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STABILIZATION AND CONTROL FOR
THE SUBCRITICAL SEMILINEAR WAVE EQUATION

BY BELHASSENDEHMAN, GiLLES LEBEAU AND ENRIQUE ZUAZUA !

ABSTRACT. — In this paper, we analyze the exponential decay property of solutions of the semilinear
wave equation ifR® with a damping term which is effective on the exterior of a ball. Under suitable
and natural assumptions on the nonlinearity we prove that the exponential decay holds locally uniformly
for finite energy solutions provided the nonlinearity is subcritical at infinity. Subcriticality means, roughly
speaking, that the nonlinearity grows at infinity at most as a p@wer5. The method of proof combines
classical energy estimates for the linear wave equation allowing to estimate the total energy of solutions
in terms of the energy localized in the exterior of a ball, Strichartz's estimates and results by P. Gérard on
microlocal defect measures and linearizable sequences. We also give an application to the stabilization and
controllability of the semilinear wave equation in a bounded domain under the same growth condition on
the nonlinearity but provided the nonlinearity has been cut-off away from the boundary.
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RESUME. — Nous étudions dans cet article la décroissance exponentielle de I'énergie pour une équation
d'ondes semi-linéaire darB?3, avec un terme d’amortissement effectif & I'extérieur d’'une boule. En
supposant la non linéarité sous critique et vérifiant certaines conditions naturelles, nous obtenons un résultat
de stabilisation locale, c’est-a-dire une décroissance exponentielle de I'énergie, uniforme sur les boules
de I'espace d'énergie ou sont choisies les données initiales. La démonstration repose sur des inégalités
d’énergie classiques qui estiment I'énergie totale en fonction de I'énergie localisée a I'extérieur d'une
boule. Elle utilise aussi les estimations de Strichartz et les résultats de P. Gérard sur les mesures de défaut
microlocales et les suites linéarisables. Nous donnons aussi, en application, un résultat de stabilisation et de
contr6le pour I'équation des ondes semi-linéaire sur un ouvert borné, avec une non linéarité sous critique,
tronquée loin du bord.
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1. Introduction

This paper is devoted to the study of the following damped semilinear wave equativh on

(1.1) {D“+f(u)+a(x)3tu—0 in |0, +o00[ x R?,

uw(0,z) =u(z) € HY(R3), 0w (0,z)=u'(z) € L*(R3).
Here and in the sequél denotes the wave operatat:= (97 — A,).

1Supported by grant BFM2002-03345 of the MCYT (Spain) and the Networks “Homogeneization and Multiple
Scales” and “New materials, adaptive systems and their nonlinearities: modelling, control and numerical simulation
(HPRN-CT-2002-00284)" of the EU.
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526 B. DEHMAN, G. LEBEAU AND E. ZUAZUA

The nonlinearityf is a function fromR to R, of classC?, satisfying the following conditions:

(1.2) f(0)=0,
(1.3) IfD(s)|<C(1+]s)"™, forj=1,2,3

with C' > 0 wherep is a real number such that
1<p<s,

and
1.4) sf(s)>cs® Vs€R

for a positive constant> 0.

The techniques and results we develop here can be easily adapted to any space dimension
N > 1. Of course, the critical range of exponents is then (N + 2) /(N — 2) (any finitep > 1
is allowed whenN = 1,2). However, for simplicity, we shall focus on the case of dimension
N=3.

The damping potentia = a(x) is assumed to be iL>(R®), almost everywhere non-
negative, and such that it satisfies for sofe 0 andc¢y > 0,

(1.5) a(xz) =2 co >0 for|z|>R.

This means that the damping term is effective at infinity and, more precisely, in the exterior of
the ball of radiusk.

It is well known that for every initial datgu®, ') € H*(R?) x L*(R3), system (1.1)
admits a unique solution(t, z) in the spac& ([0, +oo[, H*(R?)) NC* ([0, +o0[, L*(R?)) (see
Jorgens [11] and Ginibre and Velo [7] for the subcritical case5). Existence and uniqueness
are well known by now in the critical cage= 5 too, see Grillakis [8,9] and Shatah and
Struwe [21].

However, the critical casg= 5 will not be considered here. Indeed, the methods we develop
in this paper use in an essential manner the fact that the nonlinearity is subcritical, i.e. the fact
thatp < 5. Our method fails for the critical cage= 5 for two reasons:

(a) The boot-strap argument we employ to improve the regularity of solutions vanishing
outside a bounded domain so that the existing results on unique continuation apply, does not
work for this critical exponent.

(b) We can not use the linearizability results by P. Gérard [6] to deduce that the microlocal
defect measures for the nonlinear problem propagate as in the linear case.

Thus, extending the results of this paper to this critical exponent case is an interesting open
problem.

The energy of: at timet is defined by

(1.6) E.(t) = % /H@tu(t,x)|2 + |Vmu(t,x)‘]2 dz + /F(u(t,:v)) dz
R3 R3

where

(1.7) F(u) :/f(s) ds.
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SUBCRITICAL SEMILINEAR WAVE EQUATION 527

The following energy dissipation law holds:

Eu(tg)_Eu(tl):_//a(a:)]atu(t,x)fdtdz.

t1 R3

This can be easily seen formally multiplying the equationdpynd integrating iR3 x (t2,1).
According to the energy identity abové;, is decreasing in time and system (1.1) is
dissipative.
The first main result of this paper guarantees that the energy decays exponentially. More
precisely, we have the following:

THEOREM 1. —Under the assumptions above, for evély> 0, there exisC > 0 and~y > 0
such that inequality

(1.8) E,t)<Ce "E,0) t>0

holds for every solutiom of systen{1.1)with the initial data(u°, u') satisfying

1

(1.9) E,(0) = 5/[’u1(@’2+ yvzu()(x)HZ‘der/F(UO(x)) dz < Ey.

R3 R3

This theorem is a local stabilization result. Indeed, the constiatsd~ are uniform on every
ball of the energy space but the theorem does not guarantee that the decay rate is global, i.e.
whether (1.8) holds with constants~ which are independent of the initial data. This is by now
well known to hold wherp < 3 (as it is the case in the linear case) and under further qualitative
properties of the nonlinearity (see [25]). Under this extra qualitative property, the stabilization
property is global in this case too as the following result shows.

THEOREM 2. —Assume that the conditions above are satisfied. Assume also that
f(s)=cs+g(s)
with g = g(s) such that there exiss> 0 so that
g(s)s = (2+9)G(s), VseR

with

Then, there exist’ > 0 and~y > 0 such that inequality1.8) holds for every solution of1.1).

Remarks— (1) These theorems show that the behavior of the semilinear subcritical wave
equation p < 5), in what concerns the property of stabilization, is, to some extent, analogous
to the one of linear waves. This fact was already well established in the work [6] of P. Gérard
through the notion of “linearizable sequences”.

(2) There is a large literature on the problem of stabilization of wave equations. J. Rauch and
M. Taylor in [17] and C. Bardos, G. Lebeau and J. Rauch [2] introduced and developed the
Geometric Control Condition (GCC). This condition that asserts, roughly speaking, that every
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528 B. DEHMAN, G. LEBEAU AND E. ZUAZUA

ray of Geometric Optics enters the region where the damping term is effective in a uniform time,
turns out to be almost necessary and sufficient for the uniform exponential decay of linear waves.
Obviously, this condition is satisfied in the whole space when the damping term is effective in the
exterior of a ball. In the nonlinear framework, in addition to [25] mentioned above, we refer to the
works by A. Haraux [10] and those of the first and third author [4] and [27] and M. Nakao [16].
However, all these papers treat the case of nonlinearities of order atpreo38t(for bounded
domains inR?) in which the nonlinearity can be treated as a locally Lipschitz perturbation of the
linear wave equation by means of energy estimates. To our knowledge, the present paper is the
first one dealing with the cage> 3.

(3) Assumptions (1.2) and (1.3) on the nonlinearftare the natural ones guaranteeing the
global well posedness of problem (1.1). By condition (1.4) the energy provides estimates of
solutions(u, u;) in H*(R?) x L*(R?).

(4) Whether the structural conditions of Theorem 2 on the nonlinearity are necessary for the
global stabilization property to hold is an open problem.

(5) Our proof relies on properties of microlocal defect measures introduced by P. Gérard in [5]
and more precisely on the localization of their support and its propagation.

Strichartz inequalities are another main ingredient in the proof of Theorem 1. They hold
outside convex obstacles (Smith and Sogge [20]). Thus, Theorem 1 can be extended to this case.
(6) As mentioned above, the methods developed in this article fail for the critical exponent

p = 5. Extending the results of this article to this case is an interesting open problem.

Let us now discuss the main difficulty that occurs in the proof of Theorem 1. Actually, one of
the crucial points in this proof (which is, in general, an essential step for all stabilization results),
is the use of a unique continuation argument. The situation is the following: In a contradiction
argument strategy, one obtains, after normalizing and passing to the limit, a funditiothe
energy space, say° ([0, 7], H*(R?)) n C([0,T], L?(R3)), solution of
(1.10) {Du—i—f(u)—() 10, T[ x R3,

Ou=0 1]0,T[x{|z| > R}.

Note that the conditio®,u = 0 is obtained precisely in the subdomdim:| > R} in which the

damping term is effective. It is then necessary to prove that the unique solution of (1.10) is the

trivial onew = 0. This fact expresses that the only undamped solution of system (1.1) is the trivial

one. It is then natural to take the time derivative of the equation and to considé),u as new

unknown function. One then gets

(1.11) {Dw—i—f’(u)w:O 10, T[ x R3,
w=0 ]0,T[x{|z| > R}.

The goal is then to apply one of the existing results on unique continuation for solutions of the
wave equation with a lower order potentigl (u) in this case) to deduce that= 0. This would

imply thatu = u(x) and consequently, would be a solution of a semilinear elliptic problem

for which the unique solution is the trivial one because of the good sign assumption (1.4) on the
nonlinearity.

There are various unique continuation results in the literature [19,23,24]. But none of them
applies in the present situation because of the mild assumptions we do on the nonlipeafiy (
Indeed, under that assumption we can only guaranteefthat € L>°(0,T; LY(R?)) for some
g > 3/2 which is not sufficient to apply the existing results that require greater integrability
properties on the potential. At this point we introduce a new argument that consists in proving
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SUBCRITICAL SEMILINEAR WAVE EQUATION 529

that the nonlinear ternf(u) is, actually, more regular than it might seem. Indeed, taking into
account that the nonlinearity is subcritical we can prove fijay € L}, .(Hg ), for somes > 0.

To do this, we prove a refined version of the multiplier lemma by Y. Meyer (see [1] or [15]) (we
will refer to it as thel 2-version of that lemma), and we make use, in a crucial way, of Strichartz’s
estimates, which are fulfilled by solutions of subcritical wave equations. After that, the ellipticity
of system (1.12) on the domal@, T'[ x {|x| > R} and the propagation of singularities property
yield, by boot-strap, to a good regularity@fnd a bounded potentigl(«). One can then apply

the existing results on unique continuation mentioned above.

In the second part of this article, as a consequence of the stabilization result of Theorem 1, we
establish an exact controllability result for a semilinear subcritical wave equation on a bounded
open domain oR3.

More precisely, let2 be a bounded smooth open setRf andw a neighbourhood of its
boundaryos?, i.e. the intersection of2 with a neighbourhood 0f2 in R3. Furthermore, let
f:R — R be a function of clas€, satisfying (1.2), (1.3) and

(1.12) sf(s) = 0.

And finally, letd(x) be a non-negative function i05°(€2).
We prove the following theorem:

THEOREM 3. —Under the assumptions above, for every given> 0, there exists a time
T > 0 such that for every datau®,u') and (y°,y') in H}(Q) x L?(£2), satisfying

H(“Oaul)uﬂg(sz)xm(sz)<E0 and H(yo’yl)HH})(Q)xLz(Q)<EO’

there existy € L1([0, 77, L?(Q2)) with support in[0, 7] x w, and there exists a unique solution
u(t,x) in CY([0,+o0[, H} (£2)) N C ([0, +o0[, L*(£2)) solution of the system

O+ 0(x) f(u) = g(t,2) in 10, +o0[ x O,
(1.13) u=0 on]0,+oo[x 99,
w(0)=u", Qu(0)=u inQ,

satisfyingu(T,.) = y° and9,u(T,.) = y'.
As an immediate consequence the following holds:

COROLLARY 4.—Let us consider the system with= 1, i.e. without cutting off the
nonlinearity. Then, under the assumptions above, the same result as in ThHealmwe holds
with controlsg in L'(0,7; L3 .(Q)) N L>(0,T; L%°(Q)), except for the uniqueness of the
solution.

Remarks— (1) These are exact controllability results, since the solutiaa driven from
the initial state(u’,u!) to the final one(y°,4'), by means of an internal control localized
in w, i.e. near the boundary d. This result improves those in [26] which are valid under
the more restrictive assumption on the nonlineagpity 3 but without the restriction of cutting
off the nonlinear term in a neighborhood of the boundary. Note however that the result is of
local nature since the control timE depends on the geometry ©6f andw, as it does in the
controllability result for the linear control problem but it also dependddgnthe radius of the
ballin H}(Q) x L*(©), in which we choose the initial and final data to be controlled. Whether the
control time can be taken independently of the size of the initial data is an open problem. There
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are very few results in this direction. We refer to [28] for a proof of the exact controllability in
uniform time for thel — d wave equation with a nonlinear term that grows at infinity in a slight
superlinear way.

(2) Observe that, as stated in Corollary 4, the nonlinearity has to be cut-off only with the
purpose of guaranteeing the uniqueness of the solution. Indeed, the existence of the control and
of the controlled solution can be easily obtained when1 too. For, it is sufficient to consider
the controlled system (1.13) in which the solutiers unique and to také =g + (1 — 6) f(u)
as new control. The solution of (1.13) turns out to remain a solution with= 1 for this new
controlg and, obviously, the controllability requirementgat 0 andt = 7' remain the same.

(3) In what concerns the well posedness of system (1.13), notice that the growth condition
on the nonlinearityf < 5) prevents us from applying the classical uniqueness results for the
solutions of the mixed problem (1.13) obtained by means of the standard energy identity. Indeed,
for bounded domains, uniqueness of finite-energy solutions is only known to hojd<fa3,
which is the range in which the energy method applies without difficulty. The expgner
is the critical one for the energy method since it is the largest one for which the nonlinear term
lies in L2(Q2) whenever is in H{ (€2). However, we are able to prove uniqueness fopatl 5
because of the fact that the nonlinear term has been cut-off away of the boundary. This guarantees
that, Strichartz inequalities, that hold locally in the interiofxfcan be applied.

(4) The same exact controllability result, with a similar proof, can be obtained for the equation
in the whole space by means of controls with support in the exterior of a ball. In this case, of
course, the nonlinearity does not need to be cut-off.

The proof of this exact controllability result, which is based in the stabilization result of
Theorem 1, is, roughly, as follows. First of all, we show by means of a perturbation argument
that, due to the exact controllability property of the linear wave equation in the geometric setting
of Theorem 2, small data are controllable for the nonlinear equation too, i.e. given sufficiently
small initial and final data the solution can be driven from the initial state to the final one. Then,
we adapt the proof of Theorem 1 to the case of the bounded open set noting that, due to the
cut-off functioné(z), the boundary)? has no effect on the nonlinearity. Therefore, given the
initial data (u°,u!) to be controlled, by means of the damping term(x)d;u supported in
w near the boundary, i.e. by solving system (1.1), we drive it to a small state in a sufficiently
large time. We do the same with the final state solving the system backwards in time. This
produces two states which are small enough so that the local controllability result for small
data applies. The control functigrit, «) is then as follows: In a first time interval it coincides
with the damping term-a(x)9;u obtained when solving (1.1), in a second time interyas, the
control corresponding to the small data and, in the last one, it is the damping term obtained when
applying the dissipativity property backwards in time starting from the final tdte!).

The rest of this article is organized as follows.

2. Strichartz estimates.

3. Regularity of the composition.

3.1. Meyer’s Multipliers.
3.2. The regularity theorem.
4. Proof of Theorems 1 and 2.
4.1. Proof of Theorem 1.
4.2. Proof of Theorem 2.
5. The subcritical wave equation in a bounded domain.
5.1. Global existence and unigueness.
5.2. Stabilization.
5.3. Exact controllability in a non-uniform time.
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SUBCRITICAL SEMILINEAR WAVE EQUATION 531

Without loss of generality, in the sequel we assume4hdty < 5. The other cases < p < 4
can in fact be treated in a simpler way following the same arguments.

2. Strichartz estimates

First of all we recall some basic estimates; the so called Strichartz’s inequalities for the linear
wave equation, which will play a crucial role in the whole of the proof. The interested reader can
find them, for example in [7,22] or [6].

Let us consider the linear wave equation
2.1) {Du_FeLl([O,+oo[,L2(R3)),

' (u(0),0,u(0)) € H'(R?) x L*(R?).

Here and in the sequé'fl(R?’) denotes the homogeneous Sobolev space of order one: The
closure with respect to the norfiVu|| of the space of smooth compactly supported test
functions.

The following result is by now well known:

L2(R3)

LEMMA 5. —Letr € [2,+oo[ andg given byl /q+ 1/r =1/2. Then, there exist§' > 0 such
that for everyl’ > 0 and every solutiom of (2.1), one has

(2.2) ullzagory,Lor®e) < CUFN o 2y, T 10:0)]| 2 gsy + [[Vau(0)

]

We also have the following estimate for solutions of the subcritical semilinear wave equation
with f:R — R, of classC, satisfying (1.2), (1.3) and (1.12) fgr= 1 (see [7]).

L2(R3)

LEMMA 6. —For everyT > 0,7 € [2,+00[, and Ey > 0, there exist<(T,r, Ey), such that
every solution; of the system

(2.3) {DU+f(u) =0 in]0,+o0[x R?,
' () 1 + 18:u(0)| = < Eo,

satisfies

(2.4) llull oo, 17,253y < C(T, 7, Eo)

withl/q+1/r=1/2.

Henceforth, the first norm in the left hand side of the inequality (2.2) and (2.4) will be called
Strichartz norm of:. In particular, we shall say thathas finite Strichartz norms when the norm
of w is finite in L4([0, T], L3 (R?)) for all » > 2 with ¢ such thatl /¢ + 1/r = 1/2.

3. Regularity of the composition

Let us first introduce some notations.
For a tempered distributiom, we denote byu,),>_1its dyadic decomposition

u:u,l—i-Zuq.

q=0
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It is the usual Littlewood—Paley decomposition.

We will use without more specification the propertieswgf their regularity, integrability,
sensibility to derivation, etc. The key of all these estimates is, naturally, Bernstein's lemma. The
interested reader can find a good exposition of this decomposition, for example, in [1,15] or [3].

3.1. Meyer’'smultipliers

Here, we give an abstract multipliers lemma that will be the basis of the composition theorem
below.

LEMMA 7.-Leta > 3/2, and let(m,)(,>—1; be a sequence @ functions verifying for
everyle N, >, 10#mg|[ 20 < C;27. Then, for every > 1, the operator

(3.1.1) Miu=Y"ug—Mu=> mqu,

g=—1

is continuous fronH " (R3) to H"~*(R3) with ¢ = 3/(2a), 0 < t < 1. More precisely,

(3.1.2) [Mull g~ < Clluflgr withC < Const Y Ci.
I<[r]+1

Here and in the sequél] denotes the integer part of

Remarks— (1) This is aL? version of Meyer's multiplier lemma. To our knowledge, the
proof of the present version is nowhere written. These multipliers have also a pseudo-differential
interpretation.

(2) For a given finiter, it is not necessary to assume the multipliers to be of classC>.
Indeed, it is sufficient for them to be in the clagg!*!.

(3) The proof we present here is adapted from the one developed in [1, pp. 102-103].

Proof of the lemma. We follow closely the proof of Meyer's Multipliers Lemma in
Lemma 2.2, p. 102 of [1].

The spectrum ofu, is contained in the rn@?—! < [¢] < 2971, On the other hand, we
decomposen, asmg = mq,—1 + Yo Mgk, Where the spectrum af,,_; is contained in
a ball of radiu2?, and those ofn, j for k£ > 0 are contained in rings of ordefitFk.

We setMu = Z@_l Mg, kUq, k = —1. We will show that eachl/;; is continuous fromf”
to H"~* and that the corresponding operator series converges in norm.

The terms inM_;u have their supports in balls of the orderast Moreover,

(3.1.3) [Imq,—1uqllr2 < lmg,—1llz2elugl| 2o < Cllmg||2e[ug|| 2o < Cllug]| 26,

by assumption, with /o +1/3 = 1.

Taking into account that= 3/(2«) we choose3? = 3/(3 — 2t), so thatl/a+ 1/5 =1 and
H' — %5,

Then,

|[ugll 26 < Cllug||me-
But

luqlle = [[Duq]l 2 = [|(D") [ 2 < Ceq27 || D"

Hr—t
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SUBCRITICAL SEMILINEAR WAVE EQUATION 533
with ch < oo (see Proposition 1.2, p. 94 in [1]). That is
(3.1.4) [ugll 26 < Ceg2™ 2D |lul| -
Here and in the sequél* denotes the pseudodifferential operator of syngbat |£|2)*/2. (Note

that it is a simple fractional derivative that commutes with the spectral localization property.)
Combining (3.1.3) and (3.1.4) we deduce that

(3.1.5) |Img,—1ugl[L2 < chz_q(r_t)”U”Hﬁ
with
(3.1.6) > el <o

Then, the synthesis Lemma 2.1 in [1] guarantees Mat is a bounded operator froH"
into H™ .

For k > 0, the terms in)Mu have their spectra in annulae of the ordeR®f*. To estimate
the termsn, ,u, we argue as before but, this time, we use the fact that,

(3.1.7) lmg.kllp2e < Cr275
This is true, indeed since, by hypothesis,

Ima iz < € Z ||5quHL2a2—(q+k)l <C27H,
[u|=1

Thus,
Img kgl L2 < C127 M eg2 1 )| e < Cr27 M=) 2= R0 1y ||,

Applying the synthesis lemma again we deduce gt H” — H"~ is continuous, with a norm
of the order ofC;2 k(= (r=1)),

Finally, taking! > r — ¢, the operator seried/ = > M, converges normally in the space of
continuous operators froH” to H"~!, and satisfies clearly estimate (3.1.2)0

3.2. Theregularity theorem

Now, we study the regularity of the composed functjtn).

THEOREM 8. —Letw be a functioninL>°(]0, +oo[, H"(R?)), 1 < r < 2, with finite Strichartz
norms and take a functionf satisfying conditiong1.2) and (1.3). Then for everyl’ > 0,
and every functiony(z) € C§°(R?), x(z)f(v) € L' ([0, T], H"*(R?)), with 0 < ¢t < 1, and
1-t<(5-p)/2.

Remarks— (1) Analyzing carefully the proof of this theorem, one can easily see that it is
possible to replace in the conclusion the spaéen time by L* provideda > 1 is such that
12k — 5.

(2) The proof of the theorem provides a more precise information. In fact, we establish the
following estimate

(3.2.1) Ix@) O 1 oy, 57y < 05:[%%] [v(s)]| v
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whereC depends ory, on the nonlinearityf and onw through its Strichartz norms.
(3) In the proof of Theorems 1 and 2 this property will be used only withr < 2.

Proof of the regularity theorem. Following [15] and [1] we write

fw) = f(Sov) + f(S1v) = f(Sov) + -+ + f(Sg1v) — f(Sgv) +
where

Sqv=v_1+v9+ -+ vq.

These are the dyadic blocks@fand they are spectrally supported in balls of raditis'.

For convenience, here and in the sequel we denote simpjytbg functiony f.

First, we will work with a fixeds in [0, T']. And after, we will examine the integrability in time
of the H"~*-norms.

(a) The first termf(Sov) has the regularity of. Indeed, sinces € L°>°(H"), thenSpv is in
L (C*). In particular and more precisel§yv is bounded together with all its space derivatives.
Moreover,f has compact supportin So f(Syv) is easy to treat. In particular, inequality (3.2.1)
holds for this component af.

(b) Forg >0, we write (S, 11v) — f(Sqv) = mqug, With mg = [ f'(Sqv + tvy) dt.

We will show that then,’s are Meyer's multipliers in the sense of the previous lemma. More
precisely, we establish the following estimate

(3.2.2) > [0 my|| pae < C L+ (0I5, )2 fori<2

[pl=l

with « =3/(2t), andb=3(p — 1)/t.

For that, it suffices to consider the quantityS,v), with G = xf .

Sincer < 2, we can takel = 2 in the multipliers lemma. Then for any with |u| = 2,
O*G (S, v) may be written as a linear combination of terms of the form:

(a) ‘Zﬁ (Sqv).

(b) 22G (5,0)0”(Syv), 6] = 1.

(c) %—f(qu)a"(qu), 6] = 2.

(d) ZG(S,0)0°(Sqv)d” (Sqv), 0] = [v| = 1.

First, we treat the terms of the form (b).

Taking in account hypothesis (1.3), witha + 1/b = 1/(2«) we have:

8°G . 9°G ,
Ha Solsm0(5)| <‘ st oSl
< C||14[SgvlP 2| L. 2901 Sqvll 1o
< C27Sq0]| v + C27[Sqollf 6, 1Sl o

Note that 5,72 ., < [ol[?22 ., and||Syvl| o < o] 1.
Then we obtain:

H 0*G

5, (S v)9?(S,v)

-2
<C2[[Jvllze + vllF i a vl 2]
[2x
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We choosea and b such thata(p — 2) = b, which givesa = 2a(p — 1)/(p — 2), and
b=3(p—1)/t. Hence:

(Sq0)0°(Sqv)|| < C2(|[vllee + vl ") < C29 (1 + vl 7).

L2

902G
oxdv

Now, concerning the term (a), we have directly:

32

62(5’1})

<CO(1+|SquP™h).

It is then sufficient to tak&.?®-norms and this term is estimated immediately.

On the other hand, replacird§ by 229, we can treat (c) exactly in the same way (recall that
1=2).

Finally, for the last term (d), using again Hoélder’s inequality, we obtain

‘ 0*°G 0?°G

2 v
with1/c+1/d=1/(2a).
We takec(p — 3) = 2d and therd = a(p — 1). Then

|5

and the arguments we use when estimating the term (b) apply.
Now, to complete the proof, it remains to prove that

T
/Hv(s,.>||§;1ds <o,
0
thatisv € LP~1([0,T), L?).

Since the Strichartz norms ofare finite, i.ev € L([0,T], L), for 1/g=1/2 - 3/b, itis
sufficient to check that

(8qv)0° (Sqv)0” (Sgv) (Sqv) H@e(qu)HdeHa”(qu)HLM

< ‘

L2

Le1SqvllZ20

32

el (Sq 0)39(3 v)0” (Sqv)

< C22q(”vHL2a(P 1) + ”vHLza(p 1))
L20<

1 1 t
2 a 9
p—1"2 p-1
which is true since it is equivalentto— ¢t < (5 —p)/2. O
4. Proof of Theorems1 and 2
4.1. Proof of Theorem 1

The solutions of (1.1) satisfy the semigroup property. Thus it is enough to prove the estimate

T

(4.1) E.(0) gc//a(:c)|8tu|2 dtdx

0 R3
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for somec > 0 andT > 0, and for every solution such thatF,,(0) < Ey.
To prove that we takel’ > 2R + 2 (in fact, anyT > 2R would work) and argue by
contradiction: we suppose the existence of a sequnge of solutions of (1.1) such that

(4.2) E,, (0) < Ey,
T

4.3) / a(x)|Opun | dt do <
0 R

3

Eu,(0)

Denotex,, = (E,, (0))'/? andv,, = u,, /a,,. Due to (4.2), the sequenog is bounded. Moreover
v, satisfies

(44) D’Un + a(:z:)(?tvn + aif(anvn) = Oa
T
(4.5) //a(x)|8tvn|2 dt dx < l,
n
0 R3
(4.6) 1/C<E,,(0)<C,

for some finiteC' > 0. The classical energy estimate allows us to show that the sequgnce
is bounded inC°([0, 7], HY(R?)) N C'([0,T], L*(R?)). Then, it admits a subsequence, still
denoted,,, that weakly-* converges in> (0, T; H*(R?)) nW1°(0, 00; L2(R?)). In this way,
v, —vin HY([0,T] x R?). We can also suppose that — a € [0, Eq].

We will distinguish the two cases> 0 or o = 0.

First case a,, — a > 0.

We haveu,, — u = av, andE,, (0) — o2 > 0. Passing to the limit in the equation satisfied
by u,, we obtain

(4.7) {Du+f(u)—o in]0, 7 x R,

du=0 for)0,T[x {|z|> R}.

Moreover, u € C°([0,T], H*(R?)) n C1([0,T],L*(R?)). We have the following unique
continuation result:

LEMMA 9.-The only solution of syste(4.7)in the classC([0, T], H*(R?)) n C*([0, T,
L?(R3)) is the trivial oneu = 0.

We postpone the proof of this lemma and use it to prove the fact that the convergenceof
u = 0 holds in the strong topology d*([0, 7] x R3). Of course, this will be in contradiction
with the fact thatv,, converges to a positive constant. This will allow us to exclude the first case.
We will then concentrate on the second one in whightends to zero.

Let us now return to the first case under consideration. We have 0 in H'([0,T] x R?)
andOu,, + f(u,) — 0in L%([0,T] x R?), due to (4.2) and (4.3). Furthermore, the nonlinearity
7, by hypothesis, is subcritical. Them, is a linearizable sequence, according to the terminology
of P. Gérard [6]. In other words, if,, is the sequence of solutions of the linear wave equation
with the same initial data,

Dyn =0,
Yn (O) = u’7017 8tyn (O) = u}zv
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one has

sup /{|(“)t(un—yn)(t,x)‘2+‘Vm(un—yn)|2(t,x)}dx—>0, n — 00
ogthR3

which means in particular, thét,, — y,,) — 0 in H}_(]0, T[xR?).

Let u be a microlocal defect measure (m.d.m.) associated,tm H*(]0,T[ x R?) (see [5]
for the definition of these measures and their properties).

From this “linearizability” property we deduce two facts:

(a) The support ofi is contained in the characteristic set of the wave opefatde= |¢|?} (this
is known as the elliptic regularity theorem for the m.d.m., [5], Proposition 2.1 and Corollary 2.2).

(b) 1 propagates along the bicharacteristic flow of this operator, which means in particular,
that if some pointvg = (¢, zo; 70, &0) IS Not insupp(x), the whole bicharacteristic issued from
wo is out of supp(p).

Now, (4.3) givesh;u,, — 0 in L?([0,7] x (|z| > R)) and the convergence holds in the strong
topology. So, the elliptic regularity theorem implies that outside the cylifidgr] x (|z| < R),
supp(u) is contained in the setr = 0}.

Hencep = 0 for |z| > R. On the other hand, sincE > 2R + 2, every bicharacteristic ray
enters the regiorf|z| > R) before the timel. We then obtain by propagation that= 0
everywhere. Hence,, — 0 in H'([0,7] x (Jz| < A)), for every A > 0. Since, on the other
hand,0,u, — 0in L2([0,T] x (|z| > R)), we getd,u,, — 0in L2([0,T] x R?).

It is then easy to show that,, (0) converges to zero, which is in contradiction with
the assumption thak,, (0) — o? > 0. This can be easily done using the classical identity
guaranteeing the equipartition of energy. Indeed, we multiply the equation

Ouy, + a(z)0pun + f(un) =0

by ¢(t)ur,, with ¢ € C§°(]0,T[),o =1 0onle, T — €[, ¢ > 0, and we integrate. This gives:

T T T
—/ tp’(t)un(?tundtda:—//<p|8tun|2dtda:+//(p|Vzun|2dtd:c
0 R

3 0 R3 0 R3

T T
+//(puna(x)atun—i-//(punf(un) dtdr =0.

0 R3 0 R3

The second term goes taf n — co. Moreover, assumption (1.4) implies that the normugf
in L2([0,T] x R?) is bounded by the initial energy. This gives that the first anditheterms
above go also t6 if n — co. Finally, the positivity of the last term yields

T T
(4.8) //<p|Vmun|2dtd:U—>0 and //gounf(un)dtdxﬁo,

0 R3 0 R3

as we wanted to prove.
Thus, it remains to prove the unique continuation result of Lemma 7. We recall tudves

Ou+ f(u) =0 in]0,+oo[ x R?,
ou=0 for|z| >R,

(4.9) {
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and the solution: is in the classC?([0, 7], H*(R?)) N C([0,T], L?(R3)). Furthermore, the
functionw = 9,u satisfies

{ Ow+ f(u)w=0 1in]0,T[xR3,
w=0 for]0,T[x (|z| > R).

We seek to obtaim = 0, which would give us: = 0. Indeed, ifo,u = 0, u satisfies
—Au+ f(u)=0, ueH"(R%)

SO

R[|Vu|2da:+/uf(u)d:c_0,

R3

and we get, = 0 in view of (1.4).
In order to apply one of the available unique continuation results, (see for example [19,23,24]),
it suffices to show that

f'(w) € L=([0,T], L*(|z| < R+1)).

Obviously this does not hold from Sobolev’'s embedding thanks to the factutiabf finite
energy. This argument applies for exponents in the nonlinearity yp<t3d. However, we are
dealing with a larger range< 5.

We are now going to develop a boot-strap argument showing that this regularity property holds.
In fact, we will prove that: is actually smooth.

We havellu = — f(u), but, taking into account th@;« vanishes fofz| > R, we deduce that,
in that setu € H({|z| > R}), Au = f(u). The fact thatf is subcritical allows to use elliptic
regularity results and a boot-strap argument showingitkat: () is in fact of clasgC* in that
set.

In fact more regularity on: could also be obtained if we were assuming more regularity on
the nonlinearity tharf € C3.

The goal then is to prove thatis also smooth enough in the cylind@t 7] x (|z| < R), so
that the existing unique continuation results might be applied. Since the values of the nonlinear
term f(u) away from the cylindef0,T] x (|z| < R+ T'), do not affect the regularity of on
the cylinder[0, T] x (|z| < R), without loss of generality, we can suppose tfias compactly
supportedinz, say f = x f, with supportofy in {|z| < R+T+1},andxy=1in{|z| < R+T}.

The following holds:

PROPOSITION 10. —Every solution: of systen{4.9) above satisfies
ue L®(0,T; H*(|z| < R+1)),

forall k£ < 2. In particular,u € L>*([0,T] x (Jz| < R+ 1)).

Proof. —We know that all the Strichartz norms of the functio@are finite.
Define forv > 0 the vector space of functions:

(4.10) V, =C°([0,7], H.Y)nc* ([0, T), Hy) N L4([0, T, L)

loc loc

where the last intersection is over all the coudlgs’), such that- > 2 and1/¢=1/2 —1/r.
We know that the solution of (4.9) belongs td%.
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We start the argument by applying the regularity theorem (Theorem Bjupwith r» = 1.
Denotings = (5 — p)/2, we then obtairf (u) € L*([0,7], H¢(Jz| < R+ T + 1)).

The theorem of propagation of singularities for traces (see for example [1, p. 115, Prop. 2, and
p. 117, 81.3]) hence giveg0,.) € H'*¢, andd,u(0,.) € H®; sou € V.

This implies thatf(u) € L'([0,7], H*(]z| < R + T + 1)), henceu € Va.. Then we
iterate this process to obtaine V;,. ¢ L>([0,T], H:t™¢), m € N, large enough, and reach

loc

L>([0,T), H*(|z| < R + 1)) for any desired reat < 2.
This completes the proof of the proposition:

This completes the discussion of the cage— o > 0 that has to be excluded.

Remark— By considering a more regular functignone can obviously improve the regularity
of the compositiory (u).

We continue now the proof of Theorem 1, and we consider the 2nd case.
Second casey,, — 0.
We write f(u,) = f'(0)u,, + R(u,) whereR verifies

(4.11) |R(s)| < C(|s]> + |s]").

Eq. (4.4) becomes then

(4.12) Ovy, + a(x) 0o, + f/(0)vy, + iR(anvn) =0.
a

Passing to the limity,, — 0 we obtain
(4.13) Ov+ f/(0)v=0 inD'(J0,T[x R3),
(4.14) =0 in]0,T[x (|| >R).

Here the unique continuation result is obvious. Indeed, the equation has constant coefficients,
so we can apply Holmgren uniqueness theorem to the system

(4.15) Ow + £/ (0)w=0 in]0,T[xR3,
(4.16) w=0 1in]0,T[x(|Jz| > R)

with w = ;v and deduce that = 0. Thenv =0.
Let us now prove thab,, — 0 strongly in H*(]0,T[x R3). Obviously this will be in
contradiction with (4.6) and will complete the proof of the inequality (4.1) and that of Theorem 1.
First of all, we have to prove that the nonlinear term in Eq. (4.12) goes to O in
LY([0,T), L2 (R?)), whenn — oo. For that, we proceed as follows. We write

loc
R(anv,) = R(uy),
and we estimate (with uniform constantsij

HX(‘T)R(U")HLl([O.,T],L2) S C(HXUiHLl([o,T],m) + "X|“n|p"L1([07T]7L2))
A r 1/4
(4.17) éC’/Hun(s)HQLG ds—i—C/Hun(S)Hi/f(/|un|2(2p—3)) ds.
0 0
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Due to the injectiorf! — LS , and taking in account that the energy.gfis decreasing, we
obtain

7 1/4
(418) X R(un)| 0.1y 2 < C2 + Cad? / ( / |un|2<2p3>> s
0

where the last integral is bounded by a Strichartz norm,pftake (¢,r) = (2;’%33, @)),
and then uniformly bounded in. Finally

L @) Run)

Qp

(4.19) < Cal/?

L' ([0,T],L?)

which yields to the desired result.

Starting at this point, we may argue as in the first case. Indeed, we first prove that every m.d.m.
w associated to the sequenggevanishes. This guarantees the strong convergence to zefq of
in L2(]0, T[ x R3). Then, multiplying byy(t)v, and integrating (i.e. using the equipartition of
energy), one deduces that — 0 in H'([0,7] x R?). This contradicts (4.6).

The proof of Theorem 1 is now complete.

4.2. Proof of Theorem 2

The proof of Theorem 2 uses some of the tools developed in the proof of Theorem 1. However,
we need to employ also the multiplier techniques in [25,27].

We argue as follows.

Using the multiplier techniquesin [27] one can easily deduce the existefite-é¢fandC > 0
such that

T
(4.20) Fu(T) < c[ //a(x)|ut|2dxdt+ el 0.0 |
R3 0

This is in fact the statement of Lemma 5 in [27] whose proof applies in all the rarge

We emphasize that this inequality holds under the further qualitative property on the
nonlinearity of Theorem 2 and that it is of global nature in the senselttatd the constant
C are independent of the solution.

Itis then sufficient to prove the existence of a const@nt 0 such that

T
(4.21) [l 220, 7(x Bar) < C//“($)|ut|2d:cdt,
R3 0

for every solution.
To prove this we argue by contradiction as in Lemma 6 in [27]. We suppose there exists a
sequence of solutionfa, } such that

T
(422) ||Uk||%2(]O7T[XB4R)///a(I)|uk,t|2d$dt—>OO,

R? 0

ask — oo.
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The key point is to observe that, = [|uk| 2o, 7[xB.r) IS NECessarily bounded. This is so
since the timel” and the constan® in inequality (4.21) remain bounded when the nonlinearity
f is replaced by the rescaled family (s) = f(As)/\ with A > 0. This is so precisely because
of the qualitative assumption on the nonlinearity we introduce in Theorem 2.

Once)y, = |luxll 220, 71x Bax) IS Known to be bounded, the rest of the proof holds exactly as
in the proof of Theorem 1 above.

5. Thesubcritical wave equation in a bounded domain

In this section we consider the subcritical nonlinear wave equation in a bounded domain of
R2, with a nonlinear term that has been cut-off away from the boundary. First, in Section 5.1,
we prove a global existence and uniqueness result. At this respect it is important to note that the
mixed problem is in general well posed for at most cubic semilinearities (cf. [14]). However,
we can deal with subcritical nonlineariti€p < 5), because it has been cut-off away from
the boundary and this allows using local Strichartz’s inequalities. In Section 5.2 we prove
a stabilization result. In Section 5.3 we prove the controllability results in Theorem 3 and
Corollary 4 in a non-uniform time guaranteeing that every initial state can be driven to any final
state if the time is large enough, depending on the size of the data to be controlled.

5.1. Global existence and uniqueness

Let 2 be a smooth, open bounded setRt. Consider also a nonlinear functigh R — R
verifying conditions (1.2), (1.3) and (1.12). Letfinaflfx) € C5°(2) be a non-negative function.
We have the following result

THEOREM 11. —For every functiory € L' ([0, +oc[, L*(£2)), and every pair of initial data
(u®,ut) € H(Q) x L?(£2), system

Ou+60(x)f(u)=g in]0,+oo x Q,
(5.1.1) u=0 on]0,+oo[ x 99,
uw(0) =u®, Qu(0) =u* inQ

has a unique solution in the space”® ([0, +oo, Hg (22)) N C*([0, +o0], L*(Q2)).
This solution satisfies moreover the following Strichartz estimd&severy finiteT > 0,
r>2,qgivenbyl/qg=1/2—1/r,andx € C§°(Q2), there exists a constaut > 0 such that

(512) ||X(I)UHLQ([O,T];LST(Q)) < C(||gHL1([O,T];L2(Q))7 EU(O))

for everyg and every initial data as before.
Here and in the sequdl, stands for the energy of solutions of this system, i.e.

(5.1.3) E(t)= %/[|Vu|2 + [ue]?] d:v—i—/é’(:v)F(u) dz.
Q Q

Proof. —We proceed in three steps.
Stepl. ExistenceWe decouple system (5.1.1), by cutting off the initial dat8, u!) and the
right hand side terng. Let V be a neighbourhood of the compact sepp(#) such thaty C Q;
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and lety € C§°(Q2), be such that) =1 on V. Defineg; = ¢g andgs = (1 — ¢)g, in such a
manner thay, = 0 onsupp(#). Consider the two following systems

Ov+0(x)f(v)=g1 iIn]0,+oo[x €,
(5.1.4) v=0 on]0,4oo[x 9,
(v(0),8pv(0)) = () (u’,u') inQ,

Ow=gs in]0,4o00[xQ,
(5.1.5) w=0 on]0,+oco[ x 02,
(w(0),0;w(0)) = (1 — ) (u®,ut) inQ.

Let Ty = min(dy, ds), where
dy = distance(supp(d)), 89), and d; = distance(supp(l — 1), supp(&)).

Then we solve the two systems above (5.1.4) and (5.1.5) on the time int@r¥ga].[

Because of the finite speed propagation of wave$ {n the present model), it is clear that:

(i) For this time interval, the solution of (5.1.4) coincides, in the supportt,ofith that of the
Cauchy problem in the free spaRe. Indeed, the solution of the latter vanishes on the boundary
because of the fact that the initial data and the right hand side have been confineg (o)
andTo <d.

(i) For 0 < t < Tp, supp(w) C Q\supp(h), i.e. w =0 on supp(d). This clearly gives
0(x)f(v) = 0(x) f (v +w).

The functionu = v 4+ w, constructed as above, belongs to
C°([0,To), Hy (€2)) N C* ([0, To], L*(K2))

and solves (5.1.1) fdr < ¢t < Ty. Indeed, the fact that it solves the equation above is an obvious
consequence of the previous discussion. The continuity in time of the solution is a consequence
of the fact that both componentsandw are indeed continuous. The continuity in timewois
consequence of the fact that it coincides, in the time intérvak < Tj, with the solution of the
Cauchy problem in the whole space, that it is known to be continuous in time with values in the
energy space.

Step2. Energy and Strichartz estimate&dding the classical energy estimate for each of the
wave equations above one obtains that

E,(t) < C[||gHL1(L2) + EU(O)] for0 <t < Tp.

Taking into account that the tinig, depends only on the geometry of the problem (heand
the supports of) and#), it is clear that one may iterate this process to obtain a global in time
solution.

On the other hand, lef(z) be a cut-off function and assume, to simplify the notation, that
x = 1 in the support o). The functionz = x(«)u solves the (free) system

{Da+9( ) f (i
((0), 0,1i(0))

which, combined with (2.2), and the energy estimate above provides the Strichartz esti-
mates (5.1.2).

=xg+ [0, xJue Lloc([ov +o0], LQ(RB))a

)
(516) € H'(R?) x L?(R?),
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Step3. UniquenessWe prove now the uniqueness of the solution. For that, we need the
following lemma.

LEMMA 12.-Let v and v be two solutions of(5.1.1) Then for everyT > 0 and
1<a<2/(p—3),there exists” > 0, satisfying

(5.1.7) 10C2) (£ () = FO)| o120y S Cllu = vl 0,751 (52))-

Assuming for the moment that this lemma holds, let us show the uniqueness of the solution.
Let u andv be two solutions of (5.1.1). The functian— v solves the system

O(u—v) +6(f(u) = f(v)) =0 in]0,+oo[ x Q,
(5.1.8) u—v=0 on 0, +oo[ x 99,
(u—v)(0)=0(u—0)(0)=0 inQ.
The energy inequality guarantees that
w— vl o (0,300 () < C||0(2) (f (w) = f(v)) ||L1([0,T],L2(Q))
(519) < OTl/ﬁHG(I) (f(u) - f(’U)) HL"‘([O,T].,Lz(Q))
with 1/a+ 1/8 = 1, thanks to Holder’s inequality. Using (5.1.7), we obtain

(5.1.10) [ — vl Lo 0,780 (2)) < CTYP|lu— | oo 0,711 (00))

which yields to the result = v, by takingT such thatCT"/% < 1.
Now we come back to the proof of the lemma.
By hypothesis (1.3), one can wrifgu) — f(v) = (u — v)G(u,v) whereG(u, v) verifies

(5.1.11) |G, 0)| < C(1+ |ulP~ + [o]P~ ).

So, by Holder’s inequality it follows that

T
1@ 7@~ 5O 0y
0

T a/3
<‘/H(u_’U)(t)HLG(Q)(/|9(;|3d$) dt
0

Q

h a/3
< [llu = ”)(t)||L°°<0,T;H1<Q>>]a/ (/ = dm) .
0 Q

To complete the proof of the lemma, it is sufficient to get a suitable upper bound on the last
integral. Obviously, the last integral can be bounded above in terms aftite 7'; L3(2))-norm

of G (u,v) which may be estimated in terms of tfi&®—1) (0, 7; L3~ (supp(#))-norms of

u andv. These two norms can be easily estimated in terms of the Strichartz-norms in (5.1.2).
Indeed, it is sufficient to set= (p — 1) which does verify the condition>> 2. Then the exponent

q = 2r/(r — 2) corresponding to this choice ofin the Strichatrz norm (5.1.2) coincides with
qg=2(p—1)/(p— 3), which is greater that:(p — 1) provided2/(p — 3) > a. This is precisely

the range of exponents in the statement of the lemnaa.
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5.2. Stabilization

The stabilization result in the case of bounded domains is as follows.

PrRoPOSITION 13. —Assume that the hypotheses of the previous theorem are satisfied. Let the
setw = {z € Q,a(zr) > cp > 0} be a neighbourhood of the boundadf?, i.e. the intersection
with Q of a neighbourhood o2 in R3. Then the local stabilization property holds for system

Ou+ a(x)0iu +60(z) f(u) =0 in]0,+oo[ X £,
(5.2.1) u=0 o0n]0,+oo[ x 0L,
(1(0),0:u(0)) € HE (Q) x L*(9).

More precisely, for ever§, > 0, there existC' > 0 and~ > 0 such that inequality1.8) holds
for the energy®,, in (5.1.3)providedE,,(0) < Ep.

Remarks— (a) Note that, in this proposition, the assumption (1.4) on the nonlinearity may be
relaxed to (1.12).

(b) It would be interesting to see if a global stabilization result as that in Theorem 2 is true in
this case.

We follow the same approach of the proof of Theorem 1.

As usually, we seek for an estimate of type (4.1) for every solutiasf (5.2.1) verifying
E.(0) < Ey. A contradiction argument provides a sequengewhich contradicts (4.1) and a
sequence,, such that

Ovy, + a(z)0pv, + %G(x)f(oznvn) =0 in]0,+oo[x £,
v, =0 0on]0,4o0[ x 09,
(5.2) fOT Lla(x)|5)tvn|2dtd:v—>0,
1/C < Ev,(0) < C,
an = (Bun(0))/? - a.

We examine, again, separately the cases0 anda = 0. We denote by the weak limit of
the sequencév,, }.
First case o > 0. We come back to the equatiomin and we pass to the limit. We then obtain

Ou+0(z)f(u) =0 in]0,T[x€Q,
Ou=0 on]0,T[x w,
we L>®([0,T], H}(2)), Owue L>([0,T], L*(2)).
Let x(x) € C§°(€2) be such thag = 1 onsupp(#), andsupp(Vx) C w. The functioni = yu
verifies
Ot + 0(z) f(a) = Vx.Vu+ (Ax)u € L*([0,T], L*(R?)),
du=0 in]0,T[x (R3\Q),
ﬂ’ELOO([OaT]le(R3))a 6ta€LOO([07T]aL2(R3))

The right hand member is ih* ([0, 7], L%(R?)), so@ has bounded Strichartz norms. Applying
then the regularity theorem (Theorem 8), we obtain tha bounded as well ag’(@). Then,
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w = 0, satisfies
{ Ow + 0(x) f'(W)w=0 in]0,T[x R3,
w=0 in]0,T[x (|Jz| > R)

whereR is large enough. By unique continuation we deducedhat(. Thusu = u(x) € H}(Q)
for t €]0,7[, and it satisfies—Au + 0f(u) = 0, in . Multiplying this equation by: and
integrating ovef), we obtain

/(|vu|2 +0uf(u))dz =0,

Q

and this implies: = 0, because of the good-sign assumption (1.4Yon

Consequentlyy,, — 0in H(]0,T[ x ). Here, we use again an argument based on microlocal
defect measures. Let be a m.d.m. associated tg, in H'(]0,T[ x 2). It is easy to see from
(5.2.2) that, = 0 in ]0, T[ x w. To complete the argument, we use the propagation property of
the m.d.m. inQ2 (away from the boundary). This gives= 0 everywhere; hence,, — 0 in
H(]0,T[ x Q), which contradicts the fact that > 0.

Second casex = 0. Lettingn — oo, we obtain that the limiv of the sequencév,, } satisfies

Ov+6(x)f'(0)v=0 in]0,T[xQ,
Ov=0 onl0,T[Xw,
v e L>®([0,T], H}(S2)).

The existing results on unique continuation applied to this system after derivation in time allow
to show thaty = 0. The rest of the proof is very close to the corresponding one of Theorem 1.
Indeed, a suitable set of truncature functions replaces the problem under consideration by a global
one in the whole space and the same arguments apply.

The proof of the stabilization result on the dom&iis now complete.

5.3. Exact controllability in a non-uniform time

In this section we give the proof of Theorem 3 and Corollary 4.
We first prove Theorem 3 and then indicate how Corollary 4 may be obtained.

Proof of Theorem 3. Recall that, according to the results of the previous section and, in
particular, in view of the stabilization result of Proposition 13, we can assume the initial and
the final data to be controlled to be small. Indeed, it is sufficient to solve the dissipative system
(5.2.1) with the initial data to be controlled. Then, the solution can be made as small as we
wish by taking the time sufficiently large. The same can be done backwards in time, taking into
account that the system under consideration is time-independent, starting from the final data to
be controlled.

Thus it is enough to prove the exact controllability to zero for small data. We will use a
nonlinear variant of Lions’ H.U.M. (Hilbert Uniqueness Method) (see [13]), following closely
the proof developed in [26].

Let us first consider the linearized system

Ou+0(z)f'(0)u=g(t,x)l, in]0,+oo]x 1,
(5.3.1) u=0 on]0,+oo[ x 99,
w(0)=u", Qu(0)=u' inQ.
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Here and in the sequeb denotes the neighborhood of the boundary where the control is
supported and,, its characteristic function.

This system is exactly controllable in tirfie> 2 R. Indeed, for anyu®, u') € H} (Q) x L?(9)
there existg in L?(0,7T; L?(w)) such that the solution of (5.3.1) satisfies

u(T)=u(T) =0.

Moreover, the contraj of minimal norm is unique and depends continuously on the initial data
(u®,ut) in the corresponding norms. More precisely, the confrislthe restriction td0, 7] x w
of a solution® of

O® +0(x)f/(0)® =0 in]0,4o00[ x Q,
(5.3.2) ®=0 on]0,+oo[x 09,
®(0)=o" € L?(Q), 0,9(0)=d' e H1(Q).

One can identify the solutiof® of (5.3.2) associated with the data’, ') to be controlled as
follows. For any(®°, ®!) € L?(Q) x H~1(Q) there exists a unique solution

® e C([0,T]; L*() nC*([0,T); H ().
We then solve
OU 4+ 0(z) f(0)T =1, in]0,+oo] x £,
(56.3.3) U =0 on]0,+o0]x 01,
U(T)=0,9(T)=0.
Clearly
e C([0,T], Hy () nC*([0,T], L*(R)).
The operator
A:L*(Q) x HHQ) — L*(Q) x Hy(Q)
such thatA(®°, ') = (-9, ¥(0), ¥(0)) is an isomorphism. Indeed,

<A(<I>°,<I>1),(<I>°,<I>1)>_/T/|<I>|2da:dt,

and, on the other hand, taking into account thiat 2R, one can prove the existence of a positive
constanCC' > 0 such that

T
2
1@ ooy vy <€ [ [ 10w
0 w

for every solution® of (5.3.2). This can be done using multiplier methods (see [13]) or the
arguments in the previous section dealing with microlocal defect measures.

Thus, given anyu®, u') € HI () x L*(Q) there exist®°, ®1) in L3(Q) x H~1(Q2) such
that

A(@O, @1) = (—ul, uo),
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and this is precisely equivalent to saying that the solutiaf (5.3.1) with controkb coincides
with ¥ and therefore, in particular, fulfills the requiremen?’) = u,(7") = 0.
Now, in what concerns the nonlinear system, after solving Eq. (5.3.2) fare solve

Ou+ 0(z) f(u) = @1, in]0,+oo] x Q,
(5.3.4) u=0 on]0,+oo[ x 09,
u(T)=0w(T)=0 inQ.

The problem is then to show that the operatodefined onZ?(Q) x H~1(£2), with values in its
dual L2 () x H} () by
A(2°, <I>1) = (—0u(0),u(0)),

is onto on a small neighbourhood of the origin.

Note that the functiom = « — ¥, whereV is the solution of the corresponding linear problem
(5.3.3), belongs t&°([0, 7], Hi (2)) N C*([0,T], L*(Q)) (in fact, bothu and ¥ do belong to
this space). Moreover, it satisfies

Ov+0(x)f'(0)v=—0(x)R(u) in]0,+oo[x €,
(5.3.5) v=0 on]0,+oc0[x Q,
v(T)=0w(T)=0 inQ,

where

We haveu = ¥ + v and therefore
A(®Y,0') =A(2°,9") + K (2, @)
where

K(9°, @") = (—0(0),v(0)).
Taking into account that
A:L*(Q) x H Q) — L2(Q) x HY(Q)
is an isomorphism, solving the equation
(5.3.6) A(q)o,q)l) = (—ul,uo),
which is equivalent to finding the control for the d&t&, «!), is also equivalent to solving
(5.3.7) B(®°,0") = -AT'K(9°,0") + A7 (—u',ul) = (9°,@1).
Therefore, the problem is to find a fixed point for the operatodefined fromZL2(2) x H~1(Q)
into itself.
We claim that the operataB is compact. For, it is sufficient to check that, as operator
from L?(Q) x H~*(Q) into its dual, is compact. To show this fact we observe that, by

Theorem 11, the Strichartz norms af are bounded on the support 6fby the norm of
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(®%, @) in L?(Q) x H~1(Q). Applying the regularity theorem (Theorem 8), we obtain that
O(x)R(u) € L*([0,T], H¢(Q2)), for somes > 0, small enough; which leads to

ve CO([0,T), Hyt(Q)) nC*([0,T], H*(%)),

with a bound orv in that space in terms df(®°, <I>1)|\L2(Q)XH71(Q). This completes the proof
of the compactness property.

Therefore, in order to obtain a fixed point, we may apply the Schauder fixed point theorem. To
do that it suffices to find a constamt> 0, such that

(5 3 8) { HB((I)O’(I)l)HLz(Q)fol(Q) < P,

V(2% @') € L*(Q) x H~1(Q): [[(2°, 1)l 2(0)x mr-1(02) < p-

We are going to show that this > 0 exists provided(u",«!) is sufficiently small in
HY(Q) x L2(£2). In view of the structure of3 it is sufficient to show that there exists> 0
such that

(5.3.9) { [K(2°, @) g1 (oyxr2(0) < P/2:

V(@0 @) € L2(Q) x HH(Q): [[(2%, ")l 2y x r-1(02) < p-
For that, we write an energy inequality for system (5.3.5). Define

E,(t)= /(|8tv|2 V20)?) da + = /6‘ (0)v? da.

Q

Multiplying the equation of (5.3.5) bg,v and integrating, we obtain

(5.3.10) *—/atv(t)t?(:zr)R(u)(t) dx.
Q
But
|0r0(£)0(x) R(u) ||L1(Q) |Orv(t ||L2Q)He(x)R(u)(t)HL?(Q)
<C(Bu(0) 7 0(@) R@)(D)] (g
Hence
dE,(t) 1/2
o l0) (B, 0)? ) R0 10

Integrating on the time intervéd, T'], and taking in account tha{T') = 9,v(T) = 0, we obtain

[ (v(#), Or(t) )HH;(Q)xB(Q) < C(Ey(t))
(5.3.11) <C||0(x)R(u

1/2

)HLl(o,T;U(Q)) :
Now, arguing as in (4.18), we have

HH(CC)R(U) <CH6‘|U|2+9|u|pHL2(Q)

1/4
3/2 _
Clllul7e sz)+||u||L/s Q)</92|u|2(2p 3)d:v> ]
Q

Iz
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Hence

3/2 1/2
H(”(t)aat”(t))HHg(Q)xN(Q) S Coi‘:gT [u(t HL6 (©) l ZUET u(t ||L6 (©)

T 1/4
(5.3.12) + / ( / 0% |u|?(2P=3) dm) dt]
0 Q

where the last integral satisfies

T 1/4
/(/92|U|2(2p_3) dﬂ?) dt < C(T, ||(I)||L1(0,T;L2(Q)))
b 0

by comparison with Strichartz norms af. On the other hand, applying the same energy
inequality tou, we have

(Bu(t) "~ <Cl®| L1 0,1522(02))
(5.3.13) <C||(2°, 9

1/2

)HL2(Q)><H*1(Q) vt €10, T].

Using the embedding fromy} () into L°(2), we obtain by combining (5.3.12) and (5.3.13)

<@ 2]

sup ||(v(t), () L2(Q)x H—1(

o )HHl (Q)xL2(Q) =

This nonlinear estimate immediately yields (5.3.9).
The proof of Theorem 3 is now completen

Proof of Corollary 4. -L_et us consider any initial and final data
(uo,ul), (yo,yl) € H}(Q) x LA(Q).

According to Theorem 3 there exi$t > 0 and a controly € L?(]0,T'[ x Q) with support in
[0,T] x w such that the unique solutianof (1.13) satisfies

1

=
3
I
<
\‘O
£
3
i
<

We now introduce the contrgl= g + (1 — 6) f (u). This control has also its supportfiiy 7] x w.
This can be guaranteed by taking the cut-off functiao thatd = 1 in Q \ w. On the other hand,
the solutionu of (1.13) satisfies also

Ou+ f(u)=¢g In]0,4o00[x 9,
(5.3.14) u=0 on]0,+oo|x dQ,
uw(0)=u" Qu(0)=u' inQ.

Note that we are not in conditions to guarantee that the finite energy solutib¢b.1) is unique
since we do not know whether Strichartz inequalities hold in the dofaip to the boundary.
But the existence is guaranteed. In facsolution of (1.13) solves (5.3.14) too.

In order to conclude the proof of corollary it is sufficient to analyze the regularity
of g. We know thatg € L2(]0,T[x ). Thus, it is sufficient to analyze the regularity of
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(1 — 0)f(u). The functionu has finite Strichartz norms in the interior 6f. In particular,
uw € L5(0,T;L{% (Q)) (take ¢ =5 and r = 10/3 in the Strichartz norms). Consequently,
(1 —0)f(u) € L*0,T; L} (). On the other hand, taking into account thathas finite

energy it is easy to see that — 0)f(u) € L>(0,T; L/%(2)).This concludes the proof of
Corollary 4. O
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