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THE SOLUBILITY OF DIAGONAL CUBIC SURFACES

By SR PETER SWINNERTON-DYER

ABSTRACT. — Let F' be an algebraic number field not containing the primitive cube roots of unity, and let
a1 X? +asXs =as X5 +as X2

be a diagonal cubic surface defined ovérand everywhere locally soluble. Subject to the assumption
that the Tate—Safaravigroup of every relevent elliptic curve is finite, the paper shows that under a very
weak additional condition the surface contains points defined Bv&ome condition (the Brauer—Manin
obstruction) is known to be necessary, but the condition imposed in the paper (which is local) is slightly
stronger. More remarkable is the condition®Bnwhich seems to be an artefact of the proof and not intrinsic
to the problem.
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RESUME. — Soit F' un corps de nombres qui ne contient pas les racines primitives cubiques de I'unité.
Considérons une surface cubique diagonale

(th +a2X§ IClg,)(é3 +a4Xf

définie surF et possédant des points rationnels sur tous les complétE's Ba admettant la finitude des
groupes de Tate—Safaréuie certaines courbes elliptiques, et en faisant une hypothése assez faible sur les
coefficients, on montre que la surface possede un point rationnél.dum condition sur les coefficients
est un peu plus forte que la condition de Brauer—Manin. L'hypothése sur le gblpsméme est plus
étonnante ; elle est due a la méthode utilisée et ne doit pas étre inhérente au probleme.
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1. Introduction

Within the algebraic closur@, letw be a fixed primitive cube root of unity arkd an algebraic
number field not containing. We shall be concerned with the solubility over of diagonal
cubic surfaces

(1) Va1 X3+ ao X3 = a3 X3 4+ as X3

wherea;asasay # 0. Without loss of generality we can assume thatthare integers of,. The
condition thatk, does not contaiov may appear perverse and unnatural, but it seems essential
for the approach used here. It does cover the important/gaseQ, but | do not see how to

treat this case without treating at the same time a somewhat more general one. My approach is to
construct a certain quadratic extensiofk,, wherek also does not contain, and to prove the
solubility of (1) overk; as is well known, solubility ovet, follows immediately. The motive for

this is that we can impose additional conditionsfowithout putting corresponding constraints

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
0012-9593/01/061 2001 Editions scientifiques et médicales Elsevier SAS. All rights reserved



892 P. SWINNERTON-DYER

on kq. The construction of/k is given in Theorem 3 in §5, anfd, will not appear again (after
the end of the Introduction) until then.

Of the previous papers about Eq. (1), the most relevent are [5] and [8]; summaries of the results
of [5], with a few more comments, can be found in [4] and [9], and [8] contains conditional proofs
of the solubility of (1) in some special cases. It was shown by Cassels and Guy [3] that the Hasse
principle does not hold for diagonal cubic surfaces. However, there is overwhelming numerical
evidence in [5] that for Eq. (1) defined ov€y the only obstruction to the Hasse principle is the
Brauer—Manin obstruction.

A number of recent papers of which | have been author or co-author have studied rational
points on certain types of surface by treating the surface as a pencil of curves of lgenus
These include [1,6] and [12]. The results have depended on two major conjectures: Schinzel’s
Hypothesis and the finiteness of the Tate—Safargwoup for all relevent elliptic curves. The
second of these is essential in this paper also; the elliptic curves for which we need it are those
of the form X3 4 Y3 = AZ? defined over certain quadratic extensiongg@fwhere the identity
under the group law is the poii® = (1,—1,0). But we have avoided the use of Schinzel’s
Hypothesis by means of a device which in this context is due to Heath-Brown [8]. Instead of
treating (1) as a pencil of curves of genuby writing for exampleXs /X4 = A/, we look for
solutions of the pair of equations

2 a X} +ax X3 =BX3,  azX3+ayXi=BX}

for some suitably choseR. The advantage of this method is that by using Dirichlet's theorem
on primes in arithmetic progression we can arrange the prime factorizatiéh tof suit our
convenience; by contrast, any argument which invokes Schinzel's Hypothesis requires one to
cope with what | have elsewhere called the Schinzel primes. (It is true that Dirichlet’s theorem
can be regarded as a special case of Schinzel's Hypothesis, but its use does not involve anything
analogous to the Schinzel primes.) The disadvantage of the present methods is that we have to
coordinate the descents on two elliptic curves; and to make the method work it appears necessary
to impose on the surfacé given by (1) additional conditions which do not always hold even
when the Eq. (1) is soluble. For this and other reasons, it will be clear that the approach in this
paper is not the right one; but as yet the right one is not known. In this paper the situation is
made somewhat worse because, in the interests of simplicity, | have chosen not to make full
use of the primes ok, which divide 3; but even if | had used them | could not have obtained
the whole truth. Even if stronger results could be obtained by means of second descents, using
the methodology of Cassels [2], such an approach appears incapable of proving the conjecture
that for surfaces (1) the Brauer—Manin obstruction is the only obstruction to the Hasse principle.
Indeed, in the present context there are two ways in which the Brauer—Manin obstruction on
can vanish. Lef4 be the relevent Azumaya algebra, as described for example in [5]. Either there
is a placev such that iny.A(P,) is not constant a®, runs through/(k,,), or each iny A(P,) is
constant but the sum of these values over athnishes. One might hope to improve the approach
in this paper so as to prove solubility of (1) in the first case, subject always to the condition that
w is not in kqy; but the second case appears to require quite different methods. In consequence,
though this paper can be regarded as modelled on the earlier parts of [6], there is in the main
theorems no mention of the Brauer—Manin obstruction nor indeed of any non-local obstruction.

In the course of this paper, we repeatedly use the following version of Dirichlet's theorem on
primes in an arithmetic progression.

DIRICHLET'S THEOREM. — Let L be an algebraic number field ampd, . . ., p.. distinct primes
of L.Fori=1,...,r letn; be a positive integer and; an element of; ; and leta be a nonzero
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THE SOLUBILITY OF DIAGONAL CUBIC SURFACES 893

ideal of L whose prime factorization does not involve any ofgherhen there is an element
of L such that3 = a; mod p;"* for eachi and (3) = ap for some prime idegj.

To prove this requires only minor modifications of the standard analytic proof of Dirichlet’s
theorem for an algebraic number field in its customary form. Alternatively, it follows easily from
Class Field Theory; see for example [7], 88, Satz 13.

With minor exceptions, in this papel = k(w) wherek is an algebraic number field not
containingw, ando is the nontrivial automorphism ok /k. If B is a prime inK, thenII will
always be a uniformizing variable f@8. The ring of integers ofC will be denoted byD and that
of k by 0. Suppose that is an element of some vector space d¥grassociated witl@mes Ky
whereS is a finite set of places ot . We shall write3j||£ for v in Z/(3) if every representative
x =) xyp of £ satisfiesP] ||zq, wherev is the image of in Z/(3). In particular we shall say
that¢ is a unit a3, if » =0 and a non-unit &3, otherwise. There are similar definitions far

Let Sy be a finite set of places ok which contains the archimedean places, the primes
dividing 3, and a set of generators for the ideal class grouf pand letS; be a finite set
of places ofK{ which containsS, and all the primes which divide, asasas. We assume tha
andS; are chosen to be stable underThe setsS andS. will always be finite sets of places of
K, stable undes and satisfyingS. D S D Sg. The letter with any affix will denote the set of
places ofk lying under a place of the s& with the corresponding affix. Note tha, already
includes all places which ramify iK’/k. We retain all this notation throughout the paper.

In formulating a solubility theorem for (1), we may clearly assume that none aof;the is
in k£*3; for otherwise solubility is trivial. Moreover it has long been known (Selmer [11]) that if
for examplea;az/asay is in k*3 then (1) obeys the Hasse principle. Hence it costs us nothing
to assume that none of the expressions tike, /asa, is in k*3. These restrictions, which are
equivalent to the corresponding ones okgrare worthwhile because they eliminate a number
of special cases in the arguments which follow.

Condition 1. — Each of the fields liké(({/a1/a2) and K ({/a1a2/asa4) is an extension of
degree3 overK = k(w).

Subject to all this, the strongest result which | have been able to obtain by means of first
descents alone is that stated in Theorem 3; and Theorem 1 summarizes the consequences of
Theorem 3 if we make no use of the primes which divdd& he proof of Theorem 1, together
with a more elementary but less succinct version of the criterion in (iii), can be found in §6.

THEOREM 1. — Let kq be an algebraic number field not containing the primitive cube roots
of unity. Assume that the Tate—Safacegioup of every elliptic curvé¢4) over any quadratic
extension oty is finite. If Eq.(1) is everywhere locally soluble, then each of the following three
criteria is sufficient for its solubility irk,.

(i) There exist primeg, p3 of ko not dividing3 such thata, is a non-unitatp; andas is a
non-unit atps, but for j = 1 or 3 the threea; with i # j are units atp;.

(ii) Thereis a prime of ky not dividing3 such that; is a non-unit atp but the othew; are
units thereandas, a3, a4 are not all in the same coset ()%);3.

(i) There is a prime of ky not dividing3 such that exactly two of the are units atp, and

(1) is not birationally equivalent to a plane ovéky),.

The obstructions in this theorem and the Brauer—Manin obstruction appear to be related as
follows. The arguments in 85 of [5], generalized to the present context, show that under each
of the criteria above there is a prinpeof bad reduction folV such thatV is not birationally
equivalent to a plane ovéky),. (Indeed, criterion (i) demands two such primes.) Provigles
this implies that there is no Brauer—Manin obstruction for our surface — fdriff the relevent
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Azumaya algebra, invA(P,) is not constant a®, runs through the-adic points ofV. One
would hope that this holds evenpf3.

There has also been some recent interest in the solubility of diagonal cubic threefolds. The
idea of proving a solubility theorem for a variety by considering suitably chosen sections is an
old one; for it in this context see [5], 89. Subject always to the finiteness of the relevent Tate—
Safarevit groups, our methods are adequate to prove that the Hasse principle holds in this case.

THEOREM 2. — Assume thak, does not contain the primitive cube roots of unity and that
the Tate—Safarewigroup of every elliptic curvé4) over any quadratic extension &f is finite.
If b1, ...,bs are nonzero elements f such that

©) b1 X3+ by X5 + b3 X35 + by X3 + b5 X2 =0

is everywhere locally soluble, then it is solublekin

The proof of this theorem can also be found in §6.

| am indebted to Jean-Louis Colliot-Thélene and the referee for a number of valuable
comments on earlier drafts, and to Tom Fisher and Alexei Skorobogatov for permission to
reproduce Lemmas 5 and 6.

2. FirstdescentonX?® +Y3 =423

Let A be an element ok* which without loss of generality we can assume to be;in
for simplicity we shall also assume thdt is not a cube. We writep for the isogeny whose
kernel consists of th8-division points withZ = 0. The curveFE given by (4) admits complex
multiplication, so that Eng(FE) = Z[w]; we may suppose that acts onFE by (X,Y,Z) —
(X,Y,wZ). Thus the action o is given by

(XY, Z) = (wX? - w?Y? wY? - 0?X°?, (w—w?) XY Z).

If Pis(X,Y,Z)then—Pis (Y, X, Z); thus alsa(p(P)) = —p(a(P)).

The most naive form of the-descent, also called the first descent in the older literature,
operates ovekK'; it replaces the elliptic curve
(4) E: X34+Y3=A7°
by the equation& = 7, Z>Z3 and
(5) wX +WY =mi 73, WX HwY=moZi, X +Y =AZ/mimy
for somemy, ms. If we write

X =¢&/mimy, Y =n/mima, m=my/ma,
Z1 =G /ma, Zy = (a/ma, Z3 = —(3,
the Egs. (5) become

wE+w=mTIGE, W run=me,  E+n=—AG,

a system which is equivalent to
(6) mTiGE +még = AG.
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Here we should regara@ as an element ok */ K*3. Thus in particular ovek the Jacobians of
the two curves (2) are

(7 X3 4+Y3=Bajay Z3, X3 4+Y3 = Basas Z3.

The curves (6) are calleg-coverings of (4); those which are everywhere locally soluble are by
definition the elements of the-Selmer group, which is canonically isomorphic througho
a subgroup ofk* / K*3. The p-Selmer group containd because the curve (6) with = A is
soluble inK.

Throughout this sectionS will be a finite set of places oK containingS, and all the
primes which divideA. The curves (6) defined ovét and soluble ink, for everyv outside
S correspond to then which are units outside&; so they are indexed by the elements of
Xs =90%/0%, whereO} consists of the elements & which are units outsidé. We can
regardX s as a finite-dimensiondl's-vector space. Those curves which are also solubl€,in
for everyv in § determine a subspace &fs. Hence the conditions for the solubility of (6)
in the K, with v in S can be described by a finite set of homomorphistias— F3, which
can be regarded as generators ofyivector spacé/. The left kernel of the induced map
1¥: Xs x V — Fjs is precisely the-Selmer group of2. Calculation shows thaXs andV have
the same dimension. It is therefore tempting to hope that there is a natural isomorphism between
Xs andV, and that it makeg either symmetric or antisymmetric. This is not true; but there is
indeed an interesting symmetry property, though a less straightforward one, and the main purpose
of this section is to display it. A similar symmetry statement, though in a simpler context, has
already appeared in [6]; there, as here, it plays a crucial role.

For every finite sef of places ofK, of ordern and containingS,, write

(8) Xs=9035/98, Y,=K;/K}? Ys=HW..
vES

SinceK contains the cube roots of unity, thg-vector space& s has dimensiom by Dirichlet’s

unit theorem.Ys has dimensior2n by the product formula, sinc&’}/ K3 contains9/|3|,
elements and contains every with |3, # 1. MoreoverY,, is trivial if v is archimedean. Here as

in Proposition 1.1.1 of [6] the maji s — Y is injective, becaus8§ contains a set of generators
for the ideal class group df . There is a non-degenerate alternating bilinear fegranY,, given

by the Hilbert symbol, and thus a non-degenerate alternating bilineardgem} " e, on Y.

(We write the Hilbert symbol additively, to accord with the argument in 85. Consequently the
symbol depends on the choice ©f compare the discussion around Lemma 7 of [5].) By the
Hilbert product formula and a comparison of dimensiaks, is maximal isotropic inYs. For

any placev of K, let T, be the image oD} /93 in Y,, where9, is the ring of integers of

K,. Unlessv divides 3, T, is a maximal isotropic subspace Bf. The following lemma has
been designed for application to the special situation described in Lemma 2; it is stated in greater
generality purely in order to simplify the proof. We introduce the following notation, which we
shall use repeatedly. L&t be a vector space over a fieldwith charF # 2, and leto: U — U

be an automorphism of ordér thenU is the direct sum of the subspabie” of elements fixed

by o and the subspadé— of elements whose sign is reverseddy

LEMMA 1.- Let9);,09); (i=1,...,n) be pairs of finite dimensional vector spaces over a
field F with char I # 2, whereo is an isomorphisn®); — ¢2); for eachi and is such that? is
the identity. Suppose that eagh is equipped with a non-degenerate alternating bilinear form
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(z,y), and let eachr?); be equipped with the bilinear form defined by

(9) (0, 0y) = —(2,y).

Write 9 = @,(9: @ ¢2):), equipped with the sum of these forms. kdbe maximal isotropic
in 2 and mapped to itself by. Then there exist maximal isotropic subspages (2); ® 02);)
such thato maps each3; to itself and) = X @ 3 where3 = @, 3;. Moreover, given any
20 = P, (20; ® 020;) with each?l; maximal isotropic ir);, the 3; can be chosen so that

(10) dim(WN 3)" — dim(WN 3)” = $(dim X~ — dimX™).

Proof. —We show first that we can reduce to the special case where #\érgs dimension.
If some dim%); > 2 let y; be a nonzero element diJ;; because the bilinear form is
nondegenerate dj; we can findv; in ; such thaty;,v;) # 0. Herev; cannot be iJ,. Now
D = {vi,vi} @ {y;,v; }*- and one easily checks that this induces an orthogonal decomposition

0, = (in n {yi,vi}) (&) (Qﬂl N {yi,vi}J‘).

Thus we have split off from); a subspace of dimensi@which contains a subspace 2f; of
dimensionl. This only reduces our freedom to choose Hpso we can assume that eve)y
has dimension.

We now proceed by induction on the case: = 0 being trivial. SinceX is isotropic it cannot
containl),,; so there is an elemen}, in 2),, but notinX, whencey,, + oy,, andy,, — oy,, cannot
both lie inX. Lety,, v, be a base fof),,. Sincec mapsX to itself, we have three possibilities:

(i) The intersection of and the space spannedfy+ oy, andy,, — oy, is trivial; in this
case we takg,, to be the latter space.

(i) If yn —oyn isin X then(y, — oyn, vn + 0v,) = 2(yn, v,) # 0; thus the only elements
of (Y. ® 0Y.,)* orthogonal toy, — oy, are the multiples ofy, + oy,, whence
XN (QYn ®0Y,)T ={0}. In this case we takd,, to be(Y,, ® cY,)".

(iii) If y, + oy, isin X a similar argument holds; in this case we t&keto be(9,,  0Y,) .
Now write

(11) 2)*:(@1 @021)@'“@(mn—1 @Jmn—1)7 X*:@*ﬂ(x@&ﬂ

If x* isin X* thenz* = x + z,, for somez,, in 3,, andx in X; so the projection of t09),, 0.,

is —z,. Sincez* is orthogonal to3,,, so isx; and the isotropy oft* follows from that of
X and 3,. Sincedim X* > 2n — 2 by the second equation (11} is maximal isotropic in
2)*. Applying the induction hypothesis t* and®),,...,9,—1 we can construch; maximal
isotropic in); ® o, fori=1,...,.n— 1 and withY*=X*® (31 & --- @ 3,—1). But now,
using (11) again,

X®3,)NB1@ - ®3n-1)CXNB1®--®3n-1)={0}

and®) = X @ 3 follows by dimension count. To prove the final assertion we have to split cases
according to the three possibilities above. If (i) holds then the general elemgphafs the form

ay, + d' oy, with a,a’ in F. If y, is in 20,, then every such element is ®,, ® 027,,, so that

(2, ® 020,,) N 3, = 3, if y, is not in20,, then the only element of this form which is in
20, & o2, is 0, so that(2W,, & c20,,) N 3., = {0}. If (ii) or (iii) holds then

(25, ® 020,) N 3, = (W, ©oW,)" or (W, oW,)"
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THE SOLUBILITY OF DIAGONAL CUBIC SURFACES 897

respectively. Thus in all cases we have
dim((ﬂﬂn ®o2,)N 3n)+ - dim((ﬂﬁn ®o,)N Bn) T = %(dimSI —dim3;).
By induction this gives
dim(2WN 3)" — dim(WN 3)” = 3(dim 3" —dim37).
But we have
dim Xt +dim3" =dimP*t =dimYPY~ =dim X~ +dim 3~
and (10) follows. We note for future reference that also
(12) dim W = dim ®2W; = dim W~

The decomposition of thg); which allows us to assume that eatin 9); = 2 constrains the
choice of the3;, so we have only proved (10) for a highly particular choice of 3hebut |
believe that (10) does hold for every choice Hf satisfying the penultimate sentence in the
lemma. O

Let W, be the image oF(K,) in Y, under the Kummer map

wX + w?Y

: P=(X\Y —_
g (X, )szX—i—wY

in the notation of (4). WritdVs for the subse@p s W, of Ys. A p-covering ofE is soluble in

K, if and only if the corresponding element of K*/K*3 is in W,.. Moreover Tate has shown
that W, is a maximal isotropic subspace Bf for the alternating fornz,,. (In our case this can

be proved along the lines of Lemma 3 of [1]. Tate’s result is applicable to any isogeny, but |
am not aware of any published proof in this generality; for the special case of multiplication by
an element of, see [10], p. 56.) These last two properties provide the easiest way to calculate
the W, explicitly. In particular,WW,, = T, unlessv is a prime of bad reduction fab'. Because

the p-division points ofEZ' are defined ovek’, they give rise to elements of theSelmer group;

the corresponding elements 6f are 1, 4 and A2. If 53 is a prime of bad reduction foE
which does not dividg, Wiy is generated byl. If 3|3 there seems to be no simple description
of Wi; indeed even wheti{ = Q(w) a considerable splitting of cases appears to be needed.
A p-covering ofE is soluble inK, for all v not in S if and only if the corresponding element of
K*/K*3isin Xs. Hence the»-Selmer group of2 can be identified withX s N Ws; this group

is both the left and the right kernel of the bilinear m&p x Ws — F3 induced byes.

If 3 is a prime of K we write ? = {8} or P = {8, B} according asp is or is not fixed
by o; we write T» = Ty in the former case anfip = Tiy © T, in the latter, and similarly for
Wp,Yp ande.

If we ignore the primes dividing, the primes irk which splitin K/ k are those whose absolute
norm is congruent t@ mod 3. These are the primes which lie in a certain grégp which is a
subgroup of index in the relevent ray class group. Usually will contain primes in every ideal
class, but ifK'/k is totally unramified there is a subgroiip of index2 in the ideal class group
of k such that a prime ideal ik splits in K/k if and only if its class lies iT'y. This is the case
which primarily concerns us, since any place ramifiedif% must both lie inSy and be fixed
by o; and this will usually be ruled out either by the hypotheses of Lemma 2 or by Condition 4
below. Because of thig7, will only appear explicitly in the proof of Lemma 2.
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LEMMA 2.— Suppose that no place & is fixed byo. Then there are maximal isotropic
subspaces/r C Yp such thatys = Xs @ (Ppcs Zr), ando maps eactZyp to itself. We can
chooseZgs, in a way that only depends on the classeslafiod K&}S for the’ in Sp; and once
Zs, has been chosen we can take = Zs, ® (Gapcs\so Tp) for eachS O Sy. Let Ny, N, be
such thatS containsN; + N, primes fixed by, and thatF has good reduction atv; of them
and bad reduction at the othé¥s,; then

(13) dimW;—ding = Ny — Ny,
(14) dlm(WS N Zs)+ — dlm(WS N Zs)_ =1-—DN;.

Proof. —Consider first the second sentence for the particular ¢ase Sy. This is a
straightforward transcription of Lemma 1. ng be such thatS, is the disjoint union of sets
Sg andasg. We apply Lemma 1 to the case when, in our previous notatior)thare theYy
with 3 in 83, the 20; are thelVy for these3, X is Xs, and the non-degenerate alternating
bilinear forms on the)); are given by the local Hilbert symbol. We ignore the archimedean
places, for which)), is trivial. We need to check (9), but this follows from the definition of the
Hilbert symbol; the reason for the sign reversal is that canonically the Hilbert symbol takes its
values inuz = {1,w,w?}, on whicho acts nontrivially. This proves the second sentence in this
case.

For generals we consider the second and third sentences together. We must examine the effect
of adjoining toS finitely many further prime§3, where ifo3 # 3 we assume that we adjoid
ando3 together. We do this step by step, so that we have to consider the situationSvhe$g
is a finite set of places mapped to itself byand we replace& by S, =S U P where3 is a
prime of K notinS. We need to show that in going frofto S we can leaveZs unchanged
and choos&p = Tp. Becauses O Sy, there is a natural embeddits C Xs, which identifies
Xs with the elements oK s, which are trivial at primes oP. Thus

XVSJr ﬂ(Zs@Tp)ZXSﬂZSZ{O},

and the second and third sentences of the lemma follow immediately. We shall henceforth assume
that theZp are chosen in this way.
We turn now to (13). LeS® O S, be the subset af consisting of those places & not fixed
by o; then (13) holds whess = S, by (12). Now let]d be a prime ofK fixed by o, andp the
prime of & below it; thus all the elements of; arep-adic cubes. IfZ has good reduction &8
theno acts onl’p = Wp = Zp like —1; thus

dim W7 =dim(Wp N Zp)t =0, dimW, =dim(WpNZp)” =1.

On the other hand, i’ has bad reduction § thenWp N Zp = {0} ando acts onWp like 41,
becausdVy is generated byl which is in k. Hence in both cases adjoinifiy does not alter
the validity of (13); and we can go fro’ to S by repeated steps of this kind. A corresponding
argument holds for (14), so to complete the proof of the lemma it is enough to prove (14) for the
special casé€ = S”.

Inthis case | claimthak { is 0%, /032, For let¢ in O% be arepresentative of an elemen#ii ;
then¢/o¢ =n? for somen in O% and so(Norm /xn)* = Normp /4 (§/0€) = 1. Sincew is not
in & this impliesNormp 1 = 1, whencen = (/o for some( in K by Hilbert's Theorem 90;
soa = ¢/¢3 is fixed byo and therefore lies if. It is not obvious that can be chosen to be in
0%, butif ¢ is divisible by a prime}3 notin S it is divisible to the same power by also, and
if B =P thenP is the conorm of a prime in k& because /k is totally unramified. Thus as
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ideals we can writé() = a8 wherea is an ideal ink none of whose prime factors lies éand
B is an ideal inK’ whose factorization involves no primes outs#leThe ideaka® = ¢8 3 lies
in & and has all its prime factors ii; sinceS = S” it must have the fornB,.c%8, where®B is
an ideal ofK all of whose prime factors lie it§. This shows that the class @t is in Ty, whence
so is the class af; hence we can write = a1 981.08; wherea is in k and all the prime factors
of B, liein S. Here¢ /oy isin Xs; soé(ay/¢)? is fixed byo and represents the same class in
Xs as¢ does. This proves thaii’;r is indeedo /0%, which is X, for k.

Denote the order of = S” by n; thus by hypothesis the order &f= " is 1n. Becausek
does not contain the primitive cube roots of unity, Dirichlet’s unit theorem now gives

dimX$ =dimXy=in—-1=1dimXs—1

and thereforelim X5 = L dim Xs + 1. Now (14) for the special cas§ = S” follows from

(10). O o

Now letts : Ys — X s be the projection along s and write

Xs=Xsn(Ws+Zs). Ws=Ws/WsnZs)=CP,_ Wp

whereW;, = Wp /(Wp N Zp). Note that if3 is not inS, the choice ofZp enables us to define
the power ofJ3 which divides an element (Wg’I3 under the conventionin 81. The mapinduces
an isomorphism

(15) 7s: Wi — Xg.

If w’in W is represented bgp wp in W, it follows from Lemma 2 thatsw’ /wp, considered
as an element dfp, is a unit atP for any*P3 outsideS,. (This remark will be used repeatedly in
85.)

The bilinear functiores induces a bilinear function

eig : ng X ng —F3
becauséVs andZs are both isotropic. We have seen that th8elmer group o2 is Xs N W

and is therefore contained 5. Since it is both the left and the right kernelig x Ws — F3,
it is isomorphic to both the left and the right kernelef.

LEMMA 3. - Suppose thaf containsS, and all the primes of bad reduction fdf, and no
place ofS; is fixed byo. Then the functions

Ps: X5 x X5—F; and Us:Wix Ws—Fj
defined respectively by
2y x 2h el (2,75 (b)) and w) x wh — els(Tswi, wh)

are bilinear symmetric, with kernels isomorphic to #&elmer group of.

Proof. —We need only prove that the functions are symmetric, and it is enough to do so for
®s. Given elements’, =4 in X5 choosew;,w; in W5 so thattsw, =z, tswe = z5. Since
(1 —ts)wy and(1 —ts)ws are inZs
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0=es(wy,wy) =es (t5w1 + (1 —ts)wy, tsws + (1 — ts)wg)
=es (tgwl, (1- tg)wg) + 65((1 —ts)ws, tswg)
=es(tswy,ws) + es(wy, tswy) = el (), wy) — es(xh, w))
wherew], w) are the images abi,ws in W§. O

Strictly speaking, our notation fab and ¥ should also make explicit which elliptic curve is
being considered. Until 85 this will always be obvious; the conventions which we use in 85 are
explained there.

It is clear thatr mapsX’ andW’ to themselves, and commutes witand7; in particularr
induces isomorphismig”’ ™ — X't andW’~ — X'~ . Since the Hilbert symbol satisfies (9),

\II(Uw/hUw/Q) = —\I/(wllawé)

for anyw’, w), in W’. Hence in particula vanishes ofV’* x W'T andW’~ x W'~ . If V

is the kernel of¥ theno also mapd/ to itself, so we can writd/ =V+ @ V—; andV+,V—

are the left and right kernels respectively of the restrictiofdb W™ x W'~ (Itis here that
we use the symmetry oF.) In order to prove the solubility of (1) by the methods of this paper,
we shall need to choosg so that for each of the two curves (7) the matrixiohas corank:
more explicitly, for the first curve (7) we shall ne&dto be generated by the imagesBi, a-
anda; /as, and similarly for the second curve (7). Thus we shall need to ensuréithdf ™ = 2
anddim V'~ = 0 for each curve. If we require that no placeSfis fixed byo, so that Lemma 2
holds, then a prerequisite for this is

(16) dim W5 " — dim W5~ =2;

and in the notation of Lemma 2 this requit®s = 3. Since the processes in 85 do not ahér,
we have to achieve this in 83. This accounts for the rather artificial manoeuvre in the corollary to
Lemma 2.

3. Reduction to pairs of curves

We remind the reader th&; denotes a finite set of places &f which containsS, and all
the primes dividing:; asasas, andX; consists of the places ik below a place inS;. For the
solubility of (1) in k it is certainly necessary that (1) should be everywhere locally soluble, a
condition which it will be convenient to write in the following form.

Condition 2. — For every place of k there exist<, in k/k*3 such that each of the two
equations

(17) a1 X7+ aa X3 =C, X3, a3 X3+ as X3 =C, X3
is soluble ink,,.

Here it is only thev which divide3 and those where sonag is not av-adic unit (up to a cube)
which are of interest, and all of them lie ¥y ; for any otherv it is enough to choos€, to be
a unit. We have required', to be non-zero, for if (1) has solutions in they must be Zariski
dense; so there are solutions of (1) withX; + a2 X3 # 0. Here and hereafter, we identify an
element ofk? /k’3 with any representative of it it?. Similar remarks apply to Condition 3
below.

The following condition, which is apparently stronger than Condition 2, is clearly also
necessary for solubility.
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Condition 3. — There exist§ in k*/k*3 such that each of the two equations
(18) aX;+aX3=CX3,  a3Xi +asX;=0X}

is soluble in eaclt,,.

In both these conditions we need only consider non-archimegdsatause the conditions are
trivial for archimedean ones. The next step should be to show that Condition 2 implies Condition
3; but the situation is complicated by the need to keep track of the number of primes outside
Y1 which divideC' and do not split inK/k. (See the final remark in §2.) We actually prove a
rather stronger result. In general there is more than one €&t afod k3 for v in ¥, for which
Egs. (17) are soluble. But arfy which satisfies Condition 3 must be such thatC,, is in k3
for all v in X; for one such set; so it is desirable to show that we can find suchfa any
given set ofC,. The following lemma is a model for a more general result, which appears to
have significant applications; so we state the proofin a form which does not require Condition 4,
though the latter is needed for the corollary.

LEMMA 2. - Suppose that th€', satisfy Condition2; then there exist&’ in o satisfying
Condition3 and such that’/C, is in k2 for all v in ¥;.

Proof. —For eachy in X1, letn, be such thap™» ||C,, and writea = []p"»; thenCa~" will
need to be prime to evenyin %;. If g is a prime ofk not in ¥; and such thag™||C' with
mq prime to 3, the solubility of the two Eqgs. (18) #y, is equivalent to requiring, /a2 and
as/a4 10 be in k;?’. Suchgq fall into two families. If g splits in K/k as the product of and
01, then solubility of (18) ink, is equivalent to solubility ini{; and this in turn is equivalent
to Q splitting completely inK ({/a1/az2, ¥/as/as)/K. As a condition ory this is intractable,
because it is a statement thasplits completely in a certain nonabelian extension; and this is
outside the scope of standard class field theory. So it is fortunate that we shall not need to use
primes of this kind. If howevey remains prime ink, then the absolute norm gfas a prime
in k is congruent t@ mod 3; thus every element af; is in k;;‘?’ and in particular this is true of
ay/as andas/ay.

Theq outsideX:; which remain prime ir are just those which do not lie in ti&, introduced
just before Lemma 2. Léi, be an ideal ink which is prime to every in 3, and is such that
abo = (70) is principal; then(C) = ab whereb = 5by with 5 in k*. We can take” = (3, so that
the condition that’/C,, is in k;;‘?’ translates into a requirement thalies ino; and in an assigned
classmod k;S for eachp in X;. We can certainly find an element in £* which satisfies the
congruence conditions gf. Suppose first that; b is not in Gy; then we can choosg, close
to 1 in the topology induced b¥; and such thab; by is a prime ideal. In this case we take
C = Bivo. Ifinsteadp; by is in G, choose any prime idegl notinX; UGy; thuss,; boql‘1 will
not be inG,. We can now choosg/ close tog; and such tha;B’l’boq;1 is a prime idealj>, and
we takeC' = ({~,. In either case th€ thus constructed will satisfy the conditions of the lemma
except perhaps the integrality; and we can satisfy that by multiply/ifay a suitable element of
k3. O

In a number of places, of which this is the first, we shall need the following assumptibn on
the corresponding assumption f§iy has already appeared in Lemma 2. We shall show in 85 that
this assumption is not a constraint bn

Condition 4. — No place inS; is fixed byo.

To fix ideas, we have included in this assumption the requirement that all the archimedean
places ofk are complex; this simplifies matters but is not essential. Condition 4 implies the
analogous condition in Lemma 2.
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COROLLARY. —Suppose also that Conditighholds then we can choos€ in Lemma4 so
that it is integral and(C) = aq2q3q4 where all the prime factors af lie in ¥; and theq, are
primes ofk outsideX; which do not split in/k. Moreover(16) holds for this value of’.

Proof. —In the notation introduced just before Lemma 2, each prin¥yirs in I'y. We use the
same notation as in the proof of the lemma, and notedlvetl be in T'y by Condition 4. Much
as in the proof of the lemma, we can find distinct prime idgalgs, q4 notinT'y and an element
C'in k* such tha(C) = ag3q3q4 andC/Cy is in k;* for eachp in X,. If we then multiplyC by
a suitably chosen element bf?, we satisfy all the conditions of the corollary. The final sentence
of the corollary follows from (13), (14) and¥, =3. O

The setS of bad primes for the curves (18) is obtained by adjoiningstothe additional
primes at which”' is not a unit. In 85 we shall iteratively modify and therefores. Each step
will consist of multiplyingC' by somec = ~.0y where() is a first degree prime ik but not
in the S so far obtained, or the product of two such primes. Such a step reddnes., where
S, is obtained fromS by adjoining the primes ofC at whichc is not a unit; the latter set will
be the union of one or two sef. It follows from (13) and (14) that if (16) holds f&# andC' it
holds forS; andcC.

4. Tom Fisher's lemma

A key step in this paper, as in previous papers in the series, is to show that if some Selmer group
has all but one of its generators represented by soluble curves, then the remaining generator also
has this property. The proofs of this in earlier papers depended on assuming the finiteness of
the Tate—Safare¥igrouplIII; but under that hypothesis the result followed immediately from
the existence and properties of the Cassels bilinear foriilorThe present case, however, is
more complicated because the curve (4) admits complex multiplication. The result which one
would like to have would assert that (subject to the finiteness of the Tate—Safgreup) if
the curveE given by (4) is defined over an algebraic number figldvhich containsv, and if
its p-Selmer group has ordér, then every element of that group has a representative which is
soluble inK . | do not know whether this is true or false; what is clear is that it does not follow
straightforwardly from the properties of the Cassels bilinear form @&eOne could instead
use the Cassels form over an algebraic number fieldhich does not contait; but this would
involve reworking the results of 82 over such a field and then proceeding as in [1], and that is not
at all attractive. Instead | use an unpublished lemma of Tom Fisher. The original idea is due to
him and the current presentation to Alexei Skorobogatov; and | am indebted to both of them for
permission to reproduce the material in this section.

For the following lemma we temporarily drop our standard conventiorisamd K.

LEMMA 5.— Let E' be an elliptic curve defined over an algebraic number figldnd let '
be a Galois extension &fof degreen. If (m,n) =1 then

(B /k)[m] = L (E/K)[m] /0,

If ILI(E/k) is finite then the order dflI(E /K )[m]%2(5/%) is a square.

Proof. —Consider the restriction-inflation sequence forand the commutative diagram ob-
tained from the multiplication byn. Multiplication bym is an isomorphism ol (K /k, E(K))
for any: > 1. An easy diagram chase now gives

H'(k, E)[m] = H' (K, E)[m]S(X/F),
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Since K /k is Galois the degrees of the local extensidfis/k, dividen, wherew is a place of
K lying over some place of k; so these degrees are primeito The previous argument is valid
for any field extension of degree primena so we can use it foK,, /&, . Thus if the restriction
of an elementofi*(k, E)[m] in H'(K, E)[m] belongs td1I(E/K), this element must actually
be inIII(E/k); so the natural restriction map

(B /k) ] — TL(E/ ) [m] 6210/

is an isomorphism. The last sentence of the lemma follows from the non-degeneracy of the
Cassels alternating bilinear form afl(E/k), which implies that for anyn > 0 the order of
them-torsion subgroup of the Tate—Safafegroup is a square.O

We now revert to the standard conventions of this paper, thdbes not containv, that
K = k(w) and thato is the nontrivial element of GaK/k). Let F; be an elliptic curve
defined overk which has complex multiplication ovek by Z[w]. Any elliptic curve overk
has an automorphism of ordérgiven by P — —P. Twisting the curve by a cocycle from
HY(k,Z/2) = k*/k*? gives a quadratic twist of the elliptic curve: if the curve is given by
y? = f(z) then the twist corresponding tin k* is given bydy? = f(x). Now let E,, also
defined over, be the quadratic twist af/; by —3. Over K the curvest; and E; are naturally
isomorphic. Lety: F; — E5 be this isomorphism; theay = —. Let ¢, : By — E5 be the
compositior)p and ¢, : E; — E; the composition-py 1, so thatpa¢; = 3. Thusop; = ¢,
ando¢s = ¢2, S0 thatp; andg, are defined ovek. In the case that interests us, is given by
23+ 93 = Az3 andFEy by X (X2 —Y?) =4AZ3, ando, is (z,y, 2) — (2 + 93,23 —y3, 2y2).
SinceF; contains nontriviaB-division points defined ovek, if its p-Selmer group has ordér
then the order ofII( E; / K)[p] must be eithet or 3. The following lemma shows that the second
case is impossible. We retain the notation above, including the conditioAthatlefined ovek.

LEMMA 6.— If TI(FE;/k) is finite so is HI(Ey/k), and neither III(F; /K)[p] nor
III(E,/K)[p] can have ordeB.

Proof. —SinceE; andE, are isomorphic oveK and isogenous ovérwe have
HI(E1/K)[p) = HI(E2/K)|pl;

and if one of III(E; /k) and II(Ey/k) is finite so is the other. Hence we can interchange
E, and E; if we wish. Suppose thalll(F;/K)[p] has order3. Then eithers acts trivially

on it or ¢ interchanges its two non-trivial elements. As a @8/k)-module, III(E; /K)|[p]

can be identified witHZ/3 in the former case and with; in the latter one. The G&K/k)-
module structure ofl1(F>/K)[p] is obtained by twisting by the non-trivial quadratic character
Gal(K/k) — £1. The twist ofZ/3 is u3 and vice versa. After possibly interchangifly and

E> we can therefore assume that

(B /K)[p) = Z/3 and I(Ey/K)[p] = pis.
There is an exact sequence of @éJ k)-modules
(19) 0 — I(Ey /K)[p] — LLL(E, /K)[3] — LLL(E2/K) o]
where the second arrow is the natural injection and the last arrgw. iSlow (19) implies that

II1(E, / K)[3]¢2/(K/k) = Z /3. So this contradicts Lemma 5 with = 3 and E = E;, according
to which the order of this group must be a square.

We shall apply this result to the two curves (7), which are the Jacobians of the two curves (2).
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5. The paired first descents

Throughout this section we shall assume Condition 4. In view of the results in the previous
section, to prove that (1) is soluble it is sufficient to fi6din £* such that each of the two
Egs. (18) is everywhere locally soluble and gi&elmer groups ovek of their Jacobians both
have orde®. In the notation of §2 and working ovéf, these Jacobians have= a;a>C and
A = azay,C respectively, and the curves (18) haxe= a,/a> andm = a3 /a4 respectively.

We initially chooseC' in k* as in the corollary to Lemma 2, using the hypothesis that (1)
is everywhere locally soluble; thus both Eqgs. (18) are everywhere locally soluble. We write
mo = a1 /az when we are considering the first Eq. (18) angl= a3 /a4 when we are considering
the second one; thus (6) is required to be everywhere locally solubte ferm,, where A is
as above. Sincen is by hypothesis not irk*3, the element of the-Selmer group which it
generates is nontrivial. Our strategy is to multiglyrepeatedly by suitably chosen elements of
k* so as eventually to reduce theSelmer group oveK of the Jacobian of the first Eq. (18) to
the subgroup ofX; generated by’a a2 anda, /a2 whereC' is the newC', together with the
corresponding property for the second Eq. (18). (The construction in Lemma 2 and its corollary
ensures tha€' is a non-unit at three primes outsiflg; so for example€Ca a2 anda, /a2 are
independent mok*3.) We proceed step by step. Each step will involve multiply@idoy a
suitably chosem in £* which is a unit at every prime in the current we shall arrange that any
primep which dividesc will splitin K/k, and that such primes only divideto the first power.
Thus (16) will continue to hold in view of the argument at the end of 83. In order to preserve the
C, of 83 unchanged, eaechmust be ink,’;3 for everyp in Xy; this is equivalent to requiringto
be in K;f’ for every3 in S;. In particular, it follows from Lemma 2 that this operation will not
changeZs,, soZs is only changed by adding the direct summands corresponding to the primes
dividing c. Formg to remain in thep-Selmer group under this operation, we also negdo be
in k;‘?’ for everyp which dividesc. Having done this, we replacg by the setS. obtained by
adjoining toS the primes inK which dividec. Of courseds and¥ s will refer to whichever of
the curves

X3 4+Y3=a1a0C2Z3, X34V =aga4CZ3

we are considering, anbls, andVs, will refer to the corresponding one of
X3 4+Y3 =a1a5CcZ3, X3 473 =a3a,.CcZ3.

We retain this convention for the entire section.

It is basic to the process which follows that the actiorradn the structure described in §2
should be the natural one; this follows from Lemma 2. The process is carried out in two stages,
each of which is broken down into a number of steps.

(i) Stage 1 ensures that for each of the two Jacobians Avitls above the only elements of

the kernel of® which are units outsid&; are1,mo andm?. To achieve this, we require

Condition 5 below.

(i) Stage 2 ensures that for each of the two Jacobiang-thelmer group ovek’ is generated

by A andmy.
Once these stages have been completed, it will follow from Lemma 6 that both Eqgs. (18) are
soluble inK and therefore irk; and the solubility of (1) will follow. Condition 5 is not unduly
restrictive; it will appear in Theorem 3 and in disguised form in Theorem 1. Moreover, for the
solubility of (1) it is known that it is not enough to have local solubility everywhere, so some
further condition must appear in the argument. (Compare [5,6] and [12].) On the other hand,
Condition 4 is an unacceptable restriction; at the end of this section we shall get rid of it.
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To implement Stage 1 we need the following lemma.

LEMMA 7. - Let{ be an element oD , and leth;, A2, A3 be inZ and not all divisible by
3. Suppose that none of the expressions

(20) n=(a1/az)™ (az/as) 2

lies in K*3. Then there are an infinity of first degree primiBsn K such thata; /a2 andas /a4
are in K’ but¢ is not.

Proof. —The field extensionK ({/a1/as, {/as/as, /€)/K is abelian of degre@7; so the
lemma follows from Dirichlet’s theorem on primes in arithmetic progression or from the
Tchebotarev density theoremm

We note here the obvious fact that}ifis a prime of K andp is the prime below it irk, then
kN K&}S = k:;3; this will be used repeatedly below. Now suppose ghatin the kernel ofb s and
satisfies the conditions of Lemma 7, and chof#seot in S as in that lemma. LeB; be another
first degree prime ideal ok, in the ideal class o3 ~! and such thal3®3; = (©) where® is in
K3 for everyv in S; such a3, exists by Dirichlet’s theorem. If we multiplg’ by ¢ = ©.00
then we do not alter the class 6f mod & for anyv below a place irS. Also ¢ is not in the
kernel of®s, becausg is notin Ky’ and thereforgz® 4+ £ ~'y* = C'cz® isinsoluble inKy:; but
my is in the kernel ofbs, becausen, is in Kff’ and also by cubic reciprocity if(;}?’l. (Since
this kind of argument occurs several times, of which this is the first, the referee has suggested
that | should supply the details. We hay&(mg, ©), = 0 where the sum is over all placesf
K; and (mg, ©), = 0 for any v outsideS U {§3,3, } because them, and© are bothv-adic
units. Also(myg, ©), = 0 for v in S because the® is in K3; and(mo, ©)y = 0 becausen, is
in Kgg” by Lemma 7. Hencémg, ©)g, = 0, so thatmy is in K;f’l .) There may be elements in
the kernel ofds, which were not in the kernel ebs; but these will not be D .

By repeating this process a finite number of times, we can remove from the kerdehlof
elements 0D except perhaps those which fail to satisfy the conditions of the lemma. We know
by Condition 1 that if\3 = 0 thenn is not in K*3; so these exceptional elements are all ones for
which we can take\s = 1 — in other words, they are; /as, as/a4, a1as/asa4 andayiay/asas
and their inverses. It appears that no analogous argument will work for such elements, and if they
are to be outside the kernel it can only be because of the insolubility of (&), ifor somew in
S1. This must therefore be imposed as a constraint o'tha Condition 2. For the first curvg
we know thatny = a; /a2 is in the kernel ofb and does not need to be removed; so it is enough
to ensure that we do not have a problem w§th a3 /a4, for if this is not in the kernel nor will
ayas/asaq OF ajag/asas be.

Condition 5. — The equatiom3 X3 + a2 X3 = ajazazasC, X§ is insoluble ink, for some
v in 3;. The same property holds, though not necessarily with the sarfa the equation
a%Xg’ +a3 X3 = a1a2a3a4C’vXS’.

In what follows, we shall always assume that thghave been chosen to satisfy Condition 5
as well as Condition 2. This completes Stage 1.

The object of each step in Stage 2 is to reduce the corank of the bilineaffdomone of the
two Jacobiang’ while not increasing it for the other, until both coranks are reduc@dAs has
already been pointed out, it is enough to work with the restrictiob af W' x W'~ ; and since
each step of Stage 2 will adjoin a pair of conjugate primeS,ta will increase the dimensions
of W'* andW’~ by 1. As at the end of §2, we denote by andVy the left and right kernels
of the restriction of' s to W‘,’;’ x W . To prove that Stage 2 can be completed it is enough to
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show that so long agim V'~ > 0 for one of the two Jacobians we can cho9s® as to decrease
dim V* anddim V~ for that one without increasing them for the other.

Denote temporarily by,; andn, the ranks of the restrictions df s to W’* x W'~ for the
two Jacobians; then the largest pairs of subspaces on which these restrictions are nonsingular
have dimensiona; andn, respectively. To fix ideas, we shall suppose that it is the Jacobian of
the first Eq. (18) which hagim V'~ > 0 and for which we are trying to diministiim V= and
dim V' ~. Our notation is that a step takes us frého S, ; we therefore need to choose our step
in such a way that we can exhibit pairs of subspaceld/6f andW’~, of dimensionn; + 2
for the first equation and, + 1 for the second one, on which the restrictions of the, are
nonsingular. The subspaces we use are given by (26) and (30) respectively; it is not hard to see
that any serious candidates must be of these kinds.

Each step in Stage 2 will consist of multiplyirg by ¢ = v.0y where(v) is a first degree
principal prime ideal ink(. We shall requirey to be inK;g?’ for each3 in S1, which incidentally
ensures thatng is in K;?’ by cubic reciprocity. Further conditions enwill be imposed later,
but they are not relevent to the evaluations which follow and which extend up to (25). Up to that
point, our task is to develop formulae for the valuesigf, .

If B is in S; then replacing” by cC' does not alteiVy, since it only change&’/ Ky by a
linear transformation on the variabfein (4); and it does not alter the spagg:;, by Lemma 2.
Hence the replacement does not alég. If 3 is in S \ S; the effect of the replacement is that
Wy is generated by the class dt instead of that ofA but Zp remains the same. For each such
B, there is an isomorphism from the old to the nBds, given by mapping the class of* to
that of (Ac)™ for eachn; and this induces an isomorphism from the old to the fEgy. Using
these, we can define a natural injectionivVg — W§+ by requiring the image to have trivial
components at all the primes dividirgSincec is in Zg for everyB in S, the actions ofs and
Ts, © ¢ on Wy are identical.

If w] andw’, are inWg5 we need to compare the valuesbg, (ow], pwy) and ¥ s(wi,ws).

The components coming from a prirfigin S; are identical. If3|c the component ofw), at
B is trivial and hence so is the contributiongs, (¢w!, pwy) from P. If Pis in S\ S; then
we defineny, ny as elements d&/(3) by P [|w} andP"* ||ws. The difference between the
contributions aff to ¥, (pw}, pwy) andW¥s(w,ws) is

(s, gwi, dws)yp — (Tswh, wh)p = (Tswh, ¢"Pwh) gy — (rswi, wh)p = (Tswi, ") gy

and sinceP™ = || rsw) this ismypng (11, ¢) wherell is as usual a uniformizing variable fgs.
Here we have used the remark immediately after (15). Thus

(21) le5+ (¢w/17 (rbwé) = qu(wlla wl2) + Z meyng (Ha C)‘»B

where the sum is taken over § in S\ S;. In particular ifcis in Kgg” for every3 in S, then
Vs, (Qwh, pwy) = Vs (wy, ws).
It only remains to evaluate

/ j—

Lwl —ow!) and \IJS+((;5w'+,w7

Us, (W), +ow,¢w'"), s, (0w, +owl,w) . ow!,)
foranyw' " in Wi andw'” in W5, herew’, denotes the element & 5, which is represented
by Ac in W/ and is trivial elsewhere. | claim thats, (w/ + ow!) = c. For v/, + ow, is
represented bylc in W and W, and by 1 inWWy, for each® in S. It is therefore enough

to note thatd is a unit at(y) and(oy) and therefore induces elementsff andZ, ., thatc is a
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unit at3 for each3 in S \ Sy and therefore induces elements#f for such$3, and that is in
D;? for each®3 in Sy and therefore induces elementsaf for such. If for eachP in S we

defineng by P"* ||w’~ then

(22) Us, (w), +owl, ouw' ") = nsg (¢, g

PE(S\S1)
Here we have dropped the terms for whiBhis in S; since each of them vanishes. By a similar
argument

(23) Us, (wl, + ow!, wl, — owl) = (¢, Ac)y — (¢, AC)gy = 2(7, A).

By the Hilbert product formula this is equal Emes(%A)‘ﬁ’ and here we again can drop the
terms with®3 in S; because each of them vanishes. Writifly for 3 and applyingo, this is
also equal to- 3 g, 5(0y, A)g. Hence

(24) Vs, (W, + ow!,wl, —ow! ) = —Zme(s\sl)vqg(A)('y/a’y,H)qg.

Note thatvy (4) = 1 for all but one of the primes i§ \ S1; the exception is the prim@, lying
above they, introduced in the corollary to Lemma 2, for which, (A4) = 2.

Again¥s, (pw'™,w!, —ow!) = (rsw'", Ac), — (rsw'™, Ac),; here we can drop the factor
Aoy in the first Hilbert symbol and the factety in the second, giving(fgw’+,7)7. This last

expression is equal tEmeS(Tsw/Jr,’Y)qg by the reciprocity law. We can again drop the terms
with B in Sy; if we definemsy for in S\ Si by = |w'" and use the remark which follows

(15) then we obtain

Us, (pw' " wl, —owl) =" map (I, 7).

PE(S\S1)

Here again we can writel3 for 3 and applys; remembering thatng = meg becausev' " is
fixed by o, we finally obtain

1+ / A
(25) \I/3+ (¢w 7w’y - Uw’y) - _Z‘BG(S\Sl)mm (H? FY/O”-Y)EB

Note that in each of the three formulae (22), (24) and (25) the terms on the right comin@from
ando3 are equal. In the evaluations of matrix elements later in this section, this will give rise to
a factor2 for terms for which)d andoJ3 are distinct.

For the first curve, for which we are trying to diminisiim V* anddim V' —, letv'" be an
element ofVS+ such thatsv’ ™ is independent ofg and A as an element ak %, and letv’~ be
a nonzero element dfg . After dividing o't by a power ofrglA if necessary, we can assume
that there is a prim&3; in S\ &; at whichov'" is a unit. Because of Stage 1, eachutf and
v'~ has valuation prime to 3 at some primeSn, S;. Let 3. and3_ be such primes, where
if possible we choos8_, andJ3_ to be equal; if this is not possible we recho@gto be3_.
Letw;,...,w; be aset of representativesiifid of a base foiV4 " /V4; by multiplying each
wj first by a power ofrg ! A and then by a power of a representative/of, we can ensure that
the w;" are units at; andP... Letw;,...,w; be a set of representativesig of a base
for Ws ™ /Vg ; by multiplying eachw, by a power of a representative @f , we can similarly
ensure thatthe; are unitsaf3_. LetU* be the subspace Wé* spanned by the images of the
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w_j and similarly forU —; and consider the restriction &fs_ to the subspace (W’jg+ xW's,
given by

(26) (pU* @ {¢v' "} @ (!, + owl}) x (oU™ @ {¢v' "} & {w!, — ol }),

where {w'} for any v’ denotes the subspace Wfg, generated byw’ and¢ is the natural
injection W5 — W§+. For the calculations involving the first curve, we shall require® be
such that(~y,II)g = 0 for all P in S except possibly fofB3, oPB1, P+ and P and that
(II_,~/ovy)p_ = 0 wherell_ is a uniformizing variable fof3_; we shall need to impose

a further condition ony when we consider the second curve. (Similddy andIT; will be
uniformizing variables fof3 . and3; respectively. We do not claim th&t; # o3 nor that

P # B, though there will be some abuse of language if either of these fails.) With the
obvious bases, the matrix of the restrictionlgf, to (26) has the form

Vs(Ut,U7) 0 0
+ - - +
(27) V('™ ,U™) T ('™, ') ('™ wl, — owl)
V(wl, +owl,U™) Y(w), +owl,¢v'") W(w, +ow,w, —ow)

where to save space we have writerfior ¥ s, in the second and third rows. Here we need only
justify the first row. In each term we take, to be the image i/ of somew;". For the first
term we takew), to be the image iV~ of somew; and use (21); thus we need to show that
the sum on the right there vanishes. Suppose firstfhiatS \ S; is not, oP1, P+ or oP;
then by constructiory is in K and K3, so oy is also inKg* and so isc = v.0y, whence
(IT, ¢)s = 0. Butw? is fixed byo and is a unit af3; and3., and hence also at3; ando’;
somsy = 0 if P is one of Py, oP1, B+ or oP.. Hence each term in the sum on the right of
(21) vanishes. For the second term we take= v’ ; now the sum on the right of (21) vanishes
for the same reason as before, ahe(w},w5) = ¥s(w},v'~) vanishes becausé™ isin Vg .
For the third term we use (25), and the same arguments show that again each term in the sum on
the right vanishes. We know théts (U ™+, U ™) is nonsingular, so to prove that the matrix (27) is
nonsingular it is enough to prove the nonsingularity of2he2 matrix in the bottom right hand
corner.

We now split cases. B, = J_ the2 x 2 matrix reduces to

28) ( V(I )y, 0 >
\I/3+ (wﬁy + O-wfw (bvli) e1up, (A) (7/077 Hl)‘ﬁl

for somev prime to3; heres; =1 if Py # 0P ande; = —1 if Py = o*PB1. The evaluation of

the element in the top left-hand corner follows from (21) in much the same way as did that of the
middle element in the top row of (27); we use the fact that = 0 for 3, ando®P;, but now

the valuations of’" andv’~ at‘p., are both prime t@ andv is equal to their product i3, is

fixed by o and to twice their product otherwise. Similarly the zero in the top right-hand corner
comes from (25) in much the same way as the zero in the top right-hand corner of (27); as in the
previous sentencewy = 0 for P, andoP,, but also(Il,,v/ovy)x, = 0 by the construction of

~ and the fact thaf3, = P_. For the element in the bottom right-hand corner we use (24); the
terms coming from3 . ando*B3 ;. vanish for the same reason as in the last sentence, and the value
of ¢; comes from the fact that ifi; = o3, we have one corresponding term on the right of (24)
but otherwise we have two. The matrix (28) is nonsingul&flf_, c). and(y/ov,I1;)y, are

both nonzero.
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If o'~ is aunitatld, thenB_ =P, and the2 x 2 matrix reduces to

29) ( 0 vi(ILy,y/oy)q, )
V3 (C7 Hl)‘:ﬁl E+Up, (A) (’7/077 H+)‘:l3+
for somev,, v, prime to3; heree =1 if Py # P4 ande; = -1 if P4 = 0P Here the

zero in the top left-hand corner comes from (21) by a calculation like that for the corresponding
element in (28); the only difference is that now~ is a unit at®, and B, so the
corresponding terms in (21) vanish. The element in the top right-hand corner comes from (25),
because in contrast with (28) the terms on the right of (25) coming ffomand o3, need
not vanish, though they are equal; heids the valuation of’ ™ at3, or twice it according as
oPB+ AP, or P =P, For the element in the bottom left-hand corner we use (22), where
as usual in the sum on the rigfat IT); vanishes unles® is P, P, Py or P, andngp =0
for P andoP; herev, is the valuation of’~ at*P; or twice it according ag*3; = P, or
o Py # P1. For the element in the bottom right-hand corner (whose value is not important here
but will be needed in (31)) we use (24) much as for (28); but this time it is the terms coming from
%B1 which vanish because nd§; =P _. The matrix (29) will be nonsingular fil,v/o7)p,
and(c,II; )y, are both nonzero. Note that in each case we have also ensured that the value of
Vs, (wl, + ow’,w), — ow.,) is nonzero.

We now turn to the other curvé. Although the function@ s, for the two curves are different,
the values of the left hand sides of (23) for the two curves are the same, because their difference
is

2(y,a1a2/azas)y = Z

In particular¥s, (w), + ow’,,w!, — ow’,) is nonzero for the second curve, by the last remark
in the previous paragraph. We define th,w; andU*+, U~ for the second curve in the same
way as we did for the first. We still denote B%;, B, B_, B, the same primes as for the first
curve; what matters now is thgt,, oo, B- andoPB_ are the only primes i \ S; at which

c is not required to be locally a cube. By dividing the" by appropriate powers ofglA we
can further ensure that each of thg is a unit atj3,, where, is as before that one g8, and
B, which is not equal t§3_. Thus when we use (21) to evaluate @I§+(¢wi+, ¢w; ) the only
terms in the sum on the right which can be nonzero are thoseftonando3_. We can then
require that at most one of the" is a non-unit af3_. Whether3_ is equal to3, or to P,

it will then follow from (25) and(IT_,v/ov)p_ =0 that¥s, (UT,w!, — ow!,) = 0. Hence the
matrix of the restriction oft 5, to

pes: (7,a1a2/asaq)p = 0.

(30) (Ut e {w), +ouwl}) x (U™ & {w), —ouwl})
has the form

1) < Vs, (UT,U") 0 )>

/ / — / / / /
Vs, (W), +ow,,U™) Vs, (w0, + owl,w), —ow,

and this will be nonsingular it s, (U*,U ™) is nonsingular. Buts, (U*,U~) only differs
from Us(UT,U™) in that the elements of one row have been changed by multiples of
(¢,1I-)g_, the multiples being independentpfHence

det (s, (UT,U7)) =det(Us(UT,U7)) +b(c, TT_)gp_

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



910 P. SWINNERTON-DYER

for someb in F3 independent ofy; and there is a nonzero value @f II_ )y which makes
this nonzero. This is the additional condition envhich we noted above that we would need to
impose.

This step will therefore achieve what we want if the conditionsydmposed just after (26)
hold and the matrices (27) and (31) are nonsingular. For this it is enough to ensure that
v lies in K3 for each3 in Sy,
(7, ) =0 for all P in S outsidePy U P_ =P; UP.,
(ITp,v/07) g, IS nonzero,
(II_, c)y_ takes an assigned nonzero value, and
(

II_,v/oy)p_ =0.

Now

(H77/07)‘13 = (H77)‘13 + (UH77)U‘137 (H7C)‘13 = (H77)‘13 - (UH77)U‘13'

Bearing in mind that we cannot haw&3_ = 3_ because’" is a nonunit af3_, these reduce
to conditions on théll, )y for P in S, and by Dirichlet’s theorem they can all be satisfied.
What we have so far proved is that if
(i) the Tate—Safaretigroup of any elliptic curve (4) ovér s finite,
(i) Conditions 1 and 4 hold,
(iif) Condition 2 holds and we can choose tfig to satisfy Condition 5,
then (1) is soluble irk. As was explained in the Introduction, Condition 1 presents no problems
because if it fails (1) is certainly soluble; we must now get rid of Condition 4.

THEOREM 3. — Assume that the Tate—Safagioup of any elliptic curvg4) over any
guadratic extension ofy is finite. If we can choose th€, in Condition2 so that for some
placesvy, v3 (which may be the sajthe first equation

2v3 , 2vy3 3 2v3 | 2vy3 3
(32) a3 X5 + a3 X5 = a1a2a304C, X3, a1 X3 + a5X; = a1a2a304C, X

is insoluble in(ky),, and the second equation is insoluble(i# )., , then(1) is soluble ink.

Proof. —We construct a quadratic extensibe= ko (1/«) with « in ko, such that ifs, satisfies
the conditions of Theorem 3 then eithesatisfies the conditions listed above for the solubility
of (1) or we know independently that (1) is soluble overln the former case it will again
follow that (1) is soluble ovek, and it is well known that this implies solubility ovéy. As
was remarked above, we can assume that Condition 1 holdskovet >, be a finite set of
places ofky which includes the archimedean places, the primes which divide 3 and the other
primes of bad reduction for (1). Chooaein ky so that—3« is in (k)2 for every placev in
Y5, including the archimedean ones, b« is not in ;2. This implies that-3 is a square at
every placey; of k = ko (/) above a place iz, and therefore that every suchsplits in K/ k
whereK = k(w). We retain the”, which we chose for Condition 2 ovép; so the insolubility
of each of Egs. (32) fok follows from the corresponding statement fgy. We can find a set
of generators of the ideal class groupgfwhich are first degree primes; takify to be the
union of these and the places &f which lie above places i;, we satisfy Condition 4. We
have therefore satisfied (i) to (iii) above. Thus (1) is solublg and therefore also ihy. O

6. Proof of Theorems 1 and 2

The condition appearing in Theorem 3, which has already been stated as Condition 5, is not
very demanding. For a finite plagevhich does not dividg, it is easy to give a detailed analysis
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of this condition; ifp|3 the number of cases to be considered would become tedious, so we
restrict the following discussion to places which do not divid&Ve can multiply Eq. (1) by a
power of a uniformizing variable atbefore taking cubes out of thg. Using also symmetry, we
have only the following cases to consider:

() play andas,as,aq arein 0,. We can certainly tak€’y, = a2, in which case the second
Eqg. (32) is insoluble and the first one is insoluble unleg&, is in k;‘?’. If as/a4isin
k;S we could instead také', = a; but we gain nothing by doing so.

(i)) plla, pllaz andas,aq are inoy. For local solubility of the system (17) at least one of
a1/ae andas/as must be ink:;3. If both of them are irk;3 then we can givel, any
value inpoy or oy; but both Egs. (32) are then necessarily soluble. If for examples
isin k;;‘?’ butas /a4 is not, we must tak€’, in oy; then the second Eq. (32) is soluble but
the first is not. Similarly ifas /a4 is in k;?’ buta, /as is not, then we must take, in poy;
and the first Eq. (32) is soluble but the second is not.

(iii) pllai, pllas andaz, a4 are inoy. For local solubility of the system (17), at least one of
a1/a3 andag/a, must be ink3. If both of them are ink;* then both Egs. (32) will be
soluble whenever both Egs. (17) are. But if sayas is in k:;;3 butas /a4 is not, then we
must takeC,, = a1 and neither Eq. (32) is soluble.

(iv) p?||a1, pllaz andaz,a, are ino. For local solubility of the system (1733 /a4 must be
in k;?’ and we must choos€, to bea; or az. Now the first Eq. (32) is soluble, and the
second one is soluble if and onlydf asas is in k:;3.

(v) p?||a1, p|laz andaz, a4 are inoy. For local solubility of the system (1732/a4 must be
in k;* and we must choos€), = a,. Now both Egs. (32) are solubledf ayas is in k;?,
and neither of them is soluble otherwise.

The reader will notice that i is in ¥; and does not divid8 then both Egs. (32) are soluble in

k, if and only if (1) is birationally equivalent to a plane ovigs; compare Proposition 2 of [5].

This is unlikely to be a coincidence, but | have not been able to make serious use of it.
Theorem 1(i) is a special case of Theorem 3. Fopv i p; we can choos&’, = ay to

make the second Eg. (32) insoluble, and a similar argument avithps works for the first

Eqg. (32). Theorem 1(ii) follows from (i) above after permuting the subscripts if necessary; and

Theorem 1(iii) follows similarly from (iii) and (v) above after taking account of the penultimate

sentence in the previous paragraph.

We now turn to the proof of Theorem 2. Chodsas before. We can clearly assume that none

of theb; /b, are ink*?. | claim that after renumbering we can assume that the figld&/v; /bs)
and K ({/b2/bs3) are distinct. For if notK ({/bs/bs) would be the same as each of the three
fields K'({/b;/b;) with 4, j = 1,2,3 andi # j. After interchange ob, andbs if necessary, this
would imply that

by/bs = by /by = by /b3 as elements of k*3;

and nowK (/b /bs) = K (/ba/bs) would imply that eithebs /b5 or b /bs is in k*3.

Hence we can find a primg, of K at which3 and all theb; are units and which splits
in K({/b1/bs) but not in K({/bz2/bs); thus by /b5 is in K;f; but b2 /b5 is not. Now the
corresponding statements are truelfpj wherep, is the prime ink below3,. For each prime
p in k£ which is a prime of bad reduction of (3), choasein &, so that (3) has a solution i,
with X5 = ¢, X;. Let c in k be such that is close to eacl, andpo||(b1 + ¢3bs). If we write
X5 =cX1 in (3) we obtain an equation

(33) (b1 + 2bs) X7 + ba X35 + b3 X5 + b X3 =0
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which is soluble ink by Theorem 1(ii). For iy is a prime ofk at which (3) has good reduction,
the same is true db X3 + b3 X3 + b, X} = 0; hence this equation is solublefip and so is (33).
Since (33) is soluble ik, so is (3); and hence it is also solublefin
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