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THE SOLUBILITY OF DIAGONAL CUBIC SURFACES

BY SIR PETER SWINNERTON-DYER

ABSTRACT. – LetF be an algebraic number field not containing the primitive cube roots of unity, and let

a1X
3
1 + a2X

3
2 = a3X

3
3 + a4X

3
4

be a diagonal cubic surface defined overF and everywhere locally soluble. Subject to the assumption
that the Tate–Šafarevič group of every relevent elliptic curve is finite, the paper shows that under a very
weak additional condition the surface contains points defined overF . Some condition (the Brauer–Manin
obstruction) is known to be necessary, but the condition imposed in the paper (which is local) is slightly
stronger. More remarkable is the condition onF , which seems to be an artefact of the proof and not intrinsic
to the problem.

 2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – SoitF un corps de nombres qui ne contient pas les racines primitives cubiques de l’unité.
Considérons une surface cubique diagonale

a1X
3
1 + a2X

3
2 = a3X

3
3 + a4X

3
4

définie surF et possédant des points rationnels sur tous les complétés deF . En admettant la finitude des
groupes de Tate–Šafarevič de certaines courbes elliptiques, et en faisant une hypothèse assez faible sur les
coefficients, on montre que la surface possède un point rationnel surF . La condition sur les coefficients
est un peu plus forte que la condition de Brauer–Manin. L’hypothèse sur le corpsF lui-même est plus
étonnante ; elle est due à la méthode utilisée et ne doit pas être inhérente au problème.

 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Within the algebraic closurēQ, letω be a fixed primitive cube root of unity andk0 an algebraic
number field not containingω. We shall be concerned with the solubility overk0 of diagonal
cubic surfaces

V : a1X
3
1 + a2X

3
2 = a3X

3
3 + a4X

3
4(1)

wherea1a2a3a4 �= 0. Without loss of generality we can assume that theai are integers ofk0. The
condition thatk0 does not containω may appear perverse and unnatural, but it seems essential
for the approach used here. It does cover the important casek0 = Q, but I do not see how to
treat this case without treating at the same time a somewhat more general one. My approach is to
construct a certain quadratic extensionk/k0, wherek also does not containω, and to prove the
solubility of (1) overk; as is well known, solubility overk0 follows immediately. The motive for
this is that we can impose additional conditions onk without putting corresponding constraints
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892 P. SWINNERTON-DYER

onk0. The construction ofk/k0 is given in Theorem 3 in §5, andk0 will not appear again (after
the end of the Introduction) until then.

Of the previous papers about Eq. (1), the most relevent are [5] and [8]; summaries of the results
of [5], with a few more comments, can be found in [4] and [9], and [8] contains conditional proofs
of the solubility of (1) in some special cases. It was shown by Cassels and Guy [3] that the Hasse
principle does not hold for diagonal cubic surfaces. However, there is overwhelming numerical
evidence in [5] that for Eq. (1) defined overQ the only obstruction to the Hasse principle is the
Brauer–Manin obstruction.

A number of recent papers of which I have been author or co-author have studied rational
points on certain types of surface by treating the surface as a pencil of curves of genus1.
These include [1,6] and [12]. The results have depended on two major conjectures: Schinzel’s
Hypothesis and the finiteness of the Tate–Šafarevič group for all relevent elliptic curves. The
second of these is essential in this paper also; the elliptic curves for which we need it are those
of the formX3 + Y 3 =AZ3 defined over certain quadratic extensions ofk0, where the identity
under the group law is the pointO = (1,−1,0). But we have avoided the use of Schinzel’s
Hypothesis by means of a device which in this context is due to Heath-Brown [8]. Instead of
treating (1) as a pencil of curves of genus1 by writing for exampleX3/X4 = λ/µ, we look for
solutions of the pair of equations

a1X
3
1 + a2X

3
2 =BX3

0 , a3X
3
3 + a4X

3
4 =BX3

0(2)

for some suitably chosenB. The advantage of this method is that by using Dirichlet’s theorem
on primes in arithmetic progression we can arrange the prime factorization ofB to suit our
convenience; by contrast, any argument which invokes Schinzel’s Hypothesis requires one to
cope with what I have elsewhere called the Schinzel primes. (It is true that Dirichlet’s theorem
can be regarded as a special case of Schinzel’s Hypothesis, but its use does not involve anything
analogous to the Schinzel primes.) The disadvantage of the present methods is that we have to
coordinate the descents on two elliptic curves; and to make the method work it appears necessary
to impose on the surfaceV given by (1) additional conditions which do not always hold even
when the Eq. (1) is soluble. For this and other reasons, it will be clear that the approach in this
paper is not the right one; but as yet the right one is not known. In this paper the situation is
made somewhat worse because, in the interests of simplicity, I have chosen not to make full
use of the primes ofk0 which divide3; but even if I had used them I could not have obtained
the whole truth. Even if stronger results could be obtained by means of second descents, using
the methodology of Cassels [2], such an approach appears incapable of proving the conjecture
that for surfaces (1) the Brauer–Manin obstruction is the only obstruction to the Hasse principle.
Indeed, in the present context there are two ways in which the Brauer–Manin obstruction onV
can vanish. LetA be the relevent Azumaya algebra, as described for example in [5]. Either there
is a placev such that invvA(Pv) is not constant asPv runs throughV (kv), or each invvA(Pv) is
constant but the sum of these values over allv vanishes. One might hope to improve the approach
in this paper so as to prove solubility of (1) in the first case, subject always to the condition that
ω is not ink0; but the second case appears to require quite different methods. In consequence,
though this paper can be regarded as modelled on the earlier parts of [6], there is in the main
theorems no mention of the Brauer–Manin obstruction nor indeed of any non-local obstruction.

In the course of this paper, we repeatedly use the following version of Dirichlet’s theorem on
primes in an arithmetic progression.

DIRICHLET’ S THEOREM. – LetL be an algebraic number field andp1, . . . ,pr distinct primes
ofL. For i= 1, . . . , r let ni be a positive integer andαi an element ofo∗pi

; and leta be a nonzero
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THE SOLUBILITY OF DIAGONAL CUBIC SURFACES 893

ideal ofL whose prime factorization does not involve any of thepi. Then there is an elementβ
ofL such thatβ ≡ αi mod p

ni

i for eachi and(β) = ap for some prime idealp.

To prove this requires only minor modifications of the standard analytic proof of Dirichlet’s
theorem for an algebraic number field in its customary form. Alternatively, it follows easily from
Class Field Theory; see for example [7], §8, Satz 13.

With minor exceptions, in this paperK = k(ω) wherek is an algebraic number field not
containingω, andσ is the nontrivial automorphism ofK/k. If P is a prime inK , thenΠ will
always be a uniformizing variable forP. The ring of integers ofK will be denoted byO and that
of k by o. Suppose thatξ is an element of some vector space overF3 associated with

⊕
P∈SK

∗
P

whereS is a finite set of places ofK . We shall writePν
0‖ξ for ν in Z/(3) if every representative

x=
∑
xP of ξ satisfiesPn

0‖xP0 whereν is the image ofn in Z/(3). In particular we shall say
thatξ is a unit atP0 if ν = 0 and a non-unit atP0 otherwise. There are similar definitions fork.

Let S0 be a finite set of places ofK which contains the archimedean places, the primes
dividing 3, and a set of generators for the ideal class group ofK ; and letS1 be a finite set
of places ofK which containsS0 and all the primes which dividea1a2a3a4. We assume thatS0

andS1 are chosen to be stable underσ. The setsS andS+ will always be finite sets of places of
K , stable underσ and satisfyingS+ ⊃ S ⊃ S0. The letterΣ with any affix will denote the set of
places ofk lying under a place of the setS with the corresponding affix. Note thatΣ0 already
includes all places which ramify inK/k. We retain all this notation throughout the paper.

In formulating a solubility theorem for (1), we may clearly assume that none of theai/aj is
in k∗3; for otherwise solubility is trivial. Moreover it has long been known (Selmer [11]) that if
for examplea1a2/a3a4 is in k∗3 then (1) obeys the Hasse principle. Hence it costs us nothing
to assume that none of the expressions likea1a2/a3a4 is in k∗3. These restrictions, which are
equivalent to the corresponding ones overk0, are worthwhile because they eliminate a number
of special cases in the arguments which follow.

Condition 1. – Each of the fields likeK( 3
√
a1/a2) andK( 3

√
a1a2/a3a4) is an extension of

degree3 overK = k(ω).

Subject to all this, the strongest result which I have been able to obtain by means of first
descents alone is that stated in Theorem 3; and Theorem 1 summarizes the consequences of
Theorem 3 if we make no use of the primes which divide3. The proof of Theorem 1, together
with a more elementary but less succinct version of the criterion in (iii), can be found in §6.

THEOREM 1. – Let k0 be an algebraic number field not containing the primitive cube roots
of unity. Assume that the Tate–Šafareviˇc group of every elliptic curve(4) over any quadratic
extension ofk0 is finite. If Eq.(1) is everywhere locally soluble, then each of the following three
criteria is sufficient for its solubility ink0.

(i) There exist primesp1,p3 of k0 not dividing3 such thata1 is a non-unit atp1 anda3 is a
non-unit atp3, but forj = 1 or 3 the threeai with i �= j are units atpj .

(ii) There is a primep of k0 not dividing3 such thata1 is a non-unit atp but the otherai are
units there; anda2, a3, a4 are not all in the same coset of(k0)∗3p .

(iii) There is a primep of k0 not dividing3 such that exactly two of theai are units atp, and
(1) is not birationally equivalent to a plane over(k0)p.

The obstructions in this theorem and the Brauer–Manin obstruction appear to be related as
follows. The arguments in §5 of [5], generalized to the present context, show that under each
of the criteria above there is a primep of bad reduction forV such thatV is not birationally
equivalent to a plane over(k0)p. (Indeed, criterion (i) demands two such primes.) Providedp � 3
this implies that there is no Brauer–Manin obstruction for our surface – for ifA is the relevent
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894 P. SWINNERTON-DYER

Azumaya algebra, invpA(Pp) is not constant asPp runs through thep-adic points ofV . One
would hope that this holds even ifp|3.

There has also been some recent interest in the solubility of diagonal cubic threefolds. The
idea of proving a solubility theorem for a variety by considering suitably chosen sections is an
old one; for it in this context see [5], §9. Subject always to the finiteness of the relevent Tate–
Šafarevǐc groups, our methods are adequate to prove that the Hasse principle holds in this case.

THEOREM 2. – Assume thatk0 does not contain the primitive cube roots of unity and that
the Tate–Šafareviˇc group of every elliptic curve(4) over any quadratic extension ofk0 is finite.
If b1, . . . , b5 are nonzero elements ofk0 such that

b1X
3
1 + b2X3

2 + b3X3
3 + b4X3

4 + b5X3
5 = 0(3)

is everywhere locally soluble, then it is soluble ink0.

The proof of this theorem can also be found in §6.
I am indebted to Jean-Louis Colliot-Thélène and the referee for a number of valuable

comments on earlier drafts, and to Tom Fisher and Alexei Skorobogatov for permission to
reproduce Lemmas 5 and 6.

2. First descent onX3 + Y 3 =AZ3

Let A be an element ofk∗ which without loss of generality we can assume to be ino;
for simplicity we shall also assume thatA is not a cube. We writeρ for the isogeny whose
kernel consists of the3-division points withZ = 0. The curveE given by (4) admits complex
multiplication, so that EndK(E) = Z[ω]; we may suppose thatω acts onE by (X,Y,Z) 	→
(X,Y,ωZ). Thus the action ofρ is given by

(X,Y,Z) 	→
(
ωX3 −ω2Y 3, ωY 3 − ω2X3,

(
ω− ω2

)
XY Z

)
.

If P is (X,Y,Z) then−P is (Y,X,Z); thus alsoσ(ρ(P )) =−ρ(σ(P )).
The most naïve form of theρ-descent, also called the first descent in the older literature,

operates overK ; it replaces the elliptic curve

E: X3 + Y 3 =AZ3(4)

by the equationsZ = Z1Z2Z3 and

ωX +ω2Y =m1Z
3
1 , ω2X + ωY =m2Z

3
2 , X + Y =AZ3

3/m1m2(5)

for somem1,m2. If we write

X = ξ/m1m2, Y = η/m1m2, m=m1/m2,

Z1 = ζ1/m1, Z2 = ζ2/m2, Z3 =−ζ3,
the Eqs. (5) become

ωξ + ω2η =m−1ζ31 , ω2ξ + ωη =mζ32 , ξ + η =−Aζ33 ,

a system which is equivalent to

m−1ζ31 +mζ32 =Aζ33 .(6)
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THE SOLUBILITY OF DIAGONAL CUBIC SURFACES 895

Here we should regardm as an element ofK∗/K∗3. Thus in particular overK the Jacobians of
the two curves (2) are

X3 + Y 3 =Ba1a2Z
3, X3 + Y 3 =Ba3a4Z

3.(7)

The curves (6) are calledρ-coverings of (4); those which are everywhere locally soluble are by
definition the elements of theρ-Selmer group, which is canonically isomorphic throughm to
a subgroup ofK∗/K∗3. Theρ-Selmer group containsA because the curve (6) withm = A is
soluble inK .

Throughout this section,S will be a finite set of places ofK containingS0 and all the
primes which divideA. The curves (6) defined overK and soluble inKv for everyv outside
S correspond to them which are units outsideS; so they are indexed by the elements of
XS = O∗

S/O
∗3
S , whereO∗

S consists of the elements ofK which are units outsideS. We can
regardXS as a finite-dimensionalF3-vector space. Those curves which are also soluble inKv

for everyv in S determine a subspace ofXS . Hence the conditions for the solubility of (6)
in theKv with v in S can be described by a finite set of homomorphismsXS → F3, which
can be regarded as generators of anF3-vector spaceV . The left kernel of the induced map
ψ :XS × V →F3 is precisely theρ-Selmer group ofE. Calculation shows thatXS andV have
the same dimension. It is therefore tempting to hope that there is a natural isomorphism between
XS andV , and that it makesψ either symmetric or antisymmetric. This is not true; but there is
indeed an interesting symmetry property, though a less straightforward one, and the main purpose
of this section is to display it. A similar symmetry statement, though in a simpler context, has
already appeared in [6]; there, as here, it plays a crucial role.

For every finite setS of places ofK , of ordern and containingS0, write

XS = O∗
S/O

∗3
S , Yv =K∗

v/K
∗3
v , YS =

⊕
v∈S

Yv.(8)

SinceK contains the cube roots of unity, theF3-vector spaceXS has dimensionn by Dirichlet’s
unit theorem.YS has dimension2n by the product formula, sinceK∗

v/K
∗3
v contains9/|3|v

elements andS contains everyv with |3|v �= 1. MoreoverYv is trivial if v is archimedean. Here as
in Proposition 1.1.1 of [6] the mapXS → YS is injective, becauseS contains a set of generators
for the ideal class group ofK . There is a non-degenerate alternating bilinear formev onYv given
by the Hilbert symbol, and thus a non-degenerate alternating bilinear formeS =

∑
Sev on YS .

(We write the Hilbert symbol additively, to accord with the argument in §5. Consequently the
symbol depends on the choice ofω; compare the discussion around Lemma 7 of [5].) By the
Hilbert product formula and a comparison of dimensions,XS is maximal isotropic inYS . For
any placev of K , let Tv be the image ofO∗

v/O
∗3
v in Yv , whereOv is the ring of integers of

Kv. Unlessv divides3, Tv is a maximal isotropic subspace ofYv. The following lemma has
been designed for application to the special situation described in Lemma 2; it is stated in greater
generality purely in order to simplify the proof. We introduce the following notation, which we
shall use repeatedly. LetU be a vector space over a fieldF with charF �= 2, and letσ :U → U
be an automorphism of order2; thenU is the direct sum of the subspaceU+ of elements fixed
by σ and the subspaceU− of elements whose sign is reversed byσ.

LEMMA 1. – Let Yi, σYi (i= 1, . . . , n) be pairs of finite dimensional vector spaces over a
fieldF with charF �= 2, whereσ is an isomorphismYi → σYi for eachi and is such thatσ2 is
the identity. Suppose that eachYi is equipped with a non-degenerate alternating bilinear form
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(x, y), and let eachσYi be equipped with the bilinear form defined by

(σx,σy) =−(x, y).(9)

Write Y =
⊕

i(Yi ⊕ σYi), equipped with the sum of these forms. LetX be maximal isotropic
in Y and mapped to itself byσ. Then there exist maximal isotropic subspacesZi ⊂ (Yi ⊕ σYi)
such thatσ maps eachZi to itself andY = X ⊕ Z whereZ =

⊕
i Zi. Moreover, given any

W =
⊕

i(Wi ⊕ σWi) with eachWi maximal isotropic inYi, theZi can be chosen so that

dim(W∩ Z)+ − dim(W ∩ Z)− = 1
2 (dimX

− − dimX
+).(10)

Proof. –We show first that we can reduce to the special case where everyYi has dimension2.
If some dimYi > 2 let yi be a nonzero element ofWi; because the bilinear form is
nondegenerate onYi we can findvi in Yi such that(yi, vi) �= 0. Herevi cannot be inWi. Now
Yi = {yi, vi} ⊕ {yi, vi}⊥ and one easily checks that this induces an orthogonal decomposition

Wi =
(
Wi ∩ {yi, vi}

)
⊕
(
Wi ∩ {yi, vi}⊥

)
.

Thus we have split off fromYi a subspace of dimension2 which contains a subspace ofWi of
dimension1. This only reduces our freedom to choose theZi; so we can assume that everyYi

has dimension2.
We now proceed by induction onn, the casen= 0 being trivial. SinceX is isotropic it cannot

containYn; so there is an elementyn in Yn but not inX, whenceyn +σyn andyn−σyn cannot
both lie inX. Let yn, vn be a base forYn. Sinceσ mapsX to itself, we have three possibilities:

(i) The intersection ofX and the space spanned byyn + σyn andyn − σyn is trivial; in this
case we takeZn to be the latter space.

(ii) If yn − σyn is in X then(yn − σyn, vn + σvn) = 2(yn, vn) �= 0; thus the only elements
of (Yn ⊕ σYn)+ orthogonal toyn − σyn are the multiples ofyn + σyn, whence
X∩ (Yn ⊕ σYn)+ = {0}. In this case we takeZn to be(Yn ⊕ σYn)+.

(iii) If yn +σyn is in X a similar argument holds; in this case we takeZn to be(Yn⊕σYn)−.
Now write

Y
∗ = (Y1 ⊕ σY1)⊕ · · · ⊕ (Yn−1 ⊕ σYn−1), X

∗ = Y
∗ ∩ (X⊕ Zn).(11)

If x∗ is in X∗ thenx∗ = x+zn for somezn in Zn andx in X; so the projection ofx to Yn⊕σYn

is −zn. Sincex∗ is orthogonal toZn, so isx; and the isotropy ofX∗ follows from that of
X and Zn. SincedimX∗ � 2n − 2 by the second equation (11),X∗ is maximal isotropic in
Y∗. Applying the induction hypothesis toX∗ andY1, . . . ,Yn−1 we can constructZi maximal
isotropic inYi ⊕ σYi for i = 1, . . . , n− 1 and withY∗ = X∗ ⊕ (Z1 ⊕ · · · ⊕ Zn−1). But now,
using (11) again,

(X⊕ Zn)∩ (Z1 ⊕ · · · ⊕ Zn−1)⊂ X∗ ∩ (Z1 ⊕ · · · ⊕ Zn−1) = {0}

andY = X ⊕ Z follows by dimension count. To prove the final assertion we have to split cases
according to the three possibilities above. If (i) holds then the general element ofZn has the form
ayn + a′σyn with a, a′ in F . If yn is in Wn then every such element is inWn ⊕ σWn, so that
(Wn ⊕ σWn) ∩ Zn = Zn; if yn is not in Wn then the only element of this form which is in
Wn ⊕ σWn is 0, so that(Wn ⊕ σWn)∩ Zn = {0}. If (ii) or (iii) holds then

(Wn ⊕ σWn) ∩ Zn = (Wn ⊕ σWn)+ or (Wn ⊕ σWn)−
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THE SOLUBILITY OF DIAGONAL CUBIC SURFACES 897

respectively. Thus in all cases we have

dim
(
(Wn ⊕ σWn)∩ Zn

)+ − dim
(
(Wn ⊕ σWn)∩ Zn

)− = 1
2 (dimZ+

n − dimZ−
n ).

By induction this gives

dim(W∩ Z)+ − dim(W∩ Z)− = 1
2 (dimZ+ − dimZ−).

But we have

dimX
+ +dimZ

+ =dimY
+ = dimY

− = dimX
− +dimZ

−

and (10) follows. We note for future reference that also

dimW+ = dim⊕Wi = dimW−.(12)

The decomposition of theYi which allows us to assume that eachdimYi = 2 constrains the
choice of theZi, so we have only proved (10) for a highly particular choice of theZi; but I
believe that (10) does hold for every choice ofZi satisfying the penultimate sentence in the
lemma. ✷

LetWv be the image ofE(Kv) in Yv under the Kummer map

∂: P = (X,Y ) 	→ ωX + ω2Y

ω2X + ωY

in the notation of (4). WriteWS for the subset
⊕

SWv of YS . A ρ-covering ofE is soluble in
Kv if and only if the corresponding elementm of K∗/K∗3 is inWv . Moreover Tate has shown
thatWv is a maximal isotropic subspace ofYv for the alternating formev. (In our case this can
be proved along the lines of Lemma 3 of [1]. Tate’s result is applicable to any isogeny, but I
am not aware of any published proof in this generality; for the special case of multiplication by
an element ofZ, see [10], p. 56.) These last two properties provide the easiest way to calculate
theWv explicitly. In particular,Wv = Tv unlessv is a prime of bad reduction forE. Because
theρ-division points ofE are defined overK , they give rise to elements of theρ-Selmer group;
the corresponding elements of∂E are 1,A andA2. If P is a prime of bad reduction forE
which does not divide3,WP is generated byA. If P|3 there seems to be no simple description
of WP; indeed even whenK = Q(ω) a considerable splitting of cases appears to be needed.
A ρ-covering ofE is soluble inKv for all v not inS if and only if the corresponding element of
K∗/K∗3 is inXS . Hence theρ-Selmer group ofE can be identified withXS ∩WS ; this group
is both the left and the right kernel of the bilinear mapXS ×WS →F3 induced byeS .

If P is a prime ofK we writeP = {P} or P = {P, σP} according asP is or is not fixed
by σ; we writeTP = TP in the former case andTP = TP ⊕ TσP in the latter, and similarly for
WP , YP andZP .

If we ignore the primes dividing3, the primes ink which split inK/k are those whose absolute
norm is congruent to1 mod 3. These are the primes which lie in a certain groupG0, which is a
subgroup of index2 in the relevent ray class group. UsuallyG0 will contain primes in every ideal
class, but ifK/k is totally unramified there is a subgroupΓ0 of index2 in the ideal class group
of k such that a prime ideal ink splits inK/k if and only if its class lies inΓ0. This is the case
which primarily concerns us, since any place ramified inK/k must both lie inS0 and be fixed
by σ; and this will usually be ruled out either by the hypotheses of Lemma 2 or by Condition 4
below. Because of this,G0 will only appear explicitly in the proof of Lemma 2.
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LEMMA 2. – Suppose that no place ofS0 is fixed byσ. Then there are maximal isotropic
subspacesZP ⊂ YP such thatYS =XS ⊕ (

⊕
P∈S ZP), andσ maps eachZP to itself. We can

chooseZS0 in a way that only depends on the classes ofA mod K∗3
P for theP in S0; and once

ZS0 has been chosen we can takeZS = ZS0 ⊕ (
⊕

P⊂S\S0
TP) for eachS ⊃ S0. LetN1,N2 be

such thatS containsN1 +N2 primes fixed byσ, and thatE has good reduction atN1 of them
and bad reduction at the otherN2; then

dimW+
S − dimW−

S =N2 −N1,(13)

dim(WS ∩ZS)+ − dim(WS ∩ZS)− = 1−N1.(14)

Proof. –Consider first the second sentence for the particular caseS = S0. This is a
straightforward transcription of Lemma 1. LetS	

0 be such thatS0 is the disjoint union of sets
S	

0 andσS	
0. We apply Lemma 1 to the case when, in our previous notation, theYi are theYP

with P in S	
0, the Wi are theWP for theseP, X is XS0 and the non-degenerate alternating

bilinear forms on theYi are given by the local Hilbert symbol. We ignore the archimedean
places, for whichYv is trivial. We need to check (9), but this follows from the definition of the
Hilbert symbol; the reason for the sign reversal is that canonically the Hilbert symbol takes its
values inµ3 = {1, ω,ω2}, on whichσ acts nontrivially. This proves the second sentence in this
case.

For generalS we consider the second and third sentences together. We must examine the effect
of adjoining toS finitely many further primesP, where ifσP �= P we assume that we adjoinP
andσP together. We do this step by step, so that we have to consider the situation whereS ⊃ S0

is a finite set of places mapped to itself byσ and we replaceS by S+ = S ∪ P whereP is a
prime ofK not inS. We need to show that in going fromS to S+ we can leaveZS unchanged
and chooseZP = TP . BecauseS ⊃ S0, there is a natural embeddingXS ⊂XS+ which identifies
XS with the elements ofXS+ which are trivial at primes ofP . Thus

XS+ ∩ (ZS ⊕ TP) =XS ∩ZS = {0},

and the second and third sentences of the lemma follow immediately. We shall henceforth assume
that theZP are chosen in this way.

We turn now to (13). LetS
 ⊃ S0 be the subset ofS consisting of those places inS not fixed
by σ; then (13) holds whenS = S
, by (12). Now letP be a prime ofK fixed byσ, andp the
prime ofk below it; thus all the elements ofo∗p arep-adic cubes. IfE has good reduction atP
thenσ acts onTP =WP = ZP like −1; thus

dimW+
P = dim(WP ∩ZP)+ = 0, dimW−

P = dim(WP ∩ZP)− = 1.

On the other hand, ifE has bad reduction atP thenWP ∩ZP = {0} andσ acts onWP like +1,
becauseWP is generated byA which is in k. Hence in both cases adjoiningP does not alter
the validity of (13); and we can go fromS
 to S by repeated steps of this kind. A corresponding
argument holds for (14), so to complete the proof of the lemma it is enough to prove (14) for the
special caseS = S
.

In this case I claim thatX+
S is o∗Σ/o

∗3
Σ . For letξ in O∗

S be a representative of an element inX+
S ;

thenξ/σξ = η3 for someη in O∗
S and so(NormK/kη)3 =NormK/k(ξ/σξ) = 1. Sinceω is not

in k this impliesNormK/kη = 1, whenceη = ζ/σζ for someζ in K by Hilbert’s Theorem 90;
soα= ξ/ζ3 is fixed byσ and therefore lies ink. It is not obvious thatζ can be chosen to be in
O∗

S ; but if ζ is divisible by a primeP not inS it is divisible to the same power byσP also, and
if P = σP thenP is the conorm of a primep in k becauseK/k is totally unramified. Thus as
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ideals we can write(ζ) = aB wherea is an ideal ink none of whose prime factors lies inS and
B is an ideal inK whose factorization involves no primes outsideS. The idealαa3 = ξB−3 lies
in k and has all its prime factors inS; sinceS = S
 it must have the formB0.σB0 whereB0 is
an ideal ofK all of whose prime factors lie inS. This shows that the class ofa3 is inΓ0, whence
so is the class ofa; hence we can writea = α1B1.σB1 whereα1 is in k and all the prime factors
of B1 lie in S. Hereζ/α1 is inXS ; soξ(α1/ζ)3 is fixed byσ and represents the same class in
XS asξ does. This proves thatX+

S is indeedo∗Σ/o
∗3
Σ , which isXΣ for k.

Denote the order ofS = S
 by n; thus by hypothesis the order ofΣ = Σ
 is 1
2n. Becausek

does not contain the primitive cube roots of unity, Dirichlet’s unit theorem now gives

dimX+
S = dimXΣ = 1

2n− 1 = 1
2 dimXS − 1

and thereforedimX−
S = 1

2 dimXS + 1. Now (14) for the special caseS = S
 follows from
(10). ✷

Now let tS :YS →XS be the projection alongZS and write

X ′
S =XS ∩ (WS +ZS), W ′

S =WS/(WS ∩ZS) =
⊕

P⊂S
W ′

P

whereW ′
P =WP/(WP ∩ZP). Note that ifP is not inS0 the choice ofZP enables us to define

the power ofP which divides an element ofW ′
P, under the convention in §1. The maptS induces

an isomorphism

τS :W ′
S →X ′

S .(15)

If w′ inW ′
S is represented by

⊕
wP inWS , it follows from Lemma 2 thatτSw′/wP , considered

as an element ofYP , is a unit atP for anyP outsideS0. (This remark will be used repeatedly in
§5.)

The bilinear functioneS induces a bilinear function

e′S :X ′
S ×W ′

S →F3

becauseWS andZS are both isotropic. We have seen that theρ-Selmer group ofE isXS ∩WS
and is therefore contained inX ′

S . Since it is both the left and the right kernel ofXS ×WS →F3,
it is isomorphic to both the left and the right kernel ofe′S .

LEMMA 3. – Suppose thatS containsS0 and all the primes of bad reduction forE, and no
place ofS0 is fixed byσ. Then the functions

ΦS :X ′
S ×X ′

S →F3 and ΨS :W ′
S ×W ′

S →F3

defined respectively by

x′1 × x′2 	→ e′S
(
x′1, τ

−1
S (x′2)

)
and w′

1 ×w′
2 	→ e′S(τSw

′
1,w

′
2)

are bilinear symmetric, with kernels isomorphic to theρ-Selmer group ofE.

Proof. –We need only prove that the functions are symmetric, and it is enough to do so for
ΦS . Given elementsx′1, x

′
2 in X ′

S choosew1,w2 in WS so thattSw1 = x′1, tSw2 = x′2. Since
(1− tS)w1 and(1− tS)w2 are inZS
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0 = eS(w1,w2) = eS
(
tSw1 + (1− tS)w1, tSw2 + (1− tS)w2

)
= eS

(
tSw1, (1− tS)w2

)
+ eS

(
(1− tS)w1, tSw2

)
= eS(tSw1,w2) + eS(w1, tSw2) = e′S(x

′
1,w

′
2)− e′S(x′2,w′

1)

wherew′
1,w

′
2 are the images ofw1,w2 in W ′

S . ✷
Strictly speaking, our notation forΦ andΨ should also make explicit which elliptic curve is

being considered. Until §5 this will always be obvious; the conventions which we use in §5 are
explained there.

It is clear thatσ mapsX ′ andW ′ to themselves, and commutes witht andτ ; in particularτ
induces isomorphismsW ′+ →X ′+ andW ′− →X ′−. Since the Hilbert symbol satisfies (9),

Ψ(σw′
1, σw

′
2) =−Ψ(w′

1,w
′
2)

for anyw′
1,w

′
2 in W ′. Hence in particularΨ vanishes onW ′+ ×W ′+ andW ′− ×W ′−. If V

is the kernel ofΨ thenσ also mapsV to itself, so we can writeV = V + ⊕ V −; andV +, V −

are the left and right kernels respectively of the restriction ofΨ toW ′+ ×W ′−. (It is here that
we use the symmetry ofΨ.) In order to prove the solubility of (1) by the methods of this paper,
we shall need to chooseB so that for each of the two curves (7) the matrix ofΨ has corank2:
more explicitly, for the first curve (7) we shall needV to be generated by the images ofBa1a2

anda1/a2, and similarly for the second curve (7). Thus we shall need to ensure thatdimV + = 2
anddimV − = 0 for each curve. If we require that no place ofS0 is fixed byσ, so that Lemma 2
holds, then a prerequisite for this is

dimW ′
S

+ − dimW ′
S
− = 2;(16)

and in the notation of Lemma 2 this requiresN2 = 3. Since the processes in §5 do not alterN2,
we have to achieve this in §3. This accounts for the rather artificial manoeuvre in the corollary to
Lemma 2.

3. Reduction to pairs of curves

We remind the reader thatS1 denotes a finite set of places ofK which containsS0 and all
the primes dividinga1a2a3a4, andΣ1 consists of the places ink below a place inS1. For the
solubility of (1) in k it is certainly necessary that (1) should be everywhere locally soluble, a
condition which it will be convenient to write in the following form.

Condition 2. – For every placev of k there existsCv in k∗v/k
∗3
v such that each of the two

equations

a1X
3
1 + a2X

3
2 =CvX

3
0 , a3X

3
3 + a4X

3
4 =CvX

3
0(17)

is soluble inkv.

Here it is only thev which divide3 and those where someai is not av-adic unit (up to a cube)
which are of interest, and all of them lie inΣ1; for any otherv it is enough to chooseCv to be
a unit. We have requiredCv to be non-zero, for if (1) has solutions inkv they must be Zariski
dense; so there are solutions of (1) witha1X

3
1 + a2X

3
2 �= 0. Here and hereafter, we identify an

element ofk∗v/k
∗3
v with any representative of it ink∗v . Similar remarks apply to Condition 3

below.
The following condition, which is apparently stronger than Condition 2, is clearly also

necessary for solubility.
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Condition 3. – There existsC in k∗/k∗3 such that each of the two equations

a1X
3
1 + a2X

3
2 =CX3

0 , a3X
3
3 + a4X

3
4 =CX3

0(18)

is soluble in eachkv .

In both these conditions we need only consider non-archimedeanv, because the conditions are
trivial for archimedean ones. The next step should be to show that Condition 2 implies Condition
3; but the situation is complicated by the need to keep track of the number of primes outside
Σ1 which divideC and do not split inK/k. (See the final remark in §2.) We actually prove a
rather stronger result. In general there is more than one set ofCv mod k∗3v for v in Σ1 for which
Eqs. (17) are soluble. But anyC which satisfies Condition 3 must be such thatC/Cv is in k∗3v

for all v in Σ1 for one such set; so it is desirable to show that we can find such aC for any
given set ofCv. The following lemma is a model for a more general result, which appears to
have significant applications; so we state the proof in a form which does not require Condition 4,
though the latter is needed for the corollary.

LEMMA 2. – Suppose that theCv satisfy Condition2; then there existsC in o satisfying
Condition3 and such thatC/Cv is in k∗3v for all v in Σ1.

Proof. –For eachp in Σ1, let np be such thatpnp‖Cp, and writea =
∏

pnp ; thenCa−1 will
need to be prime to everyp in Σ1. If q is a prime ofk not in Σ1 and such thatqmq‖C with
mq prime to 3, the solubility of the two Eqs. (18) inkq is equivalent to requiringa1/a2 and
a3/a4 to be ink∗3q . Suchq fall into two families. If q splits inK/k as the product ofQ and
σQ, then solubility of (18) inkq is equivalent to solubility inKQ; and this in turn is equivalent
to Q splitting completely inK( 3

√
a1/a2,

3
√
a3/a4)/K . As a condition onq this is intractable,

because it is a statement thatq splits completely in a certain nonabelian extension; and this is
outside the scope of standard class field theory. So it is fortunate that we shall not need to use
primes of this kind. If howeverq remains prime inK , then the absolute norm ofq as a prime
in k is congruent to2 mod 3; thus every element ofo∗q is in k∗3q and in particular this is true of
a1/a2 anda3/a4.

Theq outsideΣ1 which remain prime inK are just those which do not lie in theG0 introduced
just before Lemma 2. Letb0 be an ideal ink which is prime to everyp in Σ1 and is such that
ab0 = (γ0) is principal; then(C) = ab whereb = βb0 with β in k∗. We can takeC = βγ0, so that
the condition thatC/Cp is in k∗3p translates into a requirement thatβ lies ino∗p and in an assigned
classmod k∗3p for eachp in Σ1. We can certainly find an elementβ1 in k∗ which satisfies the
congruence conditions onβ. Suppose first thatβ1b0 is not inG0; then we can chooseβ′1 close
to β1 in the topology induced byΣ1 and such thatβ′1b0 is a prime idealq0. In this case we take
C = β′1γ0. If insteadβ1b0 is inG0, choose any prime idealq1 not inΣ1∪G0; thusβ1b0q

−1
1 will

not be inG0. We can now chooseβ′′1 close toβ1 and such thatβ′′1 b0q
−1
1 is a prime idealq2, and

we takeC = β′′1 γ0. In either case theC thus constructed will satisfy the conditions of the lemma
except perhaps the integrality; and we can satisfy that by multiplyingC by a suitable element of
k∗3. ✷

In a number of places, of which this is the first, we shall need the following assumption onk;
the corresponding assumption forS0 has already appeared in Lemma 2. We shall show in §5 that
this assumption is not a constraint onk0.

Condition 4. – No place inS1 is fixed byσ.

To fix ideas, we have included in this assumption the requirement that all the archimedean
places ofk are complex; this simplifies matters but is not essential. Condition 4 implies the
analogous condition in Lemma 2.
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COROLLARY. – Suppose also that Condition4 holds; then we can chooseC in Lemma4 so
that it is integral and(C) = aq2

2q3q4 where all the prime factors ofa lie in Σ1 and theqi are
primes ofk outsideΣ1 which do not split inK/k. Moreover(16)holds for this value ofC.

Proof. –In the notation introduced just before Lemma 2, each prime inΣ1 is inΓ0. We use the
same notation as in the proof of the lemma, and note thata will be in Γ0 by Condition 4. Much
as in the proof of the lemma, we can find distinct prime idealsq2,q3,q4 not inΓ0 and an element
C in k∗ such that(C) = aq2

2q3q4 andC/Cp is in k∗3p for eachp in Σ1. If we then multiplyC by
a suitably chosen element ofk∗3, we satisfy all the conditions of the corollary. The final sentence
of the corollary follows from (13), (14) andN2 = 3. ✷

The setS of bad primes for the curves (18) is obtained by adjoining toS1 the additional
primes at whichC is not a unit. In §5 we shall iteratively modifyC and thereforeS. Each step
will consist of multiplyingC by somec= γ.σγ where(γ) is a first degree prime inK but not
in theS so far obtained, or the product of two such primes. Such a step replacesS by S+ where
S+ is obtained fromS by adjoining the primes ofK at whichc is not a unit; the latter set will
be the union of one or two setsP . It follows from (13) and (14) that if (16) holds forS andC it
holds forS+ andcC.

4. Tom Fisher’s lemma

A key step in this paper, as in previous papers in the series, is to show that if some Selmer group
has all but one of its generators represented by soluble curves, then the remaining generator also
has this property. The proofs of this in earlier papers depended on assuming the finiteness of
the Tate–Šafarevič groupX; but under that hypothesis the result followed immediately from
the existence and properties of the Cassels bilinear form onX. The present case, however, is
more complicated because the curve (4) admits complex multiplication. The result which one
would like to have would assert that (subject to the finiteness of the Tate–Šafarevič group) if
the curveE given by (4) is defined over an algebraic number fieldK which containsω, and if
its ρ-Selmer group has order9, then every element of that group has a representative which is
soluble inK . I do not know whether this is true or false; what is clear is that it does not follow
straightforwardly from the properties of the Cassels bilinear form overK . One could instead
use the Cassels form over an algebraic number fieldk which does not containω; but this would
involve reworking the results of §2 over such a field and then proceeding as in [1], and that is not
at all attractive. Instead I use an unpublished lemma of Tom Fisher. The original idea is due to
him and the current presentation to Alexei Skorobogatov; and I am indebted to both of them for
permission to reproduce the material in this section.

For the following lemma we temporarily drop our standard conventions onk andK .

LEMMA 5. – LetE be an elliptic curve defined over an algebraic number fieldk, and letK
be a Galois extension ofk of degreen. If (m,n) = 1 then

X(E/k)[m] = X(E/K)[m]Gal(K/k).

If X(E/k) is finite then the order ofX(E/K)[m]Gal(K/k) is a square.

Proof. –Consider the restriction-inflation sequence forE and the commutative diagram ob-
tained from the multiplication bym. Multiplication bym is an isomorphism onHi(K/k,E(K))
for anyi� 1. An easy diagram chase now gives

H1(k,E)[m] =H1(K,E)[m]Gal(K/k).
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SinceK/k is Galois the degrees of the local extensionsKw/kv dividen, wherew is a place of
K lying over some placev of k; so these degrees are prime tom. The previous argument is valid
for any field extension of degree prime tom, so we can use it forKw/kv. Thus if the restriction
of an element ofH1(k,E)[m] inH1(K,E)[m] belongs toX(E/K), this element must actually
be inX(E/k); so the natural restriction map

X(E/k)[m]→X(E/K)[m]Gal(K/k)

is an isomorphism. The last sentence of the lemma follows from the non-degeneracy of the
Cassels alternating bilinear form onX(E/k), which implies that for anym > 0 the order of
them-torsion subgroup of the Tate–Šafarevič group is a square.✷

We now revert to the standard conventions of this paper, thatk does not containω, that
K = k(ω) and thatσ is the nontrivial element of Gal(K/k). Let E1 be an elliptic curve
defined overk which has complex multiplication overK by Z[ω]. Any elliptic curve overk
has an automorphism of order2 given byP 	→ −P . Twisting the curve by a cocycle from
H1(k,Z/2) = k∗/k∗2 gives a quadratic twist of the elliptic curve: if the curve is given by
y2 = f(x) then the twist corresponding tod in k∗ is given bydy2 = f(x). Now letE2, also
defined overk, be the quadratic twist ofE1 by −3. OverK the curvesE1 andE2 are naturally
isomorphic. Letψ :E1 → E2 be this isomorphism; thenσψ = −ψ. Let φ1 :E1 → E2 be the
compositionψρ andφ2 :E2 → E1 the composition−ρψ−1, so thatφ2φ1 = 3. Thusσφ1 = φ1

andσφ2 = φ2, so thatφ1 andφ2 are defined overk. In the case that interests us,E1 is given by
x3 + y3 =Az3 andE2 byX(X2 −Y 2) = 4AZ3, andφ1 is (x, y, z) 	→ (x3 + y3, x3 − y3, xyz).
SinceE1 contains nontrivial3-division points defined overK , if its ρ-Selmer group has order9
then the order ofX(E1/K)[ρ] must be either1 or 3. The following lemma shows that the second
case is impossible. We retain the notation above, including the condition thatE1 is defined overk.

LEMMA 6. – If X(E1/k) is finite so is X(E2/k), and neither X(E1/K)[ρ] nor
X(E2/K)[ρ] can have order3.

Proof. –SinceE1 andE2 are isomorphic overK and isogenous overk we have

X(E1/K)[ρ] = X(E2/K)[ρ];

and if one ofX(E1/k) and X(E2/k) is finite so is the other. Hence we can interchange
E1 andE2 if we wish. Suppose thatX(E1/K)[ρ] has order3. Then eitherσ acts trivially
on it or σ interchanges its two non-trivial elements. As a Gal(K/k)-module,X(E1/K)[ρ]
can be identified withZ/3 in the former case and withµ3 in the latter one. The Gal(K/k)-
module structure ofX(E2/K)[ρ] is obtained by twisting by the non-trivial quadratic character
Gal(K/k)→ ±1. The twist ofZ/3 is µ3 and vice versa. After possibly interchangingE1 and
E2 we can therefore assume that

X(E1/K)[ρ] = Z/3 and X(E2/K)[ρ] = µ3.

There is an exact sequence of Gal(K/k)-modules

0→X(E1/K)[ρ]→X(E1/K)[3]→X(E2/K)[ρ](19)

where the second arrow is the natural injection and the last arrow isφ1. Now (19) implies that
X(E1/K)[3]Gal(K/k) = Z/3. So this contradicts Lemma 5 withm= 3 andE =E1, according
to which the order of this group must be a square.✷

We shall apply this result to the two curves (7), which are the Jacobians of the two curves (2).
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5. The paired first descents

Throughout this section we shall assume Condition 4. In view of the results in the previous
section, to prove that (1) is soluble it is sufficient to findC in k∗ such that each of the two
Eqs. (18) is everywhere locally soluble and theρ-Selmer groups overK of their Jacobians both
have order9. In the notation of §2 and working overK , these Jacobians haveA = a1a2C and
A= a3a4C respectively, and the curves (18) havem= a1/a2 andm= a3/a4 respectively.

We initially chooseC in k∗ as in the corollary to Lemma 2, using the hypothesis that (1)
is everywhere locally soluble; thus both Eqs. (18) are everywhere locally soluble. We write
m0 = a1/a2 when we are considering the first Eq. (18) andm0 = a3/a4 when we are considering
the second one; thus (6) is required to be everywhere locally soluble form =m0, whereA is
as above. Sincem0 is by hypothesis not ink∗3, the element of theρ-Selmer group which it
generates is nontrivial. Our strategy is to multiplyC repeatedly by suitably chosen elements of
k∗ so as eventually to reduce theρ-Selmer group overK of the Jacobian of the first Eq. (18) to
the subgroup ofX ′

S generated byCa1a2 anda1/a2 whereC is the newC, together with the
corresponding property for the second Eq. (18). (The construction in Lemma 2 and its corollary
ensures thatC is a non-unit at three primes outsideΣ1; so for exampleCa1a2 anda1/a2 are
independent modk∗3.) We proceed step by step. Each step will involve multiplyingC by a
suitably chosenc in k∗ which is a unit at every prime in the currentΣ; we shall arrange that any
primep which dividesc will split in K/k, and that such primes only dividec to the first power.
Thus (16) will continue to hold in view of the argument at the end of §3. In order to preserve the
Cv of §3 unchanged, eachc must be ink∗3p for everyp in Σ1; this is equivalent to requiringc to
be inK∗3

P for everyP in S1. In particular, it follows from Lemma 2 that this operation will not
changeZS0 , soZS is only changed by adding the direct summands corresponding to the primes
dividing c. Form0 to remain in theρ-Selmer group under this operation, we also needm0 to be
in k∗3p for everyp which dividesc. Having done this, we replaceS by the setS+ obtained by
adjoining toS the primes inK which dividec. Of courseΦS andΨS will refer to whichever of
the curves

X3 + Y 3 = a1a2CZ
3, X3 + Y 3 = a3a4CZ

3

we are considering, andΦS+ andΨS+ will refer to the corresponding one of

X3 + Y 3 = a1a2CcZ
3, X3 + Y 3 = a3a4CcZ

3.

We retain this convention for the entire section.
It is basic to the process which follows that the action ofσ on the structure described in §2

should be the natural one; this follows from Lemma 2. The process is carried out in two stages,
each of which is broken down into a number of steps.

(i) Stage 1 ensures that for each of the two Jacobians withA as above the only elements of
the kernel ofΦ which are units outsideS1 are1,m0 andm2

0. To achieve this, we require
Condition 5 below.

(ii) Stage 2 ensures that for each of the two Jacobians theρ-Selmer group overK is generated
byA andm0.

Once these stages have been completed, it will follow from Lemma 6 that both Eqs. (18) are
soluble inK and therefore ink; and the solubility of (1) will follow. Condition 5 is not unduly
restrictive; it will appear in Theorem 3 and in disguised form in Theorem 1. Moreover, for the
solubility of (1) it is known that it is not enough to have local solubility everywhere, so some
further condition must appear in the argument. (Compare [5,6] and [12].) On the other hand,
Condition 4 is an unacceptable restriction; at the end of this section we shall get rid of it.
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To implement Stage 1 we need the following lemma.

LEMMA 7. – Let ξ be an element ofO∗
S1

, and letλ1, λ2, λ3 be inZ and not all divisible by
3. Suppose that none of the expressions

η = (a1/a2)λ1(a3/a4)λ2ξλ3(20)

lies inK∗3. Then there are an infinity of first degree primesP in K such thata1/a2 anda3/a4

are inK∗3
P but ξ is not.

Proof. –The field extensionK( 3
√
a1/a2,

3
√
a3/a4,

3
√
ξ)/K is abelian of degree27; so the

lemma follows from Dirichlet’s theorem on primes in arithmetic progression or from the
Tchebotarev density theorem.✷

We note here the obvious fact that ifP is a prime ofK andp is the prime below it ink, then
k∩K∗3

P
= k∗3p ; this will be used repeatedly below. Now suppose thatξ is in the kernel ofΦS and

satisfies the conditions of Lemma 7, and chooseP not inS as in that lemma. LetP1 be another
first degree prime ideal ofK , in the ideal class ofP−1 and such thatPP1 = (Θ) whereΘ is in
K∗3

v for everyv in S; such aP1 exists by Dirichlet’s theorem. If we multiplyC by c= Θ.σΘ
then we do not alter the class ofCv mod k∗3v for anyv below a place inS. Also ξ is not in the
kernel ofΦS+ becauseξ is not inK∗3

P and thereforeξx3 +ξ−1y3 =Ccz3 is insoluble inKP; but
m0 is in the kernel ofΦS+ becausem0 is inK∗3

P and also by cubic reciprocity inK∗3
P1

. (Since
this kind of argument occurs several times, of which this is the first, the referee has suggested
that I should supply the details. We have

∑
(m0,Θ)v = 0 where the sum is over all placesv of

K ; and(m0,Θ)v = 0 for any v outsideS ∪ {P,P1} because thenm0 andΘ are bothv-adic
units. Also(m0,Θ)v = 0 for v in S because thenΘ is inK∗3

v ; and(m0,Θ)P = 0 becausem0 is
in K∗3

P
by Lemma 7. Hence(m0,Θ)P1 = 0, so thatm0 is inK∗3

P1
.) There may be elements in

the kernel ofΦS+ which were not in the kernel ofΦS ; but these will not be inO∗
S1

.
By repeating this process a finite number of times, we can remove from the kernel ofΦ all

elements ofO∗
S1

except perhaps those which fail to satisfy the conditions of the lemma. We know
by Condition 1 that ifλ3 = 0 thenη is not inK∗3; so these exceptional elements are all ones for
which we can takeλ3 = 1 – in other words, they area1/a2, a3/a4, a1a3/a2a4 anda1a4/a2a3

and their inverses. It appears that no analogous argument will work for such elements, and if they
are to be outside the kernel it can only be because of the insolubility of (6) inKv for somev in
S1. This must therefore be imposed as a constraint on theCv in Condition 2. For the first curveE
we know thatm0 = a1/a2 is in the kernel ofΦ and does not need to be removed; so it is enough
to ensure that we do not have a problem withξ = a3/a4, for if this is not in the kernel nor will
a1a3/a2a4 or a1a4/a2a3 be.

Condition 5. – The equationa2
3X

3
1 + a2

4X
3
2 = a1a2a3a4CvX

3
0 is insoluble inkv for some

v in Σ1. The same property holds, though not necessarily with the samev, for the equation
a2
1X

3
3 + a2

2X
3
4 = a1a2a3a4CvX

3
0 .

In what follows, we shall always assume that theCv have been chosen to satisfy Condition 5
as well as Condition 2. This completes Stage 1.

The object of each step in Stage 2 is to reduce the corank of the bilinear formΨ for one of the
two JacobiansE while not increasing it for the other, until both coranks are reduced to2. As has
already been pointed out, it is enough to work with the restriction ofΨ toW ′+×W ′−; and since
each step of Stage 2 will adjoin a pair of conjugate primes toS, it will increase the dimensions
of W ′+ andW ′− by 1. As at the end of §2, we denote byV +

S andV −
S the left and right kernels

of the restriction ofΨS toW ′
S

+ ×W ′
S
−. To prove that Stage 2 can be completed it is enough to

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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show that so long asdim V − > 0 for one of the two Jacobians we can chooseγ so as to decrease
dim V + anddim V − for that one without increasing them for the other.

Denote temporarily byn1 andn2 the ranks of the restrictions ofΨS toW ′+ ×W ′− for the
two Jacobians; then the largest pairs of subspaces on which these restrictions are nonsingular
have dimensionsn1 andn2 respectively. To fix ideas, we shall suppose that it is the Jacobian of
the first Eq. (18) which hasdim V − > 0 and for which we are trying to diminishdim V + and
dim V −. Our notation is that a step takes us fromS to S+; we therefore need to choose our step
in such a way that we can exhibit pairs of subspaces ofW ′+ andW ′−, of dimensionn1 + 2
for the first equation andn2 + 1 for the second one, on which the restrictions of theΨS+ are
nonsingular. The subspaces we use are given by (26) and (30) respectively; it is not hard to see
that any serious candidates must be of these kinds.

Each step in Stage 2 will consist of multiplyingC by c = γ.σγ where(γ) is a first degree
principal prime ideal inK . We shall requireγ to be inK∗3

P
for eachP in S1, which incidentally

ensures thatm0 is in K∗3
γ by cubic reciprocity. Further conditions onγ will be imposed later,

but they are not relevent to the evaluations which follow and which extend up to (25). Up to that
point, our task is to develop formulae for the values ofΨS+ .

If P is in S1 then replacingC by cC does not alterWP, since it only changesE/KP by a
linear transformation on the variableZ in (4); and it does not alter the spaceZP, by Lemma 2.
Hence the replacement does not alterW ′

P . If P is in S \ S1 the effect of the replacement is that
WP is generated by the class ofAc instead of that ofA butZP remains the same. For each such
P, there is an isomorphism from the old to the newWP, given by mapping the class ofAn to
that of(Ac)n for eachn; and this induces an isomorphism from the old to the newW ′

P. Using
these, we can define a natural injectionφ :W ′

S →W ′
S+

by requiring the image to have trivial
components at all the primes dividingc. Sincec is inZP for everyP in S, the actions ofτS and
τS+ ◦ φ onW ′

S are identical.
If w′

1 andw′
2 are inW ′

S we need to compare the values ofΨS+(φw′
1, φw

′
2) andΨS(w′

1,w
′
2).

The components coming from a primeP in S1 are identical. IfP|c the component ofφw′
2 at

P is trivial and hence so is the contribution toΨS+(φw′
1, φw

′
2) from P. If P is in S \ S1 then

we definemP, nP as elements ofZ/(3) by PmP‖w′
1 andPnP‖w′

2. The difference between the
contributions atP to ΨS+(φw′

1, φw
′
2) andΨS(w′

1,w
′
2) is

(τS+φw
′
1, φw

′
2)P − (τSw′

1,w
′
2)P =

(
τSw

′
1, c

nPw′
2

)
P
− (τSw′

1,w
′
2)P =

(
τSw

′
1, c

nP
)
P

and sincePmP‖τSw′
1 this ismPnP(Π, c)P whereΠ is as usual a uniformizing variable forP.

Here we have used the remark immediately after (15). Thus

ΨS+(φw′
1, φw

′
2) =ΨS(w′

1,w
′
2) +

∑
mPnP(Π, c)P(21)

where the sum is taken over allP in S \ S1. In particular ifc is inK∗3
P

for everyP in S, then
ΨS+(φw′

1, φw
′
2) = ΨS(w′

1,w
′
2).

It only remains to evaluate

ΨS+(w
′
γ + σw′

γ , φw
′−), ΨS+(w

′
γ + σw′

γ ,w
′
γ − σw′

γ) and ΨS+(φw
′+,w′

γ − σw′
γ)

for anyw′+ inW ′
S

+ andw′− inW ′
S
−; herew′

γ denotes the element ofW ′
S+

which is represented
by Ac in W ′

γ and is trivial elsewhere. I claim thatτS+(w′
γ + σw′

γ) = c. For w′
γ + σw′

γ is
represented byAc in W ′

γ andW ′
σγ , and by 1 inW ′

P for eachP in S. It is therefore enough
to note thatA is a unit at(γ) and(σγ) and therefore induces elements ofZγ andZσγ , thatc is a
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unit atP for eachP in S \ S0 and therefore induces elements ofZP for suchP, and thatc is in
O∗3

P
for eachP in S0 and therefore induces elements ofZP for suchP. If for eachP in S we

definenP by PnP‖w′− then

ΨS+(w
′
γ + σw′

γ , φw
′−) =

∑
P∈(S\S1)

nP(c,Π)P.(22)

Here we have dropped the terms for whichP is in S1 since each of them vanishes. By a similar
argument

ΨS+(w
′
γ + σw′

γ ,w
′
γ − σw′

γ) = (c,Ac)γ − (c,Ac)σγ = 2(γ,A)γ .(23)

By the Hilbert product formula this is equal to
∑

P∈S(γ,A)P, and here we again can drop the
terms withP in S1 because each of them vanishes. WritingσP for P and applyingσ, this is
also equal to−

∑
P∈S(σγ,A)P. Hence

ΨS+(w
′
γ + σw′

γ ,w
′
γ − σw′

γ) =−
∑

P∈(S\S1)
vP(A)(γ/σγ,Π)P.(24)

Note thatvP(A) = 1 for all but one of the primes inS \ S1; the exception is the primeQ2 lying
above theq2 introduced in the corollary to Lemma 2, for whichvQ2(A) = 2.

AgainΨS+(φw′+,w′
γ −σw′

γ) = (τSw′+,Ac)γ − (τSw′+,Ac)σγ ; here we can drop the factor

Aσγ in the first Hilbert symbol and the factorAγ in the second, giving2(τSw′+, γ)γ . This last
expression is equal to

∑
P∈S(τSw

′+, γ)P by the reciprocity law. We can again drop the terms

with P in S1; if we definemP for P in S \ S1 by PmP‖w′+ and use the remark which follows
(15) then we obtain

ΨS+(φw
′+,w′

γ − σw′
γ) =

∑
P∈(S\S1)

mP(Π, γ)P.

Here again we can writeσP for P and applyσ; remembering thatmP =mσP becausew′+ is
fixed byσ, we finally obtain

ΨS+(φw
′+,w′

γ − σw′
γ) =−

∑
P∈(S\S1)

mP(Π, γ/σγ)P.(25)

Note that in each of the three formulae (22), (24) and (25) the terms on the right coming fromP

andσP are equal. In the evaluations of matrix elements later in this section, this will give rise to
a factor2 for terms for whichP andσP are distinct.

For the first curveE, for which we are trying to diminishdimV + anddimV −, let v′+ be an
element ofV +

S such thatτSv′
+ is independent ofm0 andA as an element ofX ′

S , and letv′− be
a nonzero element ofV −

S . After dividing v′+ by a power ofτ−1
S A if necessary, we can assume

that there is a primeP1 in S \ S1 at whichv′+ is a unit. Because of Stage 1, each ofv′
+ and

v′
− has valuation prime to 3 at some prime inS \ S1. Let P+ andP− be such primes, where

if possible we chooseP+ andP− to be equal; if this is not possible we rechooseP1 to beP−.
Letw+

1 , . . . ,w
+
r be a set of representatives inW+

S of a base forW ′
S

+
/V +

S ; by multiplying each
w+

i first by a power ofτ−1
S A and then by a power of a representative ofv′

+, we can ensure that
thew+

i are units atP1 andP+. Let w−
1 , . . . ,w

−
r be a set of representatives inW−

S of a base
for W ′

S
−
/V −

S ; by multiplying eachw−
i by a power of a representative ofv′−, we can similarly

ensure that thew−
i are units atP−. LetU+ be the subspace ofW ′

S
+ spanned by the images of the
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w+
i and similarly forU−; and consider the restriction ofΨS+ to the subspace ofW ′+

S+
×W ′−

S+

given by

(
φU+ ⊕{φv′+} ⊕ {w′

γ + σw′
γ}
)
×
(
φU− ⊕ {φv′−} ⊕ {w′

γ − σw′
γ}
)
,(26)

where{w′} for any w′ denotes the subspace ofW ′
S+

generated byw′ and φ is the natural
injectionW ′

S →W ′
S+

. For the calculations involving the first curve, we shall requireγ to be
such that(γ,Π)P = 0 for all P in S except possibly forP1, σP1, P+ and σP+ and that
(Π−, γ/σγ)P− = 0 whereΠ− is a uniformizing variable forP−; we shall need to impose
a further condition onγ when we consider the second curve. (SimilarlyΠ+ andΠ1 will be
uniformizing variables forP+ andP1 respectively. We do not claim thatP1 �= σP1 nor that
P+ �= σP+, though there will be some abuse of language if either of these fails.) With the
obvious bases, the matrix of the restriction ofΨS+ to (26) has the form




ΨS(U+,U−) 0 0
Ψ(φv′+,U−) Ψ(φv′+, φv′−) Ψ(φv′+,w′

γ − σw′
γ)

Ψ(w′
γ + σw′

γ ,U
−) Ψ(w′

γ + σw′
γ , φv

′−) Ψ(w′
γ + σw′

γ ,w
′
γ − σw′

γ)


(27)

where to save space we have writtenΨ for ΨS+ in the second and third rows. Here we need only
justify the first row. In each term we takew′

1 to be the image inU+ of somew+
i . For the first

term we takew′
2 to be the image inU− of somew−

j and use (21); thus we need to show that
the sum on the right there vanishes. Suppose first thatP in S \ S1 is notP1, σP1,P+ or σP+;
then by constructionγ is in K∗3

P
andK∗3

σP
, soσγ is also inK∗3

P
and so isc = γ.σγ, whence

(Π, c)P = 0. Butw′
1 is fixed byσ and is a unit atP1 andP+, and hence also atσP1 andσP+;

somP = 0 if P is one ofP1, σP1,P+ or σP+. Hence each term in the sum on the right of
(21) vanishes. For the second term we takew′

2 = v′−; now the sum on the right of (21) vanishes
for the same reason as before, andΨS(w′

1,w
′
2) = ΨS(w′

1, v
′−) vanishes becausev′− is in V −

S .
For the third term we use (25), and the same arguments show that again each term in the sum on
the right vanishes. We know thatΨS(U+,U−) is nonsingular, so to prove that the matrix (27) is
nonsingular it is enough to prove the nonsingularity of the2× 2 matrix in the bottom right hand
corner.

We now split cases. IfP+ = P− the2× 2 matrix reduces to

(
ν(Π+, c)P+ 0

ΨS+(w′
γ + σw′

γ , φv
′−) ε1vP1(A)(γ/σγ,Π1)P1

)
(28)

for someν prime to3; hereε1 = 1 if P1 �= σP1 andε1 = −1 if P1 = σP1. The evaluation of
the element in the top left-hand corner follows from (21) in much the same way as did that of the
middle element in the top row of (27); we use the fact thatmP = 0 for P1 andσP1, but now
the valuations ofv′+ andv′− atP+ are both prime to3 andν is equal to their product ifP+ is
fixed byσ and to twice their product otherwise. Similarly the zero in the top right-hand corner
comes from (25) in much the same way as the zero in the top right-hand corner of (27); as in the
previous sentencemP = 0 for P1 andσP1, but also(Π+, γ/σγ)P+ = 0 by the construction of
γ and the fact thatP+ = P−. For the element in the bottom right-hand corner we use (24); the
terms coming fromP+ andσP+ vanish for the same reason as in the last sentence, and the value
of ε1 comes from the fact that ifP1 = σP1 we have one corresponding term on the right of (24)
but otherwise we have two. The matrix (28) is nonsingular if(Π+, c)P+ and(γ/σγ,Π1)P1 are
both nonzero.
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If v′− is a unit atP+ thenP− = P1 and the2× 2 matrix reduces to

(
0 ν1(Π+, γ/σγ)P+

ν2(c,Π1)P1 ε+vP+(A)(γ/σγ,Π+)P+

)
(29)

for someν1, ν2 prime to3; hereε+ = 1 if P+ �= σP+ andε+ = −1 if P+ = σP+. Here the
zero in the top left-hand corner comes from (21) by a calculation like that for the corresponding
element in (28); the only difference is that nowv′− is a unit at P+ and σP+, so the
corresponding terms in (21) vanish. The element in the top right-hand corner comes from (25),
because in contrast with (28) the terms on the right of (25) coming fromP+ andσP+ need
not vanish, though they are equal; hereν1 is the valuation ofv′+ atP+ or twice it according as
σP+ �= P+ or σP+ = P+. For the element in the bottom left-hand corner we use (22), where
as usual in the sum on the right(c,Π)P vanishes unlessP is P+, σP+,P1 or σP1, andnP = 0
for P+ andσP+; hereν2 is the valuation ofv′− at P1 or twice it according asσP1 = P1 or
σP1 �= P1. For the element in the bottom right-hand corner (whose value is not important here
but will be needed in (31)) we use (24) much as for (28); but this time it is the terms coming from
P1 which vanish because nowP1 = P−. The matrix (29) will be nonsingular if(Π+, γ/σγ)P+

and(c,Π1)P1 are both nonzero. Note that in each case we have also ensured that the value of
ΨS+(w′

γ + σw′
γ ,w

′
γ − σw′

γ) is nonzero.
We now turn to the other curveE. Although the functionsΨS+ for the two curves are different,

the values of the left hand sides of (23) for the two curves are the same, because their difference
is

2(γ, a1a2/a3a4)γ =
∑

P∈S1
(γ, a1a2/a3a4)P = 0.

In particularΨS+(w′
γ + σw′

γ ,w
′
γ − σw′

γ) is nonzero for the second curve, by the last remark
in the previous paragraph. We define thew+

i ,w
−
i andU+,U− for the second curve in the same

way as we did for the first. We still denote byP1,P+,P−,P0 the same primes as for the first
curve; what matters now is thatP0, σP0,P− andσP− are the only primes inS \ S1 at which
c is not required to be locally a cube. By dividing thew+

i by appropriate powers ofτ−1
S A we

can further ensure that each of thew+
i is a unit atP0, whereP0 is as before that one ofP+ and

P1 which is not equal toP−. Thus when we use (21) to evaluate theΨS+(φw
+
i , φw

−
j ) the only

terms in the sum on the right which can be nonzero are those fromP− andσP−. We can then
require that at most one of thew+

i is a non-unit atP−. WhetherP− is equal toP+ or to P1,
it will then follow from (25) and(Π−, γ/σγ)P− = 0 thatΨS+(U+,w′

γ − σw′
γ) = 0. Hence the

matrix of the restriction ofΨS+ to

(
U+ ⊕{w′

γ + σw′
γ}
)
×
(
U− ⊕{w′

γ − σw′
γ}
)

(30)

has the form (
ΨS+(U+,U−) 0

ΨS+(w′
γ + σw′

γ ,U
−) ΨS+(w′

γ + σw′
γ ,w

′
γ − σw′

γ)

)
(31)

and this will be nonsingular ifΨS+(U+,U−) is nonsingular. ButΨS+(U+,U−) only differs
from ΨS(U+,U−) in that the elements of one row have been changed by multiples of
(c,Π−)P− , the multiples being independent ofγ. Hence

det
(
ΨS+(U

+,U−)
)
= det

(
ΨS(U+,U−)

)
+ b(c,Π−)P−
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for someb in F3 independent ofγ; and there is a nonzero value of(c,Π−)P− which makes
this nonzero. This is the additional condition onγ which we noted above that we would need to
impose.

This step will therefore achieve what we want if the conditions onγ imposed just after (26)
hold and the matrices (27) and (31) are nonsingular. For this it is enough to ensure that
• γ lies inK∗3

P for eachP in S1,
• (γ,Π)P = 0 for all P in S outsideP0 ∪P− = P1 ∪P+,
• (Π0, γ/σγ)P0 is nonzero,
• (Π−, c)P− takes an assigned nonzero value, and
• (Π−, γ/σγ)P− = 0.

Now

(Π, γ/σγ)P = (Π, γ)P + (σΠ, γ)σP, (Π, c)P = (Π, γ)P − (σΠ, γ)σP.

Bearing in mind that we cannot haveσP− = P− becausev′− is a nonunit atP−, these reduce
to conditions on the(Π, γ)P for P in S, and by Dirichlet’s theorem they can all be satisfied.

What we have so far proved is that if
(i) the Tate–Šafarevič group of any elliptic curve (4) overk is finite,
(ii) Conditions 1 and 4 hold,
(iii) Condition 2 holds and we can choose theCv to satisfy Condition 5,

then (1) is soluble ink. As was explained in the Introduction, Condition 1 presents no problems
because if it fails (1) is certainly soluble; we must now get rid of Condition 4.

THEOREM 3. – Assume that the Tate–Šafareviˇc group of any elliptic curve(4) over any
quadratic extension ofk0 is finite. If we can choose theCv in Condition2 so that for some
placesv1, v3 (which may be the same) the first equation

a2
3X

3
1 + a2

4X
3
2 = a1a2a3a4CvX

3
0 , a2

1X
3
3 + a2

2X
3
4 = a1a2a3a4CvX

3
0(32)

is insoluble in(k0)v1 and the second equation is insoluble in(k0)v3 , then(1) is soluble ink0.

Proof. –We construct a quadratic extensionk = k0(
√
α) with α in k0, such that ifk0 satisfies

the conditions of Theorem 3 then eitherk satisfies the conditions listed above for the solubility
of (1) or we know independently that (1) is soluble overk. In the former case it will again
follow that (1) is soluble overk, and it is well known that this implies solubility overk0. As
was remarked above, we can assume that Condition 1 holds overk. Let Σ2 be a finite set of
places ofk0 which includes the archimedean places, the primes which divide 3 and the other
primes of bad reduction for (1). Chooseα in k0 so that−3α is in (k0)∗2v for every placev in
Σ2, including the archimedean ones, but−3α is not ink∗20 . This implies that−3 is a square at
every placev1 of k = k0(

√
α) above a place inΣ2, and therefore that every suchv1 splits inK/k

whereK = k(ω). We retain theCv which we chose for Condition 2 overk0; so the insolubility
of each of Eqs. (32) fork follows from the corresponding statement fork0. We can find a set
of generators of the ideal class group ofK which are first degree primes; takingS1 to be the
union of these and the places ofK which lie above places inΣ2, we satisfy Condition 4. We
have therefore satisfied (i) to (iii) above. Thus (1) is soluble ink and therefore also ink0. ✷

6. Proof of Theorems 1 and 2

The condition appearing in Theorem 3, which has already been stated as Condition 5, is not
very demanding. For a finite placep which does not divide3, it is easy to give a detailed analysis
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of this condition; if p|3 the number of cases to be considered would become tedious, so we
restrict the following discussion to places which do not divide3. We can multiply Eq. (1) by a
power of a uniformizing variable atp before taking cubes out of theai. Using also symmetry, we
have only the following cases to consider:

(i) p|a1 anda2, a3, a4 are ino∗p. We can certainly takeCp = a2, in which case the second
Eq. (32) is insoluble and the first one is insoluble unlessa3/a4 is in k∗3p . If a3/a4 is in
k∗3p we could instead takeCp = a1 but we gain nothing by doing so.

(ii) p‖a1, p‖a2 anda3, a4 are ino∗p. For local solubility of the system (17) at least one of
a1/a2 anda3/a4 must be ink∗3p . If both of them are ink∗3p then we can giveCp any
value inpo∗p or o∗p; but both Eqs. (32) are then necessarily soluble. If for examplea1/a2

is in k∗3p buta3/a4 is not, we must takeCp in o∗p; then the second Eq. (32) is soluble but
the first is not. Similarly ifa3/a4 is in k∗3p buta1/a2 is not, then we must takeCp in po∗p
and the first Eq. (32) is soluble but the second is not.

(iii) p‖a1, p‖a3 anda2, a4 are ino∗p. For local solubility of the system (17), at least one of
a1/a3 anda2/a4 must be ink∗3p . If both of them are ink∗3p then both Eqs. (32) will be
soluble whenever both Eqs. (17) are. But if saya1/a3 is in k∗3p buta2/a4 is not, then we
must takeCp = a1 and neither Eq. (32) is soluble.

(iv) p2‖a1, p‖a2 anda3, a4 are ino∗p. For local solubility of the system (17),a3/a4 must be
in k∗3p and we must chooseCp to bea1 or a2. Now the first Eq. (32) is soluble, and the
second one is soluble if and only ifa1a2a3 is in k∗3p .

(v) p2‖a1, p‖a3 anda2, a4 are ino∗p. For local solubility of the system (17),a2/a4 must be
in k∗3p and we must chooseCp = a2. Now both Eqs. (32) are soluble ifa1a2a3 is in k∗3p ,
and neither of them is soluble otherwise.

The reader will notice that ifp is in Σ1 and does not divide3 then both Eqs. (32) are soluble in
kp if and only if (1) is birationally equivalent to a plane overkp; compare Proposition 2 of [5].
This is unlikely to be a coincidence, but I have not been able to make serious use of it.

Theorem 1(i) is a special case of Theorem 3. For ifv = p1 we can chooseCv = a2 to
make the second Eq. (32) insoluble, and a similar argument withv = p3 works for the first
Eq. (32). Theorem 1(ii) follows from (i) above after permuting the subscripts if necessary; and
Theorem 1(iii) follows similarly from (iii) and (v) above after taking account of the penultimate
sentence in the previous paragraph.

We now turn to the proof of Theorem 2. Choosek as before. We can clearly assume that none
of thebi/bj are ink∗3. I claim that after renumbering we can assume that the fieldsK( 3

√
b1/b5)

andK( 3
√
b2/b3) are distinct. For if not,K( 3

√
b4/b5) would be the same as each of the three

fieldsK( 3
√
bi/bj) with i, j = 1,2,3 andi �= j. After interchange ofb4 andb5 if necessary, this

would imply that

b4/b5 = b1/b2 = b2/b3 as elements of k∗3;

and nowK( 3
√
b1/b5) =K( 3

√
b2/b3) would imply that eitherb2/b5 or b3/b5 is in k∗3.

Hence we can find a primeP0 of K at which 3 and all thebi are units and which splits
in K( 3

√
b1/b5) but not in K( 3

√
b2/b3); thus b1/b5 is in K∗3

P0
but b2/b3 is not. Now the

corresponding statements are true fork∗3p0
wherep0 is the prime ink belowP0. For each prime

p in k which is a prime of bad reduction of (3), choosecp in kp so that (3) has a solution inkp

with X5 = cpX1. Let c in k be such thatc is close to eachcp andp0‖(b1 + c3b5). If we write
X5 = cX1 in (3) we obtain an equation

(
b1 + c3b5

)
X3

1 + b2X3
2 + b3X3

3 + b4X3
4 = 0(33)
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which is soluble ink by Theorem 1(ii). For ifp is a prime ofk at which (3) has good reduction,
the same is true ofb2X3

2 + b3X3
3 + b4X3

4 = 0; hence this equation is soluble inkp and so is (33).
Since (33) is soluble ink, so is (3); and hence it is also soluble ink0.
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