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QUANTUM VARIANCE FOR HECKE EIGENFORMS'

By WENzHI LUO AND PETER SARNAK

ABSTRACT. — We calculate the quantum variance for the modular surface. This variance, introduced
by S. Zelditch, describes the fluctuations of a quantum observable. The resulting quadratic form is then
compared with the classical variance. The expectation that these two coincide only becomes true after
inserting certain subtle arithmetic factors, specifically the central values of correspdidlimgtions. It is
the off-diagonal terms in the analysis that are responsible for the rich arithmetic structure arising from the
diagonalization of the quantum variance.

0 2004 Elsevier SAS

RESUME. — Nous calculons la variance quantique pour la surface modulaire. Cette variance, introduite
par S. Zelditch, décrit les fluctuations d’une observable quantique. La forme quadratique ainsi obtenue
est comparée avec la variance classique. On s’attend a ce que toutes les deux coincident, mais cela ne se
passe qu’apres inclusion de certains facteurs arithmétiques subtils, précisément les valeurs centrales des
fonctionsL appropriées. Les termes non diagonaux apparaissant dans I'analyse de la diagonalisation de la
variance quantique sont responsables de la riche structure arithmétique.

0 2004 Elsevier SAS

1. Introduction

This is the third paper of the series [23,24] dealing with the equidistribution of mass of
automorphic forms oX = I'\H with T' = SL(2,Z) and H the upper half plane. We realize
H asSL(2,R)/SO(2,R) with its hyperbolic metric and@ = I'\ SL(2, R) as the unit cotangent
space taX . Functions onX can be thought of a80(2, R) invariant functions orY” and we will
often do so. In this way the Casimir elemenin the universal enveloping algebra g{2, R)
restricts to the Laplace—Beltrami operat®omhen acting on functions oX .

There are two types of automorphic forms which we study. The first are the Maass—Hecke
cusp formsp on X (see [28]). They satisfy

1) Ap+Arp=0,  Thp=2XAs(n)o,

where forn > 1, T,, is the normalized Hecke operator (see [11]). We normalize these cusp forms
so that
drdy

2 1.

613 = [lo2)]”
X

If we order thep's by their eigenvalues; < A2 < - -+, and correspondingly; , ¢o, . . ., we obtain
an orthonormal basis for the cuspidal subspagg,, (X ) of L*(X). It is known (after Selberg)
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770 W. LUO AND P. SARNAK

that these eigenvalues satisfy a Weyl law

B aredX), A
N =D 1~ A=
Ai<A

as\ — oo.

The other automorphic forms which we consider are the holomorphic cusp forsh$lin of
even integral weight for " (see [30]).5x(T") is a vector space with the Petersson inner product.
Let H;, be the orthonormal basis of Hecke eigenforms$g(I'). According to the Riemann—
Roch theorem we have

k
dimSk(F) = #Hk ~ —
12
ask — oo.
Our interest is in the distribution of the probability measurestom, = |¢>(z)|2% for ¢ in

(1) anduy = yk|f(z)|2% for f € Hy, as well as their behavior asor k goes to infinity (that
is, in the semi-classic limit).

To explain what to expect, we recall some @mijres (or suggestions) from the physics
literature. The motion by geodesics &ngives rise to a Hamiltonian flog; onY given by

etl? 0
Fg—>Fg< 0 e-t/2 ) teR.

This flow preserves normalized Haar measdgeon Y and is ergodic. It has positive entropy
as well as all other charactetits of a chaotic Hamiltonian. Let's°(Y) denote the space of
smooth functions o’ which decay rapidly in the cusp and similarly we define the space
C§°(X). Thus if ¢ € C§°(X) and for anyA > 0 there is a constar®’ = C'(4, ) such that
[Y(2)| < C(A, )y~ for y = 3(2) > v/3/2 and similarly for the derivatives af. Let C5% (X)
(respectivelyCs (Y')) be the subspace 6f5°(.X) consisting of functions with mean zero (i.e.
fX w(z)% = 0) and whose zeroth Fourier coefficiefg)iw(z) dz is zero fory large enough
(depending on)). ThusCg%(X) contains the spac€y(X) of smooth functions o with
compact support and mean zero, as wellCgs,, (X), the space of smooth rapidly decaying
functions onX which are cuspidal. The last is spanned by the Hecke—Maass cusp forms. It is
known [25] that ify) € C§5(Y), then its fluctuations along a generic orbit of the geodesic flow

obey a central limit theorem. Precise% fOTw(gt (9)) dt become Gaussian with mearand
varianceV'(¢) given by the following non-negative Hermitian form 6ig% (Y"):

@) v(wl,wz)—/oo [ <g<et0/2 69/2>)w2—@dgdt.

—oo T\SL(2,R)

Thet-integral in (2) converges abkitely in view of the exponentiaecay of the correlations for

the flowG; [26]. We call the varianc® (v) of the ‘classical observable), the classical variance.
Sincew commutes with the regular representation, it follows from (2) and integration by parts
that

(3 V(wi,¢2) =V (¢1,wip), and V(Rq, 1, Rayt2) =V (¥1,12),
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QUANTUM VARIANCE FOR HECKE EIGENFORMS 771
whereR is the regular representation given by

Rg,v(Tg) = (Tgg1),

4 = (5] 0 o — [6%) 0
1= 0 a;l ) 2 = 0 a;l .

In particularV is diagonalized by the invariant subspaces for the regular actiéiL@, R) on
L3(Y'). RestrictingV’ to C5%(X ) we see from (3) that

and

V(d)lv AZDQ) = V(Awlv 1/)2)

Thus onCFY(X), V' is diagonalized by the Maass cusp forms(and corresponding unitary
Eisenstein series). In Appendix A we compute the eigenvaldé of ¢;, it is given by

_rG -
(4) V(8) = G )
where); = 1 +¢2.

The eigenvalue problem (1) gives the eigenstates for the quantization of the Hamilt@h flow
Quantization also provides a self-adjoint operatyr(x)) on L?(X), for any real valued) in
C§°(Y). In this case a ‘canonical’ quantization is given by Zelditch [32}(«)) is the quantum
observable corresponding to the classical observaldad (Op(¥)¢;, ¢;) gives the value of
this observable in statg;. Note that ifiy € C5°(X), then Op(z) is simply the multiplication
operator{ Op(1)h) (=) = 1(2)h(z) and(Op(v) ;. 6;) = ps, (1)

As mentioned before our interest is in the relation between the classical obsefvéhlg))
ast — oo and the quantum observable@p (1) ¢;, ¢;) asA; — co. It is known [32] that their
means agree. Far € C§°(Y),

©) i oy (0= [ wla)ds

AjSA I'\SL(2,R)

In studying the fluctuations we will assume that C¢5(Y). In [6] and [5] it is proposed
that for such classically chaotic Hamiltonians, the variance of the quantum observables
(Op(¥)¢;,¢;) corresponds to the classical variaricéy) and that the distribution of these
numbers becomes Gaussian after normalization by the square root of the variance. More precisely
the proposed quantum variance is

(6) Su(N) =3 [(0p()dj. 6,0 ~ VW)IN (N2,

A <A

as\ — oo.

Zelditch [33] introduced these quantum variance sums in his treatment of the quantum
ergodicity for this surface. He established the non-trivial bofip\) = O, (A/log A). In [23]
we showed that for) € C§%(X) and anye > 0, Sy(A) = Oy (A/2F), and Jakobson [16]
extended this boundto all € C§5,(Y'). The analysis leading to the€ \'/27<) bounds involves
off-diagonal terms coming from an applicatiof luznetsov’s trace formula (see the outline
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772 W. LUO AND P. SARNAK

below). These were handled using the large sieve inequalities of Deshouillers and Iwaniec [3].
In order to get rid of the and obtain an asymptotic fcf, (\), one cannot afford to just estimate
these off-diagonal terms. In fact as shown below, these terms contribute to the main term in the
asymptotics.

As is clear from the later sections of this paper, the analysis of these quantum variance sums
is rather delicate. We will follow our strategy in [24], to examine first the quantum variance for
the very similar problem witly; replaced byf € Hy.. Thatis, fory) € C5%(X), set

dx dy
y:

@) (Op(@)f f) = s () = / 7))

X

The corresponding quantum variance sums are

SN S @)

k<K,2|k fEH

Note thatk plays the role of/A. The only difference between our treatment of (7) ahd))

of (6) is that for the holomorphic case one uses the Petersson formula (see [12]) in place of the
Kuznetsov formula [21]. This simplifies the ansaly especially as far as the special functions are
involved. We leave the details of the analysis of the asymptotiés k) to a later paper, though

we will record below the leading term in that case for the purpose of comparison.

We can now state the main result of this paper. In view of the Petersson formula it is convenient
to consider a weighted version of the quantum variance sums. The weights are mildly varying
arithmetic weights given by special valuessat 1 of L-functions. With a little more effort
(see [13]) these weights can be removed, and they have no effect on the final asymptotics. For
f € Hy, or ¢ a Maass—Hecke cusp form, I&{s, /) and L(s, ¢) be the corresponding standard
L-functions (finite part), see [14], for example, for a description offiHeinctions that we need.

The completed.-functionsA(s, f) andA(s, ¢) are entire and satisfy functional equations. Let
sym?(f) and synd(¢) be the symmetric square lifts gf and ¢ respectively to cusp forms on
GL3(Ag) (see [7]). The corresponding-functions, which are Euler products of degfzeare
denoted byL(s,syn?(f)) andL(s,synm?(¢)). Their completed.-functionsA (s, sym?(f)) and
A(s,syn?(¢)) are entire and satisfy a functional equation relating the valuesatil — s. We
will also have the occasion to use the Rankin—SelldefgnctionsL (s, syn¥(f) @ ¢) of degree

6 and their completion\ (s, syn¥(f) ® ¢). The weights in question ark(1,syn?(f)). Being
special values at = 1, they satisfy the bounds (see [10])

k™ < L(1,sym*(f)) <c kS,
foranye > 0.

THEOREM 1. —Fix u € C§°(0, 00).
(A) There is a non-negative Hermitian forR), defined orCs%, (X) such that for) € C5%(X)

ande > 0,
Su(5) T st )l )
o fet,
(8) =B, (¥) <7u(t) dt) K + Oy (K12T),
asK — oo. O
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QUANTUM VARIANCE FOR HECKE EIGENFORMS 773
(B) B,, satisfies the symmetries

Bw (A’L/Jl, 1/]2) = Bw (1/111 A¢2)7
and forn > 1,

Bw (Tnz/]la 1/]2) = Bw (1/111 Tnz/JQ)
(C)RestrictingB,, to L2, (X), B,, is diagonalized by the orthonormal bagig; } of Maass—

cusp

Hecke cusp forms and the eigenvaluesgfat ¢; is 7 L(1/2, ¢;).

Remarks—
(1) A simple approximation argument in (A) allows us to takdo be the characteristic
function of an interval. Hence &8 — oo,

S L sym? () @) ~ Bu@)K.

k<K,2|k fEH)

Also

(2) o
Z Z 1 sym TK

k<K,2|k fEH)

Thus we obtain the analogue for the's of the asymptotics of;(\). As mentioned earlier the
methods of the proof of Theorem 1 applyg(\) and yield

Sp(N) ~ B¥)VA

as A — oo. The Hermitian formB on C§5,(X) satisfies the same symmetry relation (B)
of Theorem 1. The only difference is that the eigenvalueBot ¢, is given by B(¢,) =
1L(1/2,9;)V(¢;). Hence both the formB andV’ are diagonalized by thg;'s and the proposed
qguantum variance (6) is correct if one inserts the subtle arithmetic fdgatbf2, ¢,) to the
eigenvalues o¥/.

(2) The numbersL(1/2,¢;), which are essentially the eigenvalues of the non-negative
Hermitian formB,,, must satisfyL(1/2, ¢;) > 0. This non-obvious fact is quite deep and useful
(see[14]). It was first established in [17]. The present eigenvalue proofis interesting from various
points of view. There is a lot of evidence that the zeros af danction are spectral in their nature
(see [18]). Here we have the numbérd /2, ¢,), as¢; varies over the family of Maass—Hecke
eigenforms, being the eigenvalues of a non-negative operator.

(3) Itis known [15] that at leasi0% of the evenp;’s, i.e. those satisfying; (—z) = ¢;(2),
have L(1/2,¢;) # 0. For the oddg;, L(1/2,¢;) = 0 in view of the sign of the functional
equation ofA(1/2,¢;), and alsops(¢;) = 0 since anyf in Hj is real ony = 0 and so
f(=2) = f(z). One can show that (see [22])

k<K,2|k fE€H)
Combining this with Theorem 1 and Cauchy’s inequality, we see that feith L(1/2, ¢) # 0,
pr(9) =Qk™1?)
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774 W. LUO AND P. SARNAK

ask — oo. This shows that the rate of equidistribution for fhe(v)'s in the QUE problem, i.e.
foranye > 0,

pp () = Oy (k1/2F),

as predicted by Watson’s formula (see below) and the GRH, is essentially sharp.

We end the introduction with an outline of thepgea. As in [23] and [24], we establish (A)
using the Poincaré serid3,, ;, (see Section 2). These form a dense subspacgpiX), and
they allow us to analyze the quantity;(P,, ») in terms of sums over Fourier coefficients
of f. This in turn allows us to exploit the multiplicativity of these coefficients, which comes
from the fact thatf is a Hecke eigenform (a crucial irggient). We then average ovéfy,
using Petersson’s formula (see Section 2). This introduces diagonal and non-diagonal terms.
The off-diagonal terms involve standard Kloosterman sums. Next we execute the smooth sum
overk using Poisson summation. An application of Lemmas 4.1 and 4.2 from [24] introduces an
arithmetic twisting of the Kloosterman sums which become Salié sums. In this way the main term
(asK — o0) is identified and it contains an infinite series of exponential sGpts) discussed
in Appendix B. These non-diagonal terms appear as part of the rather complicated main term
that is given in Theorem 2 in Section 2. In this form the Hermitian f@pnis given in terms of
its values at Poincaré series. In Section 3 we anaByzeJsing the series expression as obtained
in Theorem 2, we verify directly the symmetry properties (B) of Theorem 1 whenr, are
Poincareé series. In Section 4 the symmetry is extendegfid X ). With this and the fact that
¢; is uniquely determined by the eigenvaluesand A;(n),n > 1, we infer easily thaiB,, is
diagonalized by the;’s. In Section 5 we compute the eigenvalues3f at ¢;. To do so we go
back to the original asymptotics in Theorem 1 wijth= ¢, an even Maass—Hecke eigenform. For
such ap we use Watson'’s identity [29]

A(1/2,sym?(f) ® $)A(1/2, )
A(1,sym?(f))2A(1,sym?(¢)) -

dz dy|?
(©) ’M,f(¢)‘2:‘)Zyk‘f(Z)’2¢(z) | =

Thus the quantum variance sum oyeboils down, after an analysis of the archimedean factors
on the r.h.s. of (9), to averaging(1/2,sym?(f) ® ¢) over f. Using Rankin-Selberg theory for
GL(3) x GL(2), we can express these values in a suitable series (see Section 5), after which
the averaging ovef € Hy, and over evert can be carried out. Unlike the case of the genegral
in Theorem 1, in this analysis fa¥ only the diagonal terms contribute to the main term in the
variance sum. This leads to the eigenvalue,Bg(¢), taking the simple form as stated in part
(C) of Theorem 1.

To conclude the introduction we comment on the proposed Gaussian behavior ofgither
as f varies, orug, (¢) asj varies, with¢ a fixed even Maass—Hecke form. According to (9) and
an analysis of the archimedean factors in (9), this amounts to the distribution of the numbers
L(1/2,sym?(f) ® ¢) as f varies. This family ofL-functions,L(s,sym?(f) ® ¢) with f € Hy,
k — oo, is an SO(even) family according to [18]. This ist®wn in [4] which examines the
distribution of the low-lying zeros for this family (note the signs of the functional equations for
this self-dual family are all, yet the family has an orthogonal rather than symplectic symmetry).
Hence according to the conjectures of Keating @ndith [19, (77)] the moments of these special
values should satisfy

48 m m(m—
K2 E E L (1/2,sym2(f) ® (b) ~ (lOg KQ) ( 1)/2a(m)fSO(even) (m)7
k<K,2|k fEH)
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QUANTUM VARIANCE FOR HECKE EIGENFORMS 775

where
2m
fSO(even) (m) = Trm—1l4. 1
[ 25—

anda(m) is a product over primes specific to this family, which can be computed for any given
m, but for which we don’t have a simple closed formula.

Thus if these conjectures are true, then the distribution of the nuniljey2, sym?(f) ® ¢)
and hencéy s (4)|? is clearly not Gaussian, at least in the sense of convergence of moments.

To conclude we point the reader to the recenpgre [20] where a similar anomaly for the
guantum variance is found for the cat map.

2. Poincaréseries

We use the same notations as in [24]. k¢e) € C§°(0, c0), the incomplete Poincaré series
(m € Z,m #0) is defined as

Pom(2)= > h(y(y2))e(ma(y2)),

veT .\

e {(} 1) nez)

A cusp formf € Hy, has a Fourier expansion

where

F(2) =3 as(r)e(rz),

r>1

and we define
ay(r)rFHD/2
ar(1)

Denote byL(s,sym?(f)) the symmetric square-function associated tg:

Af(r) =

A (nz)
2 _ f
(st (1) =409) 3 2
and recall that, for any > 0, the following bounds hold:
(10) k™ < L(1,sym*(f)) < k°.

Since(f, f) = 1 we have the relation

|2 (4m)k—1 272

(11) s = 505~ T yme ()

Let mi,me € Z, mimg # 0 and hq, he € C5°(0,00). Recall if m; > 0, we have (see
Proposition 2.1 in [24])
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776 W. LUO AND P. SARNAK

271'2 k—1
(s Phimi () = (k—1)L(1,sym?(f ;/\f Pslr+ mahs <m)
+ Ok~ ).

Without loss of generality we may assume; > 0,mq2 > 0, since (us, Pym(2)) =
(ur, Pn—m(2)). Thus, by the above formula, (11) and the multiplicativity of Hecke eigenval-
ues,

(tfs Phy iy (2))pps Phoms (2))
B 272 INk-1
~ (k=1)L(L,sym?(f)) (4m)+—1
< ag(ri(ri+my/di))ay(ra(re +me/dz))
(ri(r1 +ma/di))E=D/2(ry(ry + ma/do)) k=172

dq \ml ,dz‘mz 1,72

X (47Td1(7’1]j-_mll /(2d1)))h_2<47rd2(r2]j-_njg/(2d2))) +O™).

Fix v € C§°(0,00). From the above formula and by the Petersson formula (see [11]):

272 Ar(m)Af(n) Gt 2 k/zz S(m,n;c) Ty (47‘1’\/—)

k—1 L(1,sym?(f))

fEH, e>1

we have
) S o) s P <)) P 1)

u(
k>1,2k feH,

-y Eu() = >

k>1,2|k di|my,da|msa ri(ri+my/di)=ra(ra+msa/dz)

X (Mdl(mi_mll/<2d1>))h_z(ﬁlwdz‘(wi_”;/ (2d2>>)

_ Z Z Z ri(r1 +ma/dy),r2(re +ma/da);c)

d1|m1,d2\m2 7‘177‘221 C>l

E—1\ 272
1)k/2
X Z 27T ( I7a )k—l

E>1,2|k

X (Mdl(mi_mll/<2d1>))h_z(ﬁlwdz‘(wi_”;/ (2d2>>)

<47r\/7°17°2(7‘1 +my/di)(rs +ma/dz)
X Jk_1 c

> + O(K/%).

We evaluate the diagonal terms by means of the Poisson summation formula as

2 [uea > g | m@nTE@n 3 + o),

1
0 d1|ma,da|ma;ma/di=m2/d2 0
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QUANTUM VARIANCE FOR HECKE EIGENFORMS 777

sincery (r1 +mq/d1) = ra(r2 + m2/ds) has at most finitely many solutionsiif, /dy # ma/da,
while the integer solutions to, (r; + m1/dy) = ra(r2 + my/dy) are onlyry = rs.
Applying Lemmas 4.1 and 4.2 from [24], we dlgce that the non-diagonal terms are equal to
—or5/2
K

S(ri(r1 +ma/dy),r2(r2 +ma/dz);c
3 ZZ((+/)C(+/))

di|ma,da|me T1,m7221 c21

) Zu<@) \/%‘lyh1 (47Td1(7°1 ﬁcmy(%l)»hj(‘lﬂdz(rg ﬁinj@dz)))

x sin(Ac™t/2+y — 7r/4)% +0(1)

_ Z Z Z S(T‘l(Tl +m1/d1),cf‘2(7°2 +m2/d2);C)JT17T2,C+O(1)’

di|mi,dz|mg 71,7221 c21

say, where

A= 87T\/T‘17‘2(7‘1 + ml/dl)(Tg + mg/dg).
The terms withc > K< contributeO(1), by partial integration. Making the change of variable

N .
t=Y=2 Y weseeJ,, ,.is

K
_ 7r5/2£ Ooﬁ -1 c/A—T7
im0 0/ t /24 (tK)2c/A — 1 /4)
tK — tK
X I (47Td1 (r1 + ml/(2d1)))h2 <47Td2(7°2 + m2/(2d2))) .
Note
% _ @\/mgm oy /dy)(r2 + ma)dz)

22 r mar 1mim 1/ m\r 1/ me\2r
5 or1  mary  Imamg  1/mi\"ry 1/me\"m )
C <T1T2+ d2 + dl +2d1 dg 4 dl 1 4 dg 7‘2+

We first assume the test functionsh,, h, are all real-valued and write for simplicity

Jrl,rg,c - C\\y{ec <2T1T2 + md2rl + md1T2>fc(T17T2)}7
2 1

say, wheree.(z) = exp(2miz/c).
Reducing the summation over, r, into congruence classesod ¢, we have,

maTr mir
Z S(Tl(Tl—l—ml/dl),T‘g(Tg+m2/d2);0)€c<2rlr2+ ;21+ d112>fc(7°1,7°2)

r1,r22>21

= Z S(a(a+my/di),b(b+ma/ds);c)ec <2ab+——|——
a,b(mod ¢)

X Z fe(ry,m2)

ri1=a(mod c),ro=b(mod c)
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778 W. LUO AND P. SARNAK

> > < > S(ala+ma/dy), b(b+ma/ds);c)

u(mod ¢)v(mod ¢) " a,b(mod c)

X ee <2ab—|— <7;—22 —|—u>a+ <7Z;—11 +v>b)> < > felrira)ec(—ury — vrg)).

1,72

Next we apply the Poisson summation formula for the sum jms and obtain
D felri,ra)ec(—ury —vra) = > B(ly, 1),
71,72 1,12

where

B(ll,lg / fc Tl,Tg)ec( ury —’UTQ) (117'1 +lg7‘2)d7‘1 d/f‘2
R2

:/ fe(ri,re)e((lh —u/e)ri + (I — v/c)ra) dry drs.
R2

We can assumpu| < ¢/2, |v| < ¢/2, and by partial integration sufficiently many times, we see
that

> B(ly,l2) = B(0,0) + O(K %),

l1,l2

forany A > 1. Thus,

Z fe(ri,ma)ec(—ury — vrg) / fe(r1,m2)ec(—ury — vrg) dry dra + O(K )

1,72 R2

For (u,v) # (0,0), by partial integration sufficigty many times, we infer that (recall< K¢)
/ fc(Tl,Tg)ec(—’U,Tl _’U7°2)d7°1 dry K K_A,
R?2

for any A > 0. Thus only(u,v) = (0,0) contributes. Moreover we can allows>> K€ in the
c-summation since

/ fe(ri,me)drydry < ¢ A K2,

forany A > 0.
For fixedd;, m;(i = 1, 2) and integery, denote

Sc() = > Salya+ma/di),b(yb+my/dy); )ec<27ab+ (dz)a—i- (%)b)

a,b(mod c)
andS. = S.(1). We also writeS,. .., /4, ,m, /4, for S. if we need to indicate the dependence on

other parameters. ObViousYy. ..., /d, ,ms /de = Sc.ms /ds,m /ds -
Thus, the non-diagonal contribution is
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Z Z //fc (ri,72)drydra + O(1)

di|my,da|ma c>1

= —475/2 Z ZJ{C5 ?/%

dl\ml d2\m2 cz1

0
2 2
X//Lec Lmymy 1 /ma\"ra 1 (me "1 Ger)?e/a
\/Z 2 dl dg 4 1 1 4 dg T2
R2

X hq (47rd1 (r1 +ma1/(2dy1)) 4rdy(ry + mz/(2d2))) drydro dt} +0(1)

2 _OO )
\/— Z Z"{ 573 (8 /T
d1|m1,d2|m2 cz1 0
X// L (Lmuma  LimaN*re 1 ma\*r1\ Garyesa
g A/T17T2 ¢ 2 dl dg 4 dl 1 4 dg T2
R

tK tK
h h dry dro dt 1
x 1(47Td17‘1> 2(47Td27‘2> riars }+O( )

~E2(Juoa) ¥ v Sa ()
0

d1 |m1,d2|m2 C}l

1 /my 25 1 /mo 277
SeCa(a) 3 wi) der)
R2

- —Kr T 1 o~ Sc —_— 1 mi meo
o 2\/5 </U(t) dt) Z d1d2 Z\S‘{ 05/2C8e(20 dl dz )
0

d1|m1,d2|m2 cz1
1 (mi\?¢ 1 (ma\?n 2
X //e<_E(d_1) ;— E(d_Q E+(dld2) 5776
R2

h1(d2€) ha(din) d€dn
0 it )

By the multiplicativity of S.(v):

56102,m1/d1,m2/d2 (7) = SCl,ml/dl,mz/dQ (702)562,m1/d1,m2/d2 (’701)7 for (61702) = 17

and using the fa@cs/c; + ¢1/(2¢2) = 1/(2¢1¢2)(mod 1) for (e1,2¢2) = 1 as well as the result
in Appendix A, one can check that

1m1 mao
Sc <%d—1£> GR,
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and hence we obtain, under the assumption that the test funatibinghs are all real-valued, the
following theorem. Before stating it we need a little extra notation. A@rnon-negative integer
define|| - ||4 on C$°(0, 00) by

n@)|

I

(13) [hlla =

max
0<i<A,|5|<A,z€(0,00)

THEOREM 2. —For my,mg € Z,mymg # 0,u, hy, he € C2°(0,00) ande > 0, we have

> u(5) T 1 0) (5 Prsn 0 7 Proa )

k>1,2|k fet
(14) —Bw(Phl,ml,Ph27m2)K</u(t) dt) _|_O(K1/2+5)’
0
where
T 1 o0 o i
Bw(Ph1,m1 ) th,mz) = — Z hl(dgn)hg (dln)_z
! s .,
di|my,da|ma;|my|/di=|ma]|/ds )
I Zscaml/d17|m2/dge<i|m1||m2|)
5/2
2\/— dl|7ﬂ1,d2 ma dld2 c>1 C 2C dl d2
mia 25 T ma 277
T4 2 = — — (== ] £ +2n(didp)*
//Sln< (dl) Ui 2c<d2) §+7T(12)f776)
hi(d din) déd
(15) 1(d€) ha(din) dE dn

VE VI &n

Moreover there is an absolute constahand C (= C(€)) such that the implicit constant if14)
is at most

(16) C((Ima] + 1) (jmal + 1)) 11l - [|he]| 4,

and the series defining th8,, converges absolutely and satisfies

(17) | B (Pas s P < C((Imal +1) (Ima] + 1)) 1L 4 |17 a-

(16) is proven by keeping track of the dependencé pandh, in the derivation of (14). (17)
follows from integrating by parts in the double integral in (15), and then directly estimating the
terms.

A closer inspection of the proof actually shows that if any incomplete Poincaré g&rigs
in the Theorem 2 is replaced by inoplete Eisenstein series (i.e1; = 0) with zero mean
Jx Prom,v=0(i.e. [;°h —2 dy = 0), then the Theorem 2 is still valid except for the case
m1 = mo = 0. For the casem mo = 0, (14) and (15) of the Theorem 2 continue to hold as
long as the term

T 1 7 — dn
1 Z E/hl(dzﬁ)hz(dlﬁ)ﬁ

d1|ma,da|ma;ma/di=m2/d2 0
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is replaced by

(] Froan 585

1/A

whereH; () = hy (§)€* + 2hi(€)§ = (hi(§)€*)s hi(§) =0 for 0 < <1/A,i=1,2; 2by(z) =
Bs(z — [z]), and Ba(z) = 2? — z + 1/6 is the Bernoulli polynomial of degrez This follows
by Euler—MacLaurin summation formula from

k-1 T k—1\d
Z hi<47rd-r) - _/bQ(g)Hi<47T§r)§_§’ forr >1,
0

d;i>1

which vanishes if- > A%-1
Itis in turn equal to

o0

%/(ZZ@@MAWH%E)H<%)g$Q
<5 (] Jriomoin GG o)

3. Symmetry propertiesof B,

»M=1

Let L,, = LZ, be the differential operator afi§°(0, o) given by

(18) Ly h(z) = ( afz 4ﬁnﬁﬁ>h@y

If we define the inner product afi§° (0, o) by

o0

(19) (hl,hz)z/hl( Yha(z)—

0

—dx

x2’

thenL,, is symmetric with respecttq), i.e

(Lmh17 h’2) = (hl, Lth)

We have
(20) A(h(y)e(mz)) = (Lmh)(y)e(mz),
and hence
(21) APh,m = PLmh,ma

whereA is the hyperbolic Laplacian. Moreover, we have (see the proof of Theorem 6.9 in [12])
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d2 1/2
(22) Ty Py (2) = z:(z) Py(ny) ma (2),
d|(m,n)

whereT,, is the nth Hecke operator (see Section 8.5 in [12]). It turns out that the bilinear
form B,(-,-), defined on the spack spanned by alP;, ,,’s, is self-adjoint with respect to the
LaplacianA and the Hecke operato¥$,,n > 1:

(23) BUJ(APhl-,ml ) Ph2-,m2) = B, (Ph17m17APh2-,m2)a

(24) Bw(TnPhl,ml ) Phg,mg) = BUJ (Ph17m17TnPh2,mz)'

The verification of (23) is straightforward by (21), by change of variables (whems # 0, to
symmetrize the integral kernel)

and in view of the fact

d? d?
(6261_52 - 47T2m§m§§2) Kml,mg,dl,dz (57 77) = (772 d_772 - 4727”%7”%772) Km1,m2,d1,d2 (ga 77)7

ie.
d2
<§2d—§2 - 4w2m§m§§2> Koy mo.dy ., (€,m) is @ symmetric function i, 7,
where

T mimsg € T miman

. e mimso
Koy m )= ——— = = + 2w (dyds)? :
1, 2;d17d2 (5 77) 5778111( 4 2C d1d2 ,]7 2C d1d2 5 + ﬂ-( 1 2) d1d2 5776>

If mims =0, we then desymmetrize the integral kernel and use the continuity argument.

In order to prove (24), it suffices to check it for ea@h(p is a primg, which can be
verified by a tedious computation, using (22) and the explicit evaluatio gf /4, m. /4, (7) in
Appendix A. For the details, see Appendix A.3.

4, Extension of B,, and diagonalization

Let P:H — X be the usual projection map, and ieDy; bo<i<s U{Dr1 U Dp2}i>1 be a
system of open sets with compact closureHirwvhose projections tX form a locally finite
open covering ofX' (see [9]), such that the restrictid?p, , is injective except foDgg or Doy;
Dy (resp.Dg;) is a neighborhood af (resp.p = ¢27*/3) and the restrictiotP| p,, (resp.P|p,,)
is two to one (resp. three to one) map except(@esp. except at). We choosek > 1)

Dy = {Z, %(2) <2, |§R(2)| < 1/2’ |Z| > 1}’

Doz ={z, S(z) <2, —1/2<R(2) <0, |2| > 1}
U{z S(2) <2, -1<R(z) <-1/2, [z + 1| > 1},
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Dyy = {z, 3"/2 < 3(2) <2-3%, —1 <R(z) <0},

Dy ={z, 3"/2<3(2) <23, —1/2<R(z) < 1/2}.

Let { fx; } x>0 be the partition of unity subordinate to the above covering dsee [9]). Each
fr; can be regarded as an automorphic function with respekt the restrictionfy;|p,, has
compact support iD,; and we extend it to a smoolh,, periodic functionfkj on H. There
existsyo > 0 so thatfy,; are all supported in the half-plane> yo, on which fi.; (2) = fi;(2),
except wherk =0 andj =2 or 3.

Let be a fixed element g5, (X ). We have

2) =Y fei(2)(2)
k.3

fk]( Z fk] ’72 )
'yel" \I
where
2, ifk=0,57=0;
nkj_{?,, ifk=0,7=1;
1, if otherwise.

)

Expandingfy;(z)1(z) into its Fourier series i gives

fk] Z hkgm

meZ

hjm(y) are smooth with compact support, and since C5% (X) theh's satisfy

_ —A
(25) hijm (y) <ay~ (jm| +1)
forany A > 0. Hence
=2 > = Pin)
k,j mez "
1 2
—ZZ —Phkjmm +thk100 Phooo 0( ) gPhom-,O(Z)
k,j m;ﬁO
2
= Z Z _Phkjm m ) + PH,O(Z) - Ephooo,o(z) - gphmo-,o(z)?
k,j m;ﬁO

say, wheref (y) € C2°(0, c0) (recall that fory large enough the zeroth coefficientpfis zero)

is defined as
v) = hrjo(y)
k,j

This follows from the fact thag,w. fri(z) =1, and fkj are all supported in the half-plane
y = 4o, 0N which we have
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Z hyjo(y) = (Z fkg(z)) P(z) da
k,j k,j

(Z i (2) + (foa(2) = fo2(2)) + (foa(2) — foa(Z))> ¥(2)dx

k,j

((f02(2) — fo2(2)) + (f03(2) — fo3(2)))(z) da.

I
S O O~

Moreover we have

Write
1 2
PH-,O(Z) §Ph000-,0(z) gphom O(Z):Ph O(Z)v
with
1 2
h=H — —hgopo — =h
51000 = /010
We then have
1
(26) ()= > —Pu,m(2) + Pro(2),
P Nkj
,J m#0
with
/Ph,O (Z)D =0

It follows from Theorem 2 and the comments following it, together with (25) and (26), that
for ¢ and¢ in g% (X) we have

) “(k;) > L(Lsym®(f)) (g, ) (s, )

k>1,2(k FEH,
(27) = Bw(w,qﬁ)K(/u(t) dt) + Ow,¢,e(K1/2+€)7
0
where
1
Bu(¥,¢) = > ———Bu(Pywy P )
k1,71,m17#05k2,j2,m2#0 M1 51 T2z Fma kaiama’
1
+ — B, (P, ) s P o)
Kt i £0 | RLL Fravmm
1
+ Z — B, (P 0, Pyo) )
k2,j2,n27#0 122 Fadamama
(28) + Bo(Phw) 05 Pr 0)-

4€ SERIE— TOME 37 — 2004 -N° 5



QUANTUM VARIANCE FOR HECKE EIGENFORMS 785

In view of (25) for¢ andy respectively and (17), we see that theries (28) converges absolutely.
From (23), (24), (26) and (28) it follows that the bilinear forR), (¢, 2) now defined on
Ceu(X) x Cg%(X) satisfies

(29) Bw (Awla 1/12) = Bw (1/]11 A¢2)7

and forn > 1,

(30) B, (To1,%2) = Bu(¥1, Thib2).
This completes the proof of parts (A) and (B) of Theorem 1.
Now restrictB,, to the subspace

C (X)) =Coo(X) N L2, (X).

cusp cusp

If ¢1, @2 are distinct Hecke—ldass eigenforms i@'s, (X)), then forn > 1

cusp
B, (Tn(bla ¢2) =B, ((blaTn(bZ)
implies
An(61)Bo (01, 02) = A (92)Bu (91, ¢2).

According to the theory of Hecke operatoand Fourier coefficients there is ansuch that
An (1) # An(d2). It follows that if ¢, andg, are distinct Hecke—Maass cusp forms then

(31) B (¢1,¢2) =0.

Thus we have shown thas,, is diagonalized by the orthonormal basis of Hecke—Maass cusp
formsinL?,,, (X). In the next section we compute the valueRf on such ap.

cusp

5. Eigenvaluesof B,

Let ¢(z) be an even Maass—Hecke cuspidal eigenform for the modular drowgth the
Laplacian eigenvalue\y = i + ity, and let L(s,¢) be the associated standafdfunction,
which is well known to admit analytic continuation to the whole complex plane and satisfies
the functional equation:

Ag(s) =Ap(1—s),

where

Ay(s) = ﬁ—sr<s +2”¢ > r<‘9 _2”¢’ > L(s, ).

We assume)(z) is normalized so that its first Fourier coefficienf(1) = 1. From the works
of Watson [29], we have

w2 D(k—§+ity)?
~ 2cosh(mty)  (4m)FD(k)
I'k—1) 2

- (4m)k QCosh(wt¢)L71(1’sym2(f)) |af(1)‘2L(1/27¢® f® f)(l + O(kil))v

(s, )| L7 (1, sym?(f)) |y (D L(1/2.0© f © f)
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in view of the fact that for any vertical strip< a < R(s) < b, we have that

(32) F(If(—l:iﬁz)l):(k—1)5(1+Oa,b((|s|—|—1)2k_1)),

by Stirling’s formula. Note that

L(1/2a¢® f ® f) = L(1/25¢)L(1/27¢®Sym2(f))

Thus,
> o5 & s ol
E>1,2|k fEH)
T iy E(1/2,9) k-1
_8(1+O(k ))cosh(wt¢) k>1§|ku( K )
(33) T Z\ ap(V)|*L(1/2,6 @ sym?(f)).
feH,
Define

38 s+k—1+1t s+k—1-—1t s+ k+it s+k—1t
Ao = (S (SRR (S o ()
s+ 1+t s+1—1t
><I‘< 5 ¢)r< 5 ¢>L(s,¢®sym2(f)),

thenA, ¢(s) admits analytic continuation t@ as an entire function and satisfies the functional
equation

Ap,p(8) =Np r(1—s).

Let F' be the cuspidal automorphic form a@®lL(3) which is the Gelbart-Jacquet lift of the
cusp formf, with the Fourier coefficientgr(m1, ms), where

ap(mima) =% Ap(mi/d,1)Ap(msa/d, 1)u(d),

d|(m1,mz2)

and
1)= Z A (t2).
s2t=r
The Rankin—Selberg convolutiain(s, ¢ @ sym?(f)) is represented by the Dirichlet series (see
[1.2]),

(34) L(s,¢ @ sym®(f)) = Z Ap(mi)ap(my, ma)(mym3)~°,

my,mg21

where)y(r) is therth Hecke eigenvalue af.
We have

A¢f(1/2 /A¢f8+1/2)
(2)
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Hence,

(35) L(1/2,¢ @ sym>(f)) =2 Z Ap(ma)ap(my,ma)(mim3)~2Gy(7*mym3),

mi,ma>1

where

2

F( 1/2+k2—1+it¢ )F( 1/2+;€+it¢) F( 1/2+k2—1—it¢ )F( 1/2+§—it¢)

1 / 1—\((5-1-1/2)—;1@—1-!-1’154, )F( (s+1/2)2+k+it¢ ) 1—\( (s+l/2)-;k—1—it¢ )1—\( (s+1/2)+k—ity )

I,((er1/2)2+1+it¢)F((s+1/2)2+17it¢)67Sé
PP T
:T/(1—|—Tk(s))F((s+11/222+1+l:t¢)F((S+l/2)2__‘_1_it¢)( A€ 2>_Sﬁ
i) DR () =)

)

where

o peals) (sl
T)= 2 Gy +o(\T5y)

is an analytic function ifts > —2, in view of Stirling’s formula. Herep, ;1 (s) is a polynomial
of degree at most + 1. Denote

F( (s+1/2)2+1+it¢ )F( (s+1/2)+1—ity )

Ui(s) = (14 Tk(s)) 2

1/241+it 1/2+41—it
[ (F e ) p (2
We have
I'k—-1 2
W Z lag(1)|"L(1/2, ¢ @ sym*(f))
fe€H
I'k-1) 2
= (4m)F—1 Z ‘af(1)|
feH
x 2 Z Ao (m1)ap(my, ma)(mim3) V232G (73 mym3)
77’7,1,77’7,221
_2zﬂ(d) Z Ao (dn1) G 3,3 2 2)—1/2
= —d3/2 plany k\TT nlnz)(nlnz
d>1 ni,n2>1

T S oA DArtos
feH),

p(d) _
=2> o DL Meldsit)Gr(rdsihsty) (st s3t3) 1/

dz=1 s1,82,t1,t2>1
Lk-1) 2
X > fap (DAL)AL (23).
(4m)k—1
fEH)

By the Petersson formula, we deduce that
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u< - > ik LS o (OPL(1/2 60 symd(f)

788

E>1,2|k feH,
k-1 d
=2 Z u(T) % Z Ao (dst1) G (m2d3 52 s5t3) (s2s5t3) /2
k>1,2|k d>1 81,89,t1>1
S(t1,t
DI I SEPVCE BIE R DEre
d>1 81,82,t1,t2>1 cz1 ¢
k—1 dmtqt
X Z 27T k/2 < K )Gk(wgdgs%tlsgt%)Jk_1< UL 2).
E>1,2|k
The diagonal term is (writing = dt;)
k—1
2 3 u< >Zr3/22u S 552 3 s (rs2)G(ns2str®)
k>1,2|k r>1 d|r s2>1 s1>21
k—1
—2 % u< - >ngzzs;mﬁ(sg)ak(wssis@
k>1,2|k s2>1 s1>1
Now
_ 1 Ap(52) 47353 \ ds
36 l)\ 2 G 3.2.4 _/ P\°1 U 2 =
(36) 1Z>151 6(s7)Gr(m"s1s3) = omi 1z>:1 st+1 k() (k—1)2 3
s$12 2) 812
We have
A 1
Z (23)L(S sym2(¢))
8121

Moving the line of integration in (18) t&(s) = —1/4 + ¢, we obtain

Z 57 A (3)Gr (57 53)

s121
1
" (1,5ym*(¢)) U (0)
: dmdsy \Cds
/ ML“+2svsym2<¢>)vk<s><<k_12>z> ds
(=1/4+¢€)
B : —1/2+€
— @L(l,sme@))Uk(o)_i_o(K 1/24 )
Thus, the diagonal terms contribute
@ / /2+e
@L(l,sym%@)O/u(g)d§+O(K1 24y

Since
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we can write

2 <k—11>THT(<kﬁ£1>2>+O(ﬁ>'

1<r<6

_ 48
G0 =11 (e ) +
Applying Lemmas 4.1 and 4.2 from [24], we dlgce that the non-diagonal terms are equal to

S(t2,t2;¢)
1/22d3/2 Do Aeldsity)(sttisyty)” WZ%

d>1 81,82,t1,t2>1 c21
* 33,2, 442
" /u<\/87rt1tgc_1y)H(47r d sltlsth)
K 8mtitacly
0

x sin(8tytac™t /24y — 7r/4)% +0(1)

d
= _—orl/2 Z % Z )\¢(d8%t1)(8%t183t§)*1/2

d>1 81,82,t1,t2>21

2 42,
X Z MJC,ILSMSLH,M +0O(1),
cz1
say.
We can assumé®s?t;sit3 < K2 since H (€) has exponential decay §s— oo. The terms
with ¢ > K?¢ as well as the terms with t, < K2~¢ contributeO(1), by partial integration. So
we can assume< K2¢ andt ty > K?~¢. Moreover fromt 13 < K¢ andt t; > K?~¢ we

deduce that, < K2¢. Making the change of variabte= 7%W’ We SeeJe d s, s.t1,t IS

433 2 tls
(8mtytac™! /24 (tK)?c/(8mtyts) — m/4 72&.
m/ psiststa™ 2+ (10 t) /) (PG >
From Hecke’s bound [12, Theorem 8.1]
D Ap(r)e(ray™'? < R,
r<R

wherea € R; the Hecke relation

As(rira) = > pld)Ag(r1/d)Ag(ra/d);

d|(r1,m2)

and partial summation, we infer that the contribution from the non-diagonal terMghs<).
We conclude that

> u() X L) .o
k>1,2|k feH,
K @ as ZU20 11 yee) + 0(12)

(37) - cosh(mty)

0
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This completes the proof of Theorem 1, in view of the fact

L(1,sym?(¢)) = 2(¢, ¢) cosh(mts).
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Appendix A
Appendix A.1. Classical variance

We evaluate the classical variance given by #)jis evaluation is general and applies to any
Y =T\SL(2,R), wherel is a lattice (not necessarily arithmetic). Assume thgt (Y") consists
of functions onY” of mean zero. The classical variari¢es given by the symmetric bilinear form

(A1) V(i1,1h2) = //ﬂh 77/12< ( 62/2)>d9dt-

From this it is clear thaV’ is diagonalized by the irreducibfibspaces in the decomposition
of the right regular representation 8£.(2,R) on L§ ,(Y). If ¥(g) is an element inLj ,(Y")
which is SO(2) invariant on the right, them is a Maass form o = SL(2,R)/S0(2) with
eigenvalue\ = i +t2 > 0. We evaluate the matrix coefficient

(A.2) F(g) = / Y(91)¢(g919) dga-
I'\SL(2,R)

As a function onSL(2,R), F satisfies
(I) F(klgkg) (g), Orkl,kQESO(Q);
(i) wF = \F;
(iiiy F(e)=1.(We are normalizing so thatf,, [¢/(g)|*dg =1.)
According to the theory of spherical functions these determiiniquely. SpecificallyF is
given explicitly (see [31, p. 143]) by

er/? 0
F 0 677‘/2 :P—%ﬂ—it(COShT)a

whereP; is the associated Legendre function. Hence

oo

(A.3) V() = / P_%_H»t(coshr) dr.

— 00

This integral may be computed [8, p. 810] and yields

SN R
0 onr(d )|
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Appendix A.2. Evaluation of thesum S.()

For2¢c, we have
¥ — ] 2 — (Mo 2 51112
S.(V) =€ L) -2y =) -2y —=2 ) :c)e. -2
(v) = ecc™™{ = W) P\ ) o) 0 )

|1 if e=1(mod 4);
“=\i if c=—1(mod 4),

where

is the sign of the Gauss sum, and

d md + nd
A4 T N = — -
(A.4) (m, ;) d(Ed: )()( ; )

is the Salié sum [27].
If (¢,2n) =1, we know (see [11, Lemma 4.9])

rmo- () 5 o2)

y2=mn(mod c)

Hence if(p,2n) = 1,21 ¢, thenT (pm, n; p*c) = 0.
If ¢ =pF andk > 2t > 2, we writed = [ + rp*~*, I(mod p*~*), (p,1) =1, r(mod p*), then
d=1- r72pk_t(mod p¥), and hence

A5)  T(mmph)= > <#)e<mztnl> 2 6<@>

t
l(mod pk—t) p r(mod pt) p

Forc = 2! andm, /d; # ms/ds(mod 2), we have

since for2{ AB,

2 _Jo, =22
Z e.(Aa —|—Ba)—{2 —1
a(mod c)

On the other hand, far= 2! andm, /d; = my/ds(mod 2), we have

! my\? ma\” mim
071 5 o) e () ) (0
z(mod 4c),(2,z)=1 1 2 102

where
i 0, =1,
Gn,2)= > e<7) = (L+m2Y2, 2
t(mod c) 2(l+1)/2€7”n/4, 2Jfl > 1.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



792 W. LUO AND P. SARNAK

2= () () +)

and we assume without loss of generality thaK c, and25|\(%)2. We distinguish two cases
(note2=*(mz/d2)? = 1(mod 8)):

Let

(a)2]i.
_mime _2563/2 o mima 2 '40
620<7 dldQ)Scm_ T 00 G ) B
bl (mme )’ de
2 TV \dido2s ) V05 ) [
(0)241>1.

_mimso S.(+) 2563/25 c L2 mims 2 1 4c
€2¢ 3 c = - yLigss |-
2e\7 dids v 2\/5 2s+1 7 d1do28 28
HereS(m,n;c) is the usual Kloosterman sum.
Appendix A.3. Sdf-adjointness of Hecke operatorsfor B,

We write

Bw(Phl-,m1aPh2-,m2) = Bm(Ph17m17Ph27m2) + Bf(Phl-,m17Ph27m2)v

where
T 1 — dn
Boc(Phymas Pha,ma) = o > 7d hl(d277)h2(d177)77_25
d1|ma,damailma|/di=lmal fdz 2
and
T 1 Selma|/di jmsljds (1 |ma] |mal
Bi(Phmes Phoms) = — slmaf/di,[ma|/d2 -
f( hi,mys 4 ha, 2) 2\/§ Z dldgz 572 e % di do
dl‘ml,dg‘mg C}l

2 2
. T wm(mi\ & T [/me\"n
< Sm(‘z 7 (d_) P (d_) et 2”(‘“‘12)25’76)
R2
y hi(d2€) ha(din) d€ dn
Ve vm

We first consider the special cagémms in details. The general cases, as we see later, can
be treated similarly by induction. We have, by (22), that

TpPh,m(Z) :p_l/zph(p»),pm(z)'
Thus, since the conditions |pmy, dz|ma; |m1|p/d1 = |m2|/ds impliesp|d;, we infer that

4€ SERIE— TOME 37 — 2004 N° 5



QUANTUM VARIANCE FOR HECKE EIGENFORMS 793

BOO(TpPh17m17Ph27m2) :p_l/QBOO(Phl(P')-,Pml7Ph27m2)

- — d
LR 3 [ 1 odanTaodin) ]
4 J ) _ pdldz 77
1lma,da|ma;|ma|/di=|mz2|/d2 0
= p_l/2Boo (Ph1 ;M1 th(;D')J?mz)
= Boo(Phl,ml ) Tpth,mz)'
On the other hand,

Bf(TPPh17m17Ph27m2) :p_l/2Bf(Ph1(P')7Pm17Ph27m2)
1 [mup| |m2|)

T 1 Se,mapl /dy,Ima|/dz
D VI S B E

dids
di|pm,da|ma c=1

2 2
. T 7w (mip\ § w [ /ma\"n 2
Do) 2 222 Dy on(dyd
X//Sm< 4 20( di ) n 20<d2) €+ m(d1dz) gnc)
R2
hi(dap€) ha(din) d€dn
X
Ve Vi &
T 1 Se,lmapl/dy,imal/da (1 |map| [ma]
2\/§p Z d Zl C5/2 e(2C dl d2

1d2
di|m1,da|ma

>
mow (mp\iE 7w (ma\’n
(L T (MP) S T (N T on(didy)?
X//Sm< 4 2C<d1)77 20<d2)§+ﬂ(12)€n6)
R2

hi(d2p€) ha(din) d€dn
NG vioo&n
1 |my| |m2|)

T 12 1 Se,[ma/dy[moa|/da
DY 5 elmaligralie o Ll

d1d
dllml,dglmgp 162 021

2 2
(T F () E T (ma)n 2
X //sm( 1 2c(d1) 7 2c(d2) §+27T(pd1d2) 5776)
R?2
ha(d2p€) ha(pdin) d€ dn
X
Ve N
- Zl + Z2’
say, wherée)_,, >, correspond to the conditionsf d; andp|d, respectively in the initial sum.
Making the change of variablgs— &/p,n — pn in >, we see that

1 Jmap| |m2|>

T 1 Se,lmap|/dy,|mo| /d>
D AN DI SECE LR S

didp
dl\m17d2|m2 C}l

2 2
. T w(mi\" & 7w (map\'n 2
Jl w(F-5(@) 55 () dromaarer)

o Tnldzg) ha(dipn) dé dn
vE v
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Similarly,

i
By (Phymys TpPhoms) =02 B(Pay mas Pa(p) pms) = Zl + Zz’

where

LT g 1 Se,mu|/dy,Jmapl/dz (1 |ma] [mop]
2. =547 > o el
dl\m17d2|m2 C}l

// ro(m Cm (map\ o e
sin dl 0 % d2 5 T\ Q142 nc
% ha(d2§) h2(d1p77) d€ dn

vE v &

However, in view of Appendix A.2, we have

(A.6) Se,lmapl/di,lmal/ds = Se,lm|/d1,|map]/da-

To see this, recall the multiplicativity &f..(v):

Sclcg,ml/dl,mg/dz (FY) = Scl,m1/d1,m2/d2 (702) : SCg,ml/dl,mg/dz (701)7 for(cl7 02) = 1

We write ¢ = cyeacs if p > 2, whereey [p™, ¢2]2°°, and(cs, 2p) = 1; ¢ = c1¢9 if p =2, where
c1|p™, (e2,2) = 1. Then

SC1C2C37|pm1\/d1-,\m2|/d2 = SC17|pm1\/d17|m2|/d2 (0203) ’ SC27|pm1\/d17|m2\/d2 (0103)
*Seg[pma/d.Imal/d2 (€12);
if p>2;
SC1C2=Pm1/d1-,m2/d2 = SCl-,\Pm1|/d1-,\m2|/d2 (62) : SC2=\Pm1|/d17|m2\/d2 (Cl)

if p=2. We also decompos8_. |;,|/d,,/msp|/d. N the same way. From the evaluation in
Appendix A.2 (for S, |pm,|/d.|ms| /s (c1¢2), Making the change of variabte— p?d inside
the suml’(+, -; c3)), formuIa(A 6) follows.

Thus we see that_, = >_', and consequently

By (TpPhy ymys Proms) = B (Phymy s TpPhyms)-
Let us consider the general case by inductiomawith p®||(m1,m2). Since
Ty P (2) =072 Pup) pm (2) + 22 Pa. ). (2,
where ifp { m, we understand tha,. /) .. /»(2) = 0, we have

Bf(TPPh17m17Ph27m2)
:p_l/zBf(Phl(P')-,Pml ) thﬂnz) +p1/2Bf(Ph1(-/p).,m1/pu Ph2vm2)

T 1 Se,lmipl/di,mal/ds (1 |[map| [ma]
D M S

dida
dyi|pmi,da|ma cz1
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2 2
. T 7w (mp\ § 7w [ (ma\"n 2
X é{sm(—z ~ 5% (d—1) E ~ 5 (d_z) E + 27 (d1da) 5770)

h (d2p§) ha(din) d§ dn

Ve Vv
T1/2 1 Se.lmal/pdy,imal/ds (1 |ma] |ma]
SN DI S
2\/5 di|m1/p,da|me drdz c>1 >/ 2¢c pdy do

2 2
. T m({mp\ & w[(ma\n 9
gl w5 5Gn) 55 (@) domanren)

" h1(d2&/p) ha(din) d€dn

Ve Vi &
:IA—I—IB,
say.
Similarly
Bf(Phl-,ml ) T;Dthmw)
=p P’ Bf(Phymss Pra(p) pms) + P> B (Pry s Pha-/p)map)
_ T _1/2 1 Scw‘ml‘/dlv|m2p‘/d2 1 |m1| |m2p|
= p Z Z 5/2 e<_
2\/5 d1|m1,d2\pm2 d1d2 e>1 C/ 2c dl dg
T o7 (m 2§ w [ mep 277
in(———— (=) 2= = =5 ) L +2n(d1dy)?
X//Sm< 4 2C<d1) n 20( do ) €+ m(didz) gnc)
R2
o Tn(deg) ha(dipn) d€dn
VE Vi &
T 1/2 1 Scx\m1|/d17|m2\/17d2 1 |m1| |m2|
D M S S 6
2\/5 d1|m1,d2|M2/1)d1d2 >1 C 20 dl pdg
O 2§ T [ ma 277
in(—>——(— ] 2= — =) < +21(d1d2)?
X//Sm< 4 2C<d1) n 2C<pd2) §+ m(d1dz) gnc)
R2
" h1(d2€) ha(din/p) d€ dn
VE Vi &n
=114+ 1Ip,
say.

According to whether or nai|(c, *, %) in Sc . ., we further decompose the suths, Iz, I1 4,
Il g into

Tg =141+ 142, Ip =1Ip1 + I3, IT g =11 o1 + 11 42, IIg=1Ipy + Ips.

Note if p|(c, *, %), Sc.«.« = 0 unlessp?|c. Write ¢ = p?c;, we have

4(p, 01))7

2
Sc)‘mlp‘/d17|m2‘/d2 = S017|m1|/d1,\m2|/10d2p (1 - T
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where

. Oa If p|cll
6(p,c1) = { 1, ifpter,

and write correspondinglfs; = I'y, — I'1;

6(]?7 Cl)
Se,lmal/pdy,|mal/d2 = 5c1,|m1/p2d1,|m2/pd2p2<1 p )
andlips =1Ip, — I%;;
5(])7 Cl)
Se.ma/dy,[mapl /ds = Sex jma| fpds.|mo | do D (1 = )
andIl ay = II'y, — II'}y;
d(p,c1)
2 9
Scx\m1|/d17|m2\/1?d2 :S017|m1\/1?d17|m2\/172d2p <1_ » )

andIl oy = II'y, — I,
We see, by the induction hypothesis@n, /p, ma/p), thatl’y, + I, = II'y, + 15, .
Moreover note that i { be, we haveS., ap b = p?Se.a.b andsS;,2 ., = 0. Using this, together
with the evaluation of5. . .. in Appendix A.2 one can readily verify that (whefgz (p|d, ), for
example, denotes the partial sumiaf, in which p|d;)

Ta2(pldy) = II a2(p|d2); Ixo(ptdi,ptda,pfc)= I az(ptda,ptdi,pfc);

Laa(ptdy,pllda,pte) =1l az2(ptda,plldi,ptc);
Lag(ptdy, p?lda,pte) =I5, (p1dy,p’lma/ds);
Laz(ptdy,ple) = T4y (pt du,pllma/da);

Iy, (pt do, p*|lma /dy) = IT a2(p1 da, p*|d1,ptc);
11 (ptda, pllma/di) = 1L az(pt da, ptc);
iy (pldy) = 1T (pld2);  Ipa(pldz) = I p2(pldy);
Ipa(ptdae,ptdi,pfc) =1 pa(ptdi,ptde,ptc);
Ipa(ptda,plldi,ptc) =1pa(ptdy,pllda,pfc);

Ipa(ptdy, p?ldy,ptc) =15, (ptda, p*lma /dy);
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Ipa(ptdz,ple) = I (pt da, p? | /dy);
U’él(pldl) = I (plda);
H pa(ptdy,p*|da,pte) = My (ptdy, p’lma/ds);
U p2(ptdi,ple) = Mgy (ptdi, p?|Ima/da).
We deduce from the above that
B (TpPhy ymas Prams) = Br(Phymy s TpPhyms)-
On the other hand, we have
Boo (TpPrymy > Pryms,)

=0 2 Boo(Phy (p),pmr > Prasms) + 2" *Boo(Pay (- /p)ma /s Phaims)

o0

_ 12 1 hi(ndor) o (d dn
42? Z dyds 1(19 21) 2( 177)n2
di|map,da|ma;|mi|p/di=|mal/d2 0
+ Zpl/2 > ! /hl(65277/2?)71_2@5177)d—77
4 dldg 772
di|ma/p,dz2|ma;|mi|/pdi=|m2|/d2 0
=A+ B,
say. Similarly

BOO(Ph17m17TPPh27m2)
:pil/zBoo (Phl,mlaphg(p-),pmg> +p1/2Boo (Phl,mlvphg(»/p),mg/p)

o0

T o 1 — dn
=P Yz > T, | M(demha(pdin) —
di|ma,de|map;|mi|/di=|ma|p/d2 172 0 1
T+ Ipu 3 e
4 dida n?
dy|my,dz|mz/p;|m1|/di=|m2|/pd2 0
:AI+BI,

say. One can easily check that
A(pldr) = A'(plda); A(ptdy) = B'(ptd);
B(ptda) = A'(ptda);  B(pld2) = B'(pldy).
Thus,
BOO(T;DPhl,mlathmz) = BOO(PhlymlvTPthmz)'

This completes the proof that

Bw(TPPhl,mUth,mz) = BW(Phh"nl?TpPhQ;mQ)'
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