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DIAGRAM ALGEBRAS, HECKE ALGEBRAS AND
DECOMPOSITION NUMBERS AT ROOTS OF UNITY

By J.J. GRAHAM AND G.l. LEHRER

ABSTRACT. — We prove that the cell modules of the affine Temperley—Lieb algebra have the same
composition factors, when regarded as modules for the affine Hecke algebra ofAtype certain
standard modules which are defined homologically. En route, we relate these to the cell modules of the
Temperley-Lieb algebra of typB, which provides a connection between Temperley—Lieb algebras on
andn — 1 strings. Applications include the explicit determination of some decomposition numbers of
standard modules at roots of unity, which in turn has implications for certain Kazhdan—Lusztig polynomials
associated with nilpotent orbit closures. The methods involve the study of the relationships among
several algebras defined by concatenation of braid-like diagrams and between these and Hecke algebras.
Connections are made with earlier work of Bernstein—Zelevinsky on the “generic case” and of Jones on
link invariants.
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RESUME. — Nous démontrons que les “modules cellulaires” de I'algébre de Temperley-Lieb affine ont,
regardés comme modules pour I'algebre de Hecke affine dedyles mémes facteurs de composition que
certains modules “standards” qui sont définis homologiquement. Au passage, nous relions ces modules aux
modules cellulaires pour I'algébre de Temperley-Lieb de fypBarmi les applications est la détermination
explicite des nombres de décomposition de certains modules standards aux racines de I'unité, qui implique
a son tour la détermination de certains polyndmes de Kazhdan-Lusztig associés aux clotures d'orbites
nilpotentes. Nos méthodes consistent a étudier les rapports entre certaines algébres de concaténation de
diagrammes de tresses ou analogues, et entre ces algébres et les algebres de Hecke. Le travail est aussi relie
aux travaux précédents de Bernstein—Zelevinski dans le cas “génerique” et de Jones sur les invariants des
entrelacs.

O 2003 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Let R be a commutative ring with and letqg € R*, where for any ringd with 1, A* denotes
the group of its invertible elements. In [14], we defined a “Temperley-Lieb cate@irywihose
objects are the natural numbé¥sand whose morphisms arélinear combinations of “planar
diagrams front to n” (for ¢,n € N), with composition depending on the elemenin particular,
we have the algebras of endomorphisms

T%q) :=Homra(n,n), forn=0,1,2,3,....

These were called in [14] the affine Temperley—Lieb algebras. Using a calculus of diagrams,
together with the philosophy of cellular algebras, we developed in [op. cit.] a theory of cell
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480 J.J. GRAHAM AND G.I. LEHRER

modulesiV, . (n) (0 <t < n, n—t € 2Z, z € R*) for the algebrad?(¢), and gave a complete
description of the composition factors of the cell modules, valid fog aétven forg a root of

unity, the most complicated case. The description of the irredu€jp(e)-modules is valid when

R is any algebraically closed field. The analysis of the composition factors of the cell modules
applies whenR is an algebraically closed field whose characteristic is eiiterp > 0 such that

pe > n, wheree is the multiplicative order of?.

Now let fl\g(q) be the extended affine Hecke algebra of tyﬂ/e:, which corresponds to
G = GL,(C). Thisis the algebra considered in [4,28,19], for which there is a theory of “standard
modules” M, n, which may be constructed by regardi@(q) as a convolution algebra of
coherent sheaves acting on the Borel-Moore homology of certain varigties wheres is a
semisimple element @ and N is a nilpotent element @& = Lie(G) such thatAd(s) N = ¢>N.
Wheng is not a root of unity, the structure of the modules y is fairly well understood, while
wheng is a root of unity, it was conjectured in [20] and proved in [1] (cf. also [10]), that the
decomposition numbers of the standard modules, i.e. the multiplicities of the irreducibles in
M; n, are given by values of certain Kazhdan-Lusztig polynomials, which are generally not
known explicitly (see also [21]).

In this work, we show that the cell modulég, .(n) of the algebral}?(q) (cf. [14]) may
be inflated via a family{v, | « € R*} of surjectionsﬁ\;;(q) — T%(q) (see (5.12) below) to
modules forﬁ};(q), which we identify explicitly (in the Grothendieck gromﬁz}(q)) of finite
dimensionalfl\g(q)-modules) with the standard moduld$,  where N has just two Jordan
blocks. This enables us to use the results of [14] to give completely explicit decompositions of
these standard modules, and therefore give character formulae for their irreducible heads. We
also obtain much detailed information about their internal structure. Among the consequences
of our results are the statements thas y is always multiplicity free, and that whenis a root
of unity, the composition length may be arbitrarily large famcreases). The key point in this
work is the identification of the inflations of our cell modules with the standard modules up to
Grothendieck equivalence (Theorem (9.8)).

To achieve this, we show that the inflatiot§ W, .(n) are generically (i.e. for generig)
induced modules from a parabolic subalgebrafﬁ;f(q). For this we need to understand the
action of the “translation elementX’; on the inflations. This in turn depends on the relationship
between two (known) ways of viewing/ﬁ;(q); the first as a twisted tensor product of the
group ring R[{V')] of Z = (V') with the Hecke algebr@/2(q) of the Coxeter system of affine
type A;,/l the second as the tensor product of the finite dimensional Hecke algglira
of type A, 1 with the R-algebra of Laurent ponnomiaIR[Xlﬂ, ..., X*']. We approach
this relationship via generalised Artin braid groups. In addition, we shall have recourse to the
“Temperley—Lieb algebra” of typ®,,, denoted byI'L B,,(q, Q) below (it is sometimes referred
to as the “blob algebra”), to determine the action of ftig sinceT?_,(q) is not naturally a
subalgebra of?(¢), and therefore one does not have restriction. We circumvent this difficulty
by proving that for anyQ, there is a pair of natural surjections frdfif(q) to TLB,(q,Q),
and studying restriction fronTLB,,(¢,Q) to TLB,_1(q,Q). This could be used to study the
“modular representation theory” d/f\g(q), but we do not do this here. In the final Section 11 we
interpret our results in terms of a generalisation to the non-generic case of the “multisegments”
of Zelevinsky and Bernstein.

Since the “annular algebras” of V. Jones [16] are quotients of the algé&kffas, their
representation theory may be thought of as a subset of the story below. Hence our work throws
light on the connection between the work of Jones on link invariants (cf. [17]) and affine Hecke
algebras.
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2. Somegeneralised Artin braid groups

Let W be the symmetric grouym,,, realised as a Coxeter group generated by the reflections
s; in the hyperplanes; — z;;1 =00of V=C" (i =1,2,...,n — 1). Write s,, for reflection
in the affine hyperplane; — 2z, = 1. Then{sy,...,s,} are Coxeter generators for the affine
Weyl groupWe = W x Z"~1, which may also be thought of as generatedibytogether
with translations by vector&i,, . ..,a,), with a; € Z anda; + - - - + a,, = 0. Write Wa for the
semidirect product off” with the grouZ” of all translations by vectors with integer coordinates.
Write vo = (1,1,...,1) and denote by, the orthogonal projectiop,: V — vz. Then and
W< act irreducibly as Coxeter groups &3 = vy, andW? is a normal subgroup dae, with
quotientZ.

The reflecting hyperplanes diV* acting onV are the hyperplanes; — z; = k, for
1<i<j<nandkeZ. Write M* for the complement of these hyperplanes/irand M
for po(M“). Thus, explicitly,

M®*={(z1,22,...,2n) €V =C"|z; —a; ¢ Zif i #£j}.

(2.1) PrRopPosITION(Nguyen [27]). —The fundamental group; (M§/W?) is isomorphic to
the Artin group associated to the Coxeter systéWt', {si,...,s,}).

In fact Nguyen proves this for any affine type Coxeter group by giving a “cell decompaosition
of the spaceM§/W®. In our case we have explicitly that, (M§/W*), which we denote
henceforth byA,,, is generated by elemen{s, s, ..., 0, } subject to the relations

0,05 =0;0; if jEit1l (modn),
(BR)
0;0i+10; = 04410041 fori:1,2,...,n,
where the subscripts in (BR) are takewod n.

(2.2) LEMMA. — The mag : M* — M§ is aW *-homotopy equivalence. Hence the quotient
spacesM®/W® and M§/W* are homotopy equivalent. In particular they have the same
fundamental group.

Proof. —If I is the unit interval and is the inclusion ofA{§ in M ¢, thenpy o= idpge, and
the map(v,t) — v — (1 — t)<”"n—”“>v0 (M x I — M*) defines a homotopy frorio pg to id .,
which commutes with th&/“ action foreact € I. O

(2.3) LEMMA. — LetWa > W be as described above. The mbfy /W — M"/I/I//\a is an
unramified covering with covering grouja

The proof is easy. Note that the quotié/ﬁ\P/W“ is generated by the element
7 = (¢n,(1,0,0,...,0)) € Sym,, xZ",

wherec,, is then-cycle (12...n) € Sym,,. This element has the property that" lies in the
centreZ(We). It follows from the lemma thafi/®/We may be thought of as the quotient of
M® /W< by the cyclic group(r’).

(2.4) COROLLARY. — There is an exact sequence

1—m (M*/W*) —>771(Ma/ﬁ/\a) —7Z—1.
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We now identify the spacM“/WTz and its fundamental group. For any topological spe¢e
let X,,(Y") be the space

X, (V)= {(yl,...,yn) eY" |y #y;if z';éj}/Symn.

Then evidentIyM“/I7V\a ~ X, (C/Z) = X,(C*). But if Mp, is the complex hyperplane
complement of typds,, (viz. C* with the hyperplanes; + 2; = 0 andz; = 0 removed), and
W, is the corresponding Weyl group, then clearly

(2.5) Mg, /Wg, = X,(C*)/{id} = X,,(C*) = M&/We.

But Deligne has shown [7] that the space of regular orbits of a finite Coxeter group on its
complexified reflection representation space is its associated generalised Artin braid group (this
is also proved in [27]). Writd",, for the generalised Artin braid group of tygg,. ThenIl',, has
generator§éy, 01,09, ...,0,—1}, With relations

005 =004 if |Z—j|¢1,

0;0i+10; = 04110011 fori:1,2,...,n—2,

(BRB)
&101&101 = 01&101&,

§o; =06 ifi#AL

Now paths inX,,(C*) may be regarded as periodic braids, or braids on a thickened cylinder,
as follows. Think ofC* as the plane with a large hole @t choosen points Py, P, ..., P,
in C*. A path inX,,(C*) may then be regarded as a braid “around the hole”, or on the thickened
cylinder, where each string starts at soMend finishes aP;,, wherei — i’ is a permutation of
{1,2,...,n}. If we cut the cylinder open, these braids may be drawn in the plane, and regarded
as “periodic braids”, or cylindrical braids. These may be drawn as depicted in the diagrams in
Fig. 1, in which the two intervals labelled B are identified by bending the rectangle in towards
the page.

Now let 7 € I, be the “twist” as shown (it corresponds to the projection of a path in
Mg/We from the base poin to 7' P, wherer’ is the element defined above, such that
M“/V/V\a >~ (M*/W<)/{r")). Further, lets; be the generating braids depicted in the diagram
(i=1,2,...,n). Itis clear thafl',, then has a presentation with generatprssy,02,...,0,},
with relations (BR) for ther;, together with

To,T Y =0y fori=1,2,...,n,

where the subscripts are takemd n.
(2.6) PROPOSITION — With the above notation, let
& =710, 0 ...o0" and
ir1=0:&0; fori=1,2,....n—1.
Thenthe familf &y, 01, ...,0,-1} generated’,, subject to the relation@®RB), and{¢y, .. .,&,}
generates a free abelian group of rank
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Fig. 1.

Proof. —Itis clear tha{ &y, 01,...,0,-1} generate§',, since{r,o1,09,...,0,-1 } does, and
T=§01...0n-1. We next show tha{é;,oq,...,0,-1} satisfies the relations (BRB). This is
easy to see from the braid pictures (see Fig. 1), but we shall provide an algebraic proof. For
i1=1,2,...,n,we have

-1 -1 —1
& =04-10i—2...01TC, 10, _5...0; .

We shall first show that

To see (2.6.1), first takie= 1. Then forj > 1,

0;&1 = ajTagila;EQ .. 01_1 = Taj__llagil .. crl_l
= TO';il .. .0;:10]‘_10;10]1110]112 .. .ofl
=710, ... U;ﬁlajla;_llaja;_g ...o;' Dby (BR)
=¢§10j.
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This proves (2.6.1) foi = 1. But since§; = 0;_10;_2...01&101...0;_1, it follows that (2.6.1)
holds for allj > i. Now takej < i — 1. Then

-1 -1
ijfi =040i-10§-2...01T0, _1...0;

—1 —1
=0i-1...0404410505-1...01T0,_1...0;

-1 -1
=0i-1...0j4100j41045-1...01T0, 1 ...0; by (BR)

:gidj.

This proves (2.6.1). We next show that

(2.6.2) §101§101 = 01610161

Let

-1 -1 -1 -1 -1
Bn=0pn-10,_9...01 0, 10, _o...07 .

We shall show by induction on that
(2.6.2.1) ﬂnzagizagilagiga;iT..01_102_1.

If n =2, both sides of (2.6.2.1) are equalitoln general,

—1 -1

_ -1 -1 -1 -1 _-1
Brn=0n-10,_90, 10, _4...01 0, 90, _5...

_ -1 -1 -1 -1 _-1 -1 -1
=0, 90, 10n—20,_3...01 0, 10, o...0q

_ 1 -1
- O'n72o'n716n*17

which proves (2.6.2.1).
Next, observe that ify, = o0, ',...07 0, 0, .. .05, then, = B,. For n = 3,
Yo = Bn =07 ‘o5 . Ingeneraly, =0, ot 7.1, and so

(2.6.2.2) Yo = Pn

for all n, by induction onn.
To prove (2.6.2), we now have

-1 -1 —1_ -1 -1 —1
01§101&1 =0170,,_10,_9...049 TO, 10, _9...0]
_ 2 _—1 -1 -1 -1 -1 _—1
=01T"0,, 90, _5...01 0,10, _90, _5...07

2 -1 -1 -1 -1 -1 -1
=T"0p-10,_90,_3...01 O, _ 10, _g9...0]
2
=70,.
But

1 1 -1 -1

-1 -1 -
1018101 =70, 10, _9...05 TG, 10, _o...045

_ .2 -1 —1 -1 _ -1 —1
=T 0,90, _3...01 0, 10, _9...09

=T '-Yn
=726, by(2.6.2.2)
= 01510151,

which proves (2.6.2).
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It follows immediately from (2.6.2) and (2.6.1) that the famil§;, o1, ...,0,-1} satisfies
the relations (BRB). But the relations (BR) and;7—! = o;,, are similarly shown to follow
from (BRB), whence we have a presentatiod’gf

It remains to show that thg commute with each other. Note that (2.6.2) sayshét = £2¢;.

In general, suppose that we kngy§; = &;¢&; forall j > i, 1 <i < k. Since, = oj—1£k—10k—1,

if 7 >k, & commutes witho,_; by (2.6.1), and with€,_; by induction, and hence witt,.
Hence by induction th¢; all commute. To see that there are no relations among;tteme may

use the braid picture as follows. In any cylindrical braid of the f@{f ...£~, note that each
string joins points on the top and bottom of the cylinder which have the same label, since this
is true of eackt;. Given the braid, the indices; may be recovered as the number of times the
relevant string winds around the cylindem

(2.7) COROLLARY. — The exact sequeng®.4)is realised as
1—-A,—-T,—>Z—1,

whereA,, — T, is inclusion and’,, — Z is the map taking‘ro—fll .. .agl el',tor eZ.
Our final result in this section is

(2.8) LEMMA. — We have the following relation ifi,,.

" =612 . &n-
Proof. —Since¢; =70, 0, . ..oyt andg; 1 = 0;&04, one shows easily by induction on
thatforl <i<n—1,

_ i -1 -1 _-—1 -1 -1 -1
§1&2.. .5 =T'0, ;... 00 Op i 105 o Op 1...0; .

Hencet &y .. .61 =7" "oyt ot =160 O

n—1

3. Affine Hecke algebras of type A

Let R be a commutative ring, denote y* the group of invertible elements dt, and let
g € R*. We maintain the notation of the last section, so hais the Artin braid groupB(B,,)

of type B,, andA,, is the Artin braid groupB(/T;:) of type/m, regarded as the subgroup
of I',, generated by, ..., 0, . Denote byRT",, the group ring ofl",, overR.

(3.1) DEFINITION. — LetS; be the elemens; = (o; — q)(0; +¢ ') of RT,, (i =1,2,...,n).
The affine Hecke algebré2(q) of GL,, overR is defined by
Hj(g) = R/ (S1).

Note that sincesy, .. ., .S, are all conjugate iRT,,, the ideal(S;) is equal to(S,...,S,).
Letn: RT',, — H2(q) be the natural map. We then write

n(o;)=T; fori=1,...,n,
n(r)=V.

3
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486 J.J. GRAHAM AND G.I. LEHRER

The next proposition collects some well known facts concerm/ﬁggq), many of which may
be found in 83 of [24].

(3.3) PROPOSITION —

(i) The elementd1,...,T, generate a subalgebrd/?(q) of @(q), which hasR-basis
{T, | w € W= Sym,, xZ"~ 1}, where, ifw = s;, ...s;, is a reduced expression far € W¢,
T,=1T;, ...T;,. We refer to this as the “unextended” Hecke algebra of nﬁ/p;e:.

(i) The elementq7,...,T,—1 generate a subalgebrél,, (¢) of ]@(q) which has(finite)
R-basis{T,, | w e W = Sym,, }.

(iii) We haveH?(q) = RZ ® H¢(q) = R(V) @ H?(q), where the tensor product is twisted,
using the action of/ on H2(q): VT;V~! = T; 1, where the subscript is takenod n.

(iv) We havefl\g(q) =~ H,(¢q) ® R[Xi",..., X'] as R-module, and the multiplication is
given by the “Bernstein relations’for i € {1,...,n — 1}, write s; for the corresponding simple
reflection in1¥ and % f for the image off € R[Xi!,..., X!] under the natural action of
W = Sym,,. Then

. =)
Tf - (" N)Ti=(a-q ") -

f=CDT=la=a )T 3

(v) The centreZ(fIZ;(q)) is the ring of symmetric functions in thﬁ’fl. Equivalently,
Z(Ha(q)) = R[EE!, ..., 2%, whereX; is theith elementary symmetric function in thg.

Note that some authors use notation which results in the denominator of (iv) above being
1— X X,

We remark that to prove the relation in (iv) from those given in Section 2 for the braid group,
one observes that the relation is linearfinand hence need only be proved for monomials;
moreover one easily shows that if the relation holdsffoand f>, then it holds forf; f>. Thus
one is reduced to proving the relation foe= X;, which is easy.

In addition to the algebras above, we shall need to consider the (finite rank) Hecke algebra
of type B, which arises as follows. Lel#’B := Sym,, x (Z/2Z)™ be the hyperoctahedral group.
This is generated as Coxeter group{y, . .., s,—1}, together with another generatay. The
generator$so, s1, . . ., Sp—1 } are involutions, and satisfy the relations analogouB®E) above.

Let@ € R*. The Hecke algebr&B,,(q, Q) of type B,, with parameterséq, Q) is defined as

HB,(q,Q) = Ha(9)/{(X1 — Q) (X1 +Q7"))
=RT,./((&—-Q)(&+Q "), (c1—q) (o1 +¢7")).

(3.4) PROPOSITION — Let
ng: Hi(g) — HBn(q,Q)

be the natural map. Writel; € HB,(q,Q) for the image ofT; € ﬁ?}(q) under ng
(t=1,...,n— 1) (relying on the context to distinguish between theand writeTy = 1o (X1).
ThenHB,(q,Q) hasR-basis{T,, | w € WB}, where, ifw=s,, ...s;, is a reduced expression
forwe WB, T, =T;, ... T3,.
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The relationship among the various algebras introduced so far is illustrated in the commutative
diagram below.

Hy,(q)

incl

RA, —— H2(q)

(35) incl incl
RT, —— H2(q)

nQ

HB,(q,Q)

The relations discussed in Section 2 for the braid grdypandA,, may be interpreted in the
Hecke algebras as follows.

(3.6) LEMMA. — The following relations hold i@(q).
(3.6.1) V'=X1X5... Xy,
(3.6.2) V=XTT,...T,_;.
If we write V' for ng (V') and adopt the notation of3.4), we also havéin HB,,(q,Q))

(3.6.3) V =ToTi...Tp_1.

4. Affine and finite dimensional Temperley—Lieb algebras
LetW = (s1,...,8,—1) = Sym,, as above and write
Wi:<si,si+1>%8ym3 fori:1,2,...,n—2.

Define the elemenk; € H,,(¢q) C H%(q) C H(q) by

Ei= ) ¢"T,
weW;

where/(w) denotes the usual length function. Lietresp.I) denote the ideal off?(q) (resp.

fl\g(q)) generated by, . Note that since thé’; are all conjugate, this is the same as the ideal
generated by all thé&;.

(4.1) DEFINITION. — The affine Temperley—Lieb algebrdd.;, (¢) and fLE(q) are defined
by
TLy(q) = Hy(9)/1,
TL,(q) = Hi(a)/1.
It is known (cf. [14,15]) that ifC; = —(T; + ¢~ ') € H%(q) (i =1,...,n), then in H3(q),
CiCi11C; — C; = C;11C;Ciy 1 — Ci11 = —q>E;, where the indices are takenod n. If we
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abuse notation by writing; € TL:. (¢) for the image ofC; € HZ(q) under the natural map, it

follows easily thatT'L;, (¢) is generated byC1, . .., C,, } subject to the relations
C? =4,C,
(TL) CiCix1C; =0,

CiCj = C;Ci i [i—j| =2 and{i, j} #{1,n},

where, for any element € R*, 6, := —(z +z71).
Moreover it is easy to see that (cf. (3.3)(iii) above, or [15, §2])

(4.2) TLE(q) = R(V) ® TLE(q),

whereV permutes th&’; cyclically.

Now in addition to the algebraBL: (¢) and TL\‘;(q), we shall require the algeb#& (¢) which
was defined in [14, (2.7)] and referred to there (loc. cit.) as “the affine Temperley—Lieb algebra”.
This is defined as an algebra of diagrams or, more accurately, as the algebra of morphisms:
n — n in the categonyT® (see [14, (2.5)]) and'L} (¢) is identified [14, (2.9)] as the subalgebra
of T.%(¢q) spanned by the “non-monic diagrams— n of even rank”, together with the identity.
It also occurs independently in the work of Green [11] and Fan—Green [8]. We shall need to make
some use of the diagrammatic description in this work; details may be found in [14], but a good
approximation to the picture is obtained if one thinks of affine diagrams as arcs drawn on the
surface of a cylinder joinin@n marked pointsp on each circle component of the boundary, in
pairs. The arcs must not intersect, and diagrams are multiplied by concatenation in the usual way.
These diagrams are represented by periodic diagrams drawn between two horizontal lines, each
diagram being determined by the “fundamental rectangle”, from which the cylinder is obtained
by identifying vertical edges. In this interpretation, the generafdrs. . ., f,,, 7} of T?(q) are
represented by the diagrams in Fig. 2. The elemgfits . ., f,,} of the algebr&’?(¢) satisfy the
relations (TL), withC; replaced byf;, and it is noted in [14, (2.9)] that these generate an algebra
isomorphic toTL? (q). Further,r f;7—! = f; 11, where the index is takemod n.

1 2 n—1n i i+1
7 U N\ 5
0 [ | Ja\ |
1 2 n—1n i i+1
fnin—mn firm—n,1<i<n-1

Tt —t 7:0—0

Fig. 2.
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(4.3) PROPOSITION —

(i) There is a family of surjectiong, : fL\ﬁ”L(q) — T (q) (a € R*), defined byp, (C;) = f;
and¢. (V) = ar. Eachg, restricts to a monomorphism dfiL;, (q).

(i) The kernel ofp,, is generated by the element € ZFL\Z(q), where

Vo=a V20, 1 —C1Cy...Ch_1 =a2C1V? - C1Cy...Cp_y.

(i) If R is an algebraically closed field of characteristic primertpany irreducible finite
dimensional representation @fL:. (¢) is the pullback viap,, (for somex € R*) of anirreducible
representation of % (q).

Proof. —The first part of (i) follows immediately from the relations above, while the second
follows from the fact (cf. [14, 2.9]) that (TL) gives a presentationdf;, (¢). Next, one verifies
easily that2f,, 1 = f1f2... fa_1in T2(q) (see [15, 1.11]), which shows that € Ker ¢,,. The
fact thaty,, generates the kernel may be found in [11] or [8]. This relation also appears in [16].
The statement (iii) may be proved using the argument of Theorem 2.6 in [L5].

In [14], we defined cell module¥; .(n) for the algebrdl?(q), (wheret € Z,0 <t < n,
t+n € 2Z,andz € R*) and whenR is an algebraically closed field of characteristic zero,
completely determined their composition factors and multiplicities. Our purpose here is to
interpret these results for the pullback§W; .(n). To identify these pullbacks as standard
modules for@(q) up to Grothendieck equivalence (cf. [19] or [31]), we need to determine the
action of the translation elememt§ on the modules, and for this we shall require the Temperley—
Lieb algebral’LB,, (¢, Q) of type B,,.

5. The Temperley—Lieb algebras of type B

This algebra has been studied by mathematical physicists [25,26], where it is referred to as
the “blob algebra”, and in [29] (see also [6], and the references there). We shall present here
the main facts which we require concernifid.B,,(¢q, Q), relying for general background on
op. cit. Our notation continues from Section 3 above, and we start with an algebraic definition
of TLB,(q,Q).

Note first that the Hecke algebfaB,, (¢, Q) has anR-algebra homomorphism

€: HBn(q, Q) — R,
defined on the generatdfs (i = 0,1,...,n — 1, see (3.4)) by
e(T)=Q, e(T;))=q for1<i<n—1.

As above, letsg, s1,...,s,—1 be the simple generators of the hyperoctahedral griégup, and
write W; = (s;,s;+1) for i =0,1,...,n — 2. Then defineE; = Ewewi e(Tw)Tw. FoOri #£0,
theseE; coincide with theFE; of Section 4, and they are all conjugatefiB,, (¢, Q). Fori > 0,
letC; = —(T; + ¢ 1), and letCy = —(Tp + Q1). The next lemma summarises several relevant
relations inHB,,(q, Q).

(5.1) LEMMA. —
(I) Fori=1,...,n—2, CiCi+lci - C; = —q3Ei.
(II) Fori=2,...,n—1, C;Ci1C; = C; = —q3Ei.
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(III) Let X = C,CyC; — kC4, wherex = % + % ThenXCy=CyX = q_QQ_2E0.
(iv) We haveC? = §,C; for i # 0, while C3 = 6o Cy.

The proofs are simple computationshfB., (¢, Q).

(5.2) DEFINITION. — The Temperley—Lieb algebrBLB,, (¢, Q) of type B,, with parameters
(¢,Q) is defined as

TLBn(q, Q) := HBn(q,Q)/(Ey, X) = HBn(q,Q)/(E1, Bz, ..., En—2,X).

Note that the kernel of the natural m&/ﬁg(q) — TLB,(q,Q) contains the kernel of the
natural mapH¢(q) — TL} (¢q). Hence the former map factors through a surjection

TL* (q) — TLBn(q, Q).

This is reflected in the diagram (5.6) below.

Denote by lower case letters the imagesTinB,, (¢, Q) of the corresponding elements of
fl\;;(q) (or ZFL\Z(q) or HB,(q,@)). Thus in particular we write;, ¢; respectively for the images
in TLB,(q,Q) of T;,C; € HB,,(¢, Q) under the natural map €0, 1,2,...,n). Similarly, we
have elements; (i=1,...,n) andv € TLB,(q,Q). The next statement is easy to verify from
the foregoing discussion.

(5.3) PROPOSITION —
(a) The Temperley—Lieb algebrd'LB,,(q,Q) is generated asR-algebra by the family
{co,c1,...,cn—1} Subject to the relations

2
cg =909co,

2
G

=d4¢; fori<i<n-—1,
(TLB) CiCit1C; =G for 1 <1<n— 2,
C;Ci—1C; = C; f0r2<z<n—1

3

C1CpC1 = KCy,

wherer = & + % andé, = —(z+z7 1) forz € R*.

(b) The elements,, ..., c,_1 generate a subalgebra &fLB.,,(q, Q) which is isomorphic to
the usual Temperley—Lieb algebra,Tly) of typeﬁz,/l.

(c) The following relations hold i"LB., (¢, Q).

(i) to=—(co+Q Y andt;=—(c; +q ) fori=1,...,n—1.

(i) If v e TLB,(q,Q) is the image o¥ € HB,,(¢,Q) under the natural map, then

’U:totl...tnfl.
n

(i) z122... 2, = 0™,
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A diagram of maps relating the algebras we have now introduced is as follows.

m

Hn(q) TLn(q)

incl incl

RA, —— H}(q) ——= TL;(q)

(5.6) incl incl incl

— 3 — ¢a
RT, —— H(q) — > TIL%(q) — = T(q)

nQ T

HB,(q,Q) —=> TLB,(q,Q)

where thern; are the natural surjections ang exists because the kernel gf o g contains

E, € fl\g(q), which generates the kernel @f. Thusn, o n¢ factors throughl'L;, (q).

The algebraTLB,(¢,Q) has a description in terms ofarked diagramgsee [25,26,29])
which we now describe, because this description is convenient for the discussion of cell modules.
We shall use the language of [14] for diagrams. Recall thtatifare positive integers of the same
parity, a finite (planar) diagram:t — n is represented by a set of non-intersecting arcs which
are contained in the “fundamental rectangle” (see below). These arcs divide the fundamental
rectangle into regions, among which there is a unique “left region” as shown below.

n

left region
t

A marked diagranis a (finite planar) diagram, where the interior of the boundary arcs of the
leftmost region may be marked with one or mergymbols (“marks”) (see below).

n

left region

/AN N

t

The R-linear combinations of diagrams from to n constitute the morphisms in the
Temperley-Lieb category¥, where the objects are the non negative inte@ers. Composition
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is defined by concatenation of diagrams, with closed loops being deleted and replaced by the
scalard,. In particularHomr(n,n) = TL, (q). Marked diagrams may be similarly concatenated
according to rules we shall now state; this produces a new catéfBrithe Temperley—Lieb
category of typeB. The composition rules are as follows.

A marked diagram igroper if it has no loops and each arc has at most one mark. The
following rules reduce the concatenation of any two diagrams t&dimear combination of
proper diagrams:

(5.7.1) If 1o is a diagram and. is a loop with no marksy II L = 644
(5.7.2) If, in (i), L has one marku I1 L = ku, wherex = % + 9
q

If some arc ofu has more than one mark apdlis the diagram obtained

5.7.3.
( ) by removing a mark from the arc concerned, then i’

Now consider the following marked diagrams frento n.

1 2 n—1n 7 i+1
1 2 n—1n 1 1+1
co:n—n g:n—n 1<i<n-—1

(5.8) PROPOSITION — The diagrams labelledy, ¢1,...,c,_1 satisfy the relations for the
generators of'LB,, (¢, Q) given in(5.3). MoreoverTLB,,(q, Q) is faithfully represented in this
way asEndrg(n) in the categoryl'B.

Proof. —The relations among diagramgsare easily checked using the rules (5.7). It follows
that there is a homomorphisri'’LB,, (¢, )) — Endrg(n), which is easily seen to be surjective,
since any proper marked diagram- n can be obtained by composing tfye The injectivity of
this homomorphism follows from arguments in [29] or [12]a

Let us now focus attention on the bottom right part of the commutative diagram (5.6). Recall
that under the mapg, X: € H:g(q) is mapped toly € TLB,(q,Q). But for any element
€ R*, we may deform botlh andyq tong, ,, andyg,,, respectively, whergg . (X1) = pTo,
nou(Ti) =T for1<i<n—1,79u(V) = wyo(V) = ptoty ... th,—1 andyg ,(C;) = ¢; for
1 <i< n—1.We then obtain a “deformed” version of the bottom right part of the commutative
diagram (5.6) as follows.

— 3

TLi (q) —"— T2(a)
(5.9 lm,u lm,u
HB,(q,Q) —2= TLB,(q,Q)

We shall study the pullbacks @l(q) of cell modules ofT)*(q) by realising the latter as
pullbacks of cell modules off'LB,,(q,Q) via a homomorphism yet to be defined. With the
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objective of defining a maf,“(¢) — TLB,(q,Q) which makes the diagram (5.9) commute,
we shall prove

(5.10) THEOREM. — Lett;, ¢; andv be the elements &fLB,, (¢, Q) defined just beforés.3)
above. Then fon > 2 we have

(5.10.1) v’ = —qf("fz)clcg e Cpe1-

Proof. —This will be by induction om. We first verify the statement for = 2. The left side
of (5.10.1) is then

c1(totr)?
= c1totitots
=cititotity  Since the; satisfy the braid relations (BRB)
=qecitotity  sincec;t; = qc;
—gei(co+ Q) (ecr+q ) (co+ Q)
= —qci(cocico +q dgco + Q7 H(eocr +crco) +2¢7 Qo + Qe + ¢ QTP
= —q(kerco + g dgerco + Q7 (Ker + Sqc1c)
+2¢7'Q Terco + Q701 + ¢ Q%)
=—qerco(h+ ¢ 0+ Q70 +2¢7' Q) — et (QTHR+ QT +¢71QT?)

= —C,

which proves (5.10.1) for the case= 2.
Now suppose: > 3. Then

c1v? = citoty .. .ty _1toty ... th1
=citoty .. tn_otott .. . tp—stn_1tn_otn_1
=citoty ... tp_otot1 ... tn_3tn_ot,_1tn_o by the braid relations (BRB)
=ci(toty .. ta2)’tn_1tn_o
=—¢ ™ eicy. . en_otn_1tn_o byinduction omn
=—q¢ " eien. . ens (cn,l + qil) (cn,Q + qil)
— —q_("_3)clc2 .. Cp—3 (Cn_g + q_lcn_gcn_l + q_15qcn_2 + q_QCn_g)
=—¢ ™ Veicy...en1 by (5.3)

which completes the proof.O

(5.11) CoROLLARY. — For each elemeng € R such that3? = —¢"~2, there is a(unique
surjective homomorphisgy : 7,%(q) — TLB,(¢q,Q) suchthays(f;) =c;fori=1,2,...,n—1,
andgg(r) = Bv. If o, p satisfya=' p = 3, then the following diagram commutes.

N3

— — ba a
H3(q) TLy(q) — = T3 (9)
(5.11.1) \Ln@,u lm,u ”

HB,(q,Q) —2~ TLB,(¢,Q)
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Proof. —-Fori=1,2,...,n — 1, the surjectionyg ,, takesC; € ZFL\‘,‘L(q) toc; € TLB,(q,Q),
while yq,, (V) = pv = ptoty ... t,—1. Hence by Theorem (5.10),

V2 + uzq_("_2)Cng ...Crh_1 €Ker(yg,u)-
But Ker(¢,,) is generated by
Vo =a2C1V2=Ci0y...Cp_;.
HenceKer(vq ) D Ker(¢a), provided that
(5.11.2) o? = —quf(" 2).
If this condition is satisfiedyq , : fL\;’l(q) — TLB,(q,Q) factors through
ba: TLy(q) = T (9);
i.e., there is a mapg : 7%(¢) — TLB, (¢, Q) which makes the diagram (5.11.1) commute.

For this map, we have by commutativityz(f;) = v9,.(Ci) =¢; fori =1,2,...,n — 1, and
95(7) =v0,u(a”1V) = Bv, whereB = o~ satisfies (5.11.2),i.68° = —¢" 2. O

Note that the homomorphisgy depends of course ap. We shall writegs = g3 ¢ when we
need to refer to this dependence.

Suppose now that we have a trigle, i, ) of elements ofR* such that3? = —¢"~2 and
B=a"'u. By (5.11), we have a commutative diagram

He(q) ve T3(q)

(5.12) o %

TLB.(q,Q)

where, in the notation of (5.11. 1), = ¢ 013 aNdEQ, . =70, © 113 = N4 O NQ -
For future reference, we summarise the definitions of the maps in (5.12) in the following
equations.

gQu(Xl)
ou(T) =t; fori=1,2,...,n—1,
Voa(V=X1T1...Tho) =
(5.13)
Vo (Ci = —(T; +q~ 1)):]@- fori=1,2,...,n—1,
95(f;) = —(ti+qh fori=1,2,....,n—1,
95(1) = Pv = Btot1...tn-1.

Our next objective is to identify the pullbacks via, of the cell modulesW; ,(n) of
T4 (q) as standard module¥, x of H2(q) up to Grothendieck equivalence. We shall do this
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by identifying W, .(n) as the pullback of a cell modul®’;(n) of TLB,(q,Q) via gz for
appropriate), and using the commutative diagram (5.12). We therefore need to discuss the
cellular structure off'LB,, (¢, @), which we do in the next section.

6. Cell modulesfor T%(¢q) and TLB,(q, Q)

The cell moduledV; . (n) of T*(q) were defined and analysed in [14]. We shall freely use the
notation and language of that work here. There is an entirely analogous “cellular theory” for the
algebrasTL B, (q, @) which we shall now sketch. Recall [13] that to specify a cellular structure
for TLB.,(q,Q), we require (i) a poseT, (ii) for eacht € T, a setM (¢), and (iii) an injection
e M(t) x M(t) < TLB,(¢,Q), whose image is aR-basis{C% -} of TLB,(q,Q) which
satisfies

aCl p= Z rq(S',5)C% p + lower terms (corresponding to< ¢)
SreM(t)

(a € TLB,(q,Q),7.(S",S) € R).

We now specify the various elements of a cellular structurlbB,, (¢, Q). Take
T ={tcZ]||t|<n, t=n(mod2)},

partially ordered as follows: < s if || < |s] or |t| = |s| andt < s.

To defineM (t), first taket € 7,t > 0. ThenM (¢) is the set of monic diagram®:t — n
with no marked through strings, where “monic” means that there gm@ugh strings, as in [14],
where it is shown that this is equivalentfdbeing a monic morphism in the category-theoretic
sense. In general, le¥/ (¢) = M(|t]). ThenC: M(t) x M(t) — TLB,(q,Q) is defined as
follows. Let S,T € M(t). Fort > 0, defineC§ - = S o T*, where* denotes reflection in a
horizontal axis. Fot < 0, definng‘T = Soc,0T* wherecy = ¢y(t):t — t is the generator
shown above (5.8). This is the diagra$m 7™, with the leftmost through string marked. The
cellular axioms above are easily checked.

The cell moduledV,(n) are now defined in complete analogy with tg . (n) of [14]. For
anyt e 7T, Wy(n) has basisV/ (t). If ¢t > 0, TLB,(q, Q) acts via composition in the category
TB; explicitly, if D € M(t) andw € TLB,(¢,Q), thenw.D = wD (composition inTB) if
wo D e M(t), andw.D = 0 otherwise.

Fort < 0, one may think of#;(n) as having basis the s€D o ¢y (t) | D € M (J¢|)} of monic
diagramst¢ — n in TB with the leftmost through string marked. Then the actioTdB,, (¢, @)
is essentially multiplication iffB, as in the case> 0. Thus ift < 0, thenw.(D o ¢o(t)) =0 if
w o D is not monic, whilew.(D o ¢y) = wDe¢y (composition inTB) if w o D is monic.

It is easily seen (cf. [29]) that the dimension (i.e. rank oigwof W, (n) is (@ ) which is
the same as that ¥, .(n). We now wish to identify the inflation of¥’;(n) via the surjection
95:T5(q) — TLB,(q,Q).

(6.1) THEOREM. — SupposeR is any commutative ring and suppose thaf) are elements
of R*, and thats, = —(q + ¢~!) is not a zero-divisor. LeB} € R* satisfy3?> = —¢"~2 and
let gs,0 = 95:T(q) — TLB,(q,Q) be the surjection defined i5.11) For ¢ € Z such that
0<t<nandt=n (mod 2), write z, = (—1)!Q1q—2("T=2)_If W,(n) is the cell module
for TLB,(q, Q) described above, then the inflatighiV:(n) (i.e. the pullback vigy of Wi (n))
is isomorphic toV; ,(n), wherez = z;.

The proof will depend on a sequence of lemmas.
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(6.2) Remark— Observe first that the finite rank Temperley—Lieb algebka(q) is naturally
a subalgebra of botff%(¢) and TLB,(q,Q); in T%(q) it is generated byfy,..., f,—1, and
has R-basis consisting of “finite diagrams” from to n, i.e., diagrams with no arcs crossing
the boundary of the fundamental rectangle (see [14, 82]'LB,, (¢, @), it is generated by
c1,...,cn—1 and has basis consisting of unmarked diagrams froto n. These two sets of
diagrams may be identified in the obvious way, and relations (5.13) showgaaps a diagram
in TL,(q) C T%(q) to the same diagram, regarded as a diagranTirB,,(¢, Q). A similar
observation applies more generally to affine and marked diagtatns:, where finite and
unmarked diagrams respectively may be identified with each other.

Recall [14] that an affine diagram fromto n is monic if it hast through strings. LetX,
be theT?(¢)-module with basisll monic affine diagrams — n, with 7% (¢) action given by
composition in the categor§*, modulo diagrams with fewer thanthrough strings. Thus,
may be thought of as a quotient of the I&ft(¢)-module Hom. (¢, n) by the submodule spanned
by diagrams with fewer than through strings. Th&€?(¢) moduleW, ,(n) is defined as the
quotient ofX; by the ideal

(6.3) I = {ym - x7}

forye X, wherey =y, =zift£0andy=x.=z+2z"1if t=0.

We shall define a homomorphisén X; — g;W;(n) which we shall prove factors through
W, .(n) for appropriatez. To do this, we require the following diagrams, which, being finite,
may (and will) be alternately thought of as lying in the categdfieandTB.

(6.4) DEFINITION. — First suppose > 0. Define monic finite diagram®;, D} :t — n as
depicted below.

In Dy, (¢t > 0) thet through strings are joined to the rightmagsbp nodes, while inD; they
are joined to the rightmost— 1 and leftmost top nodes. Note th@t and D; are finite diagrams
and that

(6.4.1) DD, =(D))*D; =id, .

Whent = 0 the corresponding diagrams are as below.

i :

Dq
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In this case
(6.4.2) (Dy)* Do = DD}y = 6, ido,

(6.5) DEFINITION. — Let X; be theT?(q)-module with basis the set of all monic diagrams
t — n (as explained above). Defitle X; — Z; := g5 Wy (n) by the formula

(6.5.1) 0(v) = 9s(vD7) D,

where~ € X;, and Df and D, are regarded as diagrams Tf and TB respectively (see
Remark (6.2)).

(6.6) LEMMA. —
(1) (cf. Remark6.2))If v € X, is a finite diagram, then provided that- 0, we havé)(v) = ~;
i.e.,0(v) is the same diagram ag regarded as a marked diagram Wy (n). If ¢ = 0, then

6(y) = b,7.

(il) Suppose that for some element R, we know that/(y7) = x6(v) for all finite diagrams

~v € X;. Then
0(y7e) = x0(v)
forall v € Xy;i.e.,Ker(6) D I,.

Proof. —Supposey € X; is a finite diagram. ThemyD; is also finite, and hence is in
TL,(q) C T%(q). By Remark (6.2), any diagram ii'’L,,(¢) is mapped bygs to the same
diagram, regarded as an elementldiB,, (¢, Q), whenced(y) = vD; D; = -y, which proves (i)
for t > 0. The same argument may be used for the case0, taking into account that
D§D{ = §,1do.

(ii) Clearly any diagramy € X; has a factorisation = w~y, wherey, € X, is finite, andw is
adiagram ifl’?(q) (in fact more is true X, is cyclic asT)?(¢)-module, generated by any one of
many finite diagrams). Hence

0(yre) = O(wyoTe)
=gg(w)f(yom) sinced is aTy (q)-module homomorphism
= x95(w)8(70)
=x0(w0)
=x0(7),
as required. O

(6.7) COROLLARY.— The homomorphism
0: X, — gEWt(n) =7

of T,%(¢) modules is surjective #f> 0, and has image preciseby, Z; whent = 0.

Proof. —By (6.6), ift > 0, the image of contains all finite diagrams— n. But these generate
W, .(n) asT(q)-module, whence the first statement: ¥ 0, then again by (6.6), for any finite
diagranmy, 6(v) € 6,Z;. Since the finite diagrams generdgasT}(q)-module, it follows that
the image is contained i, Z,. But since the image contairdgy for each finite diagram, the
resultis clear. O
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We shall show thaé factors throughV; . (n) for appropriatez € R* using the method of
(6.6)(ii), i.e. by showing thaKer(#) D I, for x = x., 2 = z:. We therefore investigate the right
action ofr; on X;.

Recall (5.13) thays(7,) = Btots ... tn,—1, Wherer, is thought of as an element @ (q).
Thus to carry through the strategy of (6.6), we shall need the following computatitiB.ibVe
adopt the following notation for diagramsTB: we say that a diagram ositiveif the leftmost
through string is unmarked, and negative otherwisé: i§ a positive diagram (e.g. i (n)),

E will denote the diagram obtained frofi by marking the leftmost through string.

(6.8) LEMMA. — Suppose > 0. Then in the categor§B, we have
ﬁtnfltn,Q e tthDé = Zt(Dt + QDt + E)
whereD;, D; are the diagrams defined above afids a linear combination of diagrams with ¢

through strings. The right side of this equation is to be thought of as an elemHEnhof (¢, n).

Proof. —Recall that forl <i<n —1,t = —(c; + ¢~ 1), while to = —(co + Q). Hence
toD} = —D), — Q~'D}. Thus we need to evaluatg_it,_»...t;D, andt,_it,_o...t; D).
For the former, we have, D, = —Dj(n — 2) — ¢~ ' D}, where Dj(n — 2) is the diagram
obtained fromD; by moving the leftmost through string past the leftmost horizontal arc. Now
caDj(n — 2) = D; andc, D; = 6,D;, from which it follows that

(6.8.1) tat1 D) =q ' D}(n —2).
Repeating this argumehttimes, wherek = n — ¢, we obtain
(6.8.2) tortar—1...tat1 D = q ¥ Dy.

But for i > 2k one sees easily thatD; = —¢g~—' D, modulo diagrams with fewer tharthrough
strings. Hence

th—1tn—2.. .tlD,lf = (—1)t_1q_t_k+1Dt + Ey

+t—2

(6.8.3) =) D+ By

whereFE); is a linear combination of diagrams with ¢ through strings. The same computation
shows that

tnoitn—z...t1(D}) = (=1)""1qg " FN(Dy) + By
(6.8.3) =(=1)" g T (D)) + By
whereF; is a linear combination of diagrams witht¢ through strings. It follows that

Btn-1tn—z...titoD} = Bty_1ty_2...t1(tc D} = —(D;) — QD))
_ n+t—2 . _ _ntt—2
=A=D)"(¢ = (D)+Q "¢ * D)+E
=Dy +Qz(Dy) + E,

whereF is a combination of diagrams with ¢ through strings. O

We now turn to the case= 0.
Recall that the diagrani3,, D{, have been defined above, before the statement of Lemma (6.4).
The following relations are easily verified.
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(Dé)*Do = (Do)*Dlo = 6q ido, and

(coDy)* Do = (Dg)*coDo = kidg = (Q + 2) ido

¢ @
whereid, is the empty diagrand — 0, in either the categorff® or TB. Note that although
in the discussion above it is always assumed that 1, from the point of view of diagram
algebras, the poirtt is an object in both categorié® andTB. The corresponding algebras are
TLBo(q,Q) = R.idp = R andT§(q) = R{r) = RN.

(6.10) LEMMA. — Lety € X, be a finite diagram. Then

(6.9)

9(’}/7'0) = 65q’7(D6)*t0t1 .. .tnleé.
Proof. —First, observe that in the categdfy, we have the following relation:
(6.10.1) 70 = D7 Do = (D{)* 1, Dy,.
It follows that for finitey € X,
0(v70) = 95(y70D5) Dy
=gp(v(Do)" T DGDG) D by (6.10.1)
(D6)"7n)g5(Do D) Dy
(D{)* ) Dy Dy D{, sinceD{ Dy is finite
=0495(7(Dy) ") Dy by (6.9)
= 0495(7(Dg)")98(70) Dj
=6,07v(D{)*tot1 ... t,—1 D sincey(Dy)* is finite O
(6.11) LEMMA. — We have

= g(

¥
=gp(y

oS O

n—4

KL
2 Dyg.

tth .. -tnleé = qi
Proof. —Denote byD;(n — 2) the diagram frond) to » which looks likeDy: 0 — n — 2, with
the rightmost top vertices joined by a horizontal arc. Then clegrly D, = D{(n —2). Further,
cn—2D} = 64Dj, ande,_2D{(n — 2) = Dj. Thus
tno1Dy=—(cn—1+q ") Dy=—(Dy(n—2) +q ' D).
Hence

tnotn 1D = (a2 +q ') (Do(n—2)+q ' Dp)
=Dy+q *8,Dy+q 'Dy(n—2)+q 2D}
=q 'Dy(n—2).
Repeating this argumeﬁﬁg—2 times, we obtain

tltg N tn—1D6 = q_nTiztlDo.
But ¢; Do = §,Do, whencet; Dy = — (8, + ¢~ 1) Do = gDy, and the lemma follows. O
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Proof of Theorem (6.1). We show first that for any elemente X; (¢ > 0), we have
(6.1.1) 0(y7e) = x=0(7),
wherez = z, = (—1)!3Q1¢~2("+t~2) and

z if t>0,

(6.1.2) Xz:{z—i-z*l if t=0.

By Lemma (6.6)(ii), it suffices to prove (6.1.1) for any finite diagram X,.

We prove (6.1.1) first fot > 0. Recall that ifE' is a positive morphism (diagram) ifiB,
FE is obtained fromE by marking the leftmost through string. Then observe that in the above
notation,D; D} = id;, while D} D}, = id;, and if we regardV;(n) as a quotient of the bimodule
Homyg (¢, n) in the obvious way, then i, (n), vid; =+, While'yi'dt = 0. Moreover, ifE €¢ TB
is a linear combination of diagrams with fewer thahrough strings, then £ = 0 by definition.
Hence

0(y7) = gs(yreDf)D; by (6.5.1)

= gg(v(D )* 7',1)D1’E SinceTthT;1 =(D})*
= 95(7(D1)*) 95(1) D;
= By(D})*toty ... t,—1D; by (6.5.1) again, and (5.13)

=v(Btn_1tn_2...t1toD;)*D; since* is an anti-involution
=vx:(Di +Q(Dy) + E)"D; by (6.8)
=x:0(7),

which proves (6.1.1) for > 0. Now taket = 0 and repeat the above computation using
Lemmas (6.10), (6.11) instead of (6.8). One obtains

0(y70) = Bo,v(Dy) *tots ... tn—1D{ by (6.10)
= B0,7(Dy) tog™ T Dy by (6.11)
= —B0,0~ T Y(D})* (co+ Q1) Do
— —B6,q T (rido+Q 15, 1dy)

— (2= s
——(Q-Q M)Bg "7 6(y) by Corollary (6.7)(ii)

But 2o = 8Q~ !¢~ "7, and sinced? = —¢"~2, 3~1 = —¢~("=2)3. |t follows easily that
0(v70) = (20 + 25 1)0(), which completes the proof of (6.1.1).

It follows from (6.1.1) (cf. (6.7)) tha® induces a homomorphism which we also denote by
0: W, .(n) — Z;, wherez = z;. Note thatV, ,(n) andZ, are freeR-modules of the same rank.
To complete the proof of the theorem, we discuss the dasdasandt = 0 separately.

If ¢ >0, then by (6.7)§ is surjective. It follows, sincéV; .(n) and Z;, are freeR-modules
of the same rank, that is an isomorphism. If = 0, the same argument (using (6.7)) shows
thaté defines an isomorphisi¥; .(n) — d,Z;. But sinced, is not a zero-divisoyZ, = Z, as
T (g)-modules, which completes the proofD
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Theorem (6.1) shows in particular that any cell modiig, (n) for the R-algebral’?(q) may
be realised as the pullback of a cell module of the algghit®,, (¢, Q).

(6.12) COROLLARY. — For any(relevan) pairt z, the cell moduléV; ,(n) may be realised
asgl o Wi(n), whereQ = Q(t,2) = (-1)'Bz" ¢ "2 L(n+t—2)

Recall from the beginning of this section that we also have cell modulgg:) for
TLB,(q,Q), fort < 0. We next identify their lift tol}? (¢) via gg,q-

(6.13) THEOREM. — Suppose&j, is not a zero divisor inkR and lett¢ satisfy 0 < ¢t < n,
t =n (mod 2). Then the inflation

gﬁ*Wft(n) = Wt,q*tzgl (n)= Wi —q22, (n)

wherez, = (—1)!Q1¢~2("*+=2) asin(6.1).

Proof. —The caset = 0 has been treated above. Note that= 3Q ¢~ 2("=2) so that
22 =—-Q7 2. Thus—Q?z = z; ', and sincély . (n) = Wy .-1(n), the case = 0 follows from
Theorem (6.1). We therefore take- 0.

First observe that in analogy with (6.5), we have a homomorphisiitf;)-modules
0~ : Xy — gg*W_i(n) given by

(6.13.1) 0~ (7) = 95(vD;)(D}),

wherey € X;, and D; and D} = D) o ¢o(t) are the diagrams defined in the proof of (6.3),
regarded as diagrams iff* and TB respectively (see immediately preceding (6.8)) that for a
diagram¥ with unmarked through string&; denotes the same diagram with the leftmost through
string marked. One verifies easily that fofimite diagranry : t — n(€ X,;) we have

(6.13.2) 0=(7) = (3).

In accordance with the strategy of the proof of Theorem (6.1), to prove the theorem it will suffice
to show that for any finite diagrame X;, we have

(6.13.3) 0= (vr)=q "2 0 () =q "2 ().

Arguing as in the proof of (6.1), we have

6~ (vym) = 9s(ynD;)(D})
= gs(v(D})"a)(D;)  sincer, Dy, " = (Djp)*
=(D})*gs(7a)(D})
= (D})*Btoty ... ty_1(D})

=(Btp_1tn_s...t1teD})*(D}) since* is an anti-involution

(6.13.4)

=72:(Dy + Q(Dy) + E)"(D}) by (6.8)
whereF is a linear combination of diagrams with fewer thiathhrough strings.
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Now a straightforward computation shows that
(DY) (Dy) =bq(id;) and D (D;) =id.
Hence from (6.13.4) we have
0~ (v7) =v2(Dy + Q(Dy) + E) (D))
= 2y(ids) (1 + Qdg)
=—Qz(idy)
—Q%z.

Butz? = —¢~'Q 2, whence; 2z, ' = —Q?z;, and (6.13.3) follows. This completes the proof
of Theorem (6.13). O

Notice that for anyt, if z, = (—1)!3Q'q—=z("*+*=2) thenz_, = ¢'z,. Hence in particular if
t<0,q¢'27} =27 '. Hence Theorem (6. 13) may be stated as follows.

(6.14) COROLLARY. — Supposé € 7 andt < 0. Then the inflatio; W, (n) = W_m;l (n).

We may combine and generalise the statements of Theorems (6.1) and (6.13) as follows. Note
that the condition o, is absent from the statement below.

(6.15) COROLLARY.— SupposeR is any commutative ring and suppose thaty are
elements ofR*. Let 3 € R* satisfy 3> = —¢" 2 and letgz:T%(q) — TLB,(q,Q) be the
surjection defined iif5.11) For ¢ € Z such thaljt| n andt =n (mod 2), defines; :=t/|t| for
t#0,ande;, =1ift=0.

Then the inflatiory; W, (n) of the cell moduléV;(n) of TLB,,(q, Q) is isomorphic to the cell
module .=« (n) of T} (q), wherez, is as defined in the statement (@.1).

Proof. —ReplaceR in the statement of Theorems (6.1) or (6.13) by the ritig, q '] of
Laurent polynomials in the indeterminatgand replace; € R by q € R[q,q~!]. Then all
algebras and modules may be considered @ijgr q ], and the hypotheses of Theorems (6.1)
or (6.13) apply and we deduce that there is a (unique) isomorphisefipty —]-modules:

gaWi(n) — Wy = (n)

which takes a finite diagram iii’;(n) to the same diagram i/}, .= (n). But R is a module

over R[q,q~!] via the homomorphism which takegto ¢. Tensoring the above isomorphism
with R provides the required isomorphismQ

7. Eigenvalues of thetrandation elements X;
Recall that we have a 1l-parameter family of surjectigns I/{E(q) — T%(q) and that we
wish to study the inflationg’ W, . (n). Now by Corollary (6.12)V; .(n) may be realised as

a pullback viagg = g, of some cell moduléV,(n) (for ¢t > 0) of TLB,(q, Q). But by the
commutativity of the diagram (5.12),

(71) z/JZWt,Z( ) wagﬁWt( ) 557MWt(n)7

wherea, 3 andy are related by3? = —¢” 2 andpua~! = 3.
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Thus we study the structure of the pullbagkgV; . (n) by means of the pullbacks, W (n).
For this we shall require some easy facts concerning the submodule structUrgrof on
restriction toTLB,,_1(q, Q). For1 <i < n, we regardT'LB;(q, Q) as the subalgebra generated
by {co,c1,...,¢ci—1}; in terms of diagrams, it is the subalgebra spanned by diagrams with the
rightmostn — i top and bottom vertices joined by unmarked vertical through strings. Throughout
this section we assume thitis not a divisor of zero i, since we shall require Theorems (6.1)
and (6.13).

(7.2) PROPOSITION — Lett € Z, 0 < |t| < n, n+t € 2Z.
() If t > 0, we have a short exact sequence

(7.2.1) 0— Wi1(n—1) = Resgrn" “@ 0 Wi(n) = Wygr(n — 1) — 0.

(i) If t < 0, we have a short exact sequence

(7.2.2) 0—-Wiiln—1)— Res?ég:(jg?@ Wi(n) —» Wi_1(n—1) — 0.

Here we adopt the convention that; (k) = 0 if || > .

Proof. —(i) If ¢ > 0, the diagrams if¥;(n) in which the rightmost top and bottom vertices
are joined span &'LB,_1(gq,Q)-submodule which is clearly isomorphic #,;_;(n —1).
The quotient module is spanned by the images of the other diagrams, which all have the
property that the top right vertex is joined to another top vertex. Define a homomorphism
Wi(n)/Wi—1(n—1) —» Wiy1(n — 1) by sending a basis diagramof Wi (n) \ Wi_1(n — 1)
to the diagramt + 1 — n — 1 obtained by moving the top right vertex to the bottom right without
changing any arcs. One checks easily that this is an isomorphigi Bf,_1 (¢, Q)-modules.

If t =0, the diagrams ir¥;(n) = Wy(n) such that the arc from the rightmost vertex is
marked span &LB,,—1(q, @)-submodule which is clearly isomorphic¥_;(n — 1) (imagine
the rightmost vertex as the bottom vertex in a marked diagtam n — 1). The quotient
Wo(n)/W_1(n — 1) is spanned by the other diagrams, and by a similar argument is isomorphic
asTLB,_1(¢,Q)-module toW; (n — 1).

(i) If ¢ <0, the same construction as in (i) (but with careti&= —1, in which case we
take the submodule spanned by diagrams with the rightmost top and bottom vertices joined
by a marked string) provides @;_1(n — 1)-submodule ofiW;(n) which is isomorphic to
W_(t|-1)(n — 1) = Wiy 1 (n — 1), with corresponding quotiedt’; _;(n —1). O

(7.3) COROLLARY.— Lett€Z, 0 < |t| <n, n+t€ 2Z and suppose > 0. There is a
filtration of W;(n) by R-submodule$V ("), i =n,n—1,n—2,...,1, asin(7.3.1)below.

Wi(n) D Wii(n—1)D---DWo(n—t) DW_1(n—t—1)DWo(n —t—2)
(7.31) DW_i(n—t—3)D---DWy(2) DW_1(1).

Thus
Wi—nti(@) fn—t<i<n,
W@ =~ L Wy (i) if i isevenandd <i<n—t,
W_1(7) if 2 isoddand0<:i<n—t.

Foreachi =1,2,3,...,n, W% is a TLB;(q, Q)-submodule oV, (n).

Proof. —This is immediate by repeated application of (7.2), which also gives an explicit
description of théV (9 in terms of the diagrams d#, (n) which span them. For the reader’s
convenience, we give this description here. Feti < n —t, W is the R-submodule spanned
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by diagrams with the rightmost — i top vertices joined to the rightmost bottom vertices by
through strings. The “remaining” part of the diagram may then be thought of as an element of
Wi_n1i(i). In particulariv ("= = Wy (n — t).

Fori =n—t— 1, we takeW ) to be theR submodule spanned by diagramgifi”—*) where
the (n — ¢)th top vertex is on a marked arc. By thinking of tfis— ¢)th vertex as moved to the
bottom, it is clear that?(»~*~1) =W _,(n — t — 1). The next termi¥/ (*~*=2) is spanned by
diagrams inl¥ (»~t=1) such that the top nodes— ¢t andn — ¢t — 1 are joined (with a marked
arc). ClearlyW (" ~t=2) = 1}/, (n — t — 2), and we may now repeat the above construction until
the sequence terminatess

To illustrate the construction in (7.3), observe that the diagkares E, ,, below lies in each
of the submodule®/ (9.

n

t

We shall now determine the eigenvalues of the translation elemeénts H\g(q) on the
inflation &7, |, Wi(n) (cf. (7.1)).

(7.4) PROPOSITION — The elemenk; X5... X, € ﬁ:z(q) acts on the module
M= gaHu.Wt (TL)

as multiplication by the scalar

n+t

(7.4.1) hin,t)=(-1)"2 p"Q~ ty3(2n—n 2)

Proof. —First taket > 0. By (7.1),£5 ,Wi(n) = VEW, . (n), wherez = z,. But by (3.6.1),
X1X3...X, =V", and by (5.13),1,(V") = a™7™ € T%(q). Moreover 7" is central in
T:(q) and acts oniV; .(n) as multiplication byz*. Hence X; X» ... X,, acts on¢j, ,W;(n)
as multiplication by the scalar

anzf:a"(( )ﬁQ 1 —= n+t 2))

which after simplification using the relatio®® = —¢"~2 and3 = o' is easily shown to be
equal toh(n,t).
If ¢ <0, the proof is the same, but we use Theorem (6.13) instead of (61).

For the remainder of this section, we take 0. .
The inflation &, ,Wi(n) defines a structure offff(q)-module on Wy(n), and for

i=1,2,...,n, the submoduldV () of the filtration (7.3.1) is stable _under the action of the
subalgebraFLB (g, @) which is the image unde, ¢ of the subalgebré{“( ) of Ha( ) which

is generated by X, 71,...,T;—1}. We shall refer to the submodul&s O] asH“( )-modules,

with the understanding that the action is inducedpy,. Now Hﬁ( ) contains the elements
{X1,Xs,...,X;} and it follows from (7.4) that

4€ SERIE— TOME 36 — 2003 -N° 4



DIAGRAM ALGEBRAS AND DECOMPOSITION NUMBERS 505

(7.5) COROLLARY. — The elementX; X,...X; € H(q) acts on the submoduld’(®) of
£5.,,Wi(n) as multiplication by the scalas;, where

t—n+2i

(1) TF QT tigr B et )Y it i on,
Bi=q (1) puiqz2=i) if i isevenandl <i<n—t,
(—1)7 uiQqz =1 if i isoddandl <i<n—t

Proof. —Using the identification of¥(*) as aTLB;(q,Q)-module given in (7.3), it follows
from (7.4) thatX; X, ... X; acts as a scalat; on W (9 and that in the three cases-t < i <n,
1<i<n-—tandievenand <i<n—tand: odd, the value of3; is respectively given by
h(i,t —n+1),h(i,0) andh(i, —1). The formulae in the statement are the resutt

We shall determine the action of tB& using the fact that
Xi=(X1X2... X)) (X1 X2... X)L
(7.6) COROLLARY. — In the filtration of (7.3)
Wi(n) = w5 ow® w5 5wl 5o,

whereW (@) is thought of as af[?(q)-module, we have, for any pair of integerg such that
1 <j <i<nthatX; acts oniW(?) as multiplication byy;, wherey; is given by

_MQ_lqn+2_t_2i ifn—t <i<n,
vi=4q —puQ tg? i if 4 is even and
pQq* " if 4 isoddandl

1<n—t,
<n-—t.

<
<1

Proof. —SinceW @) is a submodule ofi’ ‘=1 | it will suffice to show thatX; acts oniv/ (i—1)
as multiplication byy;. But W= is a submodule of¥ (), and hence by (7.5), the elements
Y; =X1X,...X; andY;_; = X, X, ... X,_, actas the scalar$, 5;,_, respectively oy (—1)
(here we také, = 1). It follows that X; = Y;Y,~| acts onW (1) as the scalay; = 3,6, },
wheref, = 1. An easy calculation now completes the proofi

(7.7) PROPOSITION — There is an ordering of the diagrams which form @jbasis of
W:(n) which is compatible with the filtratio(i7.3) and with respect to which each elemex
(i=1,2,...,n) has upper triangular matrix.

Proof. —\We use induction om; for n = 1 the result is trivial. Assume the result true for
Wi—1(n—1) andWiy1(n — 1). Then there is an ordering of the diagramsiii™ which is
compatible with the filtratiod? (") > W (=1 5 ... 50 such thatX1,..., X,,_; act in upper
triangular fashion. This is because by induction we have such an ordering of the diagrams
in W= while W /W=D =W, (n—-1) or WM /W=D =W, (n—1), whence
again by induction, there is an appropriate ordering of the other diagrai¥igin). But by (7.4),

Y, := X1 X,... X, acts as a scalar di;(n), whenceX,, = ¥, X; ' X, '... X!, is also upper
triangular. O

(7.8) DEFINITION. — (i) We denote byU(n) the subalgebra o’rfl\;;(q) generated by
{X1,...,X,}. By (3.3) this is isomorphic to the ring[ X', ..., X¥'] of Laurent polynomials
in the X;.
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(i) A character x:U(n) — R* is the linear extension td/(n) of a multiplicative
homomorphisnyx :U(n)* — R*, whereU(n)* is the group generated by t&,i=1,...,n
(which is isomorphic t&™). Such a character is clearly determined by the images oXthend
hence the group of characters may be identified \uith )™.

(i) If x:U(n) — R* is a character, write'(x) = (x(X1),...,x(Xy»)) € (R*)™ and|o(x)]
for the multiset (i.e. set with multiplicities)y (X1), ..., x(X,)}. We sometimes identify ()
with x and refer to the sequene¢y) as a character.

Now any diagranD € W;(n) may be considered as an element of an ordered ba$is ©f)
asin (7.7). Hencé defines a characterp of U(n) by

(7.9) XiDexp(X;)D+ > RE,
EeWi(n),E#£D
where the sum is over diagramslii (n) which are distinct from (and ordered lower thdn)

(7.10) THEOREM. — Assumé > 0. For any diagramD € W, (n), the charactery, satisfies
lo(xp)|={711,72,---,7}, where they; are asin(7.6), i.e.,

{75} = {0Q, 1Qq 2, Qg™ pQq~ "2}
U {_NQfl’ _NQfqu27 —,LLQilqizl, o _’LLQ—lq—(nthfz)}7
where the union is in the sense of multisets.

Proof. —This will be by induction onn. For n = 1 the result is trivial. LetD be any
diagram in W (™). Then there is a unique index such thatD € W@ \ WG~ where
WO S W=D s the filtration (7.3) ofi¥/;(n). If i < n, it follows by induction o that
{xp(X1),...,xp(X:)} ={v;= ﬁjﬁj‘fl | 1< j<i}. Moreover forj > i, it follows from (7.6)
thatX; D =+, D, sinceX; acts asy; id onW (). Thus the assertion (7.10) is true i n. Hence
we consider the cage=n.

If t+#n, then by (7.2.2) W™ /Wr=1 =W, (n—1) as TLB,_1(¢,Q)-module, and
hence

X1X9...X,_1D = h,(n —1,t+ 1)D (HlOd W(nfl))

Hencexp(X,) =h(n,t)h(n—1,t+ 1) = uQq~ "t . The set{ xp(X;) |1 <i<n—1}
may be determined by thinking of th&;, 1 <7 <n — 1 as acting on the image db in
W /W =1 =~ W, (n—1). Then by induction we see thdtyp(X;) |1<i<n—1}is
the set in the statement of (7.1), with, t) replaced by(n — 1,¢+ 1), i.e.

(xp(X) [1<i<n—1} = {m,eeo b\ {pQq~ 21,

and hencdxp(X;)|1<i<n-—1}isas stated in (7.1). This proves (7.10) for the cagen.
If t=n, Wi(n) 2W;_1(n—1) asTLB,_1(g,Q)-module, whence

{xp(X) [1<i<n—1}={y,..., 7} \ {-pQ gD}
ButX;X,...X, € I/{Z’(q) acts on the modul&/,,(n) as multiplication by the scalar
—n n—n2
h(n,n) = (=1)"u"Q " g,
HenceX,, = —uQ ¢~ "2 id on W, (n), which completes the proof for the case n. O
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8. Thecase of generic parameters

In this section we prove that the inflations, ; . (n) = §ath(n) are representations of

fl\g(q) which are induced from parabolic subalgebras, provided that the pair of paramégers
is “generic”. First we make precise the meaning of this term.

(8.1) DEFINITION. — We say that the paifg, Q) of invertible elements is generic in the
integral domainR if ¢ is not a root of unity and there is no solutiam € Z for the equation
q" =+Q?.

(8.2) PROPOSITION — Suppose that the paiy, @) is generic.

(i) The elements of the multisgts, ..., ~,} of (7.10)are distinct, i.e. have multiplicity one.
Moreover ifx p(X;) = xp(X;)g 2, thenj <.

(i) The charactersyp are distinct i.e. if xp, = xp, for diagramsD;, Dy € W;(n), then
Dy = Ds.

Proof. —Observe first that by (7.6), the sequefige, . .., ~,) is given by

(1Q, —pQ ', 1uQq ™2, —pQ g2, pQq "R, @ g (R,
821) —pQ g ", —pQ g D L —pQ g (),

The first assertion of (i) is clear. For the second assertion, we use the argument in the proof
of (7.10). f D ¢ WO \ WG~ then

a(xp) = (W (X0, x5 (X2), oo XS (X0)y Vit -3 7m)

where ! is the character ot/ (i) = R[X;',..., X*'] on W which corresponds td ¢
W@ Inspection of the sequence (8.2.1) (and inductiompnow yields the second assertion if
1< n.

If i =n, the argument of (i) shows that

a(xp) = (Xp(X1), Xp(X2),- s Xp(Xn_1), kQq~ "),

wherey/, is the character of/ (n — 1) corresponding td> € W) /W (=1 = 1, (n — 1).

Again by induction, the assertion is true for this sequence, whence the result. This proves (i).
The proof of (ii) is also by induction on. The result is trivial fom = 1. Let D1, D5 be distinct

diagrams inW = W) If D, D, are either both if¥(»=1) or both inW ™ \ W(=1) the

result is immediate by induction. Thus we may taRe € W™~ and D, € W) \ W1,

But thenxp, (X1... Xn-1) # xp,(X1...X,—1) by Theorem (7.4), since in the generic case

h(n—1,t —1)# h(n —1,¢t+ 1). This completes the proof of (8.2).0

(8.3) CoROLLARY. — Assume that the paifg, @) is generic(see(8.1)). Define sequences
I'1,I's asin(8.3.1)below.

Ty = (uQ,uQq % nQq ™", ..., uQq~"~=2),

Ty = (—pQ Y, —puQ ¢ %, —pQ g™, ..., —pQ g~ "=,

(8.3.1)

Thenl'1, I'; are disjoint and have cardinalitiels = ”T*t, n — k respectively. The set of characters
(cf. Definition(7.8)(iii)) {o(xp) | D a diagram inWW;(n)} coincides with the set of all orderings
of I':=T'; I T in whichT'y, 'y appear in the given order.
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Proof. —By (7.10), each charactar, corresponds to some orderinglofin the generic case,
the elements of are distinct, whence the corresponding ordering is unique. But by the second
assertion in Proposition (8.2)(i), in any ordering corresponding to a charggtel’; andT';
appear in the given order. But the number of such orderin@sism( et ) , Which coincides with

the number of distinct diagram3 € W, (n) (see the paragraph pr2eceding (6.1)). The assertion
follows. O

(8.4) CoROLLARY. — Suppose thaR is any integral domain and lefg, Q) be generic in
R. There is a non-zero element e R with the following property. LeRa be the localisation
Ra = R[A™1]. Write M for the H};(q)-modulegauwt(n) and letMa := Ra ®r M. Then
Ma has a unique decompositiaa = @, Ma (D), where the sum is over the diagrams in
Wi(n) and Ma (D) is a free Ra-submodule of rank one, which is invariant undéfn)a =
RA[XE ... XF!, and on whichU(n)a acts via the characteryp. Any simultaneous
eigenvectolr € M for the X; corresponds to one of the characters of U(n).

Proof. —By the first statement in (8.2)(i), the charactgrs are distinct. Hence there is an
elementY” € U(n) whose sef xp(Y') | D a diagram i, (n)} of eigenvalues (recall that the
elements ot/ (n) actin triangular fashion oi#; . (n) and thexp (Y") are the diagonal elements)
is distinct. It is easy to show using elementary linear algebra that there is a set of elements
xp € M such thatVzp = xp(Y) (for each diagranD). If A is the (non-zero) determinant of
the matrix formed by the coefficients of the, with respect to ariz-basis of)M, it is clear that
Mn is the direct sum of the rank one submoduleszp, which are each invariant und&f.
SinceY has distinct eigenvalues, any linear transformatiod®f which commutes witht” is
diagonal with respect to this eigenspace decomposition, whence we deduce that the eigenspaces
of Y are invariant undet/ (n).

Finally, if E is a simultaneous eigenvector of tB§, it is an eigenvector ol”, whence
E € Mazxp for some diagranD. This proves the last statement

Note that if R is a field in (8.4), the statement may be simplified by eliminating any reference
to A.

We shall refer to an ordering df satisfying the condition of (8.3) geermissible Note that
one permissible ordering is

(0) = (—pQ~ ", =nQ g%, —pQ g "2 0Q, Qg %, p Qg ).

We write (T',T'1) = (41, . . .,d,) for this ordering.

(8.5) CoROLLARY. — With notation as in(8.3), let R be a field. Then there is a vectére M
which is a simultaneous eigenvectorX®f, X, ..., X,, such thatyg = (61, ...,d,).

This is clear from (8.4).
We shall require the following elementary result from linear algebra.

(8.6) LEMMA. — Let V be a vector space over a fiell. Let A, B be commuting linear
transformations o¥’ and letv € V satisfy

(A+ Bju=(a+bv and ABv=abv forsomeu,bec R.

Assume thatlv ¢ Rv. Then
(i) The plandI = (v, Av) = (v, Bv) is stable under the semigroup generatedys.
(i) The eigenvalues oA, B onII are each{a,b}.
(i) If v = bv — Av,v9 = av — Av thenAv, = avy, Bv; = buy, Avy = bus and Bugy = aws.
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The proof is easy.
(8.7) PROPOSITION — Let E € M be the eigenvector o8.5). ThenT,E = —¢~'E for
jAEME, j=1,2,...,n—1.

Proof. ~Takej € Z, 1 < j <n—1,j# *, and letv = T; E. Then sinceX; commutes with
T; unlessi = j ori=j+ 1 (see (2.6.1) or Proposition (3. 3)(|v)) we have

(8.7.1) Xo=0w ifi#jj+1.

Moreover sinc’; commutes withX; X ;1 andX; + X, (by the Bernstein relation (3.3)(iv)),
we haveX ; XJHU =0;0;41v and(X +X11)v=(4; + dj41)v.

Observe thal ;v = X, T, E =T 1XJ+1E ;11 T; 'E.Butsincel; ' =T;+q ' —q, we
have

(8.7.2) Xjv=0j41(TiE+ (¢ = q)E) =641 (v+ (¢ = q) E).

SupposeX ;v is not a scalar multiple of. Then we may apply (8.6) withl = X;, B = X1,
a=4; andb = d;11. By (8.6) the vecton, = ;v — X;v is a simultaneous eigenvector for
X, X;j4+1 with respective eigenvalués, 1, §;. Moreover by (8.7.1)- is also an eigenvector for
eachX; (i # j,j + 1) with corresponding eigenvalde. Thusv, corresponds to some character
xp of U(n) by the last statement in (8.4). But our choicejansures thai; 1 = d;¢ 2, which

by the second statement in (8.2)(i) is impossible. It follows thiat € Rv. Hence by (8.7.2),
T,E € RE. By the quadratic relation fof;, we therefore havé; E = ¢E or T,E = —q~ ' E;;
butX; 1E=T;X,T/E =q ?X;E, whencel;E = —¢ ' F as stated. O

9. Induced modules and standard modules

We shall henceforth assume thatis a field and all modules and algebras will Bemodules
and R-algebras.
We shall identify M = &, ,Wi(n) as a module induced from a one-dimensional module

of a parabolic subalgebra d/f\g(q). Such modules were introduced by Rogawski [28]. The
parabolic subalgebras are defined as follows. For any subse{1,2,...,n — 1} let H\‘}(q)

be the subalgebra df ¢ (q) which is generated by (n) = R[XjEl L XEand{T; |j€ J}.

For any partitionA=X\; > Ao > --- > Ay > 0 of n, deflneH“( ) to beflf‘;(q), whereJ = J,,
defined as followsy; € J, < 3k € {1,2,...,8} with n > Zle)\i >ji+1>5> Zf;ll)\
where, ifk = 0, the smaller sum is interpreted @sThe subalgebré/{\g(q) has finite index equal

to the multinomial coefficien% in fl\( ).

Now let R, , be a one- dlmenS|onzH“( )-module on whichr’; acts as multiplication by
andU(n) = R[XjEl ., X! acts via the character. Then sinceX; 1 = T; X, T

(9.1) X(Xj41) =¢*x(X;) foreachj € Jy,

and any character satisfying this condition gives rise to a one—dimensffﬁ\f]@l)—module.
A similar definition applies whed), is replaced by an arbitrary subsebf {1,...,n —1}.

(9.2) DEFINITION. — Let x be a character of/(n) = RX,..., X;F!] which satisfies
condition (9.1). Define thé/¢(¢)-modulek, , as the induced module

K>\7X = H\’;ll(Q) ® R)\,Xa

ﬁE(Q)
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whereR) ,, is the one—dimensiond/]@l(q)—module defined above. Then the dimensiorQf,,
. n!

IS 551

Of course this definition applies slightly more generally to the subalgelﬁ\g@), where.J),
is replaced by an arbitrary subskt {1,2,...,n — 1} and the corresponding module is denoted
by KJ7X.

We have the following easy characterisation of these induced modules.

(9.3) LEMMA. — SupposéX is a finite dimensional/{:‘;(q)-module which contains a vecter

which generated’ asfl\g(q)—module and satisfies the following two conditions for some subset
Jc{1,2,...,n—1}:

(9.3.1) Tie=qe forielJ
and
(9.3.2) Xie=x(X;)e, 1<i<n, forsome characteg of U(n).

ThenkK is a quotient ofK(; .. In particular, if dim(K') = dim (K, ), we have equality.

We wish to identify these modules as “standard modules” in the sense of Kazhdan and Lusztig.
Write G' = GL, (R) and® = Lie(G). ThenU(n) = R[X!, ..., X'] may be thought of as
the coordinate ring of the maximal tor§f GG consisting of diagonal elements. Any charagter
of U(n) = R[X:F, ..., X' is therefore given by evaluation at a (generically) unique diagonal
elements € S. It is not difficult to see that in fact the set of paifs, x), wherey satisfies
condition (9.1), modulo the equivalence defined by isomorphism of the corresponding induced
representation®’, ., is thus in bijection with the se® of equivalence classes of paits N)
moduloG, wheres € G is semisimple/V € & is nilpotentanc. N = ¢2N (the action ofG on &
being the adjoint representation). The correspondence may be realised as folloWsdeabte
thek x k (Jordan) matrix with zeros everywhere except on the super-diagonal, where all entries
arel. Given a partitiolA = \; > --- > Ay > 0 of n, there is a unique block diagonal matri,
whose diagonal (Jordan) blocks have sizei =1,2,...,¢. If R is algebraically closed, then
each pair(s, N) such thatAd(g) - N = ¢® N is G-conjugate to one where

I
N=N,= Do
I,
ands is also block diagonal, of the form
S>\1
S=8)= 2
S)\e
where the matrices,, are diagonal of the form
Q;
aiq?
A—4
Sy, = a;q
a;g~2C D)
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The matrixs, depends on thé parameters; € R*, and the two pair$sy, Ny ) and(s),, Nx)
areG-conjugate if and only i\ = )\’ and some parts of are equal and the correspondisyg
are permuted to obtaisi. R

In view of the correspondence between p&irsV) € P and pairs(\, x) as in (9.2) we shall
use the notation

(94) K)\-,X :KS,N-

The charactey is given in terms of the paifs, N) by x(X;) = s; *, wheres; is theith diagonal
entry ins;.

Whenever we use the notatigi, N), we shall assume thak = C unless we specify
otherwise, since we aim to integrate our results with the body of literature which relates to this
case. Now Chriss and Ginzburg [5] and Kazhdan and Lusztig [19], (see [30] for an exposition)
have defined “standard modules’; 5 for I/{:‘%(q) (of course as a special case of a general
construction) in the casB = C. The space of\/, y is the Borel-Moore homolog#. (53;) of
a certain subvarietig3; of the flag variety of5. We shall need the following result of Ariki. For
any finite dimensiona@(q)-moduleM, [M] denotes its class in the Grothendieck group of
finite dimensiona@(q)-modules.

(9.5) PROPOSITION[1, Theorem 3.2, p. 798]. We have, in the Grothendieck group of finite
dimensionalH¢(q)-modules,

(Mo, n] = (Ko n] = K] = [Hi(0) @775 ) Cax].

for each pair(s, N) € P, whereN = N, andx(X;) = syt if s =diag(s1,...,5n)-

Next observe that there is an involutionﬁz;(q) — ]/{E(q) which takesT; to —7,*
(t=1,...,n—1)andX; to X;l (j =1,...,n); this follows by noting that the images of the
T; and X ; under. satisfy relations in Proposition (3.3)(iv). It follows that for afig\g(q)-module
M, we may define its inflation* M via . in the usual way.

(9.6) THEOREM. — Let R be any field, and suppose the pdir, z) of invertible elements
of R is generic(see(8.1)). Assume there is an elemeftc R* such thats? = —¢" 2. Let
Ve : fl\g(q) — T2(q) (o € R*) be the surjection 0f5.12) ee alsq5.13)and (4.3)(i)) and let
W:..(n) be a cell module for the diagram algeb#ef (¢), wheret € Z,0 <t < n,n —t € 2Z
andz € R*. Let M be thefl\g(q)—moduleﬁw;Wt,Z(n). ThenM is isomorphic to the induced
moduleK, n, (see(9.4))where) is the partition("T”, "T*t) and s, is the diagonal matrix
diag(s1, ..., sn), where thes; are given by

(n+t—2) 7(n7t72))

-2 — -2
(51,---,571):(&1,&1(] ye .o a1q ,a2,02¢9 ,...,024q >

wherea; = (—1)"*+lazqd (=2 andas = (— 1) laz g3 (n—t=2),

Proof. —Note first that from diagram (5.12), we see thatdfg and p are related by
3% =—¢" % andua~! = 3, then (cf. (7.1))

YaWi 2 (n) =9g5Wiln) = &5, Wi(n)

whereW;(n) is the cell module foITLB,,(q, Q) andz = z; (see Theorem (6.1)). But givenz
andp, (6.12) shows thaV; . (n) = g5Wi(n) = g5 o Wi(n), where
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Q=Qt,2) = (-1)!fs 1 HnHt-2),

MoreoverQ(t, z)? = —z~2¢~t, whence if(q, 2) is generic, so i$q, Q).

It follows from (8.5) and (8.7) that there is a vectér € M such thatX;F = §;F for
i=1,2,...,n, where(dy,...,d,) is the sequence in (8.5) alE = —¢ 'E for j=1,2,...,
n—1, j# 2. Henceu(X;)E = 6; 'E and.(T)E = ¢E for each relevant, j. Since M is
irreducible because we are in the generic cdsegenerates\/ asﬁ?;(q)-module. It follows
from Lemma (9.3) and from the description of the charagtér (9.4) thatM is isomorphic to
the induced modulés, ,, wherex = (2%, 2-%) and s is the diagonal matrix with diagonal
entries

(O1y-ves0p) = (—pQ Y —pQ ¢ %, ..., —pQ g~ "2 1@,

pQq 2, .., pQq~ ")

whereQ = Q(t,z) = (-1)!8z "1~ 2 ("+t-2),
Using the relations among, 3,z and Q, we see thap@Q = (—1)"az1qz("~=2) and
Q= (— y+lazqﬂn+t2) 0

(9.7) Notation — We fix here some notation for the rest of this work. Firstt i€ Z,
0 <t < n,n—te2Z,we shall consistently write

)

n—t
9.7.1 k= ——.
(0.7.1) >

Corresponding to each sueh(or k) we have the 2-step partitioh;, = (n — k, k). Note that
n—k=>k.
The diagonal matrix in the statement of (9.6) will be denatg@, , az) or justs(ay, az), i.e.

s(a1,az2) = sk(a1,a2) = diag(sy, ..., sn)

—(n+t—2) 7(n7t72))'

-2
,a2,a02q —,...,0249

(9.7.2) ::diag(al,aquz,”.,alq

Recall the definition of the induced modul€, , where X is a partition ofn and x is a
character ofU(n) which satisfies condition (9.1). A special case of this definition is when
A=A\ as above andy corresponds to the semisimple elemepta;,a2) of (9.7.2), i.e.

x(X;) =s; . We denote the corresponding induced module of the statement of (9.6) in this
case byKS N = Ky(a;,a),N,,» WhereN, = Ny,.

We next wish to identify the Grothendieck class of the modufeof (9.6) (i.e. its set of
composition factors) in general, i.e. whén z) is not necessarily a generic pair. We shall prove

(9.8) THEOREM. — Let F' be a field, and lefq,2) be a pair of invertible elements df.
Assume that there are elementg, /—1 € F' such that\/a2 =q and \/—12 = —1. Let M be
thef[};(g)-moduleL*w;Wt,z(n) as in(9.6), Whereﬁ\;;(q) is now anF-algebra, anda € F*.

Then in the Grothendieck group of finite dimensioﬁ/@(q)—modulesM is equivalent to the
induced moduld(,, v, (see(9.4))where), sy and Ny are as in(9.6).

Proof. —Let Ry = F[q] be the ring of polynomials oveF in the indeterminate. Let R be
the completion ofR?, at the prime ideafd = (q — ,/q), and letL be the quotient field of?.
Thus if we writey = q — /g € Ro, R is identified with the ring of power serie[[y]], and
L= F[lyll, = Fllyllly~']. The ring R is then a complete rank one discrete valuation ring with
residue fieldf". Under the residue class mé&p— F, g% — q.
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Consider the affine Hecke algeb@(qz) over the ringR, corresponding to the invertible
elementqg® € R. The pair(q?,z) is generic inR, and we may therefore interprét; .(n)

—_~

as a module for thek-algebraT'?(q?). Write W, .(n) for this R-module. Letb € R satisfy
b2 = —q*(»~2). Such an element obviously exists, and under the residue class mapc F
such that3? = —¢—("—2),

Write Q = (—1)*bz~'q~(®**=2), and denoteR-modules by means of a tilde. Then by
Theorem (6.1), with the obvious extensions of our standard notation,

(9.8.1) VaWi 2 (n) =YL gWi(n) =8 wWi(n),

wherem = ab.
Since the paifq?, z) is generic inR, we may invoke Theorem (9.6) to deduce that

(9.8.2) LOrM=L&g "W W;.(n) = Lop Ke, N,

The isomorphism (9.8.2) is an isomorphismibf r ff\%(qQ)-moduIes. We shall show how
to interpret it in terms ofL ® x TLB,(q%, Q)-modules, wherel'LB,,(q%, Q) is the R-algebra
defined in (5.3), corresponding to the parametgr).

The left side of (9.8.2) is by (9.8.1) the pullback 62 (q?) of a TLB,(q?, Q)-module.
Hence the kernel ofq  acts trivially on the right side of (9.8.2) and it follows easily that
the kernel ofq . acts trivially on theR-moduleK, n,, whence the latter may be thought of
as aTLB.,(q%,Q)-module. Thus the isomorphism (9.8.2) may be interpreted as an isomorphism
of L ®r TLB,(q% Q) modules. Moreover we may think of the space of either side ak-an
vector space, in which there are télattices invariant undef’L B,, (g%, Q), which correspond
respectively to the representati(flréandIg:;A of the R-algebraTLB,,(q?, Q).

Now since the paifqg?, z) is generic inR, and therefore generic ib, the L ® g TLB,,(q?, Q)-

moduleL ® r W;(n) is absolutely irreducible, whendeis a splitting field for
Lor M2 Leg K, n,.

The reductions moé3 of M and I?;;A are respectively isomorphic to tHELB,, (¢, Q)-
modulesM and K, v, , and sinceF is a splitting field forTLB,, (¢, Q) (cf. [14, §5]), the triple
(L, R, F)is a splitting system fof'LB,,(q?, Q) in the sense of [3, p. 17]. Moreover sin@¢, z)
is generic inL, L ®r TLB.,,(q2,Q) is semisimple. It follows from [op. cit., Proposition 1.9.6,
p. 19], that theT'LB,, (¢, Q) modules (and hence ttfé?;(q)-modules)]\/[ and K, n, have the
same composition factors, counting multiplicity, which is the required statement.

The above result enables us to determine the composition factors of the standard modules
M; n for anypair s, N, whereN has at most two Jordan blocks (we refer to siclas “two-
step nilpotent”) and wheun s arbitrary. It has the following consequence.

(9.9) COROLLARY. — Letﬁ%(q) be the affine Hecke algebra over the complex numBensd

Ietf(ﬁjg(q)) be the Grothendieck group of finite dimensiof@(q)-modules. Leh=(n—k,k)
be a2-step partition ofn (2k < n), lett =n — 2k and lets be the diagonal matrix 0{9.7.2)

Write M, n for the Kazhdan-Lusztig standard module@(q) corresponding to the pair
s =sk(a,b), N = N (cf.(9.7)). Then

[Ms,N] = [92Wt,z(nﬂa
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where[V] denotes the class [ﬁ(ﬁl\g(q)) of an fl\g(q)—modulev, W, .(n) is a cell module for

the diagram algebrd?(q), 0. : H2(q) — T%(q) is the surjectiony,, of (5.12)composed with
the involution: of (9.6), anda, z, t satisfy the equations

(9.9.1) a= (—1)"lazqztt=2),

h— (_l)nJrlaZflq%(nfth).

Proof. —This follows easily from (9.5) and (9.8). The former asserts {hat v] = [K v,
while the latter asserts thgk's y| = [0% W, .(n)]. The formulae for andb are in the statement
of (9.6), taking account of the fact thaandn have the same parity.O

We shall use (9.9) to study the composition factors of the standard matlylgsthrough our
knowledge of those of the cell modul#§ . (n). First we need to understand the correspondence
between cell modules and standard modules a little better. Assume henceforth that the ground
ring R is C.

(9.10) COROLLARY. — Given the pair(s(a,b), N;) (see(9.7)) with 2k < n, there exist
(t,a, z) such thaf M, 4),n, | = [0 W:,-(n)]. The parameter§t, o, z) are given by

t =n—2k,
(9101) a2 = abq_(n_m’

z = (_1)n+1a71aq7%(n+t72) _ (—1)”+1ab’1q%("*t*2)

)

where, ift = n (or k = 0), the second equatid(fior o?) is omitted.
(9.11) LEMMA. — We have) W, .(n) = ¢* W _.(n).

Proof. —For any elemeng € C such that3? = —¢"~2, anda, i € C such thaty = o3, we
have a commutative diagram (5.12) for agye C, and by (6.12)IV; .(n) = g o W:(n), where
Q=Q(t,z) = (—1)!Bz"1¢~2("+=2) Hence): W, .(n) = 295.0Wi(n) =&, Wi(n). If we
replaces by —3 anda by —«, i is unchanged. Thus replacingoy —z leaves) unchanged,
and it follows that we also haw, Wi (n) =¢* W, _.(n), as stated. O

(9.12) CoROLLARY. — Let P be the set equivalence classes of pdissN) € P where
N € & is two-step nilpotent, i.eN ~ Nj, for somek with 0 < 2k < n. Let 2 be the set of
triples (¢,c,2) (t€Z, 0<t<n, n—te€22Z; a,z € C*) and letQ) be the set of equivalence
classes of triples if2 under the equivalence generated by the relatiing, z) ~ (¢, —a, —z),
(n,a,2) ~ (n,y tza,y) and (0, a, 2) ~ (0, a, 2~ 1). Then(with the obvious abuse of notatipn
we have well define@(q)-modulesZWS,N, (s,N) e Pand@iW; .(n) (see9.9)), (¢, a, 2) € Q,
and there is a bijectionf:P — Q such that if (s, N) € P corresponds to(t,a, z) € €,
[MS,N] = [OZWt,z(n)]'

Proof. —The modules\/; y are the standard modules of Kazhdan—Lusztig. We need to verify
that the isomorphism class 6f W, .(n) depends only on the equivalence class(iof, ).
But Lemma (9.11) proves this for one type of equivalence, while=f 0, we observe that
Wo,z(n) = W, ,-1(n), and if t = n, in the relations (9.9.1) only. occurs, sinceN, = Ny
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has only one Jordan block, and cleadydepends only onvz, so that for anyy, z,a € C*,
0aWh,=(n) =07 . ,Why(n), which completes the verification.

Next, let us define the required bijectigh Q — P. Given(t,«,z) € Q, definef(t, o, z) to
be the class ofs(a,b), Ni), wherea, b, k are given by Egs. (9.9.1). To check that this is well
defined, note that ift, «, 2) is replaced byt, —a, —z), Egs. (9.9.1) are unchanged, and therefore
have the same solution.(d, o, z) is replaced by0, o, z~!), we obtain the solutiofis(b, a), N=.)
of (9.9.1). But the pairgs(b,a), N=) and(s(a,b), N=) are conjugate undeiL, (C). Finally,
the triples(n, o, z) and(n, y 'z, y) give the same values &{= 0) anda, which proves thaf
is well defined.

Finally, definef’: P — Q by taking f’(s(a,b), Ni) to be the equivalence class of any triple
(t, a, z) where the parameters satisfy Egs. (9.10.1)#fn there are just two such triples, which
are obviously equivalent. if = n, all the resulting triples are easily seen to be equivalent, since
they have a common value afz. To check thatf’ is well defined, we note that the pairs
(s(a,b), Ny) and (s(a’,b'), Ni/) are conjugate unde€L, (C) if and only if either they are
equal, ork = k' =n/2 and(a’,b’) = (b,a). In the latter case, solving (9.10.1) shows that the
corresponding triples both have= 0 andz in one is replaced by ! in the other, whence the
triples are equivalent, which shows thydtis well defined. Sincd’, f’ are clearly inverses, both
are bijections, and the result now follows from Theorem (9.8).

(9.13) Remark— There is a close analogy between the Betdescribed here and the
“multisegments” of Zelevinsky [31, §4]. We shall elaborate on this in Section 11 below.

10. Irreducible modules and decomposition numbers

We begin by reviewing the main points concerning the representation theory of the algebra
T (q). In this sectionR is a field.

(10.1) DEFINITION. — LetA“(n)+ be the set
A (n)t ={(t,2) |t €Zx0, 0<t<n, n—t€2Z; 2€ R*}.
DefineA%(n) by

(10.1.1) A(n) = {A“(n)+ if g2 £ 1,

At () \{(0,£q)} if ¢ =—1.

Define the equivalence relatiea on A%(n) ™" as that which identifieg0, z) and(0, 2~ ) for all
z € R*, and write

A(n)’ =A%(n)/ ~,
(10.1.2) (0+ ( J{
A" =A%)/ .

Recall (e.g. from (6.6) above) that K is the T%(¢)-module with basis all monic affine
diagramst — n, the cell moduléV;, . (n) for T,2(q) is defined as the quotient &f; by the ideal
I, :={ym — xv} fory € X;, wherex =x, =zif t£0andxy =x. =z + 2L if t =0. There
is a bilinear mapp, . : W, . (n) x W; ,-1(n)—R which [14, (2.7)] is invariant in the sense that
o1 (wp,v) = ¢y L (p,w* ), (u,v € Wy .(n),w € T2(¢q)) whered* denotes the reflection of a
diagramd € 7 in a horizontal line. Note that — w* is an anti-automorphism @& (q), which
preserves'L: (q). If Ris a field, the irreducibl&?(¢)-modules have the following description.
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(10.2) THEOREM[14, (2.8)]. — Let R be an algebraically closed field and maintain the above
notation. For(t1, z1), (t2, z2) € A*(n) ", Wy, ., (n) = W, ., (n) ifand only if(t1, 21) = (t2, 22).
For (t,z) € A%(n)", L; .(n) := W, .(n)/ rad ¢, . is either an irreducibl&’®(¢) module or zero,
and L, .(n) # 0 if and only if (¢, z) € A*(n) (see(10.1.1)) All irreducible T)?(¢) modules are
realised thus, and ift1, z1) % (t2, 22), thenLy, ., (n) ¥ Ly, ., (n).

It follows that the distinct irreducibl@?(¢q)-modules are parametrised By (n)°, while the
distinct cell modules are parametrised Mr(n)O*. Where there is little danger of confusion,
we abuse notation by denoting the elementd fn)°" as pairs(t, z), rather than equivalence
classes of pairs. Thus we speakl®f .(n) and L, . (n) for (¢,z) € A%(n)°". It follows from
(e.g.) (9.12) that to understand the composition factors o&\h@)-moduleMsyN ((s,N) eP),
it suffices to understand those of tfig(q)-modulelV; . (n) for appropriatét, z) € A%(n)". We
therefore now turn to a description of these, which is available from [14].

Let < bc()e the partial order oA%(n)™ which is generated by the preord%nNhich stipulates
that(t, z) < (s,y) if
(10.3a) 0<t<s<n, s=t+20({eZ,¢>0) and
(10.3b) 22 = qs(s’z)S and y= qus(s,z)f fore(s,z)=+1.

Note that (10.3a,b) implies that

(10.4a) Y = qs(s’z)lt and z'=y*
and
(10.4b) (t2) = (t,2) = 2t = (/)" .

It suffices to verify (10.4b) whe(, z) < (¥',2"), in which case it follows easily from (10.3a,b).
It is easily verified that [15, 4.1] the partial ordgron A“(n)+ induces a partial order, also
denotedx, on the set\%(n)°’ = A%(n)/ ~.
The following result is proved in [14, Theorem 5.1].

(10.5) THEOREM. — Let R be a field of characteristi® or p > 0, wherepe > n ande is
the multiplicative order of;?>. Then, in the Grothendieck group(7%(q)), we have for any
(t,2) € A*(n)",

(10.5.1) W)= Y. Ley(n).

(s,y)EA* (n)°
(t,z)j(s,y)

Thus the matrix expressing the cell modules in terms of the irreduciblegrifi(¢)) is upper
unitriangular, and has entri@r 1. Now if (¢, z) is confined taA®(n), the relation (10.5.1) can
clearly be inverted.

We also have (cf. [15, Theorem (4.5)])

(10.6) THEOREM. — In the notation above, ift, z) € A%(n),

Li:(n) = Z nf:gWs,y(n)
(s,y)€A® (n)°
(t,2)=(s,y)

wheren;”! =0 or £1.
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We next explore the implications of these results for the standard modiiiles

(10.7) DEFINITION. — For any triple(t, o, z) where(t, z) € A%(n)" anda € C*, define the
modules

Wt,z(a) = GZWt,Z(n),
Lm(a) = OZLt7Z(n).

(10.8) LEMMA. — All composition factors of the cell modulé; .(«) are of the form
0% Ly . (n) for some triple(t’, o, 2').

(10.7.1)

Proof. —Itis clear that the pullback vié, of a composition series fa#,_.(n) is a composition
series for the¢(q)-moduleW; . («). The result therefore follows from Theorem (10.2)0

We need to identify which among tiig . («) are distinct. For this, we shall regard the modules
we are considering a&L:. (¢)-modules, via the commutative diagram

(10.9) Hi(g) — TL(q) == TL3(q)
T
T3 (q)

wheref = n3 o ¢, n3 is as in (5.6) or (5.9), is the involution ofﬁj‘;(q) defined immediately
preceding the statement of Theorem (9.6) abovesand defined in (9.9).

(10.10) PrRoPOSITION — The @(q)-modulesLt,z(a) = 05L; .(n) for (t,z) € A%(n),
a € C*, are precisely those irreduciblé\;ll(q)-modules which factor throug'Z;: (¢).

Proof. —The statement is equivalent to the assertion that any irredu@/ﬁg{q)—module is
of the form ¢} L, .(n). To prove this, letM be any irreducible finite dimensiondTL\fl(q)-
module. Recall (see (4.2) above) thBL: (¢) = (C1,...,C},) is a subalgebra oﬁ/“L\Z(q) and
m(q) > C(V)y ®c TL;(q), whereV is the automorphism of 'L (¢) which permutes th€’;
cyclically.

Let M, be an irreducibleT’L; (¢)-submodule ofd. Then by [15, (2.3)]M; = L; .(n) or
M, = Li\/_ (n).If My = L; ,(n), then by [15, (2.5)] the twist/}" of M, by the automorphism
V of TL; (q) isisomorphictal; .(n). It follows from [15, Theorem (2.6)] that as a vector space,
M =L, .(n). Moreover by Schur's Lemmd/ acts as a scalar multiple ef,, i.e. asar,, for
somea € C*, so thatM = ¢* L, .(n). In the other case, [op. cit. Theorem (2.6)] shows that
as vector spacé/ = L0 fl( n) ® Ly \Fl( n), and following the argument in loc. cit. further

shows thatVl = ¢}, L, = (n) for somea € C*. O

(10.11) DEFINITION. — Denote byQo the set of triples(¢, «, 2) in Q (see the definition
in (9.12)) such that(t,z) € A%(n). ThenQy is a union of ~-classes of and we write
Qo = Qp/ ~ for the corresponding set of equivalence classes.

The triples(t, o, z) in Q are by Theorem (10.2) precisely those such that the corresponding
moduleL; .(«) is non-zero.

We are now in a position to determine the coincidences among the irreducible mbgdules
for different values of the parameters.
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(10.12) THEOREM. — Let(¢,a, z) and (¢, o/, 2’) be two triples i (see Definitior{10.11))
The irreducibleT’L;, (¢)-modulesL, .(«) and Ly .- (') are isomorphic if and only if the triples
(t,a,z) and (¥, o/, ') are equivalent, i.e. represent the same elemef (fee(9.12))

Proof. —We first show that i{¢, o, 2) ~ (¢, &/, 2’) thenL, .(«) = Ly /(). For this, observe
that W, .. (o) = W, _.(—a) for all triples (¢, a, z) € Q, that Wy . (a) = Wy, .-1(a) forall o, 2,
andthatl,, ,(a) =W, .(a) 2 W, ,(y~'2a) = L, ,(y~2a). It follows by taking top quotients
thatif (¢, a, z) ~ (', 0/, 2") thenL, () = Ly . (a/).

To prove the converse, we need to show that for any t(iple, z) in Qo, the equivalence class
of (t,a, z) is determined by the isomorphism class#fL; .(n) as fL\;’L(q)-module. Recall (cf.
diagram (10.9)) thafl'L;, (¢) is a subalgebra ofL\fL(q) and that the restriction of, . («) to
TLy(q) is Ly »(n). It follows from [14, (1.9)] (or [15], or cf. the proof of (10.10) above) that the
equivalence class of the pdir, z) in A%(n) under the equivalence relatien is determined by
L .(a), where= is generated by the relations

(t:2)
(10.12.1) (n, 2)

(t,—z) ift#0,n,

(n,y) foranyy,zeC*,

(0,2) = (0,2_1) forz € C*.

Further, recall that” € ZFL\fL(q) acts ong’ L; . (n) asar, € T%(q) does.

Suppose for the moment that 0,n. Then by (10.12.1)(¢,z) = (¢/,2') or (¢',—2'). If
(t,z) = (¥',2'), then by hypothesi®?* L, .(n) = ¢*,L; .(n), whence there is a linear map
A:D — D, whereD is theC-vector space with basis the standarggffine diagrams: (see [14,
§2]), which commutes with th&'L;, (¢) action, and intertwines th&L;. (¢) structuresp’, L; .(n)
and¢?. L, .(n). Butin this case the restrictioh, .(n) of ¢} L, .(n) to TL:(q) is irreducible,
whence\ must be multiplication by a scalar, say: C. Moreover we have foE € L, .(n),

10.12.2 MV.E) = XNar,.E)=aar,.E=V\E)=d7,.0E =ad'7,.E
( ) (V.E) = X ) (E) ;

whencea = o'. If (¢,2z) = (t',—%), then since the restrictions df; .(«) and L; _. ()

to TL:(q) are isomorphic irreducible representations, any linear thep — D (as above)
which intertwines thel, .(«) and L, _,(a/)-actions onD is of the formaU, whereU is the
map defined in the proof of Theorem (2.3) of [15], amd& C (for any standard diagrarf,
U.E = (—1)"k(P) F). Computation of/(V.E) in two different ways as in (10.12.2) then yields
thato’ = —a. This completes the proof thét, ., z) ~ (¢, o/, 2') if t #£ 0, n.

If t =n, W, .(n) is one-dimensional, and hence irreducible. Moredexcts ong}, L,, .(n)
as multiplication byxz. Hence ift = n, the isomorphism class @f, L, .(n) is determined byrz,
whence the result for this case.

Now suppose that = 0. If 22 # —1 (i.e. z + 2z~ # 0), then the restriction tdl'L% (¢) of
#% Lt »(n) is irreducible, and in both case$ =z and 2’ = z~! an argument like (10.12.2)
shows thaty = o/, which shows thatt, o, z) ~ (', o/, 2').

Finally, takez? = —1 andg¢® # —1. In this case the restrictioh! to TL¢(q) of ¢ L .(n)
is (cf. the proof of (10.10)) the direct suthy _(n) @ Ly .(n). The two (irreducible) direct
summands are interchanged-tyandV’ therefore acts on’, L; . (n) via the matrix

0 arm,
aTy, 0 |
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But it is shown in [15, (2.8.1)] that the isomorphism class of ﬂ’/@(q)-moduleM on which
TL?(q) acts according to the given structure and on whicacts via the matrix

0 1 Tp
QoTp 0

is determined by the produet;as. Hence if 22 = —1, ¢% Lo .(n) = ¢, Lo +.(n) if and
only if o/ = +a, which is the required statement for this case. This completes the proof of
Theorem (10.12). O

(10.13) CoROLLARY. — In the notation 0f(9.12) let (s, N) be a pair inP (recall that this
means thatV = Ny, is a 2-step nilpotent matrix and = s(a,b) is a diagonal matrix such
that sNs~! = ¢2N). Then there is a well-defineH2(q)-module L, y, which is either0 or
a composition factor of\/; n, with the following properties. The non-zero modulesy are
pairwise non-isomorphic, and the composition factors of all the modulgsy ((s’, N’) € P)
are among the_; . The condition thal.,(, ) n, be zero is that

(10.13.1) ¢*= -1, niseven,k:g, a=cao, b=-—a, forsomexecCX.

Proof. —If (s, N) corresponds to the triplé,a, z) € Q, take L, ; to be the top quotient
L, .(a) of W, (). The fact that the non-zero modul®s y are distinct follows from (10.12).
Moreover, by (9.12)M, n andW, .(«) have the same composition factors. But the composition
factors of iV, . («) are clearly the inflations vié,, of those of thel’?(¢)-moduleW; . (n). The
result is now clear from (10.5), which shows that the composition factovg,of(n) are all top
quotients of som&Vt’, 2'(n). The last assertion concerning the cases wheg = 0 is obtained
simply by translating the condition in Theorem (10.2) (\iz.2) = (0, 4q) wheng? = —1) into
the language of pairs using (9.9.1)0

Our final task is to translate the precise results (10.3a,b) et seq. concerning the composition
factors of the module®’; . (n) into the language of pairs, V). From the argument in the proof
of (10.13), it is clear that in the Grothendieck gro]]p@(q)), for any (t,z) € A%(n)" and
aeCx,

(10.14) Wiz(@)= Y Loyla).

(s,y)EN*(n)°
(t,2)=(s,y)

In order to describe the composition multiplicities of the standard modules for (s, N) € P,
we therefore need to interpret the order relatiom terms of pairs.

(10.15) PrROPOSITION — Suppose that under the correspondence(®flL2) the triples
(t1,0a,21), (t2,, z2) correspond to the pairgs(ai,b1), Nk, ), (s(az,b2), Ni,) respectively.
Then (t1, 21) 2 (ta,29) if and only if there existd > 0 and e = +1 such that if we write

2k; =n —t; fori=1,2, then
ko =k —£>0,

t1teta
)

(10.15.1) atby! =q

(a27b2) _{(al,bl) ifEZL

(bl,al) if e =—1.
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Proof. —From Egs. (9.9.1), we see that = a;b; *. Hence from Egs. (10.3)p = t; + 2¢ for
somef > 0, andalbflq*tl = ¢°'2 for somes = £1. Sincez, = z1¢~%¢, Egs. (9.10.1) show that
az = a1¢''=9) andb, = b1~ (1=9), The relations (10.15.1) follow after a little rearrangement.
Conversely, if the relations (10.15.1) hold, Egs. (9.9.1) and (9.10.1) may be used as above to
deduce the relations (10.3a) and (10.3b)

The relation= defined by Egs. (10.15.1) generates a partial orslem the setP of pairs
(s, V) described in (9.12). This partial order may be interpreted as ordering-thenjugacy
classes of pairs in the obvious way; viz. two classes are related if they contain related elements.
Let P, be the set of (conjugacy classes of) pdissN) € P, wheres = s(a,b), N = N}, and
(s, N) is not of the form in (10.13.1). By Theorem (10.1R) parametrises the composition
factors of the standard modulég; , (s, N) € P. Theorems (10.5) and (10.6) may now be
applied as follows.

(10.16) THEOREM. — LetP and P, be the sets of semisimple-nilpotent pairs defined in the
previous paragraph, and lek be the partial order or® generated by the relatio(l10.15.1)

Then in the Grothendieck group of finite—dimensioﬁ%l(q)—modules,

(10.16.1) [Mon]= > [Len] foranypair(s,N)€P,
(s',N")ePo
'(s,N)=(s',N")
and
(10.16.2) Lonl= Y i M)
(s',N"eP
(s,N)=(s",N")

/,N/ .
wheren; " =0or £1.
We conclude by giving some applications to the structure of the standard modules.

(10.17) COROLLARY. —

(i) The standard module¥/; x ((s, V) € P) are multiplicity free.

(ii) If ¢ is not a root of unity, the standard modules have at Ragimposition factors.

(i) In all cases, M, n has composition length bounded [ay 2.

(iv) The maximum composition length 8f; x is [n/2], and therefore is unbounded as
n — oQ.

These statements are easy consequences of Theorem (10.16).

11. Concluding remarks

We first wish to explain how our results generalise certain aspects of the theory in [31], which
involves the notion of “multisegments”. Without discussing the general notion in [op. cit.], let us
define these in our context as follows.

(11.1) DEFINITION. — LetR be an integral domain ande R*. A segmenin R is a sequence
(1111) I(a, m) = (a’ aqu’ aq*47 el aq*Q(mfl))

(a € R*,m € Z,) of elements ofR . In addition, there is a unique segment of len@tiwvhich
is the empty sequence. In what follows, some remarks apply only to segments ofedgiind
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we shall rely on the context to distinguish these. Note that the elemefitsof.) are distinct if
q is not a root of unity. Otherwise, there may be repetitiond (i, m). Denote by|I(a,m)]
the multiset (i.e. set with multiplicities) underlyinf(a,m). ThenI(a,m) is determined by
|I(a, m)|, together with its initial element.

Thelengthof I(a,m) is m, and we may speak of a subsegment @f, m), with the obvious
meaning, and similarly for initial and final subsegments @f, m).

Supposel(ai,m1) and I(az, m2) are two segments. We say théfa,,m,) precedes
I(az,ms) if az = ayq—? for somei € {my — mo + 1,m; —ma +2,...,m1}, where only the
non-negative among these integers are included; i.e. if the initial elemé&finfns) coincides
with one of the finalm, elements off (a;,m1 + 1). If I(a1,m;) preceded (a2, m2), we may
define aconcatenatior/ (a1, m1)#1 (a2, m2) as any segment which starts witfa;,m; + 1)
and finishes with/ (a2, m2). Such a segment exists by definition, and any concatenation clearly
has length strictly greater than the maximunmof andms.

Say that two segment§a;,m1) and (a2, ms) arelinked if either one precedes the other.
Observe that wheg is a root of unity, each may precede the other, and there may be many
different concatenation&a;, m1)#I (az, ms2) andl(as, ma)#I(ar,m1)

Note that in the “generic” case, wheiis not a root of unity, this definition (of linked segments)
coincides with the definition [31, 4.1, p. 184].

We may now state our results concerning composition factors as follows. First note that
the pairs(s(a,b), Ni) € P (cf. (9.12)) correspond bijectively to pais = I(a,n — k) and

= 1(b, k) of segments of length — k =t + k andk respectively, where — k=t + k > k.
In the statement below, we writel;, ;, and Ly, 1, respectively for the corresponding standard
modulesM, ), n, and irreducibled.,, ) n, (See Section 10 above).

(11.2) THEOREM. —

(i) The standard modul&/, y is irreducible if and only if the segmenis, I, are not linked.

(i) If I precededs, let I} = I #1 be any concatenation di and I>. This is a segment of
lengthn — &/, wherek’ < k (see above Definel;, = I(b,k’). Thenthe irreduciblé/ﬁ;(q)—module
Ly n is a composition factor oM, r,.

(iii) If I precededl;, takeI; to be any concatenatiofh,#1;. This is a segment of length
n — k', where agairk’ < k. Definel, = I(a,k’). Then the irreducibl@(q)—moduleLI{Jé is
a composition factor of, ,.

(iv) Al composition factors oMy, 1, have multiplicity one, and are of the forfy, ;,, where
(11, I) arises from(I1, I2) by a sequence of transformations of the form descnbed iand (iii)
above.

(v) We havel.;, 1, =0ifand only ifq> = —1 and I, = — I, so thatn = 2k.

(vi) Say that(I1,1s) = (I1,15) if (I1,15) is obtained from(I1,>) by a sequence of
transformations of the forngii) and (iii) above. Then in the Grothendieck group of finite
dimensionalﬁ%(g) modules, we have

Lnnl= > ”11 I [MI' 1]
(I1,12)=(I7,135)

17,1
wheren;!";2 =0 or £1.
1542

These statements are simply restatements of the facts treated in (10.15) and (10.16) above.

Note the similarity between our Theorem (11.2)(i) and [31, Theorem 4.2]. The latter is of
course false whedqis a root of unity without our modification of the meaning of linked segments.
Note also that our statement holds for any C, eveng = 1.
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(11.3) We shall now give a more explicit description of the pdBetf bisegment$® = (11, I2),
ordered by the relatior, with a view to giving a more explicit version of Theorem (11.2)(vi). It
is convenient to change notation as follows. We have defined a segment above as

I(a,m)= (a, ag 2., f) wheref = ag— ("1,
Write [a, f],, for this segment. This notation applies wherf € R* andm is a positive integer
such thatf = ag—2("=1 . We calla andf the endpoints of the segment. The Betf bisegments
is parametrised by unordered palfs= {[a, f];, [b, ¢]x } of segments such that+ [ = n. We say
P has lengthn = k + | and write k(P) =min(k, ). The corresponding standard module and
irreducible modules will be denoted p, L p respectively.

SupposeP and @ are bisegments of the same length. We say thaind () aretransverse
if they are of the form{[a, f];,[b, glx} and{[a, g];, [b, f];} respectively; we say and(@ are
parallel if they are of the form{[a, f];, [0, g]x} and{[a, f]:,[b, g];} respectively. (Note that the
subscripts may be zero.)

Given a pairQ, Q' of parallel bisegments of the same length, we say dhahdQ’ have the
same orientatiorif they are of the form{{a, f1;, [b, 9]z} and{[a, f]:,[b,g];} respectively with
k <l andj < ¢; otherwise) and@’ have opposite orientations.

The following assertions concerning the combinatorics of the (f@seay be easily checked.

() If P,P' e PandP < P’, thenP’ is either transverse or parallel & (possibly both).

(i) If P’ is transverse t&@ andk(P’) < k(P), thenP 2P

(iii) If P is transverse to itself, thefp’ € P | P < P’} is totally ordered. IfP; is the minimal
elementof{ P’ € P | P < P'} (i.e. P, # P) then

[Lp]=[Mp] - [Mp,].

(iv) If P, P’ are parallel, have the same orientatiéP’) < k(P), and there exist§) with

P < @, then there is a bisegmeft € P such thatP 2 P 2 P.

(v) Say thatP # P’ € P are opposed if they are parallel and not comparable. Then given
Q € P such that there existB € P with Q < P, there exists at most one elemé&pite P such
that@, Q" are opposed.

The proof of (v) proceeds by showing that(¥ is opposed to botld)’ and Q" then@’, Q"
are opposed to each other, and hence by (iv) they must have opposite orientations. But they both
have orientation opposite to that@f whence two such elemenf¥, Q" cannot exist.

(vi) Suppose thaf; is not transverse to itself. IP, < Q < P, then there exists a unique
bisegment)’ which is opposed td).

(vii) If P < @Q, then the number of bisegmenfsin the intervallP,Q] :={R| P < R =2 Q}
which are parallel taP is equal to the number a? which are transverse tB.

The structure of the posé& is completely determined by the properties (i) to (vii) above,
which are all straightforward to prove. Moreover it is an easy consequence of (vii) that

(11.4) PROPOSITION — SupposeP € P is not transverse to itself. Then

[Le] =) nP[Mq),
P=Q

where

Q
np

1 if @ isparallelto P,
—1 if Q istransverse td’.
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We remark also that given the results of [20,1,10], our statement (11.2)(vi) implies that the
Kazhdan-Lusztig polynomials which arise from intersection complexes on the closure of the
Za(s) orbit of the nilpotent elemenV are equal td.

Finally, we observe that the results of this paper may be used to discuss aspects of the

representation theory of the affine Hecke algeﬁl\ga(q) over any algebraically closed field of
positive characteristic, i.e. the “modular case”. This is carried out for the algétir&s, (¢, Q)
in [6].
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