero on constants). The boundednesg @i 2 has been already observed.

3.1. Proof of the main result

We now show Theorem 1.2, namely the fact that, undey and (P), (G,,) implies theL?
boundedness of the Riesz transformZot p < py, as a consequence of Theorem 2.1.
Recall that Theorem 2.1 appliesifis assumed to act ob? (M ). However, we have

oo
dt
VATV = /v —ta—
Co € \/E

If we setT, f = |cf61/5 Ve*mf%\ for0 < e < 1, thenforf € L?(M) we havel|T. f|l2 < || fll2
(this follows from (1.1) and spectral theory) afdf — T'f in L?(M) ase — 0, while
ITefllp < Cellfllp, for f e LP(M). As the application of Theorem 2.1 tf. gives us a
uniform bound with respect te, a limiting argument yields thd.? boundedness of’ on
L?*(M) n LP(M), hence onLP(M). Henceforth, we ignore this approximation step and our
goal is now to establish (2.1) and (2.2) fbr

The first ingredient is Gaffney off-diagonal estimates valid in a general Riemannian manifold:
There exist two constants > 0 anda > 0 such that, for every > 0, every closed subsefs
and I of M, and every functiorf supported inZ, one has

(3.1) e fll2(r) + [[tA T2 fll p2(ry + ]|\/Z|Ve_tAf|||L2(F)
—oa 2 L
< Ce M EEV f]| L2y,

Here,d(E, F) is the distance between the sdisand F'. The inequality for the first term of
the left-hand side is classical (see, e.g., [27]). The estimate for the second one follows from
essentially the same proof (see [28, Lemma 7]). We give a proof for the third one as we could
not find it in the literature in this situation (it is proved in [4] for elliptic operatorsidt).

We assumel(E, F) > +/t as otherwise there is nothing to prove. Letbe the set of those
x € M for whichd(z, F) < d(E, F)/3. Let ¢ be a smooth function oi/ such thaD < ¢ <1,
¢ is supported inF, ¢ =1 on F, and |Vy| < 6/d(E, F). Set A = |[vtp|Ve A f[|s >
[Vt[Ve™*2 f|||L2(r)- Integrating by parts,

A2 =1(p*Ve "B f,Ve A )
= 2t{(e "2 f)Vip, pVe A ) + t{p eI f, AeT A f)
<2V [Vele 2 F||, A+ llpe™ 2 fllallt @Ae™2 fl2.

Using the properties op and the bounds for the first two terms in (3.1) we obtain the desired
conclusion.
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We now introduce the regularizing operatéy, r > 0, by setting
I— A, =(I—e 2"
for some integern. to be chosen. Observe thdt is bounded orl.?(M) with norm 1. We prove

(2.1) in the following lemma.

LeEMMA 3.1.— Assume tha{D) holds. Then, for some large enough depending only
on (D), for every ballB with radiusr >0 and allz € B,

(3.2) VA2 = e 2 £ gy < Cu(BY2(M(1F12) )2,

Proof. —Let f € L?(M). Take a ballB with radiusr = r(B) andz a point in B. Denote by
C; the ring2i*1 B\ 2'B if i > 2 and letC; = 4B. Decomposef as fi + fa + f3 + -+ with
fi = fxc,. By the Minkowski inequality we have that

(17221 = e o ) < S MITAT2 =8 ]

i>1

Fori = 1 we use thel.2 boundedness 67A~1/2(I — ¢~ 2)n:

H|vA71/2(I767r2A)nf1|HL2(B) < ||fHL2(4B) < M(4B)1/2(M(|f|2)((£))1/2,

Fori > 2 we use the integral representation/of */2:
VA71/2(I — ef’“zA)" = C/VeftA(I — 67T2A)
0

ndt _

Vit

where using the usual notation for the binomial coefficient,

wt1=3" () -z

k=0

c/gr (t)Ve 2 dt,
0

By the Minkowski integral inequality and Gaffney estimates (3.1), using the suppgit\we
have that

(oo}
- —r2A\n _ofain2 dt
(VA1 —e72) fi|||L2(B)<c<0/|g,.<t>|e E %>f||L2(Ci)-

The latter integral can be estimated as follows. Elementary analysis yields the following estimates

for g,-:

n

P € —/—=

ifo<r?<t<(L+1)r*<(n+1)r?

and

|- (1) S Cor®™t 7% if t> (n+ )2
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The latter estimate comes from the inequality

3 (3) - eete =2

k=0

<Cp sup ol (u)]r?",

t
uzz nr1

which can be obtained by expandindt — ks) using Taylor’s formula about and using the
classical relationd";_, (7)(—=1)¥k* =0for£=0,...,n—1 (see [40, Problem 16, p. 65]). This
yields the following estimates, uniformly with respectto

o0

olair2 dt )
(t)]e™ T - < CpdTin
/ o-(t]e" 4 S <

0

Now, an easy consequence(d?) is that for ally € M, > 0, andf > 1
(3.3) V(y,0r) <CO"V(y,r),

for some constant§' andv > 0. Therefore, sinc€; C 271 B,

1/2

1fllz2cy) < @ B2 (M(If12) (2)) 1 < VOV 20 BYY2 (M| £12) ()
Choosing2n > v/2, we have
T = 20y € (D220 B2 (M) @),
i>1

which proves Lemma 3.1.0
We now show that (2.2) holds. We begin with a lemma.

LEMMA 3.2. - AssuméD), (P) and(G,,). Then the following estimates hofdr everyp €
(2,po), for every ballB with radiusr and everyL? function f supported inC; = 21 B\ 2/ B,
i>2,0rCy =4B, and evenyk € {1,...,n}, wheren is chosen as above, one has

1 g NP Cemed 1 1/2
08 (s [0 iran) < S (g [ e )

for some constant§’ and « depending only ofiD), (P), p andpy.

Proof. —By interpolating (G,,) with the L? Gaffney estimates, we obtaifi? Gaffney
estimates for any € (2, py): for everyt > 0, for every closed set& and F' and every function
f supported inE, one has

(3.5) IVAVE 2 ]|y oy < Ce E I ]| o i,
with C' > 0 and« > 0 depending orp, po, and the constant,,, in (G,,). Now let B be a ball
with radiusr and letf be supported ;.

In the following proof, many constants will implicitely dependoywhich itself only depends

on (D).
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Let us begin with the case= 1. The above estimate (or, directlys,)) yields

) 1/p C R 1/p
(3.6) ([rveragran) "< E( [lew2gran)
B M

Lett = (k/2)r?. Since( UE) follows from (D) and(P), one has the upper estimate

exp(_ch(%y))

t

C
pe(z,y) < m

for all z,y € M. Because of the doubling property,
V(y,Vt) =V (xp,Vt) =~ u(B)

wherez g is the center ofB andy € 4B. It follows that

(3.7) o= (/21 £ ( / flzdu)7

for all z € M. On the other hand, by Gaffney (&° contractivity of the heat semigroup),
(3.8) [retrspansc [P
M 4B

Thus, by Holder,

) 1/p L 1/2
([l sspan) <ot ( [1rpa)
M 4B

which, together with (3.6), yields (3.4) in this case.
Next assume that> 2. Denote byy ¢, the characteristic function @f, and write

Ve—krzAf _ Z he, he= ve—(k/Q)rzA(Xce)e—(k/Q)rzAf.
021

From (3.5) we have

1 1/p M(2€+1B) 1/p Ce—a4z 1/p
— P < (k/2)r2A £ip
(N(B)/lhd du) \< w(B) ) r ( (20+1B) /|e fl d/l)
B

and, using (3.3),

1 1/p ot 1)/ 670441Z
. —— [ |hg|? <C2 vip—
e
B

L treagp g )
“\ e le flPdu) .

Cy
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From theL? Gaffney estimates for the semigroup, one has
[l g a< e [ 157
C[ Cz

with

Ce=e4" if 0<i—2,
Ky<qC , if i—1<0<i+1,
Ce=* if £=i+2.

Since, by (3.3)[(13% < Kipsup(1,C20-97), and if we still denote by, a sequence

of the same form with different constants, we may also write
(3.10) S / e~ (/27 f2 4y < Ry — 1 / |f I dp
) (2441 B) ) )
C({ C1

Next, it easily follows from( UE) and(D) that for allx € Cy,

2 2 T
22 ) <0 [ Vi) e -5 ) |10 auto)
Ci

< Kie [ Viy,r) ()] du(y).
C;

If y € C;, 2771 B C B(y,2+2r), so that

1 CQ(iJrQ)u 02(i+2)u
< . < < ;
Viy,r) = V(y,20%2r) = p(27H1B)

and it follows that

1/2
_ r2 % v 1
(3.11) |e” /D8 £ ()] < K20 (m/bﬂdﬂ) .

i

By applying Holder and using (3.10) and (3.11), one obtains

/P
1 —(k/2)r%A ! (i+2)r(1—-2) 1 2
<4u(2“1 B) / e~ (/%) fl”du> < K;2" gy | e
Cz Ci

Together with (3.9) and summing i this yields

1 2 r
(g [ an)
u(B)B/

—cat 1/2
: 1
<Cd ot/ e olit2w =0y ( / 24
r 1(21B) £
C;

>1

1/2
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efc'4i 1 1/2
< : 2d )
“ <u(2l+1B) /If\ M)

C;

This ends the proof of Lemma 3.20

Equipped with this lemma, we can prove (2.2) for any (2, po). Fix such ap. By expanding
I— (I —e"2) it suffices to show

2 p 1/2
(3.12) <M(13)/|Ve’” Aflf”du> <C(M(VIE) )
B

for f with f, V f locally square integrablé? any ball withr =r(B),y € Bandk=1,2,... n.
Recall that is chosen larger tham/4 wherev is given in (3.3).
Recall that our assumptions ensure thasatisfies (1.5). In other words,
etA1=1, Vi>0.
We may therefore write

Ve FAf = Ve A (f ~ fup).

Write f — fap = f1+ fo+ f3+--- wheref; = (f — fip)xc,. Fori = 1, we use the lemma and
(P) to obtain

1/2

(ﬁgwe—kr?afﬂpd,u)l/p gC(@AléWfﬁdu) <C(M(\Vf|2))l/2(y).

Fori > 2, we have similarly

/p —ad’ 1/2

1 kA VP ce 1 )

(g [ 172 an) < S5 (g [ i)
B C;

But
/|fi|2du< / f— fandu,
C; 2i+1 B

\f = fap| <|f = farpl + Y | forp — o]

=2
and observe that

|forp — fsz+113|2 < m / If— f2f+113|2d/$ < (QZT)QM(WJC‘Q)(C‘J)-

20+1

Hence, by the Minkowski inequality, we easily obtain

1/2

) 1/2 .
(3.13) — T |fil? dp SC@TYM(VEP)) ().
(u(2 + B)C[ )
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It remains to sum fof > 2

e_o‘4i 1/2 e_a4i . X
S (g [ ) < SR )
C;

i>2 i>2

<O 2 (M(P)) ).

i>2
This yields (3.12), and the proof of Theorem 1.2 is finished.

Remark—
A slight modification of the proof allows the following improvement of (3.12): for some
constants;, C' > 0

) 1/p )
1o (o [V ) <t (2 (9P )
B

for f with f, V f locally square integrable? any ball withr = r(B) andk =1,2,...,n, where
n is chosen as above. See Lemma 3.3 in Section 3.2 for thepcase of this inequality.
The techniques of proof of Theorem 2.1 extend easily to the vector-valued setting. It can be
checked that it applies as well to obtain the square function estimate (séérbasndedness of
a vector-valued operator)

0 1/2
(3.15) H ( |Ve t2 f|? dt>
/

from (D), (P), and(G,,), for 2 < p < py. Compare with [20], Section 3, where it is observed
that a related inequality (with the Poisson semigroup instead of the heat semigroup) holds
under (1.12) only. In particulaD) and (P) are not used there. This explains further our
discussion in Section 1.4 where we question the relevang® pfnd(P) for the Riesz transform
boundedness.

<C|fllp

p

3.2. A simpler situation

In this section, we show a slightly weaker version of Theorem 1.4 by replécigvith the
stronger inequality (1.8), that is

c d*(z y))
Vepe(®,y)| € —=—F— - — |, Va,ye M, t>0,
9l < w5 oY

as this is a simpler application of Theorem 2.1 and this hypothesis is related to the domination
condition (1.12), therefore to the conjecture in [20] explained in Section 1.4.

We set agaiff’ f = [VA~1/2f| but choose herel, = e~""2, and apply Theorem 2.1 in the
casepy = oo.

We begin with the verification of (2.1). Le® be a ball of radius. Let f € L?(M). Write
f = fi+ f2wheref; = f on2B and 0 elsewhere. First, ti¢’ boundedness &f (I — A,.) gives
us

/ T~ A dp < / AP du < p2B)M(f1?)(2)
B M
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whenever: € B. To conclude the proof of (2.1), it remains to obtain the same bounghf@ne
has

T(I - A,) fo(w) = |[VATY2(I — 772 fo(2))|

- ‘ / ke (2,) f2(y) dp(y)

/\ (z, )| f2(y)| du(y)

where
Bo) = [ 9.6V o) ds
0
and
1 X{t>r2}
()= —= — .
0=~ =

Using (1.8) and following the case = 1 in the proof of Lemma 3.1, one obtains that if

d(x,y) > rthen
- C d*(x,y)
(T < —c——=" ).
|k (2,9)] V) exp( C— )

This estimate and the support propertyfefensure

/ 1o (2,) || F2(9)] i) < CM (1 f2]) (2) < CM(IS]) (2)
M

(see for instance [36, Proposition 2.4]), therefore the pointwise bound

T = Ap) fa(2)| < OM(If])(2)

whenever: andz belong toB, hence the bound ih? average.
The next step is the verification of (2.2), which in this case becomes the maximal estimate

(3.16) sup|Ve " P2 f(y)|* < O inf M(|Vf]?)(2),
yEB zEB

for all balls B and functionsf with f,V f square integrable. But, undéb) and (DUE), this
follows from (1.8).

Indeed, assume (1.8). Recall from the discussion in Sections 1.2 and 1.4 that in such a case,
the full (LY") estimates hold and that (1.8) is equivalent to (1.10), that is

|Vepi(z,y)| < %pc't(% Y)

for some constant§', C’ > 0. Also, by Cauchy—Schwarzp) implies
1/2
(3.17) / f — faldn < Cr(B ( J1witan)
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for any ball B in (M, d) with radiusr(B) and anyf with f, V f square integrable oB (in fact
(P) and (3.17) are equivalent, see [49]).
Fix B aballinM, z,y € B, and set = r?(B). Using (1.5) again, write

(3.18) Ve "2 f(y)| = |Ve "2 (f — f(2))(y)| < /!th(y,Z)Hf(Z) — f(@)| du(2).

M

Then recall that (3.17) admits a reformulation in terms of a pointwise estimate (see [48], [50],
Theorem 3.2), in particular it implies:

with
1/2

h(z) = (M(IVf*)())

for all f with f,V f locally square integrable and z € M.
Then, plugging (3.19) and (1.8) into (3.18),

_ C d(z,z) d*(y,2)
Ve Af(y)‘gv(a:’\/g)z 7 exp(— o >(h(x)+h(z))du(2),

and sincer,y € B, d(T—\/;) is comparable up to an additive constant \I\ﬂ%%) therefore

e 10 < 7 [ (-5 o+ s
M
c d*(y, 2)
< Ch(z) + Wllexp <_W) h(z) dp(z)
< Ch(z) + C(Mh)(z),

again by [36, Proposition 2.4]. Now, a result of Coifman and Rochberg [14], which is extendable
to spaces of homogeneous type, states that forgafr which Mg < co a.e. and for any
positivey < 1, the weightw = (Mg)" belongs to the Muckenhoupt clads, with A; constant
depending ony (but not ong). Thus, Mw < C,w a.e., so that, in particular,

M [(Mg)?] < Oy ja(Mg)/?,

almost everywhere.
Applying this withg = |V f|? in the right-hand side of the above inequality, one obtains (3.16).
For the sake of completeness, we are now going to give a lemma which clarifies the
relationship between the pointwise gradient bound (1.8), an integral version of it, the domination
condition (1.12), and the maximal estimate (3.16). This lemma also offers a less direct, but more
elementary approach to the implication from (1.8) to (3.16).

LEMMA 3.3. - In presence of FK), the following three properties are equivalent
(i) The pointwise heat kernel gradient boufid8).
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(i) The weighted.? heat kernel gradient bound
2 di@w) c
3.20 Ve , T d <——,
(3.20) /\ pe(z,y)| e 1(y) VD
M
for a > 0 small enough, alt > 0, z € M.
(iii) The domination conditio(i.12)

|ve—tAf|2 g Ce_C/tAOVf‘Z),

for someC, C’ > 0 and f with f, V f square integrable and atl > 0.
Any of these conditions implies the maximal estin(ai&6)

Proof. —It is easy to see by integrating (1.8) and using the doubling property that (i)
implies (ii). The converse follows from an argument somewhat similar to [20, p. 14]. Write

Vopa (2, ) = / Vopi(z, 2)pe(z, ) du(2).
M

Using (ii) and the Cauchy—Schwarz inequality,

d? (z,z)
t

C
|VzP2t(I7y)|2 < W}J|pt(z’y)|26a dp(z)

for all & > 0 small enough. According ttDUE),

2 c o4z
pe(2,9)|" < =€ ¢
V2(y, V1)
for somec > 0. For 8 small enough we have
2 T,z 2 z, 2 x, 2 z,
o) L) \e’ﬁd @y .4 <2ty)7

thus
C a2 (z,y) d2(z.v)
—B—5 T .
V(e VOV2(y, VD) / ‘ #z)

M

|Vzp2t(5177y)}2 <

Using (D), itis easy to check that the quantity

1 / _od2Gw)
——— [ e T2 du(2)
Viy. V1) J

is uniformly bounded, and (i) follows readily.
Assume next that (i) holds and let us prove (jii). Recall that we may use ftééfy and (3.17).
Fix z € M and B = B(z,/t). SetC; = 4B andC; = 2771 B\ 2/ B for j > 2. Using again
(1.5), write
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|Ve "2 f(x)| = |Ve "2(f - faB)(z)|
_ ’ / Vi (e 9) (F ) — fa) du(y)
M

<3 19t w||£0) = fin duty

i21¢,

It follows from the lower bound ifLY") that, for alle > 0, there exist,, C. > 0 independent of
x € M andt > 0 such that

(3.21) VD exp(—e4?) < po.i(z,y)

forally € 29B,t>0.
Let us treat the first term in the above sum, that is whenl. According to (1.8),

4£szt($>y)uf(y) — fag| du(y) < mzléw(y) — fag| du(y)

By (3.17),

2

150~ fus| dnte) < ViV . VB ( / IVf(y)\2du(y)>1/ ,
4B 4B

hence

y))1/27

/yvipm,y)uf(y) ~ fun| du(y) <c(v( !
4B
and by (3.21),

1/2
/!Vzpt(w,y)Hf(y)—f4B\du(y)<Cé(/pc (@) | V)| duly > :
4B

M

Now for the other terms in the sum. By (1.8) again,

/ IV ape(a,9)||F() = Faz| duy)
C.

C d*(z,y)
<W/exp< 1 )|f(y)f4B’dN(y)
Cexp —c4)) /|f — faB|du(y)

Then
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/’f(y)_f4B‘dﬂ(y)< / (‘f(y)_fQjB"f'Zf2£3—f22+13|> d/,[,(y)
Cj 2i+1p =2
= [ 156) = forslduts) + V2D o — for .

2i+1 B £=2
Again by (3.17),

/|f(y)—f2j3|d,u(y)<02j\/¥ V(x’Qj\/_</|vf ‘d,u >1/2,

2i+11B 2i+11B

and by (3.21)

/ V() duly) < C.V (2, VE) exp(ed) / po.r(.9)|V £ @)] du(y)

2i+1B M
thus
/ |f(y) - fQJ'B| du(y)
2i+1B
1/2
< C.2V1tV (z,29V/t) exp(ed?) (/pCtmy‘Vf ’ du(y ) .
M
Similarly,

= forl < i 7 [ 15w vl dutw)

2041
1 1/2
gc%ﬁ(— / v du( > ,
Ty ) Vel
2¢+1

thus by (3.21) again,

1/2
|farp — farerp| < C2VEexp(e4™™) </pc +(z,9)|V f(y | du(y ) .

M

Hence

/|f(y) — fag|du(y)
Cj

. . J . 2 12
< CNVV (2,29V1) (23 + sz> exp(ed’) ( / pe.t(z,y) [V (y)] du(y))
£=2

M

1/2
< LYV (2,2 V) expled) ( / pcgt<x,y>|w<y>|2du<y>) |

M
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Gathering the above estimates and using the doubling property, one obtains

/Wm@wW@%hﬂW@
C’v

.9 , 1/2
<0 eXp(—(c - €)4j)%\/? (/pcgt(l‘,y)‘vf(y)’ d,u(y))
M

1/2
< C'2 exp(—(c—e)4?)2" (/pcat z,y)|Vfy ! du(y ) )
M
Choosing: < ¢, since thery_ -, 27 exp(—(c —€)47)2"7 < o0,

N 1/2
(Ve 2 f(2)| <C| [ pe.i(z,9)|V Iy | du(y ,

M

and (iii) is proved.
The converse, that is the implication from (iii) to (i), again follows from a variant of the
argument in [20, p. 14]. Using again

vMMmmz/wﬁm@mwwww>
M

and (iii), we have

2

|Vapa(z,y)| C/pC’t 2,2)|V.pe(z,y)| dulz
M

Invoke a weighted.? estimate foiv,,.p, (., y) proved in [45] (see also [18, Lemma 2.4]) and valid
under(D) and(DUE): for somey > 0 and ally € M, ¢ > 0,

C

d (T y)
3.22 v, dp(r) < ————
(3.22) /\ pe(z,y)| 1i(x) VD

(note that contrary to (ii), the integration here is with respect,teee the remark below). This
yields

2.,
(sup pC't(ﬂ?vz)@_’yd g /))'

_c
tV(y, V1) “zem

Using (UE), the above supremum can easily be controlled by

|pr2t(377y)’2 <

Ceiﬁdz(fvy)
V(z,Vt)

for 8 > 0 small enough, and (i) follows. O
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It remains to deduce the maximal estimate (3.16) from one of the other equivalent conditions.

Assume (jii), that is

Vet () < 0o 2 (19 17) ).

then, since by LY),

e A (V1) (y) < Ce= A (IVf1?) ()

as soon ad(r,y) < v/t, one obtains
Ve f(y)|* < Cem A (V) (@),

On the other hand;=C"*2(|V f|2)(z) < CM(|Vf[?)(z) by (UE) and [36, Proposition 2.4].

This readily yields (3.16).

Remarks—

— Although not necessary for the main argument developed in this section, we have recorded
the equivalence between (i) and (ii) to point out a difference with the tasep < 2
(see [18]). In that case, the crucial ingredient in the proof was the weighted estimate
of the gradient (3.22), where integration and differentiation are taken with respect to the
same variable. As we already said, (3.22) follows from the pointwise estimate of the heat
kernel only. In contrast, the estimate (ii), with integration and differentiation with respect
to different variables, requires in addition the pointwise estimate (i) of the gradient. All this
also explains at a technical level why more assumptions are needed in Theorem 1.4 than in
Theorem 1.1, and also why (1.8) holds on manifolds satisfyi) and

forallt >0, z,y € M ([45, Theorem 1.3)).

— A sufficient condition for (iii) in terms of Ricci curvature follows from [64, Theo-
rem 3.2, (3.7)]. According to the abovek,) holds for allp € (1,00) on manifolds sat-
isfying this condition plugFK).

— The L? version of Poincaré inequaliti€s”), which follows from the assumptions of the
lemma and (i), is used in the above proof. If instead one has the stréhg@rsion

/|f—fB|du<cr/|Vf|du,
B B

for any ball B in (M,d) with radiusr and anyf with f,Vf locally integrable onB
(which is the case for instance on Lie groups of polynomial volume growth, manifolds
with non-negative Ricci curvature and co-compact coverings with polynomial growth deck
transformation group), togethéD), (DUE), then one can show in the same way the
equivalence of (1.8) with the estimates

-r3(B)A /s
sup| Ve F)| < ¢ it M(IV]])(@),

and

Ve "2 f| < Ce ™ (IV f]),
which are stronger than thel® counterparts.
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3.3. Proofs of some other results

In this section M satisfie§ D) and(DUE).
Proof of Proposition 1.10. First assuméG,,). Write

C
1V P2, = 9™ @), < ZZllpeC )l

The estimat€ UF) easily yields

C
£ (- <
ool < v
This implies
C,
Vi pai( —1~
el € Zo v

Conversely, assume forecs (2,pp) for all y € M andt > 0.

CP
VIV (y, VO F

We shall prove G, ) for any2 < ¢ < p. Using (3.22) and interpolating with the above unweighted
L? estimate, we have

C
P2V (y VB

q ,Y/dz(m,y)
[Vape(z,y)|"e” 7 du(z) <

Now let f € L(M, ;1). Estimate| Ve~'2 f(z)| by

_A'd% (=)
qt

Vi vape v

/ IV ape(z, ) e T2 [V (g, VD] | £ )]
M

which, by Hélder inequality, is controlled by

a’'~'d?(x,y)

( A{ Vi) |67 2 [V (3, VY] q'\f<y>|qdu<y>)1/q ( Al %du(y))l/q .

Now, it follows easily from the doubling property that the second integral is bounded uniformly
in ¢, 2. Integrating with respect te, by Fubini's theorem and the weightdd -estimate, we

obtain
/We-mf " du) < /|f )" dity)

as desired. O
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Proof of Theorem 1.4. We have already observed that the hypotheses in the statement imply
(D) and(P). It remains to obtai{G,) for all p € (1,00). In view of the previous result, it is
enough to prove (1.6). But this follows by interpolatif@) with the 2 bound

Cy

[|Vape (9], < N ORVIER

The latter follows from DUE):

1Vep:Cow)]]]2 = (Ape (s )2 (1))

N
>
3
S
S
T

Now

1Al = [18e™ 2% pya (., Hz\_Hpt/? Yl

by analyticity of the heat semigroup di¥, and||p; 2 (., y)[13 = p:(y, y) < V(%ﬁ) by (DUE).
The claim is proved. O 7

4. Localization

This section is devoted to the proof of Theorem 1.5. Theorem 1.7 can then be deduced as in
the global case and we leave details to the reader.
Fora > 0, we have

o0
dt
V(A +a)/? =c/efatVeftA—.
( ) i
0
Let v be aC'* function on[0, co) with 0 < v < 1, which equald on [0, 3/4] and vanishes on
t>1.
If a > a, Minkowski's integral inequality implies that

_ —at —tA p 2 < (a—a)t v <’ )
/(1 v(t))e”"Ve f\/g \C/e \/g”pr <Al
0

p 3/4

It is enough to prove thé? boundedness of the sublinear operimefined by

Tf= /v(t)Veft(AJra)fﬂ .
0

Vit

Without loss of generality, we may and do replace in what folldws a by A as the value of;
plays no further role.

For this purpose, we begin with the localization technique of [36] as in [18].

Before we start, observe that, as a consequencg&ofand (Py.), p:(x,y) satisfies the
estimateg LY") for small times.

Let (x;)jes be a maximall-separated subset aff: the collection of ballsB’ = B(z;,1),
j € J, coversM, whereas the ball®(x;,1/2) are pairwise disjoint. It follows from the local
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doubling property that there existé € N* such that every: € M is contained in at mosV
balls4B7 = B(x;,4).

Consider aC* partition of unityy;, j € J, such thatp; > 0 and is supported if3’. Let x;
be the characteristic function of the balB’. For f € C§°(M) andx € M, write

Tf(z)< ZXjf(fwj)(x) + Z(l — )T (f;) (@) =T+11.

Let us first treat the term II. The first observation is that, from the finite overlap property of the
balls B7, we have

D11 = x)@)25(1)] < NXd(ay)>3-
J

Hence

1
dt

I <0/A[1vmpt<x,y>|;|<1—xj><x>soj<y>y|f<y>|du(y)m

<N/ / Vape(a,y)|| £ )| duty) L.

Vit
0 d(z,y)>3
From there, we follow the argument in Section 3.3 by inserting the Gaussian terms and using the

Holder inequality to estimate the integral dfx, y) > 3. Since(LY") for small times applies, we
have

_ p'vd%(zy)
t

| S

d(z,y)>3

du(y) < Ce™*

for some constant§', ¢ > 0 independent of andz. Therefore,

1 _c
/pe

Il gC’/</|\/fvxpt(x,y)|1’ew2<f:y> [V(y,\/i)]p/p/|f(y)|pdu(y)) —tdt
0 M

t

It follows from (G1°°) and the argument in Section 3.3 for small times (which is valid under
the exponential growth assumption and the Gaussian upper boupg(foy/) for small times,
see [18]) that for some > 0 and allt € (0,1) andy € M,

[19emtape S duta) < o C
PRV O
M

Since the measure “/*/t dt has finite mass, one can use Jensen’s inequality with respéct to
Fubini's theorem and the weightdd estimate above to conclude th@t |1l [? dy(x) is bounded

by C1|f[I5-
We now turn to | which is the main term. The uniform overlap of the baBs$ implies

> llgxsllz < Clgly
i
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for all g and1 < r < co. Hence

/ |g())|
M

provided we show that

> X T(fes)(@)

du() <C YN feillplloxslly < ClElslglla:
i

I T(Fenlll, < Cllfeills

with a bound uniform iry. In other words, we want to show th&tmapsL?(B7) into L? (4B7).

To this end we apply Theorem 2.4 with, = B’ and E; = 4B’ since4B’ has the doubling
property by the following lemma, which is implicit in [58], and whose proof we postpone until
the end of this section.

LEMMA 4.1.— The balls4B7 equipped with the induced distance and measure satisfy the
doubling property(D) and the doubling constant may be chosen independently bfore
precisely, there is a constant > 0 such that for allj € J,

4.1) p(B(z,2r)N4B7) < Cu(B(z,r)N4B’), Yz e€4B’, r>0,
and also
(4.2) w(B(z,7)) < Cp(B(z,r)N4B?), VaeedB!, 0<r<8.

Define the local maximal function ol by

loc 1
MOS0 = s | V1o
B
for z € M and f locally integrable onV/. By local doubling,M!*¢ is bounded on alL.? (M),
1 < p < oo. We have the following estimates for bals of M centered intB? and with radii
less than 8y € BN 4B’ and functionsf in L?(M) with support inB’:
1) There is an integet depending only on the conditiqi) such that

1

(4.3) W(BNABY)

/ [T — e 2 [ du < CMP(|12) (a).

BN4BJ

2)If 2<p<po, thenforl — A, = (I — e~ 7" 2"

@d (g [ A )”p<c<M (1) +(S£)) " @)
. ILL(BQ4BJ) r 1% X 4BJ
Bn4BJ
with
(4.5) (S£)> = M (ITfPxarams ) + M (|8]) + Myps (1)

andh = [;° v(t)eftAf%.
Admitting these inequalities, it remains to see thalff || .» 4ps) < C|| f||L»(5s)- By the study
of I, we have that

I (MIOC(‘va|2X(M\4Bj)))1/2HLP(4B]') < CH|TVf|X(M\4BJ')HL,,(M) SClfllzes.-
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Next, by definition ofh and the contraction property of the heat semigroup,

IAllLeary < el fllne(Biys
hence

||MIOC(|h|) HLP(4BJ’) SOl fllzr(sa)-

Finally, we conclude the argument by invoking the boundednessgf;; on LP/?(4B7) to
bound||(Map (|f*))"]l,-

Proof of (4.3). -Take a ballB centered ikB’ with » = »(B) < 8 and letz be any point in
BN4B7. By Lemma 4.1 we have(B) < Cu(B N 4B7) for someC independent of3 and.
Hence,

1

j(B N ABT) / T =2y dp

BN4Bi

L T _e—rzA ngl2
<ﬂ<B)B/|T<I 12 dp

and we follow the calculations of Section 3 WifhreplacingVAfl/Q. Introducei,. the integer
defined by2i"r < 8 < 2-*1r, Denote byC; the ring2*1B \ 2!B if i > 2 and C; = 4B.
Decomposef as f1 + fo + f3 + - + fi, with f; = fxc,. The decomposition stops singe
is supported inB? and4B’ C 2! B wheni > i,.. By Minkowski’s inequality we have that

[
7 =72y < SOIT =72 il
=1

Fori =1 we use theL2 boundedness af (1 — e~""2)n:

NIT =2 |l gy < I Fllzamy < n(AB) > (M2 (1) ) 2,

For: > 2 we use the definition daf:

o0

/ o()Ve B f(I — By AL

f([_e—rzA)nf: \/z

)

0
gr(t)Ve 2 f dt
0

where using the usual notation for the binomial coefficient,

w0 =3 ()0 = .

k=0
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By Minkowski's integral inequality and the Gaffney estimates (3.1) using the suppgyt ofe
have that

- T a2 dt
T =) £l o <C/|9r(t)\6 7 Ml
0

The latter integral can be estimated as follows. Elementary analysis yields the following estimates
for g.(t):

_C
Vit —kr?

|ge()| < Cr*™ if (n+1)r* <,

if kr? <t<(k+1)r2<(n+1)r?

|9(t)] <

andg,(t) = 0 for t > 1+ nr?. Hence

Vit

/a2 dt .
/|§T(t) Ca T 2 < Cmin{a™™ p?) = 087220,
0

Now, an easy consequence of local doubling af®B) < 8 when1 < i < i,, is that
(21 B) < m(2 ) u(B)
with m(0) = C(1+ 0)”, C andv independent of3 and;. Therefore, ag’; C 271 B,

1/2 1/2

122y < p@TEBYY2(MEC(IF2) (2)) 7 < V/m(2H)u(B) 2 (MO (| £17) ()

Choosing2n > /2 and using the definition of. andr < 8, we obtain

T —r?A\n e iv n oc 1/2
[T —e™2) f‘HLz(B) < CZQ P2r2tu(B)Y2 (M1 117) (@) /
=1
< Cu(B)2 (MO (|f12) ().
Proof of (4.4). We first establish the analog of Lemma 3.2: for every (2,p), for every
ball B centered int B’ with radiusr < 8 and everyL? functiong supported irC; = 21 B\ 2! B
if i>2o0rCy=4B and evenyk € {1,...,n}, wheren is chosen as above, one has

1 —kr2A _|p Y/

BN4BJ

Cefaéli 1 9 1/2
(4.6) < . <M(2i+13)/|g| dﬂ)
C;

for some constant§’ anda depending only otE), (Poc), p andpg.

The proof given in Section 3 can be copiedcextensqrovided we make three remarks. First,
as in the previous argument sinp¢B) < Cu(B N 4B7) we may replaceB N 4B7 by B in
the left-hand side of (4.6). Second, as we already 3a{d,, y) satisfies the estimatéd ") for,
say,t = kr? < 64n. Third, the polynomial volume growth is replaced by an exponential volume
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growth but the estimates still carry out in this case thanks to the Gaussian terms in the sums.
Further details are left to the reader. B

Next, assume thaf € L?(B’) and takeh = [ v(t)e—mf%. Since T'f = |Vh| and
according to the first remark above, it is enough to control

wB) ) '

Write Ve *"Ap = Ve kA (b — hyp) = Zi>1Ve_kT2Agi where g; = (h — hap)xc,
Applying (4.6) to eachg;, we are reduced to estimatingm e, lgs|? dp) /2. We
distinguish the two regimes< i, andi > i,, wherei,. is the largest integer satisfyirjr < 8.

In the first regime, the argument in Section 3 using the local Poincaré inequalities for balls with
radii not exceeding6 can be repeated and (3.13) becomes

@n (g [ |gi|2du)1/ CZ ) (g [ IV dn)
C;

.+lB

1/2

Write then

1 1
_ hl2d <— hl%d
s | S gy |
20+1B 20+1BN4BI

1
+W / X(\ag) | Vh* dp
20+1B

< Mypi (|Vh|2) (x) + M'° (\VMQX(MMBJ')) (z)

wherex is any point inB N 4B7. Hence the contribution of the terms in the first regime does not
exceed

Z C%%(QZT) (M4Bj (|Vh|2> (l‘) + Mloc(|Vh|2X(M\4Bj)) (.%‘)) 1/2.

10K

For the second regime, we proceed directly by

1 1/2 1 1/2
2 2
(m/@ﬁ dM) < (m/lhl d#) + |hapl-

First|hyp| < M™¢(|n|)(x) sinceB has radius less thah Next,
/|h|2du </|h\2du C/|f\2du ¢ [ 117 du
4BJ
sincef is supported i3 C 4B7. Also sincei > i, we have2'*! B © 4B7 and
1 ) 1/2 1 ) 1/2 ) 1/2
— SO —/—%= < j .
(g [ Pan)  <c(ap [IPa) - < oM (1))
C; 4BJ
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The contribution of the terms in the second regime is bounded above by

5 O o () @) + (Mas (177 @) )

1>,

and it remains to recall that/r < 2¢/8 wheni > i,. to conclude the proof of (4.4).

The proof of Theorem 1.5 is complete provided we prove Lemma 4.1 which we do now.

We begin with the firstinequality. Fixe J, z € 4B7,r > 0. If r > 8, there is nothing to prove.
We assume < 8. There is a point.. such thatB(z.,r/8) C 4B7 andd(x,z.) < 3r/8. Indeed,
if d(x,x;) < 3r/8 thenB(x,r/8) C 4B7, so that one can take, = z. Otherwise, sincé// is
connected, there is a curve joiningandz; whose length is smaller than, saly, z;) + 2r/8.
On this curve, one can choose such thatd(z,z.) = 3r/8, thusd(z., z;) < d(z,z;) — r/8.
The pointz, satisfies the required properties. Then one may write

p(B(z,2r)N4B7) <V (z,2r) < V(2.,197/8)
<OV (zy,1/8) < Cp(B(z,r) N4B7),

where one uses the local doubling property for balls with radii not exceddirithis proves the
first inequality of the lemma and the proof of the second one is contained in the argument.

5. L? Hodge decomposition for non-compact manifolds

The Hodge decomposition, which associates to a form its exact, co-exact and harmonic parts,
is well-known to be bounded ah? on any complete Riemannian manifold (see for instance [29,
Theorem 24, p. 165], and the recent survey [11]). The question dfthdodge decomposition
has been mainly examined on closed manifolds (see [86]) and domains therein [57]. On non-
compact manifolds, the connection with the Riesz transform was established in the case of
1-forms and an example was treated in [92]. The unpublished manuscript [66] contains results for
forms of all degrees in the case of manifolds with positive bottom of the spectrum; see also [67].
In the case of degree one, one can deduce more general results from Theorems 1.2 and 1.8. We
denote byLPT™* M the usuall? space ofl-forms.

THEOREM 5.1. — Let M be a complete non-compact Riemannian manifold satisfying either
(D), (P) and (G, ) for somep, € (2, ], or the assumptions of Theoreh8. Then the Hodge
projector from1-forms onto exact forms is bounded bHT™* M, for all p € (g0, po) Wheregq is
the conjugate exponent {g.

Proof. —The projector on exact forms is
dAATYS = dATY2(dAY/2)x,

Now dA~'/2 is bounded fronL.? (M, ) to LPT* M for all p € (go, po) by the results in [18] and
Theorem 1.2 or Theorem 1.8, depending on the assumptions. By d(élity,"/?)* is bounded
from LPT* M to LP(M, ), for p in the same range, and the claim follows.

COROLLARY 5.2.— Let M be a complete non-compact Riemannian manifold satisfying
either (D), (P) and (G,,) for somep, € (2,00], or the assumptions of Theorein8. Let
p € (g0, o). Then the Hodge decomposition bifiorms extends ta?7* M if one of the following
additional assumptions holds
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(@) M is asurface.
(b) There are na.? harmonicl-forms.

(c) The heat semigroup ohforms,e‘tﬁ, is bounded ol ?T* M uniformly int > 0.

Proof. —Let p € (qo,p0). The projector on exact forms is bounded B#T*M by Theo-
rem 5.1. In case (a), we use an argument from [92]: in dimen8jotihe projector on co-
exact forms is nothing bufA~'§ conjugated by the Hodge star operator, therefore it is also
bounded onL?T* M. In cases (b) and (c), the projection on harmonic forms extends boundedly
to LPT™M: In case (b), this projector is trivial by assumption, and in case (c), it is bounded
because it is the limit of~** ast — oo. In all three cases, two out of the three projectors in
the Hodge decomposition extend boundedh.td™* M, therefore the whole decomposition is
an LP decomposition.

Since, on manifolds with non-negative Ricci curvature, the Riesz transform is boundéd on
forall p € (1,00), and for allt > 0 andw € C>*T*M,

e Bw] < e Awl,

the proofs of Theorem 5.1 and Corollary 5.2 show in particular that the Hodge decomposition
extends taL? on such manifolds. This fact seems known to experts, although we could not find
it stated in the literature.

More generally, if the heat semigroup on formshis dominated by the heat semigroup on
functions in the way discussed in Section 1.4:

(5.1) |eft&w| < Ce 2w,

for someC, ¢ > 0 and allt > 0 andw € C*>°T™* M, then both assumptions (b) (because there are
no LP harmonic functions on a complete non-compact Riemannian manifold, see [100]) and (c)
are satisfied for alp € (1,00). It was proved in [20] (and it also follows from Theorem 1.4)
that (D), (DUE) and (5.1) imply the boundedness of the Riesz transform fop all(1, c0).
Therefore, we can state the following.

COROLLARY 5.3.— Let M be a complete non-compact Riemannian manifold satisfying
(D), (DUE) and (5.1). Then the Hodge decomposition dfforms extends td.>7*M for all
1<p<oo.

A similar statement could be formulated, with suitable assumptions, for manifolds where the
bottom of the spectrum is positive, by using Theorem 1.9.

Finally, recall that thel.? boundedness of the Hodge decomposition may be useful, together
with other ingredients, to show that, in certains situatien$>* cannot be contractive ab?7™ M
for all p (see [92, p. 77]; this problem was also considered in [93]). We will not pursue this here.

6. Final remarks

Our method should apply without major difficulties to some settings which had already
been treated in the rande< p < 2 by the use of the method in [18]: graphs [82] and vector
bundles [97]. In the first direction, some results already exist in the range < co in the
group case, see [33,55]. It should also be possible to cover the general setting of [88].

Other directions are left open by the present work. Since we work in the framework of singular
integrals theory (and, in particular, use a volume growth assumption), the estimates we obtain do
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depend on the dimension, contrary to the ones in [6,7]. To obtain dimension-free estimates, or to
work in an infinite dimensional setting, is a subject in itself, and was achieved so far only in rather
specific situations: see [90,73,78,23,30,77], and the references therein. Let us point out that this
is an advantage of the approach to Riesz transform boundedness via the Littlewood—Paley theory,
as in [6,7]. See also [20]. We do not see for the time being how to cumulate the advantages of
both methods, which would yield a proof of the conjecture in [20].

We do not touch either the question of higher order Riesz transforms, whose boundedness
would require much more regularity; recall that already for Lie groups with polynomial growth,
even theL?2 boundedness of second order Riesz transforms only takes place on nilpotent groups
and their compact extensions (see [1,38]).
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