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DIAGRAM ALGEBRAS, HECKE ALGEBRAS AND
DECOMPOSITION NUMBERS AT ROOTS OF UNITY

BY J.J. GRAHAM AND G.I. LEHRER

ABSTRACT. – We prove that the cell modules of the affine Temperley–Lieb algebra have the
composition factors, when regarded as modules for the affine Hecke algebra of typeA, as certain
standard modules which are defined homologically. En route, we relate these to the cell module
Temperley–Lieb algebra of typeB, which provides a connection between Temperley–Lieb algebrasn
and n − 1 strings. Applications include the explicit determination of some decomposition numbe
standard modules at roots of unity, which in turn has implications for certain Kazhdan–Lusztig polyn
associated with nilpotent orbit closures. The methods involve the study of the relationships
several algebras defined by concatenation of braid-like diagrams and between these and Hecke
Connections are made with earlier work of Bernstein–Zelevinsky on the “generic case” and of Jo
link invariants.

 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous démontrons que les “modules cellulaires” de l’algèbre de Temperley–Lieb affin
regardés comme modules pour l’algèbre de Hecke affine de typeA, les mêmes facteurs de composition q
certains modules “standards” qui sont définis homologiquement. Au passage, nous relions ces mod
modules cellulaires pour l’algèbre de Temperley–Lieb de typeB. Parmi les applications est la déterminat
explicite des nombres de décomposition de certains modules standards aux racines de l’unité, qui
à son tour la détermination de certains polynômes de Kazhdan–Lusztig associés aux clôtures
nilpotentes. Nos méthodes consistent à étudier les rapports entre certaines algèbres de concaté
diagrammes de tresses ou analogues, et entre ces algèbres et les algèbres de Hecke. Le travail es
aux travaux précédents de Bernstein–Zelevinski dans le cas “génerique” et de Jones sur les invar
entrelacs.

 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

LetR be a commutative ring with1 and letq ∈R×, where for any ringA with 1, A× denotes
the group of its invertible elements. In [14], we defined a “Temperley–Lieb category”Ta, whose
objects are the natural numbersN, and whose morphisms areR-linear combinations of “plana
diagrams fromt ton” (for t, n ∈N), with composition depending on the elementq. In particular,
we have the algebras of endomorphisms

T an (q) := HomTa(n,n), for n= 0,1,2,3, . . . .

These were called in [14] the affine Temperley–Lieb algebras. Using a calculus of dia
together with the philosophy of cellular algebras, we developed in [op. cit.] a theory o
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modulesWt,z(n) (0� t� n, n− t ∈ 2Z, z ∈R×) for the algebrasT an (q), and gave a complete
description of the composition factors of the cell modules, valid for allq, even forq a root of
unity, the most complicated case. The description of the irreducibleT an (q)-modules is valid when

dules

o
dard
f

the
les in
ly not

n
ons of
ds. We

uences

is
up to

he
hip
he
e

to the
d

culty

e
we
ments”

throws
ecke
R is any algebraically closed field. The analysis of the composition factors of the cell mo
applies whenR is an algebraically closed field whose characteristic is either0 or p > 0 such that
pe > n, wheree is the multiplicative order ofq2.

Now let Ĥa
n(q) be the extended affine Hecke algebra of typẽAn−1, which corresponds t

G=GLn(C). This is the algebra considered in [4,28,19], for which there is a theory of “stan
modules”Ms,N , which may be constructed by regardinĝHa

n(q) as a convolution algebra o
coherent sheaves acting on the Borel–Moore homology of certain varietiesVs,N , wheres is a
semisimple element ofG andN is a nilpotent element ofG=Lie(G) such thatAd(s)N = q2N .
Whenq is not a root of unity, the structure of the modulesMs,N is fairly well understood, while
whenq is a root of unity, it was conjectured in [20] and proved in [1] (cf. also [10]), that
decomposition numbers of the standard modules, i.e. the multiplicities of the irreducib
Ms,N , are given by values of certain Kazhdan–Lusztig polynomials, which are general
known explicitly (see also [21]).

In this work, we show that the cell modulesWt,z(n) of the algebraT an (q) (cf. [14]) may
be inflated via a family{ψα | α ∈ R×} of surjectionsĤa

n(q)→ T an (q) (see (5.12) below) to
modules forĤa

n(q), which we identify explicitly (in the Grothendieck groupΓ(Ĥa
n(q)) of finite

dimensionalĤa
n(q)-modules) with the standard modulesMs,N whereN has just two Jorda

blocks. This enables us to use the results of [14] to give completely explicit decompositi
these standard modules, and therefore give character formulae for their irreducible hea
also obtain much detailed information about their internal structure. Among the conseq
of our results are the statements thatMs,N is always multiplicity free, and that whenq is a root
of unity, the composition length may be arbitrarily large (asn increases). The key point in th
work is the identification of the inflations of our cell modules with the standard modules
Grothendieck equivalence (Theorem (9.8)).

To achieve this, we show that the inflationsψ∗
αWt,z(n) are generically (i.e. for genericq)

induced modules from a parabolic subalgebra ofĤa
n(q). For this we need to understand t

action of the “translation elements”Xi on the inflations. This in turn depends on the relations
between two (known) ways of viewinĝHa

n(q); the first as a twisted tensor product of t
group ringR[〈V 〉] of Z ∼= 〈V 〉 with the Hecke algebraHa

n(q) of the Coxeter system of affin
type Ãn−1, the second as the tensor product of the finite dimensional Hecke algebraHn(q)
of type An−1 with the R-algebra of Laurent polynomialsR[X±1

1 , . . . ,X±1
n ]. We approach

this relationship via generalised Artin braid groups. In addition, we shall have recourse
“Temperley–Lieb algebra” of typeBn, denoted byTLBn(q,Q) below (it is sometimes referre
to as the “blob algebra”), to determine the action of theXi, sinceT an−1(q) is not naturally a
subalgebra ofT an (q), and therefore one does not have restriction. We circumvent this diffi
by proving that for anyQ, there is a pair of natural surjections fromT an (q) to TLBn(q,Q),
and studying restriction fromTLBn(q,Q) to TLBn−1(q,Q). This could be used to study th
“modular representation theory” of̂Ha

n(q), but we do not do this here. In the final Section 11
interpret our results in terms of a generalisation to the non-generic case of the “multiseg
of Zelevinsky and Bernstein.

Since the “annular algebras” of V. Jones [16] are quotients of the algebrasT an (q), their
representation theory may be thought of as a subset of the story below. Hence our work
light on the connection between the work of Jones on link invariants (cf. [17]) and affine H
algebras.
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2. Some generalised Artin braid groups

LetW be the symmetric groupSymn, realised as a Coxeter group generated by the reflections

ne
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ition”
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me

of
si in the hyperplaneszi − zi+1 = 0 of V = Cn (i = 1,2, . . . , n − 1). Write sn for reflection
in the affine hyperplanez1 − zn = 1. Then{s1, . . . , sn} are Coxeter generators for the affi
Weyl groupW a ∼= W � Zn−1, which may also be thought of as generated byW together
with translations by vectors(a1, . . . , an), with ai ∈ Z anda1 + · · ·+ an = 0. Write Ŵ a for the
semidirect product ofW with the groupZn of all translations by vectors with integer coordinat
Write v0 = (1,1, . . . ,1) and denote byp0 the orthogonal projectionp0 :V → v⊥0 . ThenW and
W a act irreducibly as Coxeter groups onV0 = v⊥0 , andW a is a normal subgroup of̂W a, with
quotientZ.

The reflecting hyperplanes ofW a acting on V are the hyperplaneszi − zj = k, for
1 � i < j � n andk ∈ Z. Write Ma for the complement of these hyperplanes inV andMa

0

for p0(Ma). Thus, explicitly,

Ma =
{
(x1, x2, . . . , xn) ∈ V =Cn | xi − xj /∈ Z if i �= j

}
.

(2.1) PROPOSITION(Nguyen [27]). –The fundamental groupπ1(Ma
0 /W

a) is isomorphic to
the Artin group associated to the Coxeter system(W a,{s1, . . . , sn}).

In fact Nguyen proves this for any affine type Coxeter group by giving a “cell decompos
of the spaceMa

0 /W
a. In our case we have explicitly thatπ1(Ma

0 /W
a), which we denote

henceforth by∆n, is generated by elements{σ1, σ2, . . . , σn} subject to the relations

σiσj = σjσi if j �≡ i± 1 (modn),

σiσi+1σi = σi+1σiσi+1 for i= 1,2, . . . , n,
(BR)

where the subscripts in (BR) are takenmod n.

(2.2) LEMMA. – The mapp0 :Ma→Ma
0 is aW a-homotopy equivalence. Hence the quoti

spacesMa/W a and Ma
0 /W

a are homotopy equivalent. In particular they have the sa
fundamental group.

Proof. –If I is the unit interval andi is the inclusion ofMa
0 in Ma, thenp0 ◦ i= idMa

0
, and

the map(v, t) �→ v− (1− t) 〈v,v0〉n v0 (Ma × I→Ma) defines a homotopy fromi ◦ p0 to idMa ,
which commutes with theW a action for eacht ∈ I. ✷

(2.3) LEMMA. – Let Ŵ a ⊃W a be as described above. The mapMa/W a→Ma/Ŵ a is an
unramified covering with covering groupZ.

The proof is easy. Note that the quotient̂W a/W a is generated by the element

τ ′ =
(
cn, (1,0,0, . . . ,0)

)
∈ Symn�Zn,

wherecn is then-cycle (12 . . .n) ∈ Symn. This element has the property thatτ ′n lies in the
centreZ(Ŵ a). It follows from the lemma thatMa/Ŵ a may be thought of as the quotient
Ma/W a by the cyclic group〈τ ′〉.

(2.4) COROLLARY. – There is an exact sequence

1→ π1

(
Ma/W a

)
→ π1

(
Ma/Ŵ a

)
→ Z→ 1.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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We now identify the spaceMa/Ŵ a and its fundamental group. For any topological spaceY ,
let Xn(Y ) be the space

e
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Xn(Y ) =
{
(y1, . . . , yn) ∈ Y n | yi �= yj if i �= j

}
/Symn .

Then evidentlyMa/Ŵ a ∼= Xn(C/Z) ∼= Xn(C∗). But if MBn is the complex hyperplan
complement of typeBn (viz. Cn with the hyperplanesxi ± xj = 0 andxi = 0 removed), and
WBn is the corresponding Weyl group, then clearly

MBn/WBn
∼=Xn(C∗)/{±id} ∼=Xn(C∗)∼=Ma

0 /Ŵ
a.(2.5)

But Deligne has shown [7] that the space of regular orbits of a finite Coxeter group
complexified reflection representation space is its associated generalised Artin braid gro
is also proved in [27]). WriteΓn for the generalised Artin braid group of typeBn. ThenΓn has
generators{ξ1, σ1, σ2, . . . , σn−1}, with relations

σiσj = σjσi if |i− j| �= 1,

σiσi+1σi = σi+1σiσi+1 for i= 1,2, . . . , n− 2,

ξ1σ1ξ1σ1 = σ1ξ1σ1ξ1,

ξ1σi = σiξ1 if i �= 1.

(BRB)

Now paths inXn(C∗) may be regarded as periodic braids, or braids on a thickened cyl
as follows. Think ofC∗ as the plane with a large hole at0; choosen pointsP1, P2, . . . , Pn
in C∗. A path inXn(C∗)may then be regarded as a braid “around the hole”, or on the thick
cylinder, where each string starts at somePi and finishes atPi′ , wherei �→ i′ is a permutation o
{1,2, . . . , n}. If we cut the cylinder open, these braids may be drawn in the plane, and reg
as “periodic braids”, or cylindrical braids. These may be drawn as depicted in the diagra
Fig. 1, in which the two intervals labelledAB are identified by bending the rectangle in towa
the page.

Now let τ ∈ Γn be the “twist” as shown (it corresponds to the projection of a pat
Ma

0 /W
a from the base pointP to τ ′P , whereτ ′ is the element defined above, such t

Ma/Ŵ a ∼= (Ma/W a)/〈τ ′〉). Further, letσi be the generating braids depicted in the diag
(i= 1,2, . . . , n). It is clear thatΓn then has a presentation with generators{τ, σ1, σ2, . . . , σn},
with relations (BR) for theσi, together with

τσiτ
−1 = σi+1 for i= 1,2, . . . , n,

where the subscripts are takenmod n.

(2.6) PROPOSITION. – With the above notation, let

ξ1 = τσ−1
n−1σ

−1
n−2 . . . σ

−1
1 and

ξi+1 = σiξiσi for i= 1,2, . . . , n− 1.

Then the family{ξ1, σ1, . . . , σn−1} generatesΓn subject to the relations(BRB), and{ξ1, . . . , ξn}
generates a free abelian group of rankn.

4e SÉRIE– TOME 36 – 2003 –N◦ 4
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of. For
Fig. 1.

Proof. –It is clear that{ξ1, σ1, . . . , σn−1} generatesΓn, since{τ, σ1, σ2, . . . , σn−1} does, and
τ = ξ1σ1 . . .σn−1. We next show that{ξ1, σ1, . . . , σn−1} satisfies the relations (BRB). This
easy to see from the braid pictures (see Fig. 1), but we shall provide an algebraic pro
i= 1,2, . . . , n, we have

ξi = σi−1σi−2 . . . σ1τσ
−1
n−1σ

−1
n−2 . . . σ

−1
i .

We shall first show that

σjξi = ξiσj if j �= i− 1, i.(2.6.1)

To see (2.6.1), first takei= 1. Then forj > 1,

σjξ1 = σjτσ
−1
n−1σ

−1
n−2 . . .σ

−1
1 = τσ−1

j−1σ
−1
n−1 . . . σ

−1
1

= τσ−1
n−1 . . .σ

−1
j+1σj−1σ

−1
j σ−1

j−1σ
−1
j−2 . . . σ

−1
1

= τσ−1
n−1 . . .σ

−1
j+1σ

−1
j σ−1

j−1σjσ
−1
j−2 . . . σ

−1
1 by (BR)

= ξ1σj .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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This proves (2.6.1) fori= 1. But sinceξi = σi−1σi−2 . . .σ1ξ1σ1 . . . σi−1, it follows that (2.6.1)
holds for allj > i. Now takej < i− 1. Then

−1 −1
σjξi = σjσi−1σi−2 . . . σ1τσn−1 . . .σi

= σi−1 . . .σjσj+1σjσj−1 . . . σ1τσ
−1
n−1 . . . σ

−1
i

= σi−1 . . .σj+1σjσj+1σj−1 . . . σ1τσ
−1
n−1 . . . σ

−1
i by (BR)

= ξiσj .

This proves (2.6.1). We next show that

ξ1σ1ξ1σ1 = σ1ξ1σ1ξ1.(2.6.2)

Let

βn = σn−1σ
−1
n−2 . . . σ

−1
1 σ−1

n−1σ
−1
n−2 . . .σ

−1
1 .

We shall show by induction onn that

βn = σ−1
n−2σ

−1
n−1σ

−1
n−3σ

−1
n−2 . . . σ

−1
1 σ−1

2 .(2.6.2.1)

If n= 2, both sides of (2.6.2.1) are equal to1. In general,

βn = σn−1σ
−1
n−2σ

−1
n−1σ

−1
n−3 . . . σ

−1
1 σ−1

n−2σ
−1
n−3 . . . σ

−1
1

= σ−1
n−2σ

−1
n−1σn−2σ

−1
n−3 . . . σ

−1
1 σ−1

n−1σ
−1
n−2 . . . σ

−1
1

= σ−1
n−2σ

−1
n−1βn−1,

which proves (2.6.2.1).
Next, observe that ifγn = σ−1

n−2 . . . σ
−1
1 σ−1

n−1σ
−1
n−2 . . . σ

−1
2 , then γn = βn. For n = 3,

γn = βn = σ−1
1 σ−1

2 . In general,γn = σ−1
n−2σ

−1
n−1γn−1, and so

γn = βn(2.6.2.2)

for all n, by induction onn.
To prove (2.6.2), we now have

σ1ξ1σ1ξ1 = σ1τσ
−1
n−1σ

−1
n−2 . . . σ

−1
2 τσ−1

n−1σ
−1
n−2 . . . σ

−1
1

= σ1τ
2σ−1

n−2σ
−1
n−3 . . . σ

−1
1 σ−1

n−1σ
−1
n−2σ

−1
n−3 . . . σ

−1
1

= τ2σn−1σ
−1
n−2σ

−1
n−3 . . . σ

−1
1 σ−1

n−1σ
−1
n−2 . . . σ

−1
1

= τ2βn.

But

ξ1σ1ξ1σ1 = τσ−1
n−1σ

−1
n−2 . . . σ

−1
2 τσ−1

n−1σ
−1
n−2 . . . σ

−1
2

= τ2σ−1
n−2σ

−1
n−3 . . .σ

−1
1 σ−1

n−1σ
−1
n−2 . . . σ

−1
2

= τ2γn

= τ2βn by (2.6.2.2)

= σ1ξ1σ1ξ1,

which proves (2.6.2).

4e SÉRIE– TOME 36 – 2003 –N◦ 4
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It follows immediately from (2.6.2) and (2.6.1) that the family{ξ1, σ1, . . . , σn−1} satisfies
the relations (BRB). But the relations (BR) andτσiτ−1 = σi+1 are similarly shown to follow
from (BRB), whence we have a presentation ofΓn.

ce this
the

up
It remains to show that theξi commute with each other. Note that (2.6.2) says thatξ1ξ2 = ξ2ξ1.
In general, suppose that we knowξiξj = ξjξi for all j > i, 1� i < k. Sinceξk = σk−1ξk−1σk−1,
if j > k, ξj commutes withσk−1 by (2.6.1), and withξk−1 by induction, and hence withξk.
Hence by induction theξi all commute. To see that there are no relations among theξi, one may
use the braid picture as follows. In any cylindrical braid of the formξm1

1 . . . ξmn
n , note that each

string joins points on the top and bottom of the cylinder which have the same label, sin
is true of eachξi. Given the braid, the indicesmi may be recovered as the number of times
relevant string winds around the cylinder.✷

(2.7) COROLLARY. – The exact sequence(2.4) is realised as

1→∆n→ Γn→ Z→ 1,

where∆n→ Γn is inclusion andΓn→ Z is the map takingτrσn1
i1

. . . σnl
il
∈ Γn to r ∈ Z.

Our final result in this section is

(2.8) LEMMA. – We have the following relation inΓn.

τn = ξ1ξ2 . . . ξn.

Proof. –Sinceξ1 = τσ−1
n−1σ

−1
n−2 . . . σ

−1
1 andξi+1 = σiξiσi, one shows easily by induction oni

that for1� i � n− 1,

ξ1ξ2 . . . ξi = τ iσ−1
n−i . . . σ

−1
1 σ−1

n−i+1 . . . σ
−1
2 . . . σ−1

n−1 . . . σ
−1
i .

Henceξ1ξ2 . . . ξn−1 = τn−1σ−1
1 . . . σ−1

n−1 = τnξ−1
n . ✷

3. Affine Hecke algebras of type A

Let R be a commutative ring, denote byR× the group of invertible elements ofR, and let
q ∈R×. We maintain the notation of the last section, so thatΓn is the Artin braid groupB(Bn)
of typeBn and∆n is the Artin braid groupB(Ãn−1) of type Ãn−1, regarded as the subgro
of Γn generated byσ1, . . . , σn. Denote byRΓn the group ring ofΓn overR.

(3.1) DEFINITION. – LetSi be the elementSi = (σi− q)(σi+ q−1) of RΓn (i= 1,2, . . . , n).
The affine Hecke algebrâHa

n(q) of GLn overR is defined by

Ĥa
n(q) =RΓn/〈S1〉.

Note that sinceS1, . . . , Sn are all conjugate inRΓn, the ideal〈S1〉 is equal to〈S1, . . . , Sn〉.
Let η :RΓn→ Ĥa

n(q) be the natural map. We then write

η(σi) = Ti for i= 1, . . . , n,

η(ξi) =Xi for i= 1, . . . , n,(3.2)

η(τ) = V.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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The next proposition collects some well known facts concerningĤa
n(q), many of which may

be found in §3 of [24].

d,
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being

roup,
als;

lgebra
p.

n

(3.3) PROPOSITION. –
(i) The elementsT1, . . . , Tn generate a subalgebraHa

n(q) of Ĥa
n(q), which hasR-basis

{Tw | w ∈W a ∼= Symn�Zn−1}, where, ifw = si1 . . . si� is a reduced expression forw ∈W a,

Tw = Ti1 . . . Ti� . We refer to this as the “unextended” Hecke algebra of typẽAn−1.
(ii) The elementsT1, . . . , Tn−1 generate a subalgebraHn(q) of Ĥa

n(q) which has(finite)
R-basis{Tw |w ∈W ∼= Symn}.

(iii) We haveĤa
n(q) ∼= RZ⊗Ha

n(q) ∼= R〈V 〉 ⊗Ha
n(q), where the tensor product is twiste

using the action ofV onHa
n(q): V TiV

−1 = Ti+1, where the subscript is takenmod n.
(iv) We haveĤa

n(q) ∼= Hn(q) ⊗ R[X±1
1 , . . . ,X±1

n ] as R-module, and the multiplication i
given by the “Bernstein relations”: for i ∈ {1, . . . , n− 1}, write si for the corresponding simpl
reflection inW and sif for the image off ∈ R[X±1

1 , . . . ,X±1
n ] under the natural action o

W ∼= Symn. Then

Tif −
(
sif

)
Ti =

(
q− q−1

) f − (sif)
1−XiX

−1
i+1

.

(v) The centreZ(Ĥa
n(q)) is the ring of symmetric functions in theX±1

i . Equivalently,

Z(Ĥa
n(q)) =R[Σ±1

1 , . . . ,Σ±1
n ], whereΣi is theith elementary symmetric function in theXi.

Note that some authors use notation which results in the denominator of (iv) above
1−Xi+1X

−1
i .

We remark that to prove the relation in (iv) from those given in Section 2 for the braid g
one observes that the relation is linear inf , and hence need only be proved for monomi
moreover one easily shows that if the relation holds forf1 andf2, then it holds forf1f2. Thus
one is reduced to proving the relation forf =Xj , which is easy.

In addition to the algebras above, we shall need to consider the (finite rank) Hecke a
of typeB, which arises as follows. LetWB := Symn�(Z/2Z)n be the hyperoctahedral grou
This is generated as Coxeter group by{s1, . . . , sn−1}, together with another generators0. The
generators{s0, s1, . . . , sn−1} are involutions, and satisfy the relations analogous to (BRB) above.
Let Q ∈R×. The Hecke algebraHBn(q,Q) of typeBn with parameters(q,Q) is defined as

HBn(q,Q) = Ĥa
n(q)/

〈
(X1 −Q)

(
X1 +Q−1

)〉
=RΓn/

〈
(ξ1 −Q)

(
ξ1 +Q−1

)
, (σ1 − q)

(
σ1 + q−1

)〉
.

(3.4) PROPOSITION. – Let

ηQ : Ĥa
n(q)→HBn(q,Q)

be the natural map. WriteTi ∈ HBn(q,Q) for the image ofTi ∈ Ĥa
n(q) under ηQ

(i= 1, . . . , n− 1) (relying on the context to distinguish between them), and writeT0 = ηQ(X1).
ThenHBn(q,Q) hasR-basis{Tw | w ∈WB}, where, ifw = si1 . . . si� is a reduced expressio
for w ∈WB , Tw = Ti1 . . . Ti� .
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The relationship among the various algebras introduced so far is illustrated in the commutative
diagram below.

e

eal
Hn(q)

incl

R∆n
η

incl

Ha
n(q)

incl

RΓn
η

Ĥa
n(q)

ηQ

HBn(q,Q)

(3.5)

The relations discussed in Section 2 for the braid groupsΓn and∆n may be interpreted in th
Hecke algebras as follows.

(3.6) LEMMA. – The following relations hold in̂Ha
n(q).

V n =X1X2 . . .Xn,(3.6.1)

V =X1T1T2 . . . Tn−1.(3.6.2)

If we writeV for ηQ(V ) and adopt the notation of(3.4), we also have(in HBn(q,Q))

V = T0T1 . . . Tn−1.(3.6.3)

4. Affine and finite dimensional Temperley–Lieb algebras

Let W = 〈s1, . . . , sn−1〉 ∼= Symn as above and write

Wi = 〈si, si+1〉 ∼= Sym3 for i= 1,2, . . . , n− 2.

Define the elementEi ∈Hn(q)⊂Ha
n(q)⊂ Ĥa

n(q) by

Ei =
∑
w∈Wi

q�(w)Tw

where4(w) denotes the usual length function. LetI (resp.Î) denote the ideal ofHa
n(q) (resp.

Ĥa
n(q)) generated byE1. Note that since theEi are all conjugate, this is the same as the id

generated by all theEi.

(4.1) DEFINITION. – The affine Temperley–Lieb algebrasTLan(q) andT̂Lan(q) are defined
by

TLan(q) =Ha
n(q)/I,

T̂Lan(q) = Ĥa
n(q)/Î.

It is known (cf. [14,15]) that ifCi = −(Ti + q−1) ∈ Ha
n(q) (i = 1, . . . , n), then inHa

n(q),
CiCi+1Ci − Ci = Ci+1CiCi+1 − Ci+1 = −q3Ei, where the indices are takenmod n. If we
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abuse notation by writingCi ∈ TLan(q) for the image ofCi ∈Ha
n(q) under the natural map, it

follows easily thatTLan(q) is generated by{C1, . . . ,Cn} subject to the relations

ebra”.
phisms:
ra
y.

make
good

on the
, in
al way.

es, each
tained

ebra
C2
i = δqCi,

CiCi±1Ci =Ci,

CiCj =CjCi if |i− j|� 2 and{i, j} �= {1, n},

(TL)

where, for any elementx ∈R×, δx :=−(x+ x−1).
Moreover it is easy to see that (cf. (3.3)(iii) above, or [15, §2])

T̂Lan(q)∼=R〈V 〉 ⊗TLan(q),(4.2)

whereV permutes theCi cyclically.
Now in addition to the algebrasTLan(q) andT̂Lan(q), we shall require the algebraT an (q) which

was defined in [14, (2.7)] and referred to there (loc. cit.) as “the affine Temperley–Lieb alg
This is defined as an algebra of diagrams or, more accurately, as the algebra of mor
n→ n in the categoryTa (see [14, (2.5)]) andTLan(q) is identified [14, (2.9)] as the subalgeb
of T an (q) spanned by the “non-monic diagrams:n→ n of even rank”, together with the identit
It also occurs independently in the work of Green [11] and Fan–Green [8]. We shall need to
some use of the diagrammatic description in this work; details may be found in [14], but a
approximation to the picture is obtained if one thinks of affine diagrams as arcs drawn
surface of a cylinder joining2n marked points,n on each circle component of the boundary
pairs. The arcs must not intersect, and diagrams are multiplied by concatenation in the usu
These diagrams are represented by periodic diagrams drawn between two horizontal lin
diagram being determined by the “fundamental rectangle”, from which the cylinder is ob
by identifying vertical edges. In this interpretation, the generators{f1, . . . , fn, τ} of T an (q) are
represented by the diagrams in Fig. 2. The elements{f1, . . . , fn} of the algebraT an (q) satisfy the
relations (TL), withCi replaced byfi, and it is noted in [14, (2.9)] that these generate an alg
isomorphic toTLan(q). Further,τfiτ−1 = fi+1, where the index is takenmod n.

Fig. 2.
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(4.3) PROPOSITION. –
(i) There is a family of surjectionsφα : T̂Lan(q)→ T an (q) (α ∈ R×), defined byφα(Ci) = fi

andφα(V ) = ατ . Eachφα restricts to a monomorphism onTLa(q).

ond

[16].

ro,
is to
rd

e the
ley–

d to as
nt here
n
nition

ant
n

(ii) The kernel ofφα is generated by the elementνα ∈ T̂Lan(q), where

να = α−2V 2Cn−1 −C1C2 . . .Cn−1 = α−2C1V
2 −C1C2 . . .Cn−1.

(iii) If R is an algebraically closed field of characteristic prime ton, any irreducible finite
dimensional representation of̂TLan(q) is the pullback viaφα (for someα ∈R×) of an irreducible
representation ofT an (q).

Proof. –The first part of (i) follows immediately from the relations above, while the sec
follows from the fact (cf. [14, 2.9]) that (TL) gives a presentation ofTLan(q). Next, one verifies
easily thatτ2fn−1 = f1f2 . . . fn−1 in T an (q) (see [15, 1.11]), which shows thatνα ∈Kerφα. The
fact thatνα generates the kernel may be found in [11] or [8]. This relation also appears in
The statement (iii) may be proved using the argument of Theorem 2.6 in [15].✷

In [14], we defined cell modulesWt,z(n) for the algebraT an (q), (wheret ∈ Z,0 � t � n,
t + n ∈ 2Z, andz ∈ R×) and whenR is an algebraically closed field of characteristic ze
completely determined their composition factors and multiplicities. Our purpose here
interpret these results for the pullbacksφ∗

αWt,z(n). To identify these pullbacks as standa
modules forĤa

n(q) up to Grothendieck equivalence (cf. [19] or [31]), we need to determin
action of the translation elementsXi on the modules, and for this we shall require the Temper
Lieb algebraTLBn(q,Q) of typeBn.

5. The Temperley–Lieb algebras of type B

This algebra has been studied by mathematical physicists [25,26], where it is referre
the “blob algebra”, and in [29] (see also [6], and the references there). We shall prese
the main facts which we require concerningTLBn(q,Q), relying for general background o
op. cit. Our notation continues from Section 3 above, and we start with an algebraic defi
of TLBn(q,Q).

Note first that the Hecke algebraHBn(q,Q) has anR-algebra homomorphism

ε :HBn(q,Q)→R,

defined on the generatorsTi (i= 0,1, . . . , n− 1, see (3.4)) by

ε(T0) =Q, ε(Ti) = q for 1� i � n− 1.

As above, lets0, s1, . . . , sn−1 be the simple generators of the hyperoctahedral groupWB , and
write Wi = 〈si, si+1〉 for i = 0,1, . . . , n − 2. Then defineEi =

∑
w∈Wi

ε(Tw)Tw. For i �= 0,
theseEi coincide with theEi of Section 4, and they are all conjugate inHBn(q,Q). For i > 0,
letCi =−(Ti+ q−1), and letC0 =−(T0+Q−1). The next lemma summarises several relev
relations inHBn(q,Q).

(5.1) LEMMA. –
(i) For i= 1, . . . , n− 2, CiCi+1Ci −Ci =−q3Ei.
(ii) For i= 2, . . . , n− 1, CiCi−1Ci −Ci =−q3Ei.
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(iii) LetX =C1C0C1 − κC1, whereκ= q
Q +

Q
q . ThenXC0 =C0X = q−2Q−2E0.

(iv) We haveC2
i = δqCi for i �= 0, whileC2

0 = δQC0.

e

of

s

m

The proofs are simple computations inHBn(q,Q).

(5.2) DEFINITION. – The Temperley–Lieb algebraTLBn(q,Q) of typeBn with parameters
(q,Q) is defined as

TLBn(q,Q) :=HBn(q,Q)/〈E1,X〉=HBn(q,Q)/〈E1,E2, . . . ,En−2,X〉.

Note that the kernel of the natural map̂Ha
n(q)→ TLBn(q,Q) contains the kernel of th

natural mapĤa
n(q)→ T̂Lan(q). Hence the former map factors through a surjection

T̂Lan(q)→TLBn(q,Q).

This is reflected in the diagram (5.6) below.
Denote by lower case letters the images inTLBn(q,Q) of the corresponding elements

Ĥa
n(q) (or T̂Lan(q) or HBn(q,Q)). Thus in particular we writeti, ci respectively for the image

in TLBn(q,Q) of Ti,Ci ∈ HBn(q,Q) under the natural map (i= 0,1,2, . . . , n). Similarly, we
have elementsxi (i= 1, . . . , n) andv ∈ TLBn(q,Q). The next statement is easy to verify fro
the foregoing discussion.

(5.3) PROPOSITION. –
(a) The Temperley–Lieb algebraTLBn(q,Q) is generated asR-algebra by the family

{c0, c1, . . . , cn−1} subject to the relations

c20 = δQc0,

c2i = δqci for 1� i � n− 1,

cici+1ci = ci for 1� i � n− 2,

cici−1ci = ci for 2� i � n− 1,

c1c0c1 = κc1,

(TLB)

whereκ= q
Q +

Q
q andδx =−(x+ x−1) for x ∈R×.

(b) The elementsc1, . . . , cn−1 generate a subalgebra ofTLBn(q,Q) which is isomorphic to

the usual Temperley–Lieb algebra TLn(q) of typeÃn−1.
(c) The following relations hold inTLBn(q,Q).
(i) t0 =−(c0 +Q−1) andti =−(ci + q−1) for i= 1, . . . , n− 1.
(ii) If v ∈TLBn(q,Q) is the image ofV ∈HBn(q,Q) under the natural map, then

v = t0t1 . . . tn−1.

(iii) x1x2 . . .xn = vn.
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A diagram of maps relating the algebras we have now introduced is as follows.

H (q)
η1 TL (q)

)
odules.
e

hich
mental

f the

e

n

incl

n

incl

R∆n
η

incl

Ha
n(q)

η2

incl

TLan(q)

incl

RΓn
η

Ĥa
n(q)

η3

ηQ

T̂Lan(q)
φα

γQ

T an (q)

HBn(q,Q)
η4 TLBn(q,Q)

(5.6)

where theηi are the natural surjections andγQ exists because the kernel ofη4 ◦ ηQ contains

E1 ∈ Ĥa
n(q), which generates the kernel ofη3. Thusη4 ◦ ηQ factors througĥTLan(q).

The algebraTLBn(q,Q) has a description in terms ofmarked diagrams(see [25,26,29]
which we now describe, because this description is convenient for the discussion of cell m
We shall use the language of [14] for diagrams. Recall that ift, n are positive integers of the sam
parity, a finite (planar) diagramµ : t→ n is represented by a set of non-intersecting arcs w
are contained in the “fundamental rectangle” (see below). These arcs divide the funda
rectangle into regions, among which there is a unique “left region” as shown below.

A marked diagramis a (finite planar) diagram, where the interior of the boundary arcs o
leftmost region may be marked with one or more• symbols (“marks”) (see below).

The R-linear combinations of diagrams fromt to n constitute the morphisms in th
Temperley–Lieb categoryT, where the objects are the non negative integersZ�0. Composition

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



492 J.J. GRAHAM AND G.I. LEHRER

is defined by concatenation of diagrams, with closed loops being deleted and replaced by the
scalarδq . In particular,HomT(n,n)∼=TLn(q). Marked diagrams may be similarly concatenated
according to rules we shall now state; this produces a new category,TB, the Temperley–Lieb

The
f

e
s

ws
e,

ecall
t

ative

s
he
category of typeB. The composition rules are as follows.
A marked diagram isproper if it has no loops and each arc has at most one mark.

following rules reduce the concatenation of any two diagrams to anR linear combination o
proper diagrams:

If µ is a diagram andL is a loop with no marks, µ�L= δqµ.(5.7.1)

If, in (i) , L has one mark, µ�L= κµ, whereκ=
q

Q
+

Q

q
.(5.7.2)

If some arc ofµ has more than one mark andµ′ is the diagram obtained

by removing a mark from the arc concerned, thenµ= δQµ
′.

(5.7.3.)

Now consider the following marked diagrams fromn to n.

(5.8) PROPOSITION. – The diagrams labelledc0, c1, . . . , cn−1 satisfy the relations for th
generators ofTLBn(q,Q) given in(5.3). MoreoverTLBn(q,Q) is faithfully represented in thi
way asEndTB(n) in the categoryTB.

Proof. –The relations among diagramsci are easily checked using the rules (5.7). It follo
that there is a homomorphism:TLBn(q,Q)→ EndTB(n), which is easily seen to be surjectiv
since any proper marked diagramn→ n can be obtained by composing theci. The injectivity of
this homomorphism follows from arguments in [29] or [12].✷

Let us now focus attention on the bottom right part of the commutative diagram (5.6). R
that under the mapηQ, X1 ∈ Ĥa

n(q) is mapped toT0 ∈ TLBn(q,Q). But for any elemen
µ ∈R×, we may deform bothηQ andγQ to ηQ,µ andγQ,µ respectively, whereηQ,µ(X1) = µT0,
ηQ,µ(Ti) = Ti for 1 � i � n − 1, γQ,µ(V ) = µγQ(V ) = µt0t1 . . . tn−1 andγQ,µ(Ci) = ci for
1� i � n− 1. We then obtain a “deformed” version of the bottom right part of the commut
diagram (5.6) as follows.

Ĥa
n(q)

η3

ηQ,µ

T̂Lan(q)
φα

γQ,µ

T an (q)

HBn(q,Q)
η4 TLBn(q,Q)

(5.9)

We shall study the pullbacks tôHa
n(q) of cell modules ofT an (q) by realising the latter a

pullbacks of cell modules ofTLBn(q,Q) via a homomorphism yet to be defined. With t
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objective of defining a map:T an (q)→ TLBn(q,Q) which makes the diagram (5.9) commute,
we shall prove
(5.10) THEOREM. – Let ti, ci andv be the elements ofTLBn(q,Q) defined just before(5.3)
above. Then forn� 2 we have

c1v
2 =−q−(n−2)c1c2 . . . cn−1.(5.10.1)

Proof. –This will be by induction onn. We first verify the statement forn= 2. The left side
of (5.10.1) is then

c1(t0t1)2

= c1t0t1t0t1

= c1t1t0t1t0 since theti satisfy the braid relations (BRB)

= qc1t0t1t0 sinceciti = qci

=−qc1
(
c0 +Q−1

)(
c1 + q−1

)(
c0 +Q−1

)
=−qc1

(
c0c1c0 + q−1δQc0 +Q−1(c0c1 + c1c0) + 2q−1Q−1c0 +Q−2c1 + q−1Q−2

)
=−q

(
κc1c0 + q−1δQc1c0 +Q−1(κc1 + δqc1c0)

+ 2q−1Q−1c1c0 +Q−2δqc1 + q−1Q−2c1
)

=−qc1c0
(
κ+ q−1δQ +Q−1δq +2q−1Q−1

)
− qc1

(
Q−1κ+Q−2δq + q−1Q−2

)
=−c1,

which proves (5.10.1) for the casen= 2.
Now supposen� 3. Then

c1v
2 = c1t0t1 . . . tn−1t0t1 . . . tn−1

= c1t0t1 . . . tn−2t0t1 . . . tn−3tn−1tn−2tn−1

= c1t0t1 . . . tn−2t0t1 . . . tn−3tn−2tn−1tn−2 by the braid relations (BRB)

= c1(t0t1 . . . tn−2)2tn−1tn−2

=−q−(n−3)c1c2 . . . cn−2tn−1tn−2 by induction onn

=−q−(n−3)c1c2 . . . cn−2

(
cn−1 + q−1

)(
cn−2 + q−1

)
=−q−(n−3)c1c2 . . . cn−3

(
cn−2 + q−1cn−2cn−1 + q−1δqcn−2 + q−2cn−2

)
=−q−(n−2)c1c2 . . . cn−1 by (5.3),

which completes the proof.✷
(5.11) COROLLARY. – For each elementβ ∈ R such thatβ2 = −qn−2, there is a(unique)

surjective homomorphismgβ :T an (q)→TLBn(q,Q) such thatgβ(fi) = ci for i= 1,2, . . . , n− 1,
andgβ(τ) = βv. If α,µ satisfyα−1µ= β, then the following diagram commutes.

Ĥa
n(q)

η3

ηQ,µ

T̂Lan(q)
φα

γQ,µ

T an (q)
gβ

HBn(q,Q)
η4 TLBn(q,Q)

(5.11.1)
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Proof. –For i= 1,2, . . . , n− 1, the surjectionγQ,µ takesCi ∈ T̂Lan(q) to ci ∈ TLBn(q,Q),
while γQ,µ(V ) = µv = µt0t1 . . . tn−1. Hence by Theorem (5.10),

te.

wing

his
C1V
2 + µ2q−(n−2)C1C2 . . .Cn−1 ∈Ker(γQ,µ).

ButKer(φα) is generated by

να = α−2C1V
2 −C1C2 . . .Cn−1.

HenceKer(γQ,µ)⊃Ker(φα), provided that

α2 =−µ2q−(n−2).(5.11.2)

If this condition is satisfied,γQ,µ : T̂Lan(q)→TLBn(q,Q) factors through

φα : T̂Lan(q)→ T an (q);

i.e., there is a mapgβ : T an (q)→ TLBn(q,Q) which makes the diagram (5.11.1) commu
For this map, we have by commutativity,gβ(fi) = γQ,µ(Ci) = ci for i = 1,2, . . . , n − 1, and
gβ(τ) = γQ,µ(α−1V ) = βv, whereβ = α−1µ satisfies (5.11.2), i.e.β2 =−qn−2. ✷

Note that the homomorphismgβ depends of course onQ. We shall writegβ = gβ,Q when we
need to refer to this dependence.

Suppose now that we have a triple(α,µ,β) of elements ofR× such thatβ2 = −qn−2 and
β = α−1µ. By (5.11), we have a commutative diagram

Ĥa
n(q)

ψα

ξQ,µ

T an (q)
gβ

TLBn(q,Q)

(5.12)

where, in the notation of (5.11.1),ψα = φα ◦ η3 andξQ,µ = γQ,µ ◦ η3 = η4 ◦ ηQ,µ.
For future reference, we summarise the definitions of the maps in (5.12) in the follo

equations.

ξQ,µ(X1) = µt0,

ξQ,µ(Ti) = ti for i= 1,2, . . . , n− 1,

ψα(V =X1T1 . . . Tn−1) = ατ,

ψα(Ci =−(Ti + q−1)) = fi for i= 1,2, . . . , n− 1,

gβ(fi) = ci =−(ti + q−1) for i= 1,2, . . . , n− 1,

gβ(τ) = βv = βt0t1 . . . tn−1.

(5.13)

Our next objective is to identify the pullbacks viaψα of the cell modulesWt,z(n) of
T an (q) as standard modulesMs,N of Ĥa

n(q) up to Grothendieck equivalence. We shall do t
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by identifying Wt,z(n) as the pullback of a cell moduleWt(n) of TLBn(q,Q) via gβ for
appropriateQ, and using the commutative diagram (5.12). We therefore need to discuss the
cellular structure ofTLBn(q,Q), which we do in the next section.

the
for the
ture

],
tic

a
r
he

ry
6. Cell modules for T an (q) and TLBn(q,Q)

The cell modulesWt,z(n) of T an (q) were defined and analysed in [14]. We shall freely use
notation and language of that work here. There is an entirely analogous “cellular theory”
algebrasTLBn(q,Q) which we shall now sketch. Recall [13] that to specify a cellular struc
for TLBn(q,Q), we require (i) a posetT , (ii) for eacht ∈ T , a setM(t), and (iii) an injection

�t∈T M(t)×M(t) C→ TLBn(q,Q), whose image is anR-basis{Ct
S,T} of TLBn(q,Q) which

satisfies

aCt
S,T =

∑
S′∈M(t)

ra(S′, S)Ct
S′,T + lower terms (corresponding tot′ < t)

(a ∈TLBn(q,Q), ra(S′, S) ∈R).

We now specify the various elements of a cellular structure forTLBn(q,Q). Take

T =
{
t ∈ Z | |t|� n, t≡ n (mod2)

}
,

partially ordered as follows:t� s if |t|< |s| or |t|= |s| andt� s.
To defineM(t), first taket ∈ T , t � 0. ThenM(t) is the set of monic diagramsD : t→ n

with no marked through strings, where “monic” means that there aret through strings, as in [14
where it is shown that this is equivalent toD being a monic morphism in the category-theore
sense. In general, letM(t) = M(|t|). ThenC :M(t) × M(t) → TLBn(q,Q) is defined as
follows. Let S,T ∈M(t). For t � 0, defineCt

S,T = S ◦ T ∗, where∗ denotes reflection in
horizontal axis. Fort < 0, defineCt

S,T = S ◦ co ◦ T ∗, wherec0 = c0(t) : t→ t is the generato
shown above (5.8). This is the diagramS ◦ T ∗, with the leftmost through string marked. T
cellular axioms above are easily checked.

The cell modulesWt(n) are now defined in complete analogy with theWt,z(n) of [14]. For
any t ∈ T , Wt(n) has basisM(t). If t � 0, TLBn(q,Q) acts via composition in the catego
TB; explicitly, if D ∈M(t) andω ∈ TLBn(q,Q), thenω.D = ωD (composition inTB) if
ω ◦D ∈M(t), andω.D= 0 otherwise.

For t < 0, one may think ofWt(n) as having basis the set{D ◦ c0(t) |D ∈M(|t|)} of monic
diagrams: t→ n in TB with the leftmost through string marked. Then the action ofTLBn(q,Q)
is essentially multiplication inTB, as in the caset � 0. Thus if t < 0, thenω.(D ◦ c0(t)) = 0 if
ω ◦D is not monic, whileω.(D ◦ c0) = ωDc0 (composition inTB) if ω ◦D is monic.

It is easily seen (cf. [29]) that the dimension (i.e. rank overR) of Wt(n) is
( n

n−|t|
2

)
, which is

the same as that ofWt,z(n). We now wish to identify the inflation ofWt(n) via the surjection
gβ :T an(q)→ TLBn(q,Q).

(6.1) THEOREM. – SupposeR is any commutative ring and suppose thatq,Q are elements
of R×, and thatδq = −(q + q−1) is not a zero-divisor. Letβ ∈ R× satisfyβ2 = −qn−2 and
let gβ,Q = gβ :T an (q)→ TLBn(q,Q) be the surjection defined in(5.11). For t ∈ Z such that
0 � t � n and t ≡ n (mod 2), write zt = (−1)tβQ−1q−

1
2 (n+t−2). If Wt(n) is the cell module

for TLBn(q,Q) described above, then the inflationg∗βWt(n) (i.e. the pullback viagβ ofWt(n))
is isomorphic toWt,z(n), wherez = zt.

The proof will depend on a sequence of lemmas.
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(6.2) Remark. – Observe first that the finite rank Temperley–Lieb algebraTLn(q) is naturally
a subalgebra of bothT an (q) and TLBn(q,Q); in T an (q) it is generated byf1, . . . , fn−1, and
hasR-basis consisting of “finite diagrams” fromn to n, i.e., diagrams with no arcs crossing

f

d

h
ite,
the boundary of the fundamental rectangle (see [14, §2]). InTLBn(q,Q), it is generated by
c1, . . . , cn−1 and has basis consisting of unmarked diagrams fromn to n. These two sets o
diagrams may be identified in the obvious way, and relations (5.13) show thatgβ maps a diagram
in TLn(q) ⊂ T an (q) to the same diagram, regarded as a diagram inTLBn(q,Q). A similar
observation applies more generally to affine and marked diagramst to n, where finite and
unmarked diagrams respectively may be identified with each other.

Recall [14] that an affine diagram fromt to n is monic if it hast through strings. LetXt

be theT an (q)-module with basisall monic affine diagrams: t→ n, with T an (q) action given by
composition in the categoryTa, modulo diagrams with fewer thant through strings. ThusXt

may be thought of as a quotient of the leftT an (q)-module HomTa(t, n) by the submodule spanne
by diagrams with fewer thant through strings. TheT an (q) moduleWt,z(n) is defined as the
quotient ofXt by the ideal

Iχ := {γτt− χγ}(6.3)

for γ ∈Xt, whereχ= χz = z if t �= 0 andχ= χz = z + z−1 if t= 0.
We shall define a homomorphismθ :Xt → g∗βWt(n) which we shall prove factors throug

Wt,z(n) for appropriatez. To do this, we require the following diagrams, which, being fin
may (and will) be alternately thought of as lying in the categoriesTa andTB.

(6.4) DEFINITION. – First supposet > 0. Define monic finite diagramsDt,D
′
t : t→ n as

depicted below.

In Dt, (t > 0) the t through strings are joined to the rightmostt top nodes, while inD′
t they

are joined to the rightmostt− 1 and leftmost top nodes. Note thatDt andD′
t are finite diagrams

and that

D∗
tD

′
t = (D

′
t)

∗Dt = idt .(6.4.1)

Whent= 0 the corresponding diagrams are as below.
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In this case

(D′
0)

∗D0 =D∗
0D

′
0 = δq id0,(6.4.2)

ms

n

t

of

e
e

e

(6.5) DEFINITION. – LetXt be theT an (q)-module with basis the set of all monic diagra
t→ n (as explained above). Defineθ :Xt→Zt := g∗βWt(n) by the formula

θ(γ) = gβ(γD∗
t )D

′
t,(6.5.1)

where γ ∈ Xt, and D∗
t and D′

t are regarded as diagrams inTa and TB respectively (see
Remark (6.2)).

(6.6) LEMMA. –
(i) (cf. Remark(6.2))If γ ∈Xt is a finite diagram, then provided thatt > 0, we haveθ(γ) = γ;

i.e.,θ(γ) is the same diagram asγ, regarded as a marked diagram inWt(n). If t= 0, then

θ(γ) = δqγ.

(ii) Suppose that for some elementχ ∈R, we know thatθ(γτt) = χθ(γ) for all finite diagrams
γ ∈Xt. Then

θ(γτt) = χθ(γ)

for all γ ∈Xt; i.e.,Ker(θ)⊃ Iχ.

Proof. –Supposeγ ∈ Xt is a finite diagram. ThenγD∗
t is also finite, and hence is i

TLn(q) ⊂ T an (q). By Remark (6.2), any diagram inTLn(q) is mapped bygβ to the same
diagram, regarded as an element ofTLBn(q,Q), whenceθ(γ) = γD∗

tD
′
t = γ, which proves (i)

for t > 0. The same argument may be used for the caset = 0, taking into account tha
D∗

0D
′
0 = δq id0.

(ii) Clearly any diagramγ ∈Xt has a factorisationγ = ωγ0, whereγ0 ∈Xt is finite, andω is
a diagram inT an (q) (in fact more is true:Xt is cyclic asT an (q)-module, generated by any one
many finite diagrams). Hence

θ(γτt) = θ(ωγ0τt)

= gβ(ω)θ(γ0τt) sinceθ is aT an (q)-module homomorphism

= χgβ(ω)θ(γ0)

= χθ(ωγ0)

= χθ(γ),

as required. ✷
(6.7) COROLLARY. – The homomorphism

θ :Xt→ g∗βWt(n) = Zt

of T an (q) modules is surjective ift > 0, and has image preciselyδqZt whent= 0.

Proof. –By (6.6), if t > 0, the image ofθ contains all finite diagramst→ n. But these generat
Wt,z(n) asT an (q)-module, whence the first statement. Ift= 0, then again by (6.6), for any finit
diagramγ, θ(γ) ∈ δqZt. Since the finite diagrams generateZt asT an (q)-module, it follows that
the image is contained inδqZt. But since the image containsδqγ for each finite diagram, th
result is clear. ✷
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



498 J.J. GRAHAM AND G.I. LEHRER

We shall show thatθ factors throughWt,z(n) for appropriatez ∈ R× using the method of
(6.6)(ii), i.e. by showing thatKer(θ)⊃ Iχ for χ= χz, z = zt. We therefore investigate the right
action ofτt onXt.

Now

ion

(6.4).
Recall (5.13) thatgβ(τn) = βt0t1 . . . tn−1, whereτn is thought of as an element ofT an (q).
Thus to carry through the strategy of (6.6), we shall need the following computation inTB. We
adopt the following notation for diagrams inTB: we say that a diagram ispositiveif the leftmost
through string is unmarked, and negative otherwise. IfE is a positive diagram (e.g. inWt(n)),
Ė will denote the diagram obtained fromE by marking the leftmost through string.

(6.8) LEMMA. – Supposet > 0. Then in the categoryTB, we have

βtn−1tn−2 . . . t1t0D
′
t = zt(Dt +QḊt +E)

whereDt,D
′
t are the diagrams defined above andE is a linear combination of diagrams with< t

through strings. The right side of this equation is to be thought of as an element ofHomTB(t, n).

Proof. –Recall that for1 � i � n − 1, ti = −(ci + q−1), while t0 = −(c0 + Q−1). Hence
t0D

′
t = −Ḋ′

t − Q−1D′
t. Thus we need to evaluatetn−1tn−2 . . . t1D

′
t and tn−1tn−2 . . . t1Ḋ

′
t.

For the former, we havet1D′
t = −D′

t(n − 2) − q−1D′
t, whereD′

t(n − 2) is the diagram
obtained fromD′

t by moving the leftmost through string past the leftmost horizontal arc.
c2D

′
t(n− 2) =D′

t andc2D′
t = δqD

′
t, from which it follows that

t2t1D
′
t = q−1D′

t(n− 2).(6.8.1)

Repeating this argumentk times, where2k= n− t, we obtain

t2kt2k−1 . . . t2t1D
′
t = q−kDt.(6.8.2)

But for i > 2k one sees easily thattiDt ≡−q−1Dt modulo diagrams with fewer thant through
strings. Hence

tn−1tn−2 . . . t1D
′
t = (−1)t−1q−t−k+1Dt +E1

= (−1)t−1q−
n+t−2

2 Dt +E1(6.8.3)

whereE1 is a linear combination of diagrams with< t through strings. The same computat
shows that

tn−1tn−2 . . . t1(Ḋ′
t) = (−1)t−1q−t−k+1(Ḋt) +E2

= (−1)t−1q−
n+t−2

2 (Ḋt) +E2(6.8.3)

whereE2 is a linear combination of diagrams with< t through strings. It follows that

βtn−1tn−2 . . . t1t0D
′
t = βtn−1tn−2 . . . t1

(
t0D

′
t =−(Ḋ′

t)−Q−1D′
t

)
= β(−1)t

(
q−

n+t−2
2 (Ḋt) +Q−1q−

n+t−2
2 Dt

)
+E

= ztDt +Qzt(Ḋt) +E,

whereE is a combination of diagrams with< t through strings. ✷
We now turn to the caset= 0.
Recall that the diagramsD0,D

′
0 have been defined above, before the statement of Lemma

The following relations are easily verified.
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(D′
0)

∗D0 = (D0)∗D′
0 = δq id0, and

(c0D′ )∗D0 = (D′ )∗c0D0 = κ id0 =
(
Q
+

q
)
id0

(6.9)

re
0 0 q Q

whereid0 is the empty diagram0→ 0, in either the categoryTa or TB. Note that although
in the discussion above it is always assumed thatn � 1, from the point of view of diagram
algebras, the point0 is an object in both categoriesTa andTB. The corresponding algebras a
TLB0(q,Q) =R. id0

∼=R andT a0 (q) =R〈τ0〉 ∼=RN.

(6.10) LEMMA. – Letγ ∈X0 be a finite diagram. Then

θ(γτ0) = βδqγ(D′
0)

∗t0t1 . . . tn−1D
′
0.

Proof. –First, observe that in the categoryTa, we have the following relation:

τ0 =D∗
0τnD0 = (D′

0)
∗τnD

′
0.(6.10.1)

It follows that for finiteγ ∈X0,

θ(γτ0) = gβ(γτ0D∗
0)D

′
0

= gβ(γ(D′
0)

∗τnD
′
0D

∗
0)D

′
0 by (6.10.1)

= gβ(γ(D′
0)

∗τn)gβ(D′
0D

∗
0)D

′
0

= gβ(γ(D′
0)

∗τn)D′
0D

∗
0D

′
0 sinceD′

0D
∗
0 is finite

= δqgβ(γ(D′
0)

∗τn)D′
0 by (6.9)

= δqgβ(γ(D′
0)

∗)gβ(τn)D′
0

= δqβγ(D′
0)

∗t0t1 . . . tn−1D
′
0 sinceγ(D′

0)
∗ is finite ✷

(6.11) LEMMA. – We have

t1t2 . . . tn−1D
′
0 = q−

n−4
2 D0.

Proof. –Denote byD′
0(n− 2) the diagram from0 to n which looks likeD′

0 : 0→ n− 2, with
the rightmost top vertices joined by a horizontal arc. Then clearlycn−1D

′
0 =D′

0(n−2). Further,
cn−2D

′
0 = δqD

′
0, andcn−2D

′
0(n− 2) =D′

0. Thus

tn−1D
′
0 =−

(
cn−1 + q−1

)
D′

0 =−
(
D′

0(n− 2) + q−1D′
0

)
.

Hence

tn−2tn−1D
′
0 =

(
cn−2 + q−1

)(
D′

0(n− 2) + q−1D′
0

)
=D′

0 + q−1δqD
′
0 + q−1D′

0(n− 2) + q−2D′
0

= q−1D′
0(n− 2).

Repeating this argumentn−2
2 times, we obtain

t1t2 . . . tn−1D
′
0 = q−

n−2
2 t1D0.

But c1D0 = δqD0, whencet1D0 =−(δq + q−1)D0 = qD0, and the lemma follows. ✷
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Proof of Theorem (6.1). –We show first that for any elementγ ∈Xt (t� 0), we have

θ(γτt) = χzθ(γ),(6.1.1)

bove
le

ing

by
k.

ws
wherez = zt = (−1)tβQ−1q−
1
2 (n+t−2) and

χz =
{
z if t > 0,
z + z−1 if t= 0.

(6.1.2)

By Lemma (6.6)(ii), it suffices to prove (6.1.1) for any finite diagramγ ∈Xt.
We prove (6.1.1) first fort > 0. Recall that ifE is a positive morphism (diagram) inTB,

Ė is obtained fromE by marking the leftmost through string. Then observe that in the a
notation,D∗

tD
′
t = idt, while Ḋ∗

tD
′
t = ˙idt, and if we regardWt(n) as a quotient of the bimodu

HomTB(t, n) in the obvious way, then inWt(n), γ idt = γ, whileγ ˙idt = 0. Moreover, ifE ∈ TB

is a linear combination of diagrams with fewer thatt through strings, thenγE = 0 by definition.
Hence

θ(γτt) = gβ(γτtD∗
t )D

′
t by (6.5.1)

= gβ
(
γ(D′

t)
∗τn

)
D′
t sinceτtD∗

t τ
−1
n = (D′

t)
∗

= gβ
(
γ(D′

t)
∗)gβ(τn)D′

t

= βγ(D′
t)

∗t0t1 . . . tn−1D
′
t by (6.5.1) again, and (5.13)

= γ(βtn−1tn−2 . . . t1t0D
′
t)

∗D′
t since∗ is an anti-involution

= γχz
(
Dt +Q(Ḋt) +E

)∗
D′
t by (6.8)

= χzθ(γ),

which proves (6.1.1) fort > 0. Now take t = 0 and repeat the above computation us
Lemmas (6.10), (6.11) instead of (6.8). One obtains

θ(γτ0) = βδqγ(D′
0)

∗t0t1 . . . tn−1D
′
0 by (6.10)

= βδqγ(D′
0)

∗t0q
−n−4

2 D0 by (6.11)

=−βδqq−
n−4

2 γ(D′
0)

∗(c0 +Q−1
)
D0

=−βδqq−
n−4

2 γ
(
κ id0+Q−1δq id0

)
=−

(
Q

q
−Q−1q−1

)
βδqq

−n−4
2 γ

=−
(
Q−Q−1

)
βq−

n−2
2 θ(γ) by Corollary (6.7)(ii).

But z0 = βQ−1q−
n−2

2 , and sinceβ2 = −qn−2, β−1 = −q−(n−2)β. It follows easily that
θ(γτ0) = (z0 + z−1

0 )θ(γ), which completes the proof of (6.1.1).
It follows from (6.1.1) (cf. (6.7)) thatθ induces a homomorphism which we also denote

θ :Wt,z(n)→Zt, wherez = zt. Note thatWt,z(n) andZt are freeR-modules of the same ran
To complete the proof of the theorem, we discuss the casest > 0 andt= 0 separately.

If t > 0, then by (6.7),θ is surjective. It follows, sinceWt,z(n) andZt are freeR-modules
of the same rank, thatθ is an isomorphism. Ift = 0, the same argument (using (6.7)) sho
thatθ defines an isomorphismWt,z(n)→ δqZt. But sinceδq is not a zero-divisor,δZt ∼= Zt as
T an (q)-modules, which completes the proof.✷
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Theorem (6.1) shows in particular that any cell moduleWt,z(n) for theR-algebraT an (q) may
be realised as the pullback of a cell module of the algebraTLBn(q,Q).

3),
r a

ugh

uffice
(6.12) COROLLARY. – For any(relevant) pair t, z, the cell moduleWt,z(n) may be realised
asg∗β,QWt(n), whereQ=Q(t, z) = (−1)tβz−1q−

1
2 (n+t−2).

Recall from the beginning of this section that we also have cell modulesWt(n) for
TLBn(q,Q), for t < 0. We next identify their lift toT an (q) via gβ,Q.

(6.13) THEOREM. – Supposeδq is not a zero divisor inR and let t satisfy 0 � t � n,
t≡ n (mod 2). Then the inflation

gβ
∗W−t(n)∼=Wt,q−tz−1

t
(n) =Wt,−Q2zt

(n)

wherezt = (−1)tβQ−1q−
1
2 (n+t−2) as in(6.1).

Proof. –The caset = 0 has been treated above. Note thatz0 = βQ−1q−
1
2 (n−2), so that

z2
0 =−Q−2. Thus−Q2z0 = z−1

0 , and sinceW0,z(n) =W0,z−1(n), the caset= 0 follows from
Theorem (6.1). We therefore taket > 0.

First observe that in analogy with (6.5), we have a homomorphism ofT an (q)-modules
θ− :Xt→ gβ

∗W−t(n) given by

θ−(γ) = gβ(γD∗
t )(Ḋ

′
t),(6.13.1)

whereγ ∈ Xt, andD∗
t and Ḋ′

t = D′
t ◦ c0(t) are the diagrams defined in the proof of (6.

regarded as diagrams inTa andTB respectively (see immediately preceding (6.8)) that fo
diagramE with unmarked through strings,̇E denotes the same diagram with the leftmost thro
string marked. One verifies easily that for afinitediagramγ : t→ n(∈Xt) we have

θ−(γ) = (γ̇).(6.13.2)

In accordance with the strategy of the proof of Theorem (6.1), to prove the theorem it will s
to show that for any finite diagramγ ∈Xt, we have

θ−(γτt) = q−tz−1
t θ−(γ) = q−tz−1

t (γ̇).(6.13.3)

Arguing as in the proof of (6.1), we have

θ−(γτt) = gβ(γτtD∗
t )(Ḋ

′
t)

= gβ(γ(D′
t)

∗τn)(Ḋ′
t) sinceτtD

∗
t τ

−1
n = (D′

t)
∗

= γ(D′
t)

∗gβ(τn)(Ḋ′
t)

= γ(D′
t)

∗βt0t1 . . . tn−1(Ḋ′
t)

= γ(βtn−1tn−2 . . . t1t0D
′
t)

∗(Ḋ′
t) since∗ is an anti-involution

= γzt
(
Dt +Q(Ḋt) +E

)∗(Ḋ′
t) by (6.8),

(6.13.4)

whereE is a linear combination of diagrams with fewer thant through strings.
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Now a straightforward computation shows that

(Ḋ∗
t )(Ḋ

′
t) = δQ( ˙idt) and D∗

t (Ḋ
′
t) = ˙idt.

of

s. Note

l

.1)

m

s

Hence from (6.13.4) we have

θ−(γτt) = γzt
(
Dt +Q(Ḋt) +E

)∗(Ḋ′
t)

= ztγ( ˙idt)(1 +QδQ)

=−Q2ztγ( ˙idt)

=−Q2ztγ̇.

But z2
t =−q−tQ−2, whenceq−tz−1

t =−Q2zt, and (6.13.3) follows. This completes the pro
of Theorem (6.13). ✷

Notice that for anyt, if zt = (−1)tβQ−1q−
1
2 (n+t−2), thenz−t = qtzt. Hence in particular if

t� 0, qtz−1
−t = z−1

t . Hence Theorem (6.13) may be stated as follows.

(6.14) COROLLARY. – Supposet ∈ T andt� 0. Then the inflationg∗βWt(n)∼=W−t,z−1
t
(n).

We may combine and generalise the statements of Theorems (6.1) and (6.13) as follow
that the condition onδq is absent from the statement below.

(6.15) COROLLARY. – SupposeR is any commutative ring and suppose thatq,Q are
elements ofR×. Let β ∈ R× satisfyβ2 = −qn−2 and let gβ :T an (q)→ TLBn(q,Q) be the
surjection defined in(5.11). For t ∈ Z such that|t|� n andt≡ n (mod 2), defineεt := t/|t| for
t �= 0, andεt = 1 if t= 0.

Then the inflationg∗βWt(n) of the cell moduleWt(n) of TLBn(q,Q) is isomorphic to the cel
moduleW|t|,zεt

t
(n) of T an (q), wherezt is as defined in the statement of(6.1).

Proof. –ReplaceR in the statement of Theorems (6.1) or (6.13) by the ringR[q,q−1] of
Laurent polynomials in the indeterminateq and replaceq ∈ R by q ∈ R[q,q−1]. Then all
algebras and modules may be considered overR[q,q−1], and the hypotheses of Theorems (6
or (6.13) apply and we deduce that there is a (unique) isomorphism ofR[q,q−1]-modules:

g∗βWt(n)→W|t|,zεt
t
(n)

which takes a finite diagram inWt(n) to the same diagram inW|t|,zεt
t
(n). But R is a module

overR[q,q−1] via the homomorphism which takesq to q. Tensoring the above isomorphis
with R provides the required isomorphism.✷

7. Eigenvalues of the translation elements Xi

Recall that we have a 1-parameter family of surjectionsψα : Ĥa
n(q)→ T an (q) and that we

wish to study the inflationsψ∗
αWt,z(n). Now by Corollary (6.12),Wt,z(n) may be realised a

a pullback viagβ = gβ,Q of some cell moduleWt(n) (for t � 0) of TLBn(q,Q). But by the
commutativity of the diagram (5.12),

ψ∗
αWt,z(n)∼= ψ∗

αg
∗
βWt(n)∼= ξ∗Q,µWt(n),(7.1)

whereα,β andµ are related byβ2 =−qn−2 andµα−1 = β.

4e SÉRIE– TOME 36 – 2003 –N◦ 4



DIAGRAM ALGEBRAS AND DECOMPOSITION NUMBERS 503

Thus we study the structure of the pullbacksψ∗
αWt,z(n) by means of the pullbacksξ∗Q,µWt(n).

For this we shall require some easy facts concerning the submodule structure ofWt(n) on
restriction toTLBn−1(q,Q). For1� i� n, we regardTLB i(q,Q) as the subalgebra generated

h the
hout

.1)

es

ve the
phism

out

is

rphic

joined

plicit
r’s
d

by {c0, c1, . . . , ci−1}; in terms of diagrams, it is the subalgebra spanned by diagrams wit
rightmostn− i top and bottom vertices joined by unmarked vertical through strings. Throug
this section we assume thatδq is not a divisor of zero inR, since we shall require Theorems (6
and (6.13).

(7.2) PROPOSITION. – Let t ∈ Z, 0� |t|� n, n+ t ∈ 2Z.
(i) If t� 0, we have a short exact sequence

0→Wt−1(n− 1)→ResTLBn(q,Q)
TLBn−1(q,Q) Wt(n)→Wt+1(n− 1)→ 0.(7.2.1)

(ii) If t < 0, we have a short exact sequence

0→Wt+1(n− 1)→ResTLBn(q,Q)
TLBn−1(q,Q) Wt(n)→Wt−1(n− 1)→ 0.(7.2.2)

Here we adopt the convention thatWj(k) = 0 if |j|> k.

Proof. –(i) If t > 0, the diagrams inWt(n) in which the rightmost top and bottom vertic
are joined span aTLBn−1(q,Q)-submodule which is clearly isomorphic toWt−1(n− 1).
The quotient module is spanned by the images of the other diagrams, which all ha
property that the top right vertex is joined to another top vertex. Define a homomor
Wt(n)/Wt−1(n− 1)→Wt+1(n− 1) by sending a basis diagramν of Wt(n) \Wt−1(n− 1)
to the diagramt+1→ n− 1 obtained by moving the top right vertex to the bottom right with
changing any arcs. One checks easily that this is an isomorphism ofTLBn−1(q,Q)-modules.

If t = 0, the diagrams inWt(n) = W0(n) such that the arc from the rightmost vertex
marked span aTLBn−1(q,Q)-submodule which is clearly isomorphic toW−1(n− 1) (imagine
the rightmost vertex as the bottom vertex in a marked diagram1 → n − 1). The quotient
W0(n)/W−1(n− 1) is spanned by the other diagrams, and by a similar argument is isomo
asTLBn−1(q,Q)-module toW1(n− 1).

(ii) If t < 0, the same construction as in (i) (but with care ift = −1, in which case we
take the submodule spanned by diagrams with the rightmost top and bottom vertices
by a marked string) provides aWt−1(n− 1)-submodule ofWt(n) which is isomorphic to
W−(|t|−1)(n− 1) =Wt+1(n− 1), with corresponding quotientWt−1(n− 1). ✷

(7.3) COROLLARY. – Let t ∈ Z, 0 � |t| � n, n + t ∈ 2Z and supposet � 0. There is a
filtration of Wt(n) byR-submodulesW (i), i= n,n− 1, n− 2, . . . ,1, as in(7.3.1)below.

Wt(n)⊃Wt−1(n− 1)⊃ · · · ⊃W0(n− t)⊃W−1(n− t− 1)⊃W0(n− t− 2)
⊃W−1(n− t− 3)⊃ · · · ⊃W0(2)⊃W−1(1).(7.3.1)

Thus

W (i) ∼=




Wt−n+i(i) if n− t� i � n,

W0(i) if i is even and0� i � n− t,

W−1(i) if i is odd and0� i � n− t.

For eachi= 1,2,3, . . . , n, W (i) is aTLB i(q,Q)-submodule ofWt(n).

Proof. –This is immediate by repeated application of (7.2), which also gives an ex
description of theW (i) in terms of the diagrams ofWt(n) which span them. For the reade
convenience, we give this description here. For0� i � n− t, W (i) is theR-submodule spanne
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by diagrams with the rightmostn − i top vertices joined to the rightmost bottom vertices by
through strings. The “remaining” part of the diagram may then be thought of as an element of
Wt−n+i(i). In particularW (n−t) ∼=W0(n− t).

e

d
ntil

the

ts
For i= n− t−1, we takeW (i) to be theR submodule spanned by diagrams inW (n−t) where
the(n− t)th top vertex is on a marked arc. By thinking of this(n− t)th vertex as moved to th
bottom, it is clear thatW (n−t−1) ∼=W−1(n− t − 1). The next termW (n−t−2) is spanned by
diagrams inW (n−t−1) such that the top nodesn− t andn− t− 1 are joined (with a marke
arc). ClearlyW (n−t−2) ∼=W0(n− t− 2), and we may now repeat the above construction u
the sequence terminates.✷

To illustrate the construction in (7.3), observe that the diagramEt = Et,n below lies in each
of the submodulesW (i).

We shall now determine the eigenvalues of the translation elementsXi ∈ Ĥa
n(q) on the

inflation ξ∗Q,µWt(n) (cf. (7.1)).

(7.4) PROPOSITION. – The elementX1X2 . . .Xn ∈ Ĥa
n(q) acts on the module

M = ξ∗Q,µWt(n)

as multiplication by the scalar

h(n, t) = (−1)
n+t
2 µnQ−tq

1
2 (2n−n2−t2).(7.4.1)

Proof. –First taket � 0. By (7.1), ξ∗Q,µWt(n) ∼= ψ∗
αWt,z(n), wherez = zt. But by (3.6.1),

X1X2 . . .Xn = V n, and by (5.13),ψα(V n) = αnτn ∈ T an (q). Moreover τn is central in
T an (q) and acts onWt,z(n) as multiplication byzt. HenceX1X2 . . .Xn acts onξ∗Q,µWt(n)
as multiplication by the scalar

αnztt = αn
(
(−1)tβQ−1q−

1
2 (n+t−2)

)t
,

which after simplification using the relationsβ2 =−qn−2 andβ = α−1µ is easily shown to be
equal toh(n, t).

If t < 0, the proof is the same, but we use Theorem (6.13) instead of (6.1).✷
For the remainder of this section, we taket� 0.
The inflation ξ∗Q,µWt(n) defines a structure ofĤa

n(q)-module on Wt(n), and for

i = 1,2, . . . , n, the submoduleW (i) of the filtration (7.3.1) is stable under the action of
subalgebraTLB i(q,Q) which is the image underξµ,Q of the subalgebrâHa

i (q) of Ĥa
n(q) which

is generated by{X1, T1, . . . , Ti−1}. We shall refer to the submodulesW (i) asĤa
i (q)-modules,

with the understanding that the action is induced byξµ,Q. Now Ĥa
i (q) contains the elemen

{X1,X2, . . . ,Xi} and it follows from (7.4) that
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(7.5) COROLLARY. – The elementX1X2 . . .Xi ∈ Ĥa
n(q) acts on the submoduleW (i) of

ξ∗Q,µWt(n) as multiplication by the scalarβi, where

ts

or

grams
βi =



(−1) t−n+2i

2 µiQn−t−iq
1
2 (2i−i2−(t−n+i)2) if n− t� i � n,

(−1) i
2µiq

1
2 (2i−i2) if i is even and1� i � n− t,

(−1) i−1
2 µiQq

1
2 (2i−i2−1) if i is odd and1� i � n− t.

Proof. –Using the identification ofW (i) as aTLB i(q,Q)-module given in (7.3), it follows
from (7.4) thatX1X2 . . .Xi acts as a scalarβi onW (i), and that in the three casesn− t � i � n,
1 � i � n− t andi even and1 � i � n− t andi odd, the value ofβi is respectively given by
h(i, t− n+ i), h(i,0) andh(i,−1). The formulae in the statement are the result.✷

We shall determine the action of theXi using the fact that

Xi = (X1X2 . . .Xi)(X1X2 . . .Xi−1)−1.

(7.6) COROLLARY. – In the filtration of (7.3)

Wt(n) =W (n) ⊃ · · · ⊃W (i) ⊃W (i−1) ⊃ · · · ⊃W (1) ⊃ 0,

whereW (i) is thought of as aĤa
i (q)-module, we have, for any pair of integersi, j such that

1� j < i � n thatXi acts onW (j) as multiplication byγi, whereγi is given by

γi =



−µQ−1qn+2−t−2i if n− t� i � n,

−µQ−1q2−i if i is even and1� i� n− t,

µQq1−i if i is odd and1� i � n− t.

Proof. –SinceW (j) is a submodule ofW (i−1), it will suffice to show thatXi acts onW (i−1)

as multiplication byγi. But W (i−1) is a submodule ofW (i), and hence by (7.5), the elemen
Yi =X1X2 . . .Xi andYi−1 =X1X2 . . .Xi−1 act as the scalarsβi, βi−1 respectively onW (i−1)

(here we takeY0 = 1). It follows thatXi = YiY
−1
i−1 acts onW (i−1) as the scalarγi = βiβ

−1
i−1,

whereβ0 = 1. An easy calculation now completes the proof.✷
(7.7) PROPOSITION. – There is an ordering of the diagrams which form anR-basis of

Wt(n) which is compatible with the filtration(7.3) and with respect to which each elementXi

(i= 1,2, . . . , n) has upper triangular matrix.

Proof. –We use induction onn; for n = 1 the result is trivial. Assume the result true f
Wt−1(n− 1) andWt+1(n− 1). Then there is an ordering of the diagrams inW (n) which is
compatible with the filtrationW (n) ⊃W (n−1) ⊃ · · · ⊃ 0 such thatX1, . . . ,Xn−1 act in upper
triangular fashion. This is because by induction we have such an ordering of the dia
in W (n−1), while W (n)/W (n−1) ∼=Wt−1(n− 1) or W (n)/W (n−1) ∼=Wt+1(n− 1), whence
again by induction, there is an appropriate ordering of the other diagrams inWt(n). But by (7.4),
Yn :=X1X2 . . .Xn acts as a scalar onWt(n), whenceXn = YnX

−1
1 X−1

2 . . .X−1
n−1 is also upper

triangular. ✷
(7.8) DEFINITION. – (i) We denote byU(n) the subalgebra ofĤa

n(q) generated by
{X1, . . . ,Xn}. By (3.3) this is isomorphic to the ringR[X±1

1 , . . . ,X±1
n ] of Laurent polynomials

in theXi.
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(ii) A character χ :U(n) → R× is the linear extension toU(n) of a multiplicative
homomorphismχ :U(n)×→ R×, whereU(n)× is the group generated by theXi, i= 1, . . . , n
(which is isomorphic toZn). Such a character is clearly determined by the images of theXi and

hence the group of characters may be identified with(R×)n.

(iii) If χ :U(n)→R× is a character, writeσ(χ) = (χ(X1), . . . , χ(Xn)) ∈ (R×)n and|σ(χ)|
for the multiset (i.e. set with multiplicities){χ(X1), . . . , χ(Xn)}. We sometimes identifyσ(χ)
with χ and refer to the sequenceσ(χ) as a character.

Now any diagramD ∈Wt(n) may be considered as an element of an ordered basis ofWt(n)
as in (7.7). HenceD defines a characterχD of U(n) by

XiD ∈ χD(Xi)D+
∑

E∈Wt(n),E �=D
RE,(7.9)

where the sum is over diagrams inWt(n) which are distinct from (and ordered lower than)D.

(7.10) THEOREM. – Assumet � 0. For any diagramD ∈Wt(n), the characterχD satisfies
|σ(χD)|= {γ1, γ2, . . . , γn}, where theγi are as in(7.6), i.e.,

{γ1, . . . , γn}=
{
µQ,µQq−2, µQq−4, . . . , µQq−(n−t−2)

}
∪
{
−µQ−1,−µQ−1q−2,−µQ−1q−4, . . . ,−µQ−1q−(n+t−2)

}
,

where the union is in the sense of multisets.

Proof. –This will be by induction onn. For n = 1 the result is trivial. LetD be any
diagram in W (n). Then there is a unique indexi such thatD ∈ W (i) \ W (i−1), where
. . .W (i) ⊃W (i−1) . . . is the filtration (7.3) ofWt(n). If i < n, it follows by induction onn that
{χD(X1), . . . , χD(Xi)}= {γj = βjβ

−1
j−1 | 1� j � i}. Moreover forj > i, it follows from (7.6)

thatXjD = γjD, sinceXj acts asγj id onW (i). Thus the assertion (7.10) is true ifi < n. Hence
we consider the casei= n.

If t �= n, then by (7.2.1),W (n)/W (n−1) ∼= Wt+1(n− 1) as TLBn−1(q,Q)-module, and
hence

X1X2 . . .Xn−1D ≡ h(n− 1, t+ 1)D (modW (n−1)).

HenceχD(Xn) = h(n, t)h(n− 1, t+ 1)−1 = µQq−(n−t−2). The set{χD(Xi) | 1� i � n− 1}
may be determined by thinking of theXi, 1 � i � n − 1 as acting on the image ofD in
W (n)/W (n−1) ∼=Wt+1(n− 1). Then by induction we see that{χD(Xi) | 1 � i � n − 1} is
the set in the statement of (7.1), with(n, t) replaced by(n− 1, t+ 1), i.e.{

χD(Xi) | 1� i � n− 1
}
= {γ1, . . . , γn} \

{
µQq−(n−t−2)

}
,

and hence{χD(Xi) | 1� i � n− 1} is as stated in (7.1). This proves (7.10) for the caset �= n.
If t= n, Wt(n)∼=Wt−1(n− 1) asTLBn−1(q,Q)-module, whence{

χD(Xi) | 1� i� n− 1
}
= {γ1, . . . , γn} \

{
−µQ−1q−(2n−2)

}
.

But X1X2 . . .Xn ∈ Ĥa
n(q) acts on the moduleWn(n) as multiplication by the scalar

h(n,n) = (−1)nµnQ−nq(n−n2).

HenceXn =−µQ−1q−(2n−2) id onWn(n), which completes the proof for the caset= n. ✷
4e SÉRIE– TOME 36 – 2003 –N◦ 4



DIAGRAM ALGEBRAS AND DECOMPOSITION NUMBERS 507

8. The case of generic parameters

In this section we prove that the inflationsψ∗
αWt,z(n) ∼= ξ∗Q,µWt(n) are representations of

rs

e

.

e proof

if

(i).

se

s

rs
s

Ĥa
n(q) which are induced from parabolic subalgebras, provided that the pair of parameteq,Q

is “generic”. First we make precise the meaning of this term.

(8.1) DEFINITION. – We say that the pair(q,Q) of invertible elements is generic in th
integral domainR if q is not a root of unity and there is no solutionm ∈ Z for the equation
qm =±Q2.

(8.2) PROPOSITION. – Suppose that the pair(q,Q) is generic.
(i) The elements of the multiset{γ1, . . . , γn} of (7.10)are distinct, i.e. have multiplicity one

Moreover ifχD(Xi) = χD(Xj)q−2, thenj < i.
(ii) The charactersχD are distinct; i.e. if χD1 = χD2 for diagramsD1,D2 ∈Wt(n), then

D1 =D2.

Proof. –Observe first that by (7.6), the sequence(γ1, . . . , γn) is given by(
µQ,−µQ−1, µQq−2,−µQ−1q−2, . . . , µQq−(n−t−2),−µQ−1q−(n−t−2),

− µQ−1q−(n−t),−µQ−1q−(n−t+2), . . . ,−µQ−1q−(n+t−2)
)
.(8.2.1)

The first assertion of (i) is clear. For the second assertion, we use the argument in th
of (7.10). IfD ∈W (i) \W (i−1), then

σ(χD) =
(
χ

(i)
D (X1), χ

(i)
D (X2), . . . , χ

(i)
D (Xi), γi+1, . . . , γn

)
,

whereχ(i)
D is the character ofU(i) = R[X±1

1 , . . . ,X±1
i ] on W (i) which corresponds toD ∈

W (i). Inspection of the sequence (8.2.1) (and induction onn) now yields the second assertion
i < n.

If i= n, the argument of (i) shows that

σ(χD) =
(
χ′
D(X1), χ′

D(X2), . . . , χ′
D(Xn−1), µQq−(n−t−2)

)
,

whereχ′
D is the character ofU(n− 1) corresponding toD ∈W (n)/W (n−1) ∼=Wt+1(n− 1).

Again by induction, the assertion is true for this sequence, whence the result. This proves
The proof of (ii) is also by induction onn. The result is trivial forn= 1. LetD1,D2 be distinct

diagrams inW =W (n). If D1,D2 are either both inW (n−1) or both inW (n) \W (n−1), the
result is immediate by induction. Thus we may takeD1 ∈W (n−1) andD2 ∈W (n) \W (n−1).
But thenχD1(X1 . . .Xn−1) �= χD2(X1 . . .Xn−1) by Theorem (7.4), since in the generic ca
h(n− 1, t− 1) �= h(n− 1, t+ 1). This completes the proof of (8.2).✷

(8.3) COROLLARY. – Assume that the pair(q,Q) is generic(see(8.1)). Define sequence
Γ1,Γ2 as in(8.3.1)below.

Γ1 =
(
µQ,µQq−2, µQq−4, . . . , µQq−(n−t−2)

)
,

Γ2 =
(
−µQ−1,−µQ−1q−2,−µQ−1q−4, . . . ,−µQ−1q−(n+t−2)

)
.

(8.3.1)

ThenΓ1,Γ2 are disjoint and have cardinalitiesk = n−t
2 , n−k respectively. The set of characte

(cf. Definition(7.8)(iii)) {σ(χD) |D a diagram inWt(n)} coincides with the set of all ordering
of Γ := Γ1 � Γ2 in whichΓ1,Γ2 appear in the given order.
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Proof. –By (7.10), each characterχD corresponds to some ordering ofΓ. In the generic case,
the elements ofΓ are distinct, whence the corresponding ordering is unique. But by the second
assertion in Proposition (8.2)(i), in any ordering corresponding to a characterχD, Γ1 andΓ2

rtion

in

s

n
e
s)
ments

of

nspaces

ence

r

appear in the given order. But the number of such orderings ofΓ is
(

n
n−t
2

)
, which coincides with

the number of distinct diagramsD ∈Wt(n) (see the paragraph preceding (6.1)). The asse
follows. ✷

(8.4) COROLLARY. – Suppose thatR is any integral domain and let(q,Q) be generic in
R. There is a non-zero element∆ ∈ R with the following property. LetR∆ be the localisation
R∆ = R[∆−1]. Write M for the Ĥa

n(q)-moduleξ∗Q,µWt(n) and letM∆ := R∆ ⊗R M . Then
M∆ has a unique decompositionM∆

∼=
⊕

DM∆(D), where the sum is over the diagrams
Wt(n) andM∆(D) is a freeR∆-submodule of rank one, which is invariant underU(n)∆ =
R∆[X±1

1 , . . . ,X±1
n ], and on whichU(n)∆ acts via the characterχD. Any simultaneou

eigenvectorE ∈M∆ for theXi corresponds to one of the charactersχD of U(n).

Proof. –By the first statement in (8.2)(i), the charactersχD are distinct. Hence there is a
elementY ∈ U(n) whose set{χD(Y ) | D a diagram inWt(n)} of eigenvalues (recall that th
elements ofU(n) act in triangular fashion onWt,z(n) and theχD(Y ) are the diagonal element
is distinct. It is easy to show using elementary linear algebra that there is a set of ele
xD ∈M such thatY xD = χD(Y ) (for each diagramD). If ∆ is the (non-zero) determinant
the matrix formed by the coefficients of thexD with respect to anR-basis ofM , it is clear that
M∆ is the direct sum of the rank one submodulesR∆xD , which are each invariant underY .
SinceY has distinct eigenvalues, any linear transformation ofM∆ which commutes withY is
diagonal with respect to this eigenspace decomposition, whence we deduce that the eige
of Y are invariant underU(n).

Finally, if E is a simultaneous eigenvector of theXi, it is an eigenvector ofY , whence
E ∈M∆xD for some diagramD. This proves the last statement.✷

Note that ifR is a field in (8.4), the statement may be simplified by eliminating any refer
to∆.

We shall refer to an ordering ofΓ satisfying the condition of (8.3) aspermissible. Note that
one permissible ordering is

(Γ) =
(
−µQ−1,−µQ−1q−2, . . . ,−µQ−1q−(n+t−2), µQ,µQq−2, . . . , µQq−(n−t−2)

)
.

We write(Γ2,Γ1) = (δ1, . . . , δn) for this ordering.

(8.5) COROLLARY. – With notation as in(8.3), letR be a field. Then there is a vectorE ∈M
which is a simultaneous eigenvector ofX1,X2, . . . ,Xn such thatχE = (δ1, . . . , δn).

This is clear from (8.4).
We shall require the following elementary result from linear algebra.

(8.6) LEMMA. – Let V be a vector space over a fieldR. Let A,B be commuting linea
transformations ofV and letv ∈ V satisfy

(A+B)v = (a+ b)v and ABv = abv for somea, b ∈R.

Assume thatAv /∈Rv. Then
(i) The planeΠ= 〈v,Av〉= 〈v,Bv〉 is stable under the semigroup generated byA,B.
(ii) The eigenvalues ofA,B onΠ are each{a, b}.
(iii) If v1 = bv−Av, v2 = av −Av thenAv1 = av1,Bv1 = bv1,Av2 = bv2 andBv2 = av2.
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The proof is easy.

(8.7) PROPOSITION. – Let E ∈ M be the eigenvector of(8.5). ThenTjE = −q−1E for
n+t

),

or
r
ter

,

ule

he

l

j �= 2 , j = 1,2, . . . , n− 1.
Proof. –Takej ∈ Z, 1� j � n− 1, j �= n+t

2 , and letv = TjE. Then sinceXi commutes with
Tj unlessi= j or i= j +1 (see (2.6.1) or Proposition (3.3)(iv)), we have

Xiv = δiv if i �= j, j + 1.(8.7.1)

Moreover sinceTj commutes withXjXj+1 andXj+Xj+1 (by the Bernstein relation (3.3)(iv)
we haveXjXj+1v = δjδj+1v and(Xj +Xj+1)v = (δj + δj+1)v.

Observe thatXjv =XjTjE = T−1
j Xj+1E = δj+1T

−1
j E. But sinceT−1

j = Tj + q−1− q, we
have

Xjv = δj+1

(
TjE +

(
q−1 − q

)
E
)
= δj+1

(
v+

(
q−1 − q

)
E
)
.(8.7.2)

SupposeXjv is not a scalar multiple ofv. Then we may apply (8.6) withA=Xj , B =Xj+1,
a = δj and b = δj+1. By (8.6) the vectorv2 = δjv − Xjv is a simultaneous eigenvector f
Xj,Xj+1 with respective eigenvaluesδj+1, δj . Moreover by (8.7.1),v2 is also an eigenvector fo
eachXi (i �= j, j + 1) with corresponding eigenvalueδi. Thusv2 corresponds to some charac
χD of U(n) by the last statement in (8.4). But our choice ofj ensures thatδj+1 = δjq

−2, which
by the second statement in (8.2)(i) is impossible. It follows thatXjv ∈ Rv. Hence by (8.7.2)
TjE ∈ RE. By the quadratic relation forTj , we therefore haveTjE = qE or TjE = −q−1E;
butXj+1E = TjXjTjE = q−2XjE, whenceTjE =−q−1E as stated. ✷

9. Induced modules and standard modules

We shall henceforth assume thatR is a field and all modules and algebras will beR-modules
andR-algebras.

We shall identifyM = ξ∗Q,µWt(n) as a module induced from a one-dimensional mod

of a parabolic subalgebra of̂Ha
n(q). Such modules were introduced by Rogawski [28]. T

parabolic subalgebras are defined as follows. For any subsetJ ⊂ {1,2, . . . , n − 1} let Ĥa
J (q)

be the subalgebra of̂Ha
n(q) which is generated byU(n) =R[X±1

1 , . . . ,X±1
n ] and{Tj | j ∈ J}.

For any partitionλ= λ1 � λ2 � · · ·� λ� � 0 of n, defineĤa
λ(q) to beĤa

J (q), whereJ = Jλ,
defined as follows:j ∈ Jλ ⇔ ∃k ∈ {1,2, . . . , 4} with n �

∑k
i=1 λi � j + 1 > j >

∑k−1
i=1 λi,

where, ifk = 0, the smaller sum is interpreted as0. The subalgebrâHa
λ(q) has finite index equa

to the multinomial coefficient n!
λ1!...λ�!

in Ĥa
n(q).

Now let Rλ,χ be a one-dimensional̂Ha
λ(q)-module on whichTj acts as multiplication byq

andU(n) =R[X±1
1 , . . . ,X±1

n ] acts via the characterχ. Then sinceXj+1 = TjXjTj

χ(Xj+1) = q2χ(Xj) for eachj ∈ Jλ,(9.1)

and any character satisfying this condition gives rise to a one-dimensionalĤa
λ(q)-module.

A similar definition applies whenJλ is replaced by an arbitrary subsetJ of {1, . . . , n− 1}.
(9.2) DEFINITION. – Let χ be a character ofU(n) = R[X±1

1 , . . . ,X±1
n ] which satisfies

condition (9.1). Define thêHa
n(q)-moduleKλ,χ as the induced module

Kλ,χ = Ĥa
n(q)⊗Ĥa

λ
(q)

Rλ,χ,
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whereRλ,χ is the one-dimensional̂Ha
λ(q)-module defined above. Then the dimension ofKλ,χ

is n!
λ1!...λ�!

.

ted

bset

usztig.
s
r
onal

duced

entries

n

Of course this definition applies slightly more generally to the subalgebrasĤa
J (q), whereJλ

is replaced by an arbitrary subsetJ ⊂ {1,2, . . . , n−1} and the corresponding module is deno
byKJ,χ.

We have the following easy characterisation of these induced modules.

(9.3) LEMMA. – SupposeK is a finite dimensional̂Ha
n(q)-module which contains a vectore

which generatesK asĤa
n(q)-module and satisfies the following two conditions for some su

J ⊂ {1,2, . . . , n− 1}:
Tie= qe for i ∈ J(9.3.1)

and

Xie= χ(Xi)e, 1� i� n, for some characterχ of U(n).(9.3.2)

ThenK is a quotient ofKJ,χ. In particular, if dim(K) = dim(KJ,χ), we have equality.

We wish to identify these modules as “standard modules” in the sense of Kazhdan and L
Write G=GLn(R) andG= Lie(G). ThenU(n) =R[X±1

1 , . . . ,X±1
n ] may be thought of a

the coordinate ring of the maximal torusS of G consisting of diagonal elements. Any characteχ
of U(n) =R[X±1

1 , . . . ,X±1
n ] is therefore given by evaluation at a (generically) unique diag

elements ∈ S. It is not difficult to see that in fact the set of pairs(λ,χ), whereχ satisfies
condition (9.1), modulo the equivalence defined by isomorphism of the corresponding in
representationsKλ,χ, is thus in bijection with the set̂P of equivalence classes of pairs(s,N)
moduloG, wheres ∈G is semisimple,N ∈G is nilpotent ands.N = q2N (the action ofG onG

being the adjoint representation). The correspondence may be realised as follows. LetJk denote
thek× k (Jordan) matrix with zeros everywhere except on the super-diagonal, where all
are1. Given a partitionλ= λ1 � · · ·� λ� > 0 of n, there is a unique block diagonal matrixNλ

whose diagonal (Jordan) blocks have sizeλi, i = 1,2, . . . , 4. If R is algebraically closed, the
each pair(s,N) such thatAd(g) ·N = q2N is G-conjugate to one where

N =Nλ =



Jλ1 · · ·

Jλ2 · · ·
· · ·
· · · Jλ�




ands is also block diagonal, of the form

s= sλ =



sλ1 · · ·

sλ2 · · ·
· · ·
· · · sλ�




where the matricessλi are diagonal of the form

sλi =




ai
aiq

−2

aiq
−4

.
.

aiq
−2(λi−1)


 .
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The matrixsλ depends on the4 parametersai ∈R×, and the two pairs(sλ,Nλ) and(s′λ′ ,Nλ′)
areG-conjugate if and only ifλ = λ′ and some parts ofλ are equal and the correspondingsλi

are permuted to obtains′.
l

to this
sition)
eral

r
of

ite

e

s

d

In view of the correspondence between pairs(s,N) ∈ P̂ and pairs(λ,χ) as in (9.2) we shal
use the notation

Kλ,χ =Ks,N .(9.4)

The characterχ is given in terms of the pair(s,N) byχ(Xi) = s−1
i , wheresi is theith diagonal

entry insi.
Whenever we use the notation(s,N), we shall assume thatR = C unless we specify

otherwise, since we aim to integrate our results with the body of literature which relates
case. Now Chriss and Ginzburg [5] and Kazhdan and Lusztig [19], (see [30] for an expo
have defined “standard modules”Ms,N for Ĥa

n(q) (of course as a special case of a gen
construction) in the caseR= C. The space ofMs,N is the Borel–Moore homologyH∗(BsN ) of
a certain subvarietyBsN of the flag variety ofG. We shall need the following result of Ariki. Fo
any finite dimensional̂Ha

n(q)-moduleM , [M ] denotes its class in the Grothendieck group
finite dimensional̂Ha

n(q)-modules.

(9.5) PROPOSITION[1, Theorem 3.2, p. 798]. –We have, in the Grothendieck group of fin
dimensionalĤa

n(q)-modules,

[Ms,N ] = [Ks,N ] = [Kλ,χ] =
[
Ĥa
n(q)⊗Ĥa

λ
(q)

Cλ,χ

]
,

for each pair(s,N) ∈ P̂ , whereN =Nλ andχ(Xi) = s−1
i if s= diag(s1, . . . , sn).

Next observe that there is an involutionι : Ĥa
n(q) → Ĥa

n(q) which takesTi to −T−1
i

(i= 1, . . . , n− 1) andXj to X−1
j (j = 1, . . . , n); this follows by noting that the images of th

Ti andXj underι satisfy relations in Proposition (3.3)(iv). It follows that for anŷHa
n(q)-module

M , we may define its inflationι∗M via ι in the usual way.

(9.6) THEOREM. – Let R be any field, and suppose the pair(q, z) of invertible element
of R is generic(see(8.1)). Assume there is an elementβ ∈ R× such thatβ2 = −qn−2. Let
ψα : Ĥa

n(q)→ T an (q) (α ∈R×) be the surjection of(5.12) (see also(5.13)and (4.3)(i)) and let
Wt,z(n) be a cell module for the diagram algebraT an (q), wheret ∈ Z,0 � t � n,n− t ∈ 2Z
andz ∈R×. LetM be theĤa

n(q)-moduleι∗ψ∗
αWt,z(n). ThenM is isomorphic to the induce

moduleKsλ,Nλ
(see(9.4)) whereλ is the partition(n+t

2 , n−t2 ) and sλ is the diagonal matrix
diag(s1, . . . , sn), where thesi are given by

(s1, . . . , sn) =
(
a1, a1q

−2, . . . , a1q
−(n+t−2), a2, a2q

−2, . . . , a2q
−(n−t−2)

)
,

wherea1 = (−1)t+1αzq
1
2 (n+t−2) anda2 = (−1)t+1αz−1q

1
2 (n−t−2).

Proof. –Note first that from diagram (5.12), we see that ifα,β and µ are related by
β2 =−qn−2 andµα−1 = β, then (cf. (7.1))

ψ∗
αWt,z(n)∼= ψ∗

αg
∗
βWt(n)∼= ξ∗Q,µWt(n)

whereWt(n) is the cell module forTLBn(q,Q) andz = zt (see Theorem (6.1)). But givent, z
andβ, (6.12) shows thatWt,z(n)∼= g∗βWt(n) = g∗β,QWt(n), where
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Q=Q(t, z) = (−1)tβz−1q−
1
2 (n+t−2).

MoreoverQ(t, z)2 =−z−2q−t, whence if(q, z) is generic, so is(q,Q).

l

hen

n this

ve

ith
It follows from (8.5) and (8.7) that there is a vectorE ∈ M such thatXiE = δiE for
i= 1,2, . . . , n, where(δ1, . . . , δn) is the sequence in (8.5) andTjE = −q−1E for j = 1,2, . . . ,
n − 1, j �= n+t

2 . Henceι(Xi)E = δ−1
i E and ι(Tj)E = qE for each relevanti, j. SinceM is

irreducible because we are in the generic case,E generatesM as Ĥa
n(q)-module. It follows

from Lemma (9.3) and from the description of the characterχ in (9.4) thatM is isomorphic to
the induced moduleKs,Nλ

, whereλ = (n+t
2 , n−t2 ) ands is the diagonal matrix with diagona

entries

(δ1, . . . , δn) =
(
−µQ−1,−µQ−1q−2, . . . ,−µQ−1q−(n+t−2), µQ,

µQq−2, . . . , µQq−(n−t−2)
)
,

whereQ=Q(t, z) = (−1)tβz−1q−
1
2 (n+t−2).

Using the relations amongα,β, z andQ, we see thatµQ = (−1)t+1αz−1q
1
2 (n−t−2) and

−µQ−1 = (−1)t+1αzq
1
2 (n+t−2). ✷

(9.7) Notation. – We fix here some notation for the rest of this work. First, ift ∈ Z,
0� t � n,n− t ∈ 2Z, we shall consistently write

k =
n− t

2
.(9.7.1)

Corresponding to each sucht (or k) we have the 2-step partitionλt = (n − k, k). Note that
n− k � k.

The diagonal matrix in the statement of (9.6) will be denotedsk(a1, a2) or justs(a1, a2), i.e.

s(a1, a2) = sk(a1, a2) = diag(s1, . . . , sn)

= diag
(
a1, a1q

−2, . . . , a1q
−(n+t−2), a2, a2q

−2, . . . , a2q
−(n−t−2)

)
.(9.7.2)

Recall the definition of the induced moduleKλ,χ whereλ is a partition ofn andχ is a
character ofU(n) which satisfies condition (9.1). A special case of this definition is w
λ = λt as above, andχ corresponds to the semisimple elementsk(a1, a2) of (9.7.2), i.e.
χ(Xj) = s−1

j . We denote the corresponding induced module of the statement of (9.6) i
case byKs,N =Ks(a1,a2),Nk

, whereNk =Nλt .

We next wish to identify the Grothendieck class of the moduleM of (9.6) (i.e. its set of
composition factors) in general, i.e. when(q, z) is not necessarily a generic pair. We shall pro

(9.8) THEOREM. – Let F be a field, and let(q, z) be a pair of invertible elements ofF .

Assume that there are elements
√
q,
√
−1 ∈ F such that

√
q2 = q and

√
−12 = −1. LetM be

the Ĥa
n(q)-moduleι∗ψ∗

αWt,z(n) as in (9.6), whereĤa
n(q) is now anF -algebra, andα ∈ F×.

Then in the Grothendieck group of finite dimensionalĤa
n(q)-modules,M is equivalent to the

induced moduleKsλ,Nλ
(see(9.4))whereλ, sλ andNλ are as in(9.6).

Proof. –Let R0 = F [q] be the ring of polynomials overF in the indeterminateq. Let R be
the completion ofR0 at the prime idealP = (q − √q), and letL be the quotient field ofR.
Thus if we writey = q − √q ∈ R0, R is identified with the ring of power seriesF [[y]], and
L= F [[y]]y = F [[y]][y−1]. The ringR is then a complete rank one discrete valuation ring w
residue fieldF . Under the residue class mapR→ F , q2 �→ q.
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Consider the affine Hecke algebrâHa
n(q

2) over the ringR, corresponding to the invertible
elementq2 ∈ R. The pair(q2, z) is generic inR, and we may therefore interpretWt,z(n)

as a module for theR-algebraT a(q2). Write W̃ (n) for this R-module. Letb ∈ R satisfy

by

w

at

of
phism
n

.6,

odules

r

n t,z

b2 = −q2(n−2). Such an element obviously exists, and under the residue class mapb �→ β ∈ F
such thatβ2 =−q−(n−2).

Write Q = (−1)tbz−1q−(n+t−2), and denoteR-modules by means of a tilde. Then
Theorem (6.1), with the obvious extensions of our standard notation,

ψ∗
αW̃t,z(n)∼= ψ∗

αg
∗
bW̃t(n)∼= ξ∗Q,mW̃t(n),(9.8.1)

wherem= αb.
Since the pair(q2, z) is generic inR, we may invoke Theorem (9.6) to deduce that

L⊗R M̃ =L⊗R ι∗ψ∗
αW̃t,z(n)∼= L⊗R K̃sλ,Nλ

.(9.8.2)

The isomorphism (9.8.2) is an isomorphism ofL ⊗R Ĥa
n(q

2)-modules. We shall show ho
to interpret it in terms ofL⊗R TLBn(q2,Q)-modules, whereTLBn(q2,Q) is theR-algebra
defined in (5.3), corresponding to the parametersq2,Q.

The left side of (9.8.2) is by (9.8.1) the pullback tôHa
n(q

2) of a TLBn(q2,Q)-module.
Hence the kernel ofξQ,m acts trivially on the right side of (9.8.2) and it follows easily th

the kernel ofξQ,m acts trivially on theR-moduleK̃sλ,Nλ
, whence the latter may be thought

as aTLBn(q2,Q)-module. Thus the isomorphism (9.8.2) may be interpreted as an isomor
of L ⊗R TLBn(q2,Q) modules. Moreover we may think of the space of either side as aL-
vector space, in which there are twoR-lattices invariant underTLBn(q2,Q), which correspond

respectively to the representations̃M andK̃sλ,Nλ
of theR-algebraTLBn(q2,Q).

Now since the pair(q2, z) is generic inR, and therefore generic inL, theL⊗RTLBn(q2,Q)-

moduleL⊗R W̃t(n) is absolutely irreducible, whenceL is a splitting field for

L⊗R M̃ ∼= L⊗R K̃sλ,Nλ
.

The reductions modP of M̃ and K̃sλ,Nλ
are respectively isomorphic to theTLBn(q,Q)-

modulesM andKsλ,Nλ
, and sinceF is a splitting field forTLBn(q,Q) (cf. [14, §5]), the triple

(L,R,F ) is a splitting system forTLBn(q2,Q) in the sense of [3, p. 17]. Moreover since(q2, z)
is generic inL, L⊗R TLBn(q2,Q) is semisimple. It follows from [op. cit., Proposition 1.9
p. 19], that theTLBn(q,Q) modules (and hence thêHa

n(q)-modules)M andKsλ,Nλ
have the

same composition factors, counting multiplicity, which is the required statement.✷
The above result enables us to determine the composition factors of the standard m

Ms,N for anypair s,N , whereN has at most two Jordan blocks (we refer to suchN as “two-
step nilpotent”) and whenq is arbitrary. It has the following consequence.

(9.9) COROLLARY. – LetĤa
n(q) be the affine Hecke algebra over the complex numbersC and

letΓ(Ĥa
n(q)) be the Grothendieck group of finite dimensionalĤa

n(q)-modules. Letλ= (n−k, k)
be a2-step partition ofn (2k � n), let t= n− 2k and lets be the diagonal matrix of(9.7.2).
Write Ms,N for the Kazhdan–Lusztig standard module of̂Ha

n(q) corresponding to the pai
s= sk(a, b), N =Nk (cf. (9.7)). Then

[Ms,N ] =
[
θ∗αWt,z(n)

]
,
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where[V ] denotes the class inΓ(Ĥa
n(q)) of an Ĥa

n(q)-moduleV , Wt,z(n) is a cell module for

the diagram algebraT an (q), θα : Ĥa
n(q)→ T an (q) is the surjectionψα of (5.12)composed with

the involutionι of (9.6), andα, z, t satisfy the equations

t

nce
ground

,

f
e

n

erify

t

k =
n− t

2
,

a= (−1)n+1αzq
1
2 (n+t−2),

b= (−1)n+1αz−1q
1
2 (n−t−2).

(9.9.1)

Proof. –This follows easily from (9.5) and (9.8). The former asserts that[Ms,N ] = [Ks,N ],
while the latter asserts that[Ks,N ] = [θ∗αWt,z(n)]. The formulae fora andb are in the statemen
of (9.6), taking account of the fact thatt andn have the same parity.✷

We shall use (9.9) to study the composition factors of the standard modulesMs,N through our
knowledge of those of the cell modulesWt,z(n). First we need to understand the corresponde
between cell modules and standard modules a little better. Assume henceforth that the
ringR is C.

(9.10) COROLLARY. – Given the pair(s(a, b),Nk) (see (9.7)) with 2k � n, there exist
(t,α, z) such that[Ms(a,b),Nk

] = [θ∗αWt,z(n)]. The parameters(t,α, z) are given by

t = n− 2k,

α2 = abq−(n−2),

z = (−1)n+1α−1aq−
1
2 (n+t−2) = (−1)n+1αb−1q

1
2 (n−t−2),

(9.10.1)

where, ift= n (or k = 0), the second equation(for α2) is omitted.

(9.11) LEMMA. – We haveψ∗
αWt,z(n)∼= ψ∗

−αWt,−z(n).

Proof. –For any elementβ ∈ C such thatβ2 = −qn−2, andα,µ ∈ C such thatµ = αβ, we
have a commutative diagram (5.12) for anyQ ∈C, and by (6.12),Wt,z(n) = g∗β,QWt(n), where

Q=Q(t, z) = (−1)tβz−1q−
1
2 (n+t−2). Henceψ∗

αWt,z(n)∼= ψ∗
αg

∗
β,QWt(n)∼= ξ∗Q,µWt(n). If we

replaceβ by −β andα by −α, µ is unchanged. Thus replacingz by −z leavesQ unchanged
and it follows that we also haveξ∗Q,µWt(n)∼= ψ∗

−αWt,−z(n), as stated. ✷
(9.12) COROLLARY. – Let P be the set equivalence classes of pairs(s,N) ∈ P̂ where

N ∈ G is two-step nilpotent, i.e.N ∼ Nk for somek with 0 � 2k � n. Let Ω̃ be the set o
triples (t,α, z) (t ∈ Z, 0 � t � n, n− t ∈ 2Z; α, z ∈ C×) and letΩ be the set of equivalenc
classes of triples iñΩ under the equivalence generated by the relations(t,α, z)∼ (t,−α,−z),
(n,α, z)∼ (n, y−1zα, y) and(0, α, z)∼ (0, α, z−1). Then(with the obvious abuse of notatio)
we have well defined̂Ha

n(q)-modulesMs,N , (s,N) ∈P andθ∗αWt,z(n) (see(9.9)), (t,α, z)∈Ω,
and there is a bijectionf :P → Ω such that if (s,N) ∈ P corresponds to(t,α, z) ∈ Ω,
[Ms,N ] = [θ∗αWt,z(n)].

Proof. –The modulesMs,N are the standard modules of Kazhdan–Lusztig. We need to v
that the isomorphism class ofθ∗αWt,z(n) depends only on the equivalence class of(t,α, z).
But Lemma (9.11) proves this for one type of equivalence, while ift = 0, we observe tha
W0,z(n) ∼= W0,z−1(n), and if t = n, in the relations (9.9.1) onlya occurs, sinceNk = N0
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has only one Jordan block, and clearlya depends only onαz, so that for anyy, z,α ∈ C×,
θ∗αWn,z(n)∼= θ∗y−1zαWn,y(n), which completes the verification.

Next, let us define the required bijectionf :Ω→P . Given(t,α, z) ∈ Ω, definef(t,α, z) to
ell

fore

le
h
ince

irs

the
e
h

e

lgebra

e

at
a

n.
be the class of(s(a, b),Nk), wherea, b, k are given by Eqs. (9.9.1). To check that this is w
defined, note that if(t,α, z) is replaced by(t,−α,−z), Eqs. (9.9.1) are unchanged, and there
have the same solution. If(0, α, z) is replaced by(0, α, z−1), we obtain the solution(s(b, a),Nn

2
)

of (9.9.1). But the pairs(s(b, a),Nn
2
) and(s(a, b),Nn

2
) are conjugate underGLn(C). Finally,

the triples(n,α, z) and(n, y−1zα, y) give the same values ofk(= 0) anda, which proves thatf
is well defined.

Finally, definef ′ :P → Ω by takingf ′(s(a, b),Nk) to be the equivalence class of any trip
(t,α, z) where the parameters satisfy Eqs. (9.10.1). Ift �= n there are just two such triples, whic
are obviously equivalent. Ift= n, all the resulting triples are easily seen to be equivalent, s
they have a common value ofαz. To check thatf ′ is well defined, we note that the pa
(s(a, b),Nk) and (s(a′, b′),Nk′) are conjugate underGLn(C) if and only if either they are
equal, ork = k′ = n/2 and(a′, b′) = (b, a). In the latter case, solving (9.10.1) shows that
corresponding triples both havet= 0 andz in one is replaced byz−1 in the other, whence th
triples are equivalent, which shows thatf ′ is well defined. Sincef, f ′ are clearly inverses, bot
are bijections, and the result now follows from Theorem (9.8).✷

(9.13) Remark. – There is a close analogy between the setP described here and th
“multisegments” of Zelevinsky [31, §4]. We shall elaborate on this in Section 11 below.

10. Irreducible modules and decomposition numbers

We begin by reviewing the main points concerning the representation theory of the a
T an (q). In this section,R is a field.

(10.1) DEFINITION. – LetΛa(n)+ be the set

Λa(n)+ =
{
(t, z) | t ∈ Z�0, 0� t� n, n− t ∈ 2Z; z ∈R×}.

DefineΛa(n) by

Λa(n) =
{
Λa(n)+ if q2 �=−1,
Λa(n)+ \ {(0,±q)} if q2 =−1.

(10.1.1)

Define the equivalence relation≈ onΛa(n)+ as that which identifies(0, z) and(0, z−1) for all
z ∈R×, and write

Λa(n)0 =Λa(n)/≈,

Λa(n)0+ =Λa(n)+/≈ .
(10.1.2)

Recall (e.g. from (6.6) above) that ifXt is the T an (q)-module with basis all monic affin
diagrams: t→ n, the cell moduleWt,z(n) for T an (q) is defined as the quotient ofXt by the ideal
Iχ := {γτt − χγ} for γ ∈Xt, whereχ= χz = z if t �= 0 andχ= χz = z + z−1 if t= 0. There
is a bilinear mapφt,z :Wt,z(n)×Wt,z−1(n)→R which [14, (2.7)] is invariant in the sense th
φt,z(wµ,ν) = φt,z(µ,w∗ν), (µ, ν ∈Wt,z(n),w ∈ T an (q)) whered∗ denotes the reflection of
diagramd ∈ T in a horizontal line. Note thatw �→ w∗ is an anti-automorphism ofT an (q), which
preservesTLan(q). If R is a field, the irreducibleT an (q)-modules have the following descriptio
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(10.2) THEOREM[14, (2.8)]. – LetR be an algebraically closed field and maintain the above
notation. For(t1, z1), (t2, z2) ∈ Λa(n)+,Wt1,z1(n)∼=Wt2,z2(n) if and only if(t1, z1)≈ (t2, z2).
For (t, z) ∈Λa(n)+,Lt,z(n) :=Wt,z(n)/ radφt,z is either an irreducibleT an (q)module or zero,

n,
e

).
o

n

andLt,z(n) �= 0 if and only if (t, z) ∈ Λa(n) (see(10.1.1)). All irreducibleT an (q) modules are
realised thus, and if(t1, z1) �≈ (t2, z2), thenLt1,z1(n) �∼= Lt2,z2(n).

It follows that the distinct irreducibleT an (q)-modules are parametrised byΛa(n)0, while the
distinct cell modules are parametrised byΛa(n)0+. Where there is little danger of confusio
we abuse notation by denoting the elements ofΛa(n)0+ as pairs(t, z), rather than equivalenc
classes of pairs. Thus we speak ofWt,z(n) andLt,z(n) for (t, z) ∈ Λa(n)0+. It follows from

(e.g.) (9.12) that to understand the composition factors of theĤa
n(q)-moduleMs,N ((s,N) ∈P),

it suffices to understand those of theT an (q)-moduleWt,z(n) for appropriate(t, z) ∈ Λa(n)+. We
therefore now turn to a description of these, which is available from [14].

Let be the partial order onΛa(n)+ which is generated by the preorder
◦
≺ which stipulates

that(t, z)
◦
≺ (s, y) if

0� t� s� n, s= t+24 (4 ∈ Z, 4 > 0) and(10.3a)

z2 = qε(s,z)s and y = zq−ε(s,z)� for ε(s, z) =±1.(10.3b)

Note that (10.3a,b) implies that

y2 = qε(s,z)t and zt = ys(10.4a)

and

(t, z) (t′, z′)⇒ zt = (z′)t
′
.(10.4b)

It suffices to verify (10.4b) when(t, z)
◦
≺ (t′, z′), in which case it follows easily from (10.3a,b

It is easily verified that [15, 4.1] the partial order onΛa(n)+ induces a partial order, als
denoted , on the setΛa(n)0 =Λa(n)/≈.

The following result is proved in [14, Theorem 5.1].

(10.5) THEOREM. – Let R be a field of characteristic0 or p > 0, wherepe > n and e is
the multiplicative order ofq2. Then, in the Grothendieck groupΓ(T an (q)), we have for any
(t, z)∈ Λa(n)+,

Wt,z(n) =
∑

(s,y)∈Λa(n)0

(t,z)�(s,y)

Ls,y(n).(10.5.1)

Thus the matrix expressing the cell modules in terms of the irreducibles inΓ(T an (q)) is upper
unitriangular, and has entries0 or 1. Now if (t, z) is confined toΛa(n), the relation (10.5.1) ca
clearly be inverted.

We also have (cf. [15, Theorem (4.5)])

(10.6) THEOREM. – In the notation above, if(t, z)∈ Λa(n),

Lt,z(n) =
∑

(s,y)∈Λa(n)0

(t,z)�(s,y)

ns,yt,zWs,y(n)

wherens,yt,z = 0 or ±1.
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We next explore the implications of these results for the standard modulesMs,N .

(10.7) DEFINITION. – For any triple(t,α, z) where(t, z) ∈ Λa(n)+ andα ∈C×, define the

les

ce,

hat
er

nding
modules

Wt,z(α) := θ∗αWt,z(n),

Lt,z(α) := θ∗αLt,z(n).
(10.7.1)

(10.8) LEMMA. – All composition factors of the cell moduleWt,z(α) are of the form
θ∗αLt′,z′(n) for some triple(t′, α, z′).

Proof. –It is clear that the pullback viaθα of a composition series forWt,z(n) is a composition
series for thêHa

n(q)-moduleWt,z(α). The result therefore follows from Theorem (10.2).✷
We need to identify which among theLt,z(α) are distinct. For this, we shall regard the modu

we are considering aŝTLan(q)-modules, via the commutative diagram

Ĥa
n(q)

θ

θα

T̂Lan(q)

φα

TLan(q)
incl

incl

T an (q)

(10.9)

whereθ = η3 ◦ ι, η3 is as in (5.6) or (5.9),ι is the involution ofĤa
n(q) defined immediately

preceding the statement of Theorem (9.6) above andθα is defined in (9.9).

(10.10) PROPOSITION. – The Ĥa
n(q)-modulesLt,z(α) = θ∗αLt,z(n) for (t, z) ∈ Λa(n),

α ∈C×, are precisely those irreduciblêHa
n(q)-modules which factor througĥTLan(q).

Proof. –The statement is equivalent to the assertion that any irreducibleT̂Lan(q)-module is

of the formφ∗
αLt,z(n). To prove this, letM be any irreducible finite dimensional̂TLan(q)-

module. Recall (see (4.2) above) thatTLan(q) = 〈C1, . . . ,Cn〉 is a subalgebra of̂TLan(q) and

T̂Lan(q) ∼= C〈V 〉 ⊗C TLan(q), whereV is the automorphism ofTLan(q) which permutes theCi
cyclically.

Let M1 be an irreducibleTLan(q)-submodule ofM . Then by [15, (2.3)],M1
∼= Lt,z(n) or

M1
∼= L±

0,
√
−1
(n). If M1

∼= Lt,z(n), then by [15, (2.5)] the twistMV
1 of M1 by the automorphism

V of TLan(q) is isomorphic toLt,z(n). It follows from [15, Theorem (2.6)] that as a vector spa
M = Lt,z(n). Moreover by Schur’s Lemma,V acts as a scalar multiple ofτn, i.e. asατn for
someα ∈ C×, so thatM ∼= φ∗

αLt,z(n). In the other case, [op. cit. Theorem (2.6)] shows t
as vector spaceM ∼= L+

0,
√
−1
(n) ⊕ L−

0,
√
−1
(n), and following the argument in loc. cit. furth

shows thatM ∼= φ∗
αL0,

√
−1(n) for someα ∈C×. ✷

(10.11) DEFINITION. – Denote byΩ̃0 the set of triples(t,α, z) in Ω̃ (see the definition
in (9.12)) such that(t, z) ∈ Λa(n). Then Ω̃0 is a union of∼-classes ofΩ̃ and we write
Ω0 = Ω̃0/∼ for the corresponding set of equivalence classes.

The triples(t,α, z) in Ω̃ are by Theorem (10.2) precisely those such that the correspo
moduleLt,z(α) is non-zero.

We are now in a position to determine the coincidences among the irreducible modulesLt,z(α)
for different values of the parameters.
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(10.12) THEOREM. – Let(t,α, z) and(t′, α′, z′) be two triples iñΩ0 (see Definition(10.11)).

The irreducibleT̂Lan(q)-modulesLt,z(α) andLt′,z′(α′) are isomorphic if and only if the triples
(t,α, z) and(t′, α′, z′) are equivalent, i.e. represent the same element ofΩ (see(9.12)).

s

s

.

he

p

ds

)

t

Proof. –We first show that if(t,α, z)∼ (t′, α′, z′) thenLt,z(α)∼=Lt′,z′(α′). For this, observe
thatWt,z(α) ∼=Wt,−z(−α) for all triples (t,α, z) ∈ Ω̃, thatW0,z(α) ∼=W0,z−1(α) for all α, z,
and thatLn,z(α) =Wn,z(α)∼=Wn,y(y−1zα) = Ln,y(y−1zα). It follows by taking top quotient
that if (t,α, z)∼ (t′, α′, z′) thenLt,z(α)∼= Lt′,z′(α′).

To prove the converse, we need to show that for any triple(t,α, z) in Ω̃0, the equivalence clas

of (t,α, z) is determined by the isomorphism class ofφ∗
αLt,z(n) asT̂Lan(q)-module. Recall (cf

diagram (10.9)) thatTLan(q) is a subalgebra of̂TLan(q) and that the restriction ofLt,z(α) to
TLan(q) isLt,z(n). It follows from [14, (1.9)] (or [15], or cf. the proof of (10.10) above) that t
equivalence class of the pair(t, z) in Λa(n) under the equivalence relation≡ is determined by
Lt,z(α), where≡ is generated by the relations

(t, z) ≡ (t,−z) if t �= 0, n,

(n, z) ≡ (n, y) for anyy, z ∈C×,

(0, z) ≡
(
0, z−1

)
for z ∈C×.

(10.12.1)

Further, recall thatV ∈ T̂Lan(q) acts onφ∗
αLt,z(n) asατn ∈ T an (q) does.

Suppose for the moment thatt �= 0, n. Then by (10.12.1),(t, z) = (t′, z′) or (t′,−z′). If
(t, z) = (t′, z′), then by hypothesisφ∗

αLt,z(n) ∼= φ∗
α′Lt,z(n), whence there is a linear ma

λ :D→D, whereD is theC-vector space with basis the standard affine diagramst→ n (see [14,
§2]), which commutes with theTLan(q) action, and intertwines thêTLan(q) structuresφ∗

αLt,z(n)
andφ∗

α′Lt,z(n). But in this case the restrictionLt,z(n) of φ∗
αLt,z(n) to TLan(q) is irreducible,

whenceλ must be multiplication by a scalar, saya ∈C. Moreover we have forE ∈ Lt,z(n),

λ(V.E) = λ(ατn.E) = aατn.E = V.λ(E) = α′τn.aE = aα′τn.E,(10.12.2)

whenceα = α′. If (t, z) = (t′,−z′), then since the restrictions ofLt,z(α) and Lt,−z(α′)
to TLan(q) are isomorphic irreducible representations, any linear mapλ :D → D (as above)
which intertwines theLt,z(α) andLt,−z(α′)-actions onD is of the formaU , whereU is the
map defined in the proof of Theorem (2.3) of [15], anda ∈ C (for any standard diagramE,
U.E = (−1)rank(E)E). Computation ofU(V.E) in two different ways as in (10.12.2) then yiel
thatα′ =−α. This completes the proof that(t,α, z)∼ (t′, α′, z′) if t �= 0, n.

If t= n, Wn,z(n) is one-dimensional, and hence irreducible. MoreoverV acts onφ∗
αLn,z(n)

as multiplication byαz. Hence ift= n, the isomorphism class ofφ∗
αLt,z(n) is determined byαz,

whence the result for this case.
Now suppose thatt = 0. If z2 �= −1 (i.e. z + z−1 �= 0), then the restriction toTLan(q) of

φ∗
αLt,z(n) is irreducible, and in both casesz′ = z and z′ = z−1 an argument like (10.12.2

shows thatα= α′, which shows that(t,α, z)∼ (t′, α′, z′).
Finally, takez2 = −1 andq2 �= −1. In this case the restrictionM to TLan(q) of φ∗

αLt,z(n)
is (cf. the proof of (10.10)) the direct sumL+

0,z(n) ⊕ L−
0,z(n). The two (irreducible) direc

summands are interchanged byτ , andV therefore acts onφ∗
αLt,z(n) via the matrix[

0 ατn
ατn 0

]
.
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But it is shown in [15, (2.8.1)] that the isomorphism class of thêTLan(q)-moduleM on which
TLan(q) acts according to the given structure and on whichV acts via the matrix

of of

t
.
ition

osition
of
[
0 α1τn

α2τn 0

]

is determined by the productα1α2. Hence if z2 = −1, φ∗
αL0,z(n) ∼= φ∗

α′L0,±z(n) if and
only if α′ = ±α, which is the required statement for this case. This completes the pro
Theorem (10.12). ✷

(10.13) COROLLARY. – In the notation of(9.12), let (s,N) be a pair inP (recall that this
means thatN = Nk is a 2-step nilpotent matrix ands = s(a, b) is a diagonal matrix such
that sNs−1 = q2N ). Then there is a well-defined̂Ha

n(q)-moduleLs,N , which is either0 or
a composition factor ofMs,N , with the following properties. The non-zero modulesLs,N are
pairwise non-isomorphic, and the composition factors of all the modulesMs′,N ′ ((s′,N ′) ∈ P)
are among theLs,N . The condition thatLs(a,b),Nk

be zero is that

q2 =−1, n is even, k =
n

2
, a= α, b=−α, for someα ∈C×.(10.13.1)

Proof. –If (s,N) corresponds to the triple(t,α, z) ∈ Ω, takeLs,N to be the top quotien
Lt,z(α) of Wt,z(α). The fact that the non-zero modulesLs,N are distinct follows from (10.12)
Moreover, by (9.12),Ms,N andWt,z(α) have the same composition factors. But the compos
factors ofWt,z(α) are clearly the inflations viaθα of those of theT an (q)-moduleWt,z(n). The
result is now clear from (10.5), which shows that the composition factors ofWt,z(n) are all top
quotients of someWt′, z′(n). The last assertion concerning the cases whenLs,N = 0 is obtained
simply by translating the condition in Theorem (10.2) (viz.(t, z) = (0,±q) whenq2 =−1) into
the language of pairs using (9.9.1).✷

Our final task is to translate the precise results (10.3a,b) et seq. concerning the comp
factors of the modulesWt,z(n) into the language of pairs(s,N). From the argument in the pro
of (10.13), it is clear that in the Grothendieck groupΓ(Ĥa

n(q)), for any (t, z) ∈ Λa(n)+ and
α ∈C×,

Wt,z(α) =
∑

(s,y)∈Λa(n)0

(t,z)�(s,y)

Ls,y(α).(10.14)

In order to describe the composition multiplicities of the standard modulesMs,N for (s,N) ∈P ,
we therefore need to interpret the order relation≺ in terms of pairs.

(10.15) PROPOSITION. – Suppose that under the correspondence of(9.12), the triples
(t1, α, z1), (t2, α, z2) correspond to the pairs(s(a1, b1),Nk1), (s(a2, b2),Nk2) respectively.

Then (t1, z1)
◦
≺ (t2, z2) if and only if there exists4 > 0 and ε = ±1 such that if we write

2ki = n− ti for i= 1,2, then

k2 = k1 − 4 � 0,

a1b
−1
1 = qt1+εt2 ,

(a2, b2) =
{
(a1, b1) if ε= 1,
(b1, a1) if ε=−1.

(10.15.1)
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Proof. –From Eqs. (9.9.1), we see thatz2
1 = a1b

−1
1 . Hence from Eqs. (10.3),t2 = t1 + 24 for

some4 > 0, anda1b
−1
1 q−t1 = qεt2 for someε=±1. Sincez2 = z1q

−ε�, Eqs. (9.10.1) show that
a2 = a1q

�(1−ε) andb2 = b1q
−�(1−ε). The relations (10.15.1) follow after a little rearrangement.

bove to

ments.

n
be

the

s

which
let us

e

Conversely, if the relations (10.15.1) hold, Eqs. (9.9.1) and (9.10.1) may be used as a
deduce the relations (10.3a) and (10.3b).✷

The relation
◦
≺ defined by Eqs. (10.15.1) generates a partial order on the setP of pairs

(s,N) described in (9.12). This partial order may be interpreted as ordering theG-conjugacy
classes of pairs in the obvious way; viz. two classes are related if they contain related ele
Let P0 be the set of (conjugacy classes of) pairs(s,N) ∈ P , wheres = s(a, b),N = Nk and
(s,N) is not of the form in (10.13.1). By Theorem (10.12)P0 parametrises the compositio
factors of the standard modulesMs,N , (s,N) ∈ P . Theorems (10.5) and (10.6) may now
applied as follows.

(10.16) THEOREM. – LetP andP0 be the sets of semisimple-nilpotent pairs defined in
previous paragraph, and let be the partial order onP generated by the relation(10.15.1).
Then in the Grothendieck group of finite-dimensionalĤa

n(q)-modules,

[Ms,N ] =
∑

(s′,N ′)∈P0
′(s,N)�(s′,N ′)

[Ls′,N ′ ] for any pair(s,N) ∈ P ,(10.16.1)

and

[Ls,N ] =
∑

(s′,N ′)∈P
(s,N)�(s′,N ′)

ns
′,N ′

s,N [Ms′,N ′ ](10.16.2)

wherens
′,N ′

s,N = 0 or ±1.
We conclude by giving some applications to the structure of the standard modules.

(10.17) COROLLARY. –
(i) The standard modulesMs,N ((s,N) ∈ P) are multiplicity free.
(ii) If q is not a root of unity, the standard modules have at most2 composition factors.
(iii) In all cases,Ms,N has composition length bounded by[n/2].
(iv) The maximum composition length ofMs,N is [n/2], and therefore is unbounded a

n→∞.

These statements are easy consequences of Theorem (10.16).

11. Concluding remarks

We first wish to explain how our results generalise certain aspects of the theory in [31],
involves the notion of “multisegments”. Without discussing the general notion in [op. cit.],
define these in our context as follows.

(11.1) DEFINITION. – LetR be an integral domain andq ∈R×. A segmentin R is a sequenc

I(a,m) =
(
a, aq−2, aq−4, . . . , aq−2(m−1)

)
(11.1.1)

(a∈R×,m∈ Z>0) of elements ofR×. In addition, there is a unique segment of length0, which
is the empty sequence. In what follows, some remarks apply only to segments of length�= 0, and
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we shall rely on the context to distinguish these. Note that the elements ofI(a,m) are distinct if
q is not a root of unity. Otherwise, there may be repetitions inI(a,m). Denote by|I(a,m)|
the multiset (i.e. set with multiplicities) underlyingI(a,m). Then I(a,m) is determined by

learly

er.
many

ts)

e that

ard

f

th

f
ite

bove.
is of
nts.
|I(a,m)|, together with its initial element.
The lengthof I(a,m) is m, and we may speak of a subsegment ofI(a,m), with the obvious

meaning, and similarly for initial and final subsegments ofI(a,m).
SupposeI(a1,m1) and I(a2,m2) are two segments. We say thatI(a1,m1) precedes

I(a2,m2) if a2 = a1q
−2i for somei ∈ {m1 −m2 + 1,m1 −m2 + 2, . . . ,m1}, where only the

non-negative among these integers are included; i.e. if the initial element ofI(a2,m2) coincides
with one of the finalm2 elements ofI(a1,m1 + 1). If I(a1,m1) precedesI(a2,m2), we may
define aconcatenationI(a1,m1)#I(a2,m2) as any segment which starts withI(a1,m1 + 1)
and finishes withI(a2,m2). Such a segment exists by definition, and any concatenation c
has length strictly greater than the maximum ofm1 andm2.

Say that two segmentsI(a1,m1) andI(a2,m2) are linked if either one precedes the oth
Observe that whenq is a root of unity, each may precede the other, and there may be
different concatenationsI(a1,m1)#I(a2,m2) andI(a2,m2)#I(a1,m1)

Note that in the “generic” case, whenq is not a root of unity, this definition (of linked segmen
coincides with the definition [31, 4.1, p. 184].

We may now state our results concerning composition factors as follows. First not
the pairs(s(a, b),Nk) ∈ P (cf. (9.12)) correspond bijectively to pairsI1 = I(a,n − k) and
I2 = I(b, k) of segments of lengthn− k = t+ k andk respectively, wheren− k = t+ k � k.
In the statement below, we writeMI1,I2 andLI1,I2 respectively for the corresponding stand
modulesMs(a,b),Nk

and irreduciblesLs(a,b),Nk
(see Section 10 above).

(11.2) THEOREM. –
(i) The standard moduleMs,N is irreducible if and only if the segmentsI1, I2 are not linked.
(ii) If I1 precedesI2, let I ′1 = I1#I2 be any concatenation ofI1 andI2. This is a segment o

lengthn−k′, wherek′ < k (see above). DefineI ′2 = I(b, k′). Then the irreduciblêHa
n(q)-module

LI′1,I′2 is a composition factor ofMI1,I2 .
(iii) If I2 precedesI1, takeI ′1 to be any concatenationI2#I1. This is a segment of leng

n− k′, where againk′ < k. DefineI ′2 = I(a, k′). Then the irreduciblêHa
n(q)-moduleLI′1,I′2 is

a composition factor ofMI1,I2 .
(iv) All composition factors ofMI1,I2 have multiplicity one, and are of the formLI′1,I′2 , where

(I ′1, I
′
2) arises from(I1, I2) by a sequence of transformations of the form described in(ii) and(iii)

above.
(v) We haveLI1,I2 = 0 if and only ifq2 =−1 andI2 =−I1, so thatn= 2k.
(vi) Say that (I1, I2)  (I ′1, I ′2) if (I ′1, I ′2) is obtained from(I1, I2) by a sequence o

transformations of the form(ii) and (iii) above. Then in the Grothendieck group of fin
dimensionalĤa

n(q) modules, we have

[LI1,I2 ] =
∑

(I1,I2)�(I′1,I
′
2)

n
I′1,I

′
2

I1,I2
[MI′1,I

′
2
]

wherenI
′
1,I

′
2

I1,I2
= 0 or ±1.

These statements are simply restatements of the facts treated in (10.15) and (10.16) a
Note the similarity between our Theorem (11.2)(i) and [31, Theorem 4.2]. The latter

course false whenq is a root of unity without our modification of the meaning of linked segme
Note also that our statement holds for anyq ∈C, evenq = 1.
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(11.3) We shall now give a more explicit description of the posetP of bisegmentsP = (I1, I2),
ordered by the relation , with a view to giving a more explicit version of Theorem (11.2)(vi). It
is convenient to change notation as follows. We have defined a segment above as

r

nd

e

.

iven

ey both

e

ve,
I(a,m) =
(
a, aq−2, . . . , f

)
wheref = aq−2(m−1).

Write [a, f ]m for this segment. This notation applies whena, f ∈R× andm is a positive intege
such thatf = aq−2(m−1). We calla andf the endpoints of the segment. The setP of bisegments
is parametrised by unordered pairsP = {[a, f ]l, [b, q]k} of segments such thatk+ l= n. We say
P has lengthn = k + l and writek(P ) =min(k, l). The corresponding standard module a
irreducible modules will be denotedMP ,LP respectively.

SupposeP andQ are bisegments of the same length. We say thatP andQ are transverse
if they are of the form{[a, f ]l, [b, g]k} and{[a, g]i, [b, f ]j} respectively; we sayP andQ are
parallel if they are of the form{[a, f ]l, [b, g]k} and{[a, f ]i, [b, g]j} respectively. (Note that th
subscripts may be zero.)

Given a pairQ,Q′ of parallel bisegments of the same length, we say thatQ andQ′ have the
same orientationif they are of the form{[a, f ]l, [b, g]k} and{[a, f ]i, [b, g]j} respectively with
k � l andj � i; otherwiseQ andQ′ have opposite orientations.

The following assertions concerning the combinatorics of the posetP may be easily checked
(i) If P,P ′ ∈ P andP  P ′, thenP ′ is either transverse or parallel toP (possibly both).

(ii) If P ′ is transverse toP andk(P ′)< k(P ), thenP
◦
≺ P ′.

(iii) If P is transverse to itself, then{P ′ ∈P | P  P ′} is totally ordered. IfP1 is the minimal
element of{P ′ ∈ P | P ≺ P ′} (i.e.P1 �= P ) then

[LP ] = [MP ]− [MP1 ].

(iv) If P,P ′ are parallel, have the same orientation,k(P ′) < k(P ), and there existsQ with

P ≺Q, then there is a bisegmentP1 ∈ P such thatP
◦
≺ P1

◦
≺ P ′.

(v) Say thatP �= P ′ ∈ P are opposed if they are parallel and not comparable. Then g
Q ∈ P such that there existsP ∈ P with Q≺ P , there exists at most one elementQ′ ∈ P such
thatQ,Q′ are opposed.

The proof of (v) proceeds by showing that ifQ is opposed to bothQ′ andQ′′ thenQ′,Q′′

are opposed to each other, and hence by (iv) they must have opposite orientations. But th
have orientation opposite to that ofQ, whence two such elementsQ′,Q′′ cannot exist.

(vi) Suppose thatP1 is not transverse to itself. IfP1 ≺ Q ≺ P2, then there exists a uniqu
bisegmentQ′ which is opposed toQ.

(vii) If P ≺Q, then the number of bisegmentsR in the interval[P,Q] := {R | P  R  Q}
which are parallel toP is equal to the number ofR which are transverse toP .

The structure of the posetP is completely determined by the properties (i) to (vii) abo
which are all straightforward to prove. Moreover it is an easy consequence of (vii) that

(11.4) PROPOSITION. – SupposeP ∈ P is not transverse to itself. Then

[LP ] =
∑
P�Q

nQP [MQ],

where

nQP =
{
1 if Q is parallel to P ,
−1 if Q is transverse toP .
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We remark also that given the results of [20,1,10], our statement (11.2)(vi) implies that the
Kazhdan–Lusztig polynomials which arise from intersection complexes on the closure of the
ZG(s) orbit of the nilpotent elementN are equal to1.

of the
of

nks the
ring

roups

,

5–

bras

ecke
Finally, we observe that the results of this paper may be used to discuss aspects
representation theory of the affine Hecke algebrâHa

n(q) over any algebraically closed field
positive characteristic, i.e. the “modular case”. This is carried out for the algebrasTLBn(q,Q)
in [6].
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