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STABILIZATION AND CONTROL FOR
THE SUBCRITICAL SEMILINEAR WAVE EQUATION

BY BELHASSEN DEHMAN, GILLES LEBEAU AND ENRIQUE ZUAZUA 1

ABSTRACT. – In this paper, we analyze the exponential decay property of solutions of the sem
wave equation inR3 with a damping term which is effective on the exterior of a ball. Under suit
and natural assumptions on the nonlinearity we prove that the exponential decay holds locally un
for finite energy solutions provided the nonlinearity is subcritical at infinity. Subcriticality means, ro
speaking, that the nonlinearity grows at infinity at most as a powerp < 5. The method of proof combine
classical energy estimates for the linear wave equation allowing to estimate the total energy of s
in terms of the energy localized in the exterior of a ball, Strichartz’s estimates and results by P. Gé
microlocal defect measures and linearizable sequences. We also give an application to the stabiliza
controllability of the semilinear wave equation in a bounded domain under the same growth condi
the nonlinearity but provided the nonlinearity has been cut-off away from the boundary.

 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous étudions dans cet article la décroissance exponentielle de l’énergie pour une é
d’ondes semi-linéaire dansR3, avec un terme d’amortissement effectif à l’extérieur d’une boule.
supposant la non linéarité sous critique et vérifiant certaines conditions naturelles, nous obtenons u
de stabilisation locale, c’est-à-dire une décroissance exponentielle de l’énergie, uniforme sur les
de l’espace d’énergie où sont choisies les données initiales. La démonstration repose sur des i
d’énergie classiques qui estiment l’énergie totale en fonction de l’énergie localisée à l’extérieur
boule. Elle utilise aussi les estimations de Strichartz et les résultats de P. Gérard sur les mesures
microlocales et les suites linéarisables. Nous donnons aussi, en application, un résultat de stabilisa
contrôle pour l’équation des ondes semi-linéaire sur un ouvert borné, avec une non linéarité sous
tronquée loin du bord.

 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

This paper is devoted to the study of the following damped semilinear wave equation oR3

{�u+ f(u) + a(x)∂tu= 0 in ]0,+∞[×R3,

u(0, x) = u0(x) ∈H1(R3), ∂tu(0, x) = u1(x) ∈ L2(R3).
(1.1)

Here and in the sequel� denotes the wave operator:�= (∂2
t −∆x).

1 Supported by grant BFM2002-03345 of the MCYT (Spain) and the Networks “Homogeneization and M
Scales” and “New materials, adaptive systems and their nonlinearities: modelling, control and numerical sim
(HPRN-CT-2002-00284)” of the EU.
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The nonlinearityf is a function fromR to R, of classC3, satisfying the following conditions:

f(0) = 0,(1.2)
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(
1+ |s|

)p−j
, for j = 1,2,3(1.3)

with C > 0 wherep is a real number such that

1� p < 5,

and

sf(s)� cs2 ∀s ∈R(1.4)

for a positive constantc > 0.
The techniques and results we develop here can be easily adapted to any space di

N � 1. Of course, the critical range of exponents is thenp < (N +2)/(N − 2) (any finitep � 1
is allowed whenN = 1,2). However, for simplicity, we shall focus on the case of dimens
N = 3.

The damping potentiala = a(x) is assumed to be inL∞(R3), almost everywhere non
negative, and such that it satisfies for someR> 0 andc0 > 0,

a(x)� c0 > 0 for |x| �R.(1.5)

This means that the damping term is effective at infinity and, more precisely, in the exte
the ball of radiusR.

It is well known that for every initial data(u0, u1) ∈ H1(R3) × L2(R3), system (1.1)
admits a unique solutionu(t, x) in the spaceC0([0,+∞[,H1(R3))∩C1([0,+∞[,L2(R3)) (see
Jörgens [11] and Ginibre and Velo [7] for the subcritical casep < 5). Existence and uniquene
are well known by now in the critical casep = 5 too, see Grillakis [8,9] and Shatah a
Struwe [21].

However, the critical casep= 5 will not be considered here. Indeed, the methods we dev
in this paper use in an essential manner the fact that the nonlinearity is subcritical, i.e. t
thatp < 5. Our method fails for the critical casep= 5 for two reasons:

(a) The boot-strap argument we employ to improve the regularity of solutions vani
outside a bounded domain so that the existing results on unique continuation apply, d
work for this critical exponent.

(b) We can not use the linearizability results by P. Gérard [6] to deduce that the micr
defect measures for the nonlinear problem propagate as in the linear case.

Thus, extending the results of this paper to this critical exponent case is an interestin
problem.

The energy ofu at timet is defined by

Eu(t) =
1
2

∫
R3

[∣∣∂tu(t, x)
∣∣2 + ∣∣∇xu(t, x)

∣∣]2
dx+

∫
R3

F
(
u(t, x)

)
dx(1.6)

where

F (u) =

u∫
0

f(s)ds.(1.7)

4e SÉRIE– TOME 36 – 2003 –N◦ 4



SUBCRITICAL SEMILINEAR WAVE EQUATION 527

The following energy dissipation law holds:
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Eu(t2)−Eu(t1) =−
t1 R3

a(x)
∣∣∂tu(t, x)

∣∣2 dt dx.
This can be easily seen formally multiplying the equation byut and integrating inR3 × (t2, t1).

According to the energy identity above,Eu is decreasing in time and system (1.1)
dissipative.

The first main result of this paper guarantees that the energy decays exponentially
precisely, we have the following:

THEOREM 1. –Under the assumptions above, for everyE0 > 0, there existC > 0 andγ > 0
such that inequality

Eu(t)� C e−γtEu(0) t > 0(1.8)

holds for every solutionu of system(1.1)with the initial data(u0, u1) satisfying

Eu(0) =
1
2

∫
R3

[∣∣u1(x)
∣∣2 + ∣∣∇xu

0(x)
∣∣]2

dx+
∫
R3

F
(
u0(x)

)
dx � E0.(1.9)

This theorem is a local stabilization result. Indeed, the constantsC andγ are uniform on every
ball of the energy space but the theorem does not guarantee that the decay rate is glo
whether (1.8) holds with constantsC,γ which are independent of the initial data. This is by n
well known to hold whenp � 3 (as it is the case in the linear case) and under further qualit
properties of the nonlinearity (see [25]). Under this extra qualitative property, the stabiliz
property is global in this case too as the following result shows.

THEOREM 2. –Assume that the conditions above are satisfied. Assume also that

f(s) = cs+ g(s)

with g = g(s) such that there existsδ > 0 so that

g(s)s � (2 + δ)G(s), ∀s ∈R

with

G(s) =

s∫
0

g(z)dz.

Then, there existC > 0 andγ > 0 such that inequality(1.8)holds for every solution of(1.1).

Remarks. – (1) These theorems show that the behavior of the semilinear subcritical
equation (p < 5), in what concerns the property of stabilization, is, to some extent, analo
to the one of linear waves. This fact was already well established in the work [6] of P. G
through the notion of “linearizable sequences”.

(2) There is a large literature on the problem of stabilization of wave equations. J. Rau
M. Taylor in [17] and C. Bardos, G. Lebeau and J. Rauch [2] introduced and develop
Geometric Control Condition (GCC). This condition that asserts, roughly speaking, that
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ray of Geometric Optics enters the region where the damping term is effective in a uniform time,
turns out to be almost necessary and sufficient for the uniform exponential decay of linear waves.
Obviously, this condition is satisfied in the whole space when the damping term is effective in the
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exterior of a ball. In the nonlinear framework, in addition to [25] mentioned above, we refer
works by A. Haraux [10] and those of the first and third author [4] and [27] and M. Nakao
However, all these papers treat the case of nonlinearities of order at mostp � 3 (for bounded
domains inR3) in which the nonlinearity can be treated as a locally Lipschitz perturbation o
linear wave equation by means of energy estimates. To our knowledge, the present pap
first one dealing with the casep > 3.

(3) Assumptions (1.2) and (1.3) on the nonlinearityf are the natural ones guaranteeing
global well posedness of problem (1.1). By condition (1.4) the energy provides estima
solutions(u,ut) in H1(R3)×L2(R3).

(4) Whether the structural conditions of Theorem 2 on the nonlinearity are necessary
global stabilization property to hold is an open problem.

(5) Our proof relies on properties of microlocal defect measures introduced by P. Gérard
and more precisely on the localization of their support and its propagation.

Strichartz inequalities are another main ingredient in the proof of Theorem 1. They
outside convex obstacles (Smith and Sogge [20]). Thus, Theorem 1 can be extended to th

(6) As mentioned above, the methods developed in this article fail for the critical exp
p= 5. Extending the results of this article to this case is an interesting open problem.

Let us now discuss the main difficulty that occurs in the proof of Theorem 1. Actually, o
the crucial points in this proof (which is, in general, an essential step for all stabilization re
is the use of a unique continuation argument. The situation is the following: In a contrad
argument strategy, one obtains, after normalizing and passing to the limit, a functionu in the
energy space, sayC0([0, T ],H1(R3))∩C1([0, T ],L2(R3)), solution of{�u+ f(u) = 0 ]0, T [×R3,

∂tu= 0 ]0, T [×{|x|� R}.
(1.10)

Note that the condition∂tu= 0 is obtained precisely in the subdomain{|x|> R} in which the
damping term is effective. It is then necessary to prove that the unique solution of (1.10)
trivial oneu= 0. This fact expresses that the only undamped solution of system (1.1) is the
one. It is then natural to take the time derivative of the equation and to considerw = ∂tu as new
unknown function. One then gets{�w+ f ′(u)w = 0 ]0, T [×R3,

w = 0 ]0, T [×{|x|�R}.
(1.11)

The goal is then to apply one of the existing results on unique continuation for solutions
wave equation with a lower order potential (f ′(u) in this case) to deduce thatw ≡ 0. This would
imply thatu = u(x) and consequently,u would be a solution of a semilinear elliptic proble
for which the unique solution is the trivial one because of the good sign assumption (1.4)
nonlinearity.

There are various unique continuation results in the literature [19,23,24]. But none o
applies in the present situation because of the mild assumptions we do on the nonlinearityp < 5).
Indeed, under that assumption we can only guarantee thatf ′(u) ∈ L∞(0, T ;Lq(R3)) for some
q > 3/2 which is not sufficient to apply the existing results that require greater integra
properties on the potential. At this point we introduce a new argument that consists in p
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that the nonlinear termf(u) is, actually, more regular than it might seem. Indeed, taking into
account that the nonlinearity is subcritical we can prove thatf(u) ∈L1

loc(H
ε
loc), for someε > 0.

To do this, we prove a refined version of the multiplier lemma by Y. Meyer (see [1] or [15]) (we
rtz’s
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will refer to it as theLq-version of that lemma), and we make use, in a crucial way, of Stricha
estimates, which are fulfilled by solutions of subcritical wave equations. After that, the ellip
of system (1.12) on the domain]0, T [×{|x|>R} and the propagation of singularities prope
yield, by boot-strap, to a good regularity ofu and a bounded potentialf ′(u). One can then appl
the existing results on unique continuation mentioned above.

In the second part of this article, as a consequence of the stabilization result of Theorem
establish an exact controllability result for a semilinear subcritical wave equation on a bo
open domain ofR3.

More precisely, letΩ be a bounded smooth open set ofR3 andω a neighbourhood of it
boundary∂Ω, i.e. the intersection ofΩ with a neighbourhood of∂Ω in R3. Furthermore, le
f :R → R be a function of classC3, satisfying (1.2), (1.3) and

sf(s)� 0.(1.12)

And finally, letθ(x) be a non-negative function inC∞
0 (Ω).

We prove the following theorem:

THEOREM 3. –Under the assumptions above, for every givenE0 > 0, there exists a time
T > 0 such that for every data(u0, u1) and(y0, y1) in H1

0 (Ω)×L2(Ω), satisfying∥∥(
u0, u1

)∥∥
H1

0 (Ω)×L2(Ω)
� E0 and

∥∥(
y0, y1

)∥∥
H1

0 (Ω)×L2(Ω)
� E0,

there existsg ∈ L1([0, T ], L2(Ω)) with support in[0, T ]× ω, and there exists a unique solutio
u(t, x) in C0([0,+∞[,H1

0 (Ω)) ∩C1([0,+∞[,L2(Ω)) solution of the system
�u+ θ(x)f(u) = g(t, x) in ]0,+∞[×Ω,
u= 0 on ]0,+∞[×∂Ω,
u(0) = u0, ∂tu(0) = u1 in Ω,

(1.13)

satisfyingu(T, .)≡ y0 and∂tu(T, .) = y1.

As an immediate consequence the following holds:

COROLLARY 4. –Let us consider the system withθ ≡ 1, i.e. without cutting off the
nonlinearity. Then, under the assumptions above, the same result as in Theorem3 above holds
with controlsg in L1(0, T ;L2

loc(Ω)) ∩ L∞(0, T ;L6/5(Ω)), except for the uniqueness of t
solution.

Remarks. – (1) These are exact controllability results, since the solutionu is driven from
the initial state(u0, u1) to the final one(y0, y1), by means of an internal control localiz
in ω, i.e. near the boundary ofΩ. This result improves those in [26] which are valid und
the more restrictive assumption on the nonlinearityp � 3 but without the restriction of cuttin
off the nonlinear term in a neighborhood of the boundary. Note however that the resul
local nature since the control timeT depends on the geometry ofΩ andω, as it does in the
controllability result for the linear control problem but it also depends onE0, the radius of the
ball inH1

0 (Ω)×L2(Ω), in which we choose the initial and final data to be controlled. Whethe
control time can be taken independently of the size of the initial data is an open problem
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are very few results in this direction. We refer to [28] for a proof of the exact controllability in
uniform time for the1− d wave equation with a nonlinear term that grows at infinity in a slight
superlinear way.
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(2) Observe that, as stated in Corollary 4, the nonlinearity has to be cut-off only wit
purpose of guaranteeing the uniqueness of the solution. Indeed, the existence of the con
of the controlled solution can be easily obtained whenθ ≡ 1 too. For, it is sufficient to conside
the controlled system (1.13) in which the solutionu is unique and to takẽg = g + (1− θ)f(u)
as new control. The solutionu of (1.13) turns out to remain a solution withθ ≡ 1 for this new
controlg̃ and, obviously, the controllability requirements att= 0 andt= T remain the same.

(3) In what concerns the well posedness of system (1.13), notice that the growth co
on the nonlinearity (p < 5) prevents us from applying the classical uniqueness results fo
solutions of the mixed problem (1.13) obtained by means of the standard energy identity. I
for bounded domains, uniqueness of finite-energy solutions is only known to hold forp � 3,
which is the range in which the energy method applies without difficulty. The exponentp = 3
is the critical one for the energy method since it is the largest one for which the nonlinea
lies inL2(Ω) wheneveru is in H1

0 (Ω). However, we are able to prove uniqueness for allp < 5
because of the fact that the nonlinear term has been cut-off away of the boundary. This gua
that, Strichartz inequalities, that hold locally in the interior ofΩ, can be applied.

(4) The same exact controllability result, with a similar proof, can be obtained for the equ
in the whole space by means of controls with support in the exterior of a ball. In this ca
course, the nonlinearity does not need to be cut-off.

The proof of this exact controllability result, which is based in the stabilization resu
Theorem 1, is, roughly, as follows. First of all, we show by means of a perturbation arg
that, due to the exact controllability property of the linear wave equation in the geometric s
of Theorem 2, small data are controllable for the nonlinear equation too, i.e. given suffic
small initial and final data the solution can be driven from the initial state to the final one.
we adapt the proof of Theorem 1 to the case of the bounded open set noting that, due
cut-off functionθ(x), the boundary∂Ω has no effect on the nonlinearity. Therefore, given
initial data (u0, u1) to be controlled, by means of the damping term−a(x)∂tu supported in
ω near the boundary, i.e. by solving system (1.1), we drive it to a small state in a suffic
large time. We do the same with the final state solving the system backwards in time
produces two states which are small enough so that the local controllability result for
data applies. The control functiong(t, x) is then as follows: In a first time interval it coincid
with the damping term−a(x)∂tu obtained when solving (1.1), in a second time interval,g is the
control corresponding to the small data and, in the last one, it is the damping term obtaine
applying the dissipativity property backwards in time starting from the final state(y0, y1).

The rest of this article is organized as follows.
2. Strichartz estimates.
3. Regularity of the composition.

3.1. Meyer’s Multipliers.
3.2. The regularity theorem.

4. Proof of Theorems 1 and 2.
4.1. Proof of Theorem 1.
4.2. Proof of Theorem 2.

5. The subcritical wave equation in a bounded domain.
5.1. Global existence and uniqueness.
5.2. Stabilization.
5.3. Exact controllability in a non-uniform time.
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Without loss of generality, in the sequel we assume that4� p < 5. The other cases1� p < 4
can in fact be treated in a simpler way following the same arguments.
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2. Strichartz estimates

First of all we recall some basic estimates; the so called Strichartz’s inequalities for the
wave equation, which will play a crucial role in the whole of the proof. The interested read
find them, for example in [7,22] or [6].

Let us consider the linear wave equation{�u= F ∈ L1([0,+∞[,L2(R3)),
(u(0), ∂tu(0)) ∈ Ḣ1(R3)×L2(R3).

(2.1)

Here and in the sequel̇H1(R3) denotes the homogeneous Sobolev space of order one
closure with respect to the norm‖∇u‖

L2(R3)
of the space of smooth compactly supported

functions.
The following result is by now well known:

LEMMA 5. –Let r ∈ [2,+∞[ andq given by1/q+ 1/r= 1/2. Then, there existsC > 0 such
that for everyT > 0 and every solutionu of (2.1), one has:

‖u‖Lq([0,T ],L3r(R3)) � C
[
‖F‖

L1([0,T ],L2(R3))
+

∥∥∂tu(0)
∥∥

L2(R3)
+

∥∥∇xu(0)
∥∥

L2(R3)

]
.(2.2)

We also have the following estimate for solutions of the subcritical semilinear wave eq
with f :R → R, of classC1, satisfying (1.2), (1.3) and (1.12) forj = 1 (see [7]).

LEMMA 6. –For everyT > 0, r ∈ [2,+∞[, andE0 > 0, there existsC(T, r,E0), such that
every solutionu of the system{�u+ f(u) = 0 in ]0,+∞[×R3,

‖u(0)‖H1 + ‖∂tu(0)‖L2 � E0,
(2.3)

satisfies

‖u‖Lq([0,T ],L3r(R3)) �C(T, r,E0)(2.4)

with 1/q+ 1/r= 1/2.

Henceforth, the first norm in the left hand side of the inequality (2.2) and (2.4) will be c
Strichartz norm ofu. In particular, we shall say thatu has finite Strichartz norms when the no
of u is finite inLq([0, T ],L3r(R3)) for all r � 2 with q such that1/q+ 1/r= 1/2.

3. Regularity of the composition

Let us first introduce some notations.
For a tempered distributionu, we denote by(uq)q�−1 its dyadic decomposition

u= u−1 +
∑
q�0

uq.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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It is the usual Littlewood–Paley decomposition.
We will use without more specification the properties ofuq: their regularity, integrability,

sensibility to derivation, etc. The key of all these estimates is, naturally, Bernstein’s lemma. The
or [3].

eorem

he
rential

in

e

interested reader can find a good exposition of this decomposition, for example, in [1,15]

3.1. Meyer’s multipliers

Here, we give an abstract multipliers lemma that will be the basis of the composition th
below.

LEMMA 7. –Let α > 3/2, and let(mq){q�−1} be a sequence ofC∞ functions verifying for
everyl ∈ N,

∑
|µ|=l ‖∂µmq‖L2α � Cl2ql. Then, for everyr � 1, the operator

M :u=
∑

q�−1

uq �→Mu=
∑

mquq(3.1.1)

is continuous fromHr(R3) to Hr−t(R3) with t= 3/(2α), 0< t < 1. More precisely,

‖Mu‖Hr−t �C‖u‖Hr with C �Const
∑

l�[r]+1

Cl.(3.1.2)

Here and in the sequel[r] denotes the integer part ofr.

Remarks. – (1) This is aLq version of Meyer’s multiplier lemma. To our knowledge, t
proof of the present version is nowhere written. These multipliers have also a pseudo-diffe
interpretation.

(2) For a given finiter, it is not necessary to assume the multipliersmq to be of classC∞.
Indeed, it is sufficient for them to be in the classC[r]+1.

(3) The proof we present here is adapted from the one developed in [1, pp. 102–103].

Proof of the lemma. –We follow closely the proof of Meyer’s Multipliers Lemma
Lemma 2.2, p. 102 of [1].

The spectrum ofuq is contained in the ring2q−1 � |ξ| � 2q+1. On the other hand, w
decomposemq asmq = mq,−1 +

∑
k�0 mq,k, where the spectrum ofmq,−1 is contained in

a ball of radius2q, and those ofmq,k for k � 0 are contained in rings of order2q+k.
We setMku =

∑
q�−1 mq,kuq, k � −1. We will show that eachMk is continuous fromHr

to Hr−t and that the corresponding operator series converges in norm.
The terms inM−1u have their supports in balls of the order of2q. Moreover,

||mq,−1uq||L2 � ||mq,−1||L2α ||uq||L2β �C||mq||L2α ||uq||L2β � C||uq||L2β ,(3.1.3)

by assumption, with1/α+ 1/β = 1.
Taking into account thatt = 3/(2α) we chooseβ = 3/(3− 2t), so that1/α+ 1/β = 1 and

Ht ↪→ L2β .
Then,

||uq||L2β � C||uq||Ht .

But

‖uq‖Ht =
∥∥Dtuq

∥∥
L2 =

∥∥(
Dtu

)
q

∥∥
L2 � Ccq2−q(r−t)

∥∥Dtu
∥∥

Hr−t
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with
∑

c2q <∞ (see Proposition 1.2, p. 94 in [1]). That is

‖uq‖ 2β � Ccq2−q(r−t)‖u‖Hr .(3.1.4)

y.)

of

it is

sh the
L

Here and in the sequelDt denotes the pseudodifferential operator of symbol(1+ |ξ|2)t/2. (Note
that it is a simple fractional derivative that commutes with the spectral localization propert

Combining (3.1.3) and (3.1.4) we deduce that

||mq,−1uq||L2 � Ccq2−q(r−t)‖u‖Hr ,(3.1.5)

with ∑
c2q <∞.(3.1.6)

Then, the synthesis Lemma 2.1 in [1] guarantees thatM−1 is a bounded operator fromHr

into Hr−t.
For k � 0, the terms inMku have their spectra in annulae of the order of2q+k. To estimate

the termsmq,kuq we argue as before but, this time, we use the fact that,

‖mq,k‖L2α � Cl2−kl.(3.1.7)

This is true, indeed since, by hypothesis,

‖mq,k‖L2α � C
∑
|µ|=l

∥∥∂µmq

∥∥
L2α2

−(q+k)l � Cl2−kl.

Thus,

‖mq,kuq‖L2 � Cl2−klcq2−q(r−t)‖u‖Hr �Cl2−k(l−(r−t))cq2−(q+k)(r−t)‖u‖Hr .

Applying the synthesis lemma again we deduce thatMk :Hr →Hr−t is continuous, with a norm
of the order ofCl2−k(l−(r−t)).

Finally, takingl > r − t, the operator seriesM =
∑

Mk converges normally in the space
continuous operators fromHr to Hr−t, and satisfies clearly estimate (3.1.2).✷
3.2. The regularity theorem

Now, we study the regularity of the composed functionf(v).

THEOREM 8. –Letv be a function inL∞(]0,+∞[,Hr(R3)), 1� r < 2, with finite Strichartz
norms; and take a functionf satisfying conditions(1.2) and (1.3). Then for everyT > 0,
and every functionχ(x) ∈ C∞

0 (R
3), χ(x)f(v) ∈ L1([0, T ],Hr−t(R3)), with 0 < t < 1, and

1− t � (5− p)/2.

Remarks. – (1) Analyzing carefully the proof of this theorem, one can easily see that
possible to replace in the conclusion the spaceL1 in time byLα providedα > 1 is such that
t � p−1

2 − 1
α .

(2) The proof of the theorem provides a more precise information. In fact, we establi
following estimate ∥∥χ(x)f(v)∥∥

L1([0,T ],Hr−t)
� C sup

s∈[0,T ]

∥∥v(s)∥∥
Hr(3.2.1)
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whereC depends onχ, on the nonlinearityf and onv through its Strichartz norms.
(3) In the proof of Theorems 1 and 2 this property will be used only with1� r < 2.

e

es.
.1)

ore
Proof of the regularity theorem. –Following [15] and [1] we write

f(v) = f(S0v) + f(S1v)− f(S0v) + · · ·+ f(Sq+1v)− f(Sqv) + · · ·

where

Sqv = v−1 + v0 + · · ·+ vq.

These are the dyadic blocks ofv, and they are spectrally supported in balls of radius2q+1.
For convenience, here and in the sequel we denote simply byf the functionχf .
First, we will work with a fixeds in [0, T ]. And after, we will examine the integrability in tim

of theHr−t-norms.
(a) The first termf(S0v) has the regularity off. Indeed, sincev ∈ L∞(Hr), thenS0v is in

L∞(C∞). In particular and more precisely,S0v is bounded together with all its space derivativ
Moreover,f has compact support inx. Sof(S0v) is easy to treat. In particular, inequality (3.2
holds for this component ofv.

(b) Forq � 0, we writef(Sq+1v)− f(Sqv) =mqvq, with mq =
∫ 1

0 f
′
(Sqv+ tvq)dt.

We will show that themq ’s are Meyer’s multipliers in the sense of the previous lemma. M
precisely, we establish the following estimate∑

|µ|=l

∥∥∂µmq

∥∥
L2α � C

(
1+ ‖v‖p−1

Lb

)
2ql for l � 2(3.2.2)

with α= 3/(2t), andb= 3(p− 1)/t.
For that, it suffices to consider the quantityG(Sqv), with G= χf

′
.

Since r < 2, we can takel = 2 in the multipliers lemma. Then for anyµ with |µ| = 2,
∂µG(Sqv) may be written as a linear combination of terms of the form:

(a) ∂2G
∂x2 (Sqv).

(b) ∂2G
∂x∂v (Sqv)∂θ(Sqv), |θ|= 1.

(c) ∂G
∂v (Sqv)∂θ(Sqv), |θ|= 2.

(d) ∂2G
∂v2 (Sqv)∂θ(Sqv)∂ν(Sqv), |θ|= |ν|= 1.

First, we treat the terms of the form (b).
Taking in account hypothesis (1.3), with1/a+1/b= 1/(2α) we have:∥∥∥∥ ∂2G

∂x∂v
(Sqv)∂θ(Sqv)

∥∥∥∥
L2α

�
∥∥∥∥ ∂2G

∂x∂v
(Sqv)

∥∥∥∥
La

∥∥∂θ(Sqv)
∥∥

Lb

�C
∥∥1+ |Sqv|p−2

∥∥
La2

q‖Sqv‖Lb

�C2q‖Sqv‖Lb +C2q‖Sqv‖p−2

La(p−2)‖Sqv‖Lb .

Note that‖Sqv‖p−2

La(p−2) � ‖v‖p−2

La(p−2) and‖Sqv‖Lb � ‖v‖Lb.
Then we obtain:∥∥∥∥ ∂2G

∂x∂v
(Sqv)∂θ(Sqv)

∥∥∥∥
L2α

� C2q
[
‖v‖Lb + ‖v‖p−2

La(p−2)‖v‖Lb

]
.
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We choosea and b such thata(p − 2) = b, which givesa = 2α(p − 1)/(p − 2), and
b= 3(p− 1)/t. Hence:∥ ∥

hat

imate
∥∥∥ ∂2G

∂x∂v
(Sqv)∂θ(Sqv)

∥∥∥
L2α

� C2q
(
‖v‖Lb + ‖v‖p−1

Lb

)
� C2q

(
1+ ‖v‖p−1

Lb

)
.

Now, concerning the term (a), we have directly:∣∣∣∣∂2G

∂x2
(Sqv)

∣∣∣∣ � C
(
1 + |Sqv|p−1

)
.

It is then sufficient to takeL2α-norms and this term is estimated immediately.
On the other hand, replacing2q by 22q, we can treat (c) exactly in the same way (recall t

l= 2).
Finally, for the last term (d), using again Hölder’s inequality, we obtain∥∥∥∥∂2G

∂v2
(Sqv)∂θ(Sqv)∂ν(Sqv)

∥∥∥∥
L2α

�
∥∥∥∥∂2G

∂v2
(Sqv)

∥∥∥∥
Lc

∥∥∂θ(Sqv)
∥∥

L2d

∥∥∂ν(Sqv)
∥∥

L2d

�C22q
∥∥1+ |Sqv|p−3

∥∥
Lc‖Sqv‖2

L2d

with 1/c+ 1/d= 1/(2α).
We takec(p− 3) = 2d and thend= α(p− 1). Then∥∥∥∥∂2G

∂v2
(Sqv)∂θ(Sqv)∂ν(Sqv)

∥∥∥∥
L2α

� C22q
(
‖v‖2

L2α(p−1) + ‖v‖p−1
L2α(p−1)

)
and the arguments we use when estimating the term (b) apply.

Now, to complete the proof, it remains to prove that

T∫
0

∥∥v(s, .)∥∥p−1

Lb ds <∞,

that isv ∈ Lp−1([0, T ],Lb).
Since the Strichartz norms ofv are finite, i.e.v ∈ Lq([0, T ],Lb), for 1/q = 1/2− 3/b, it is

sufficient to check that
1

p− 1 � 1
2
− t

p− 1 ,

which is true since it is equivalent to1− t � (5− p)/2. ✷
4. Proof of Theorems 1 and 2

4.1. Proof of Theorem 1

The solutions of (1.1) satisfy the semigroup property. Thus it is enough to prove the est

Eu(0)� c

T∫
0

∫
R3

a(x)|∂tu|2 dt dx(4.1)
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for somec > 0 andT > 0, and for every solutionu such thatEu(0)� E0.
To prove that we takeT � 2R + 2 (in fact, any T > 2R would work) and argue by

contradiction: we suppose the existence of a sequence(un), of solutions of (1.1) such that

r

ce
till

ed

e

f
n
ase.

rity
logy
tion
Eun(0)� E0,(4.2)
T∫

0

∫
R3

a(x)|∂tun|2 dt dx � Eun(0)
n

.(4.3)

Denoteαn = (Eun(0))1/2 andvn = un/αn. Due to (4.2), the sequenceαn is bounded. Moreove
vn satisfies

�vn + a(x)∂tvn +
1
αn

f(αnvn) = 0,(4.4)

T∫
0

∫
R3

a(x)|∂tvn|2 dt dx � 1
n
,(4.5)

1/C � Evn(0)� C,(4.6)

for some finiteC > 0. The classical energy estimate allows us to show that the sequenvn

is bounded inC0([0, T ],H1(R3)) ∩ C1([0, T ],L2(R3)). Then, it admits a subsequence, s
denotedvn, that weakly-* converges inL∞(0, T ;H1(R3))∩W 1,∞(0,∞;L2(R3)). In this way,
vn ⇀v in H1([0, T ]×R3). We can also suppose thatαn → α ∈ [0,E0].

We will distinguish the two casesα> 0 or α= 0.
First case: αn → α > 0.
We haveun ⇀ u = αv, andEun(0)→ α2 > 0. Passing to the limit in the equation satisfi

by un we obtain {�u+ f(u) = 0 in ]0, T [×R3,

∂tu= 0 for ]0, T [×{|x|� R}.
(4.7)

Moreover, u ∈ C0([0, T ],H1(R3)) ∩ C1([0, T ],L2(R3)). We have the following uniqu
continuation result:

LEMMA 9. –The only solution of system(4.7) in the classC0([0, T ],H1(R3)) ∩ C1([0, T ],
L2(R3)) is the trivial oneu= 0.

We postpone the proof of this lemma and use it to prove the fact that the convergence oun to
u= 0 holds in the strong topology ofH1([0, T ]×R3). Of course, this will be in contradictio
with the fact thatαn converges to a positive constant. This will allow us to exclude the first c
We will then concentrate on the second one in whichαn tends to zero.

Let us now return to the first case under consideration. We haveun ⇀ 0 in H1([0, T ]× R3)
and�un + f(un)→ 0 in L2([0, T ]×R3), due to (4.2) and (4.3). Furthermore, the nonlinea
f , by hypothesis, is subcritical. Then,un is a linearizable sequence, according to the termino
of P. Gérard [6]. In other words, ifyn is the sequence of solutions of the linear wave equa
with the same initial data, {�yn = 0,

yn(0) = u0
n, ∂tyn(0) = u1

n,
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one has

sup
∫ {∣∣∂ (u − y )(t, x)

∣∣2 + ∣∣∇ (u − y )
∣∣2(t, x)}dx→ 0, n→∞

2.2).
icular,
m

ng

y

r

ith
tity
0�t�T
R3

t n n x n n

which means in particular, that(un − yn)→ 0 in H1
loc(]0, T [×R3).

Let µ be a microlocal defect measure (m.d.m.) associated toun in H1(]0, T [×R3) (see [5]
for the definition of these measures and their properties).

From this “linearizability” property we deduce two facts:
(a) The support ofµ is contained in the characteristic set of the wave operator{τ2 = |ξ|2} (this

is known as the elliptic regularity theorem for the m.d.m., [5], Proposition 2.1 and Corollary
(b) µ propagates along the bicharacteristic flow of this operator, which means in part

that if some pointω0 = (t0, x0; τ0, ξ0) is not insupp(µ), the whole bicharacteristic issued fro
ω0 is out ofsupp(µ).

Now, (4.3) gives∂tun → 0 in L2([0, T ]× (|x| � R)) and the convergence holds in the stro
topology. So, the elliptic regularity theorem implies that outside the cylinder[0, T ]× (|x| � R),
supp(µ) is contained in the set{τ = 0}.

Henceµ = 0 for |x| > R. On the other hand, sinceT � 2R + 2, every bicharacteristic ra
enters the region(|x| > R) before the timeT. We then obtain by propagation thatµ = 0
everywhere. Henceun → 0 in H1([0, T ] × (|x| � A)), for everyA > 0. Since, on the othe
hand,∂tun → 0 in L2([0, T ]× (|x| �R)), we get∂tun → 0 in L2([0, T ]×R3).

It is then easy to show that,Eun(0) converges to zero, which is in contradiction w
the assumption thatEun(0)→ α2 > 0. This can be easily done using the classical iden
guaranteeing the equipartition of energy. Indeed, we multiply the equation

�un + a(x)∂tun + f(un) = 0

by ϕ(t)un, with ϕ ∈C∞
0 (]0, T [), ϕ= 1 on ]ε, T − ε[, ϕ � 0, and we integrate. This gives:

−
T∫

0

∫
R3

ϕ′(t)un∂tun dt dx−
T∫

0

∫
R3

ϕ|∂tun|2 dt dx+
T∫

0

∫
R3

ϕ|∇xun|2 dt dx

+

T∫
0

∫
R3

ϕuna(x)∂tun +

T∫
0

∫
R3

ϕunf(un)dt dx= 0.

The second term goes to0 if n→∞. Moreover, assumption (1.4) implies that the norm ofun

in L2([0, T ]× R3) is bounded by the initial energy. This gives that the first and the4th terms
above go also to0 if n→∞. Finally, the positivity of the last term yields

T∫
0

∫
R3

ϕ|∇xun|2 dt dx→ 0 and

T∫
0

∫
R3

ϕunf(un)dt dx→ 0,(4.8)

as we wanted to prove.
Thus, it remains to prove the unique continuation result of Lemma 7. We recall thatu solves{�u+ f(u) = 0 in ]0,+∞[×R3,

∂tu= 0 for |x| � R,
(4.9)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



538 B. DEHMAN, G. LEBEAU AND E. ZUAZUA

and the solutionu is in the classC0([0, T ],H1(R3)) ∩ C1([0, T ],L2(R3)). Furthermore, the
functionw = ∂tu satisfies {

3,24]),

holds.

,
c

y on

nlinear
�w+ f ′(u)w = 0 in ]0, T [×R3,

w = 0 for ]0, T [× (|x|� R).

We seek to obtainw ≡ 0, which would give usu≡ 0. Indeed, if∂tu= 0, u satisfies

−∆u+ f(u) = 0, u ∈H1
(
R3

)
so ∫

R3

|∇u|2 dx+
∫
R3

uf(u)dx= 0,

and we getu≡ 0 in view of (1.4).
In order to apply one of the available unique continuation results, (see for example [19,2

it suffices to show that

f ′(u) ∈ L∞(
[0, T ],L3(|x| � R+ 1)

)
.

Obviously this does not hold from Sobolev’s embedding thanks to the fact thatu is of finite
energy. This argument applies for exponents in the nonlinearity up top = 3. However, we are
dealing with a larger rangep < 5.

We are now going to develop a boot-strap argument showing that this regularity property
In fact, we will prove thatu is actually smooth.

We have�u=−f(u), but, taking into account that∂tu vanishes for|x|>R, we deduce that
in that set:u ∈H1({|x| > R}), ∆u = f(u). The fact thatf is subcritical allows to use ellipti
regularity results and a boot-strap argument showing thatu= u(x) is in fact of classC4,α in that
set.

In fact more regularity onu could also be obtained if we were assuming more regularit
the nonlinearity thanf ∈C3.

The goal then is to prove thatu is also smooth enough in the cylinder[0, T ]× (|x| � R), so
that the existing unique continuation results might be applied. Since the values of the no
term f(u) away from the cylinder[0, T ]× (|x| � R+ T ), do not affect the regularity ofu on
the cylinder[0, T ]× (|x| � R), without loss of generality, we can suppose thatf is compactly
supported inx, sayf = χf, with support ofχ in {|x|� R+T +1}, andχ= 1 in {|x|� R+T }.

The following holds:

PROPOSITION 10. –Every solutionu of system(4.9)above satisfies

u∈ L∞(
0, T ;Hk(|x| � R+ 1)

)
,

for all k < 2. In particular,u ∈ L∞([0, T ]× (|x| � R+1)).

Proof. –We know that all the Strichartz norms of the functionu are finite.
Define forν � 0 the vector space of functions:

Vν =C0
(
[0, T ],H1+ν

loc

)
∩C1

(
[0, T ],Hν

loc

)
∩Lq

(
[0, T ],L3r

loc

)
,(4.10)

where the last intersection is over all the couples(q, r), such thatr � 2 and1/q= 1/2− 1/r.
We know that the solutionu of (4.9) belongs toV0.
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We start the argument by applying the regularity theorem (Theorem 8) tof(u) with r = 1.
Denotingε= (5− p)/2, we then obtainf(u) ∈L1([0, T ],Hε(|x| � R+ T + 1)).

The theorem of propagation of singularities for traces (see for example [1, p. 115, Prop. 2, and

h

ity

ficients,

em 1.
0 in
p. 117, §1.3]) hence givesu(0, .)∈H1+ε, and∂tu(0, .)∈Hε; sou ∈ Vε.
This implies thatf(u) ∈ L1([0, T ],H2ε(|x| � R + T + 1)), henceu ∈ V2ε. Then we

iterate this process to obtainu ∈ Vmε ⊂ L∞([0, T ],H1+mε
loc ), m ∈ N, large enough, and reac

L∞([0, T ],Hk(|x| � R+ 1)) for any desired realk < 2.
This completes the proof of the proposition.✷
This completes the discussion of the caseαn → α > 0 that has to be excluded.

Remark. – By considering a more regular functionf, one can obviously improve the regular
of the compositionf(u).

We continue now the proof of Theorem 1, and we consider the 2nd case.
Second case: αn → 0.
We writef(un) = f ′(0)un +R(un) whereR verifies∣∣R(s)∣∣ � C

(
|s|2 + |s|p

)
.(4.11)

Eq. (4.4) becomes then

�vn + a(x)∂tvn + f ′(0)vn +
1
αn

R(αnvn) = 0.(4.12)

Passing to the limitαn → 0 we obtain

�v+ f ′(0)v = 0 in D′(]0, T [×R3),(4.13)

∂tv = 0 in ]0, T [× (|x|� R).(4.14)

Here the unique continuation result is obvious. Indeed, the equation has constant coef
so we can apply Holmgren uniqueness theorem to the system

�w+ f ′(0)w = 0 in ]0, T [×R3,(4.15)

w= 0 in ]0, T [× (|x|� R)(4.16)

with w = ∂tv and deduce thatw ≡ 0. Thenv ≡ 0.
Let us now prove thatvn → 0 strongly in H1(]0, T [×R3). Obviously this will be in

contradiction with (4.6) and will complete the proof of the inequality (4.1) and that of Theor
First of all, we have to prove that the nonlinear term in Eq. (4.12) goes to

L1([0, T ],L2
loc(R

3)), whenn→∞. For that, we proceed as follows. We write

R(αnvn) =R(un),

and we estimate (with uniform constants inn):∥∥χ(x)R(un)
∥∥

L1([0,T ],L2)
�C

(∥∥χu2
n

∥∥
L1([0,T ],L2)

+
∥∥χ|un|p

∥∥
L1([0,T ],L2)

)
�C

T∫
0

∥∥un(s)
∥∥2

L6 ds+C

T∫
0

∥∥un(s)
∥∥3/2

L6

(∫
|un|2(2p−3)

)1/4

ds.(4.17)
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Due to the injectionH1 ↪→ L6 , and taking in account that the energy ofun is decreasing, we
obtain

T∫ (∫ )

m.d.m.
f
of

wever,

n the
t

xists a
∥∥χ(x)R(un)
∥∥

L1([0,T ],L2)
� Cα2

n +Cα3/2
n

0

|un|2(2p−3)
1/4

ds(4.18)

where the last integral is bounded by a Strichartz norm ofun (take(q, r) = (2p−3
p−3 , 2(2p−3)

3 )),
and then uniformly bounded inn. Finally∥∥∥∥ 1

αn
χ(x)R(un)

∥∥∥∥
L1([0,T ],L2)

�Cα1/2
n(4.19)

which yields to the desired result.
Starting at this point, we may argue as in the first case. Indeed, we first prove that every

µ associated to the sequencevn vanishes. This guarantees the strong convergence to zero ovn,t

in L2(]0, T [×R3). Then, multiplying byϕ(t)vn and integrating (i.e. using the equipartition
energy), one deduces thatvn → 0 in H1([0, T ]×R3). This contradicts (4.6).

The proof of Theorem 1 is now complete.

4.2. Proof of Theorem 2

The proof of Theorem 2 uses some of the tools developed in the proof of Theorem 1. Ho
we need to employ also the multiplier techniques in [25,27].

We argue as follows.
Using the multiplier techniques in [27] one can easily deduce the existence ofT > 0 andC > 0

such that

Eu(T )� C

[ ∫
R3

T∫
0

a(x)|ut|2 dxdt+ ‖u‖2
L2(]0,T [×B4R)

]
.(4.20)

This is in fact the statement of Lemma 5 in [27] whose proof applies in all the rangep � 5.
We emphasize that this inequality holds under the further qualitative property o

nonlinearity of Theorem 2 and that it is of global nature in the sense thatT and the constan
C are independent of the solution.

It is then sufficient to prove the existence of a constantC > 0 such that

‖u‖2
L2(]0,T [×B4R) � C

∫
R3

T∫
0

a(x)|ut|2 dxdt,(4.21)

for every solution.
To prove this we argue by contradiction as in Lemma 6 in [27]. We suppose there e

sequence of solutions{uk} such that

‖uk‖2
L2(]0,T [×B4R)

/ ∫
R3

T∫
0

a(x)|uk,t|2 dxdt→∞,(4.22)

ask→∞.
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The key point is to observe thatλk = ‖uk‖L2(]0,T [×B4R) is necessarily bounded. This is so
since the timeT and the constantC in inequality (4.21) remain bounded when the nonlinearity
f is replaced by the rescaled familyhλ(s) = f(λs)/λ with λ > 0. This is so precisely because

y as

ain of
n 5.1,
that the
ever,
m
prove

and
y final

.

of the qualitative assumption on the nonlinearity we introduce in Theorem 2.
Onceλk = ‖uk‖L2(]0,T [×B4R) is known to be bounded, the rest of the proof holds exactl

in the proof of Theorem 1 above.

5. The subcritical wave equation in a bounded domain

In this section we consider the subcritical nonlinear wave equation in a bounded dom
R3, with a nonlinear term that has been cut-off away from the boundary. First, in Sectio
we prove a global existence and uniqueness result. At this respect it is important to note
mixed problem is in general well posed for at most cubic semilinearities (cf. [14]). How
we can deal with subcritical nonlinearities(p < 5), because it has been cut-off away fro
the boundary and this allows using local Strichartz’s inequalities. In Section 5.2 we
a stabilization result. In Section 5.3 we prove the controllability results in Theorem 3
Corollary 4 in a non-uniform time guaranteeing that every initial state can be driven to an
state if the time is large enough, depending on the size of the data to be controlled.

5.1. Global existence and uniqueness

Let Ω be a smooth, open bounded set ofR3. Consider also a nonlinear functionf :R → R
verifying conditions (1.2), (1.3) and (1.12). Let finallyθ(x) ∈C∞

0 (Ω) be a non-negative function
We have the following result

THEOREM 11. –For every functiong ∈ L1([0,+∞[,L2(Ω)), and every pair of initial data
(u0, u1) ∈H1

0 (Ω)×L2(Ω), system
�u+ θ(x)f(u) = g in ]0,+∞[×Ω,
u= 0 on ]0,+∞[×∂Ω,
u(0) = u0, ∂tu(0) = u1 in Ω

(5.1.1)

has a unique solutionu in the spaceC0([0,+∞[,H1
0(Ω)) ∩C1([0,+∞[,L2(Ω)).

This solution satisfies moreover the following Strichartz estimates: For every finiteT > 0,
r � 2, q given by1/q= 1/2− 1/r, andχ ∈C∞

0 (Ω), there exists a constantC > 0 such that∥∥χ(x)u∥∥
Lq([0,T ];L3r(Ω))

� C
(
‖g‖L1([0,T ];L2(Ω)),Eu(0)

)
(5.1.2)

for everyg and every initial data as before.
Here and in the sequelEu stands for the energy of solutions of this system, i.e.

E(t) =
1
2

∫
Ω

[
|∇u|2 + |ut|2

]
dx+

∫
Ω

θ(x)F (u)dx.(5.1.3)

Proof. –We proceed in three steps.
Step1. Existence. We decouple system (5.1.1), by cutting off the initial data(u0, u1) and the

right hand side termg. Let V be a neighbourhood of the compact setsupp(θ) such thatV ⊂ Ω;
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and letψ ∈ C∞
0 (Ω), be such thatψ = 1 on V . Defineg1 = ψg andg2 = (1 − ψ)g, in such a

manner thatg2 = 0 on supp(θ). Consider the two following systems

dary

ious
quence

in the

the

time

that

z esti-

�v+ θ(x)f(v) = g1 in ]0,+∞[×Ω,
v = 0 on ]0,+∞[×∂Ω,
(v(0), ∂tv(0)) = ψ(x)(u0, u1) in Ω,

(5.1.4)


�w= g2 in ]0,+∞[×Ω,
w = 0 on ]0,+∞[×∂Ω,
(w(0), ∂tw(0)) = (1−ψ)(u0, u1) in Ω.

(5.1.5)

Let T0 =min(d1, d2), where

d1 = distance
(
supp(ψ), ∂Ω

)
, and d2 = distance

(
supp(1− ψ), supp(θ)

)
.

Then we solve the two systems above (5.1.4) and (5.1.5) on the time interval [0, T0].
Because of the finite speed propagation of waves (= 1 in the present model), it is clear that:
(i) For this time interval, the solution of (5.1.4) coincides, in the support ofψ, with that of the

Cauchy problem in the free spaceR3. Indeed, the solution of the latter vanishes on the boun
because of the fact that the initial data and the right hand side have been confined tosupp(ψ)
andT0 � d1.

(ii) For 0 � t � T0, supp(w) ⊂ Ω\ supp(θ), i.e. w = 0 on supp(θ). This clearly gives
θ(x)f(v) = θ(x)f(v +w).

The functionu= v +w, constructed as above, belongs to

C0
(
[0, T0],H1

0 (Ω)
)
∩C1

(
[0, T0],L2(Ω)

)
and solves (5.1.1) for0� t � T0. Indeed, the fact that it solves the equation above is an obv
consequence of the previous discussion. The continuity in time of the solution is a conse
of the fact that both componentsv andw are indeed continuous. The continuity in time ofv is
consequence of the fact that it coincides, in the time interval0� t � T0, with the solution of the
Cauchy problem in the whole space, that it is known to be continuous in time with values
energy space.

Step2. Energy and Strichartz estimates. Adding the classical energy estimate for each of
wave equations above one obtains that

Eu(t)�C
[
‖g‖L1(L2) +Eu(0)

]
for 0� t � T0.

Taking into account that the timeT0 depends only on the geometry of the problem (i.e.ω and
the supports ofψ andθ), it is clear that one may iterate this process to obtain a global in
solution.

On the other hand, letχ(x) be a cut-off function and assume, to simplify the notation,
χ≡ 1 in the support ofθ. The functionũ= χ(x)u solves the (free) system{�ũ+ θ(x)f(ũ) = χg+ [�, χ]u∈ L1

loc([0,+∞[,L2(R3)),
(ũ(0), ∂tũ(0)) ∈H1(R3)×L2(R3),

(5.1.6)

which, combined with (2.2), and the energy estimate above provides the Strichart
mates (5.1.2).
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Step3. Uniqueness. We prove now the uniqueness of the solution. For that, we need the
following lemma.

lution.

e last

5.1.2).
t
th
LEMMA 12. –Let u and v be two solutions of(5.1.1). Then for everyT > 0 and
1<α � 2/(p− 3), there existsC > 0, satisfying∥∥θ(x)(f(u)− f(v)

)∥∥
Lα([0,T ],L2(Ω))

� C‖u− v‖L∞(0,T ;H1(Ω)).(5.1.7)

Assuming for the moment that this lemma holds, let us show the uniqueness of the so
Let u andv be two solutions of (5.1.1). The functionu− v solves the system

�(u− v) + θ(f(u)− f(v)) = 0 in ]0,+∞[×Ω,
u− v = 0 on ]0,+∞[×∂Ω,
(u− v)(0) = ∂t(u− v)(0) = 0 in Ω.

(5.1.8)

The energy inequality guarantees that

‖u− v‖L∞(0,T ;H1(Ω)) �C
∥∥θ(x)(f(u)− f(v)

)∥∥
L1([0,T ],L2(Ω))

�CT 1/β
∥∥θ(x)(f(u)− f(v)

)∥∥
Lα([0,T ],L2(Ω))

(5.1.9)

with 1/α+ 1/β = 1, thanks to Hölder’s inequality. Using (5.1.7), we obtain

‖u− v‖L∞(0,T ;H1(Ω)) � CT 1/β‖u− v‖L∞(0,T ;H1(Ω))(5.1.10)

which yields to the resultu≡ v, by takingT such thatCT 1/β < 1.
Now we come back to the proof of the lemma.
By hypothesis (1.3), one can writef(u)− f(v) = (u− v)G(u, v) whereG(u, v) verifies∣∣G(u, v)∣∣ � C

(
1 + |u|p−1 + |v|p−1

)
.(5.1.11)

So, by Hölder’s inequality it follows that

T∫
0

∥∥θ(x)(f(u)− f(v)
)
(t)

∥∥α

L2(Ω)
dt

�
T∫

0

∥∥(u− v)(t)
∥∥α

L6(Ω)

(∫
Ω

|θG|3dx
)α/3

dt

�
[∥∥(u− v)(t)

∥∥
L∞(0,T ;H1(Ω))

]α

T∫
0

(∫
Ω

|θG|3 dx
)α/3

dt.

To complete the proof of the lemma, it is sufficient to get a suitable upper bound on th
integral. Obviously, the last integral can be bounded above in terms of theLα(0, T ;L3(Ω))-norm
of θG(u, v) which may be estimated in terms of theLα(p−1)(0, T ;L3(p−1)(supp(θ))-norms of
u andv. These two norms can be easily estimated in terms of the Strichartz-norms in (
Indeed, it is sufficient to setr = (p−1)which does verify the conditionr � 2. Then the exponen
q = 2r/(r − 2) corresponding to this choice ofr in the Strichatrz norm (5.1.2) coincides wi
q = 2(p− 1)/(p− 3), which is greater thatα(p− 1) provided2/(p− 3)� α. This is precisely
the range of exponents in the statement of the lemma.✷
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5.2. Stabilization

The stabilization result in the case of bounded domains is as follows.

Let the

m

ay be

rue in

a

in

ng
PROPOSITION 13. –Assume that the hypotheses of the previous theorem are satisfied.
setω = {x ∈ Ω, a(x) � c0 > 0} be a neighbourhood of the boundary∂Ω, i.e. the intersection
withΩ of a neighbourhood of∂Ω in R3. Then the local stabilization property holds for syste

�u+ a(x)∂tu+ θ(x)f(u) = 0 in ]0,+∞[×Ω,
u= 0 on ]0,+∞[×∂Ω,
(u(0), ∂tu(0)) ∈H1

0 (Ω)×L2(Ω).
(5.2.1)

More precisely, for everyE0 > 0, there existC > 0 andγ > 0 such that inequality(1.8) holds
for the energyEu in (5.1.3)providedEu(0)� E0.

Remarks. – (a) Note that, in this proposition, the assumption (1.4) on the nonlinearity m
relaxed to (1.12).

(b) It would be interesting to see if a global stabilization result as that in Theorem 2 is t
this case.

We follow the same approach of the proof of Theorem 1.
As usually, we seek for an estimate of type (4.1) for every solutionu of (5.2.1) verifying

Eu(0) � E0. A contradiction argument provides a sequenceun which contradicts (4.1) and
sequencevn such that

�vn + a(x)∂tvn + 1
αn

θ(x)f(αnvn) = 0 in ]0,+∞[×Ω,
vn = 0 on ]0,+∞[×∂Ω,∫ T

0

∫
Ω a(x)|∂tvn|2 dt dx→ 0,

1/C � Evn(0)� C,

αn = (Eun(0))1/2 → α.

(5.2)

We examine, again, separately the casesα > 0 andα = 0. We denote byv the weak limit of
the sequence{vn}.

First case: α > 0. We come back to the equation inun and we pass to the limit. We then obta
�u+ θ(x)f(u) = 0 in ]0, T [×Ω,
∂tu= 0 on ]0, T [×ω,

u∈ L∞([0, T ],H1
0(Ω)), ∂tu ∈L∞([0, T ],L2(Ω)).

Let χ(x) ∈ C∞
0 (Ω) be such thatχ= 1 on supp(θ), andsupp(∇χ) ⊂ ω. The functionũ = χu

verifies 
�ũ+ θ(x)f(ũ) =∇χ.∇u+ (∆χ)u ∈ L1([0, T ],L2(R3)),
∂tũ= 0 in ]0, T [× (R3\Ω),
ũ∈ L∞([0, T ],H1(R3)), ∂tũ∈ L∞([0, T ],L2(R3)).

The right hand member is inL1([0, T ],L2(R3)), so ũ has bounded Strichartz norms. Applyi
then the regularity theorem (Theorem 8), we obtain thatũ is bounded as well asf ′(ũ). Then,
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w = ∂tũ satisfies {�w+ θ(x)f ′(ũ)w = 0 in ]0, T [×R3,

local

ty of

allow
m 1.
a global

d, in
l and
ystem
as we
g into
data to

se a
sely
w = 0 in ]0, T [× (|x|>R)

whereR is large enough. By unique continuation we deduce thatw ≡ 0. Thusu= u(x) ∈H1
0 (Ω)

for t ∈ ]0, T [, and it satisfies−∆u + θf(u) = 0, in Ω. Multiplying this equation byu and
integrating overΩ, we obtain ∫

Ω

(
|∇u|2 + θuf(u)

)
dx= 0,

and this impliesu≡ 0, because of the good-sign assumption (1.4) onf .
Consequently,un ⇀ 0 in H1(]0, T [×Ω).Here, we use again an argument based on micro

defect measures. Letµ be a m.d.m. associated toun in H1(]0, T [×Ω). It is easy to see from
(5.2.2) thatµ = 0 in ]0, T [×ω. To complete the argument, we use the propagation proper
the m.d.m. inΩ (away from the boundary). This givesµ = 0 everywhere; henceun → 0 in
H1(]0, T [×Ω), which contradicts the fact thatα > 0.

Second case: α= 0. Lettingn→∞, we obtain that the limitv of the sequence{vn} satisfies
�v+ θ(x)f ′(0)v = 0 in ]0, T [×Ω,
∂tv = 0 on ]0, T [×ω,

v ∈L∞([0, T ],H1
0(Ω)).

The existing results on unique continuation applied to this system after derivation in time
to show thatv = 0. The rest of the proof is very close to the corresponding one of Theore
Indeed, a suitable set of truncature functions replaces the problem under consideration by
one in the whole space and the same arguments apply.

The proof of the stabilization result on the domainΩ is now complete.

5.3. Exact controllability in a non-uniform time

In this section we give the proof of Theorem 3 and Corollary 4.
We first prove Theorem 3 and then indicate how Corollary 4 may be obtained.

Proof of Theorem 3. –Recall that, according to the results of the previous section an
particular, in view of the stabilization result of Proposition 13, we can assume the initia
the final data to be controlled to be small. Indeed, it is sufficient to solve the dissipative s
(5.2.1) with the initial data to be controlled. Then, the solution can be made as small
wish by taking the time sufficiently large. The same can be done backwards in time, takin
account that the system under consideration is time-independent, starting from the final
be controlled.

Thus it is enough to prove the exact controllability to zero for small data. We will u
nonlinear variant of Lions’ H.U.M. (Hilbert Uniqueness Method) (see [13]), following clo
the proof developed in [26].

Let us first consider the linearized system
�u+ θ(x)f ′(0)u= g(t, x)1ω in ]0,+∞[×Ω,
u= 0 on ]0,+∞[×∂Ω,
u(0) = u0, ∂tu(0) = u1 in Ω.

(5.3.1)
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Here and in the sequelω denotes the neighborhood of the boundary where the control is
supported and1ω its characteristic function.

This system is exactly controllable in timeT > 2R. Indeed, for any(u0, u1) ∈H1
0 (Ω)×L2(Ω)

data

ive

the
there existsg in L2(0, T ;L2(ω)) such that the solution of (5.3.1) satisfies

u(T )≡ ut(T )≡ 0.

Moreover, the controlg of minimal norm is unique and depends continuously on the initial
(u0, u1) in the corresponding norms. More precisely, the controlg is the restriction to[0, T ]×ω
of a solutionΦ of 

�Φ+ θ(x)f ′(0)Φ = 0 in ]0,+∞[×Ω,
Φ= 0 on ]0,+∞[×∂Ω,
Φ(0) = Φ0 ∈L2(Ω), ∂tΦ(0) = Φ1 ∈H−1(Ω).

(5.3.2)

One can identify the solutionΦ of (5.3.2) associated with the data(u0, u1) to be controlled as
follows. For any(Φ0,Φ1) ∈ L2(Ω)×H−1(Ω) there exists a unique solution

Φ ∈C
(
[0, T ];L2(Ω)

)
∩C1

(
[0, T ];H−1(Ω)

)
.

We then solve 
�Ψ+ θ(x)f ′(0)Ψ = 1ωΦ in ]0,+∞[×Ω,
Ψ= 0 on ]0,+∞[×∂Ω,
Ψ(T )≡ ∂tΨ(T )≡ 0.

(5.3.3)

Clearly

Ψ∈C0
(
[0, T ],H1

0(Ω)
)
∩C1

(
[0, T ],L2(Ω)

)
.

The operator

Λ :L2(Ω)×H−1(Ω)→ L2(Ω)×H1
0 (Ω)

such thatΛ(Φ0,Φ1) = (−∂tΨ(0),Ψ(0)) is an isomorphism. Indeed,

〈
Λ

(
Φ0,Φ1

)
,
(
Φ0,Φ1

)〉
=

T∫
0

∫
ω

|Φ|2 dxdt,

and, on the other hand, taking into account thatT > 2R, one can prove the existence of a posit
constantC > 0 such that

∥∥(
Φ0,Φ1

)∥∥2

L2(Ω)×H−1(Ω)
� C

T∫
0

∫
ω

|Φ|2 dxdt,

for every solutionΦ of (5.3.2). This can be done using multiplier methods (see [13]) or
arguments in the previous section dealing with microlocal defect measures.

Thus, given any(u0, u1) ∈H1
0 (Ω)× L2(Ω) there exists(Φ0,Φ1) in L2(Ω)×H−1(Ω) such

that

Λ
(
Φ0,Φ1

)
=

(
−u1, u0

)
,
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and this is precisely equivalent to saying that the solutionu of (5.3.1) with controlΦ coincides
with Ψ and therefore, in particular, fulfills the requirementu(T )≡ ut(T )≡ 0.

Now, in what concerns the nonlinear system, after solving Eq. (5.3.2) forΦ, we solve

em

r
, by

�u+ θ(x)f(u) = Φ1ω in ]0,+∞[×Ω,
u= 0 on ]0,+∞[×∂Ω,
u(T ) = ∂tu(T ) = 0 in Ω.

(5.3.4)

The problem is then to show that the operatorA defined onL2(Ω)×H−1(Ω), with values in its
dualL2(Ω)×H1

0 (Ω) by

A
(
Φ0,Φ1

)
=

(
−∂tu(0), u(0)

)
,

is onto on a small neighbourhood of the origin.
Note that the functionv = u−Ψ, whereΨ is the solution of the corresponding linear probl

(5.3.3), belongs toC0([0, T ],H1
0(Ω)) ∩ C1([0, T ],L2(Ω)) (in fact, bothu andΨ do belong to

this space). Moreover, it satisfies
�v+ θ(x)f ′(0)v =−θ(x)R(u) in ]0,+∞[×Ω,
v = 0 on ]0,+∞[×Ω,
v(T ) = ∂tv(T ) = 0 in Ω,

(5.3.5)

where

R(u) = f(u)− f ′(0)u.

We haveu=Ψ+ v and therefore

A
(
Φ0,Φ1

)
=Λ

(
Φ0,Φ1

)
+K

(
Φ0,Φ1

)
where

K
(
Φ0,Φ1

)
=

(
−∂tv(0), v(0)

)
.

Taking into account that

Λ :L2(Ω)×H−1(Ω)→ L2(Ω)×H1
0 (Ω)

is an isomorphism, solving the equation

A
(
Φ0,Φ1

)
=

(
−u1, u0

)
,(5.3.6)

which is equivalent to finding the control for the data(u0, u1), is also equivalent to solving

B
(
Φ0,Φ1

)
=−Λ−1K

(
Φ0,Φ1

)
+Λ−1

(
−u1, u0

)
=

(
Φ0,Φ1

)
.(5.3.7)

Therefore, the problem is to find a fixed point for the operatorB, defined fromL2(Ω)×H−1(Ω)
into itself.

We claim that the operatorB is compact. For, it is sufficient to check thatK , as operato
from L2(Ω) × H−1(Ω) into its dual, is compact. To show this fact we observe that
Theorem 11, the Strichartz norms ofu are bounded on the support ofθ by the norm of
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(Φ0,Φ1) in L2(Ω) × H−1(Ω). Applying the regularity theorem (Theorem 8), we obtain that
θ(x)R(u) ∈ L1([0, T ],Hε(Ω)), for someε > 0, small enough; which leads to( ) ( )

f

m. To
v ∈C0 [0, T ],H1+ε
0 (Ω) ∩C1 [0, T ],Hε(Ω) ,

with a bound onv in that space in terms of‖(Φ0,Φ1)‖L2(Ω)×H−1(Ω). This completes the proo
of the compactness property.

Therefore, in order to obtain a fixed point, we may apply the Schauder fixed point theore
do that it suffices to find a constantρ > 0, such that{

‖B(Φ0,Φ1)‖L2(Ω)×H−1(Ω) � ρ,

∀(Φ0,Φ1) ∈L2(Ω)×H−1(Ω): ‖(Φ0,Φ1)‖L2(Ω)×H−1(Ω) � ρ.
(5.3.8)

We are going to show that thisρ > 0 exists provided(u0, u1) is sufficiently small in
H1

0 (Ω) × L2(Ω). In view of the structure ofB it is sufficient to show that there existsρ > 0
such that {

‖K(Φ0,Φ1)‖H1
0 (Ω)×L2(Ω) � ρ/2,

∀(Φ0,Φ1) ∈L2(Ω)×H−1(Ω): ‖(Φ0,Φ1)‖L2(Ω)×H−1(Ω) � ρ.
(5.3.9)

For that, we write an energy inequality for system (5.3.5). Define

Ev(t) =
1
2

∫
Ω

(
|∂tv|2 + |∇xv|2

)
dx+

1
2

∫
Ω

θ(x)f ′(0)v2 dx.

Multiplying the equation of (5.3.5) by∂tv and integrating, we obtain

dEv(t)
dt

=−
∫
Ω

∂tv(t)θ(x)R(u)(t)dx.(5.3.10)

But ∥∥∂tv(t)θ(x)R(u)(t)
∥∥

L1(Ω)
�

∥∥∂tv(t)
∥∥

L2(Ω)

∥∥θ(x)R(u)(t)∥∥
L2(Ω)

�C
(
Ev(t)

)1/2∥∥θ(x)R(u)(t)∥∥
L2(Ω)

.

Hence

dEv(t)
dt

�−C
(
Ev(t)

)1/2∥∥θ(x)R(u)(t)∥∥
L2(Ω)

.

Integrating on the time interval[t, T ], and taking in account thatv(T ) = ∂tv(T ) = 0, we obtain∥∥(
v(t), ∂tv(t)

)∥∥
H1

0 (Ω)×L2(Ω)
�C

(
Ev(t)

)1/2

�C
∥∥θ(x)R(u)∥∥

L1(0,T ;L2(Ω))
.(5.3.11)

Now, arguing as in (4.18), we have∥∥θ(x)R(u)∥∥
L2(Ω)

�C
∥∥θ|u|2 + θ|u|p

∥∥
L2(Ω)

�C

[
‖u‖2

L6(Ω) + ‖u‖3/2
L6(Ω)

(∫
Ω

θ2|u|2(2p−3)dx

)1/4]
.
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Hence ∥∥(
v(t), ∂tv(t)

)∥∥
1 2 � C sup

∥∥u(t)∥∥3/2
6

[
sup

∥∥u(t)∥∥1/2
6

rgy

3)

,

.

arity
of
H0 (Ω)×L (Ω)
0�t�T

L (Ω)
0�t�T

L (Ω)

+

T∫
0

(∫
Ω

θ2|u|2(2p−3) dx

)1/4

dt

]
(5.3.12)

where the last integral satisfies

T∫
0

(∫
Ω

θ2|u|2(2p−3) dx

)1/4

dt � C
(
T,‖Φ‖L1(0,T ;L2(Ω))

)
by comparison with Strichartz norms ofu. On the other hand, applying the same ene
inequality tou, we have(

Eu(t)
)1/2 �C‖Φ‖L1(0,T ;L2(Ω))

�C
∥∥(
Φ0,Φ1

)∥∥
L2(Ω)×H−1(Ω)

∀t ∈ [0, T ].(5.3.13)

Using the embedding fromH1
0 (Ω) into L6(Ω), we obtain by combining (5.3.12) and (5.3.1

sup
0�t�T

∥∥(
v(t), ∂tv(t)

)∥∥
H1

0 (Ω)×L2(Ω)
� C

∥∥(
Φ0,Φ1

)∥∥3/2

L2(Ω)×H−1(Ω)
.

This nonlinear estimate immediately yields (5.3.9).
The proof of Theorem 3 is now complete.✷
Proof of Corollary 4. –Let us consider any initial and final data(

u0, u1
)
,
(
y0, y1

)
∈H1

0 (Ω)×L2(Ω).

According to Theorem 3 there existT > 0 and a controlg ∈ L2(]0, T [×Ω) with support in
[0, T ]× ω such that the unique solutionu of (1.13) satisfies

u(T )≡ y0, ut(T )≡ y1.

We now introduce the control̃g = g+(1−θ)f(u). This control has also its support in[0, T ]×ω.
This can be guaranteed by taking the cut-off functionθ so thatθ≡ 1 in Ω \ω. On the other hand
the solutionu of (1.13) satisfies also

�u+ f(u) = g̃ in ]0,+∞[×Ω,
u= 0 on ]0,+∞[×∂Ω,
u(0) = u0, ∂tu(0) = u1 in Ω.

(5.3.14)

Note that we are not in conditions to guarantee that the finite energy solutionu of (5.1) is unique
since we do not know whether Strichartz inequalities hold in the domainΩ up to the boundary
But the existence is guaranteed. In fact,u solution of (1.13) solves (5.3.14) too.

In order to conclude the proof of corollary it is sufficient to analyze the regul
of g̃. We know thatg ∈ L2(]0, T [×Ω). Thus, it is sufficient to analyze the regularity
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(1 − θ)f(u). The functionu has finite Strichartz norms in the interior ofΩ. In particular,
u ∈ L5(0, T ;L10

loc(Ω)) (take q = 5 and r = 10/3 in the Strichartz norms). Consequently,
(1 − θ)f(u) ∈ L1(0, T ;L2

loc(Ω)). On the other hand, taking into account thatu has finite
f

and

.

arity,

.

ngen,

1

,

some

nded

liques,

of the

ation,

ns of
energy it is easy to see that(1 − θ)f(u) ∈ L∞(0, T ;L6/5(Ω)).This concludes the proof o
Corollary 4. ✷
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