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A SUBCONVEXITY BOUND FOR HECKEL-FUNCTIONS

BY ÉTIENNE FOUVRY AND HENRYK IWANIEC 1

ABSTRACT. – LetK be the imaginary quadratic fieldQ(
√
−D ) with D a prime number congruent to3

modulo4, and letψ be a Hecke character onK with conductor(
√
−D ). LetL(s,ψ) be the corresponding

HeckeL-function. We prove the upper bound

L(s,ψ) = Oε(|s|
13
8 D

7
16 +ε)

which is valid for everyε > 0, uniformly inD ands with �s= 1
2
. Note that the exponent inD is strictly

less than the exponent1
2

which can be deduced classically from the functional equation forL(s,ψ). It is
the first result of that type for suchL-functions.

 2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – SoitK le corps quadratique imaginaireQ(
√
−D ) avecD un nombre premier congru à3

modulo4, et soitψ un caractère de Hecke surK, de conducteur(
√
−D ). SoitL(s,ψ) la fonctionL de

Hecke correspondante. On montre la relation

L(s,ψ) = Oε(|s|
13
8 D

7
16 +ε)

qui est valable pour toutε > 0, uniformément enD et ens vérifiant�s = 1
2
. Remarquons que l’exposant

deD est inférieur à l’exposant1
2

qui se déduit, de façon classique, de l’équation fonctionnelle deL(s,ψ).
C’est le premier résultat de ce type pour de telles fonctionsL.

 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The L-functions of different kind (after Dirichlet, Riemann, Hecke, Artin and others) are
fascinating subjects of study in contemporary mathematics, because they set up a common
ground where arithmetic, geometry and analysis interact strongly and gracefully. Of course, the
central problem is the Riemann hypothesis, but there are many important questions which can
be addressed and fairly solved without recourse to the Riemann hypothesis. One of these is the
order of magnitude ofL-functions on the critical line in terms of its conductor. If

L(s, f) =
∞∑
1

λf (n)n−s

1 Supported in part by NSF Grant DMS-98-01642, the Ambrose Monell Foundation and the Hansmann Membership
by a grant to the Institute for Advanced Study.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

0012-9593/01/05/ 2001 Éditions scientifiques et médicales Elsevier SAS. All rights reserved



670 É. FOUVRY AND H. IWANIEC

with λf (n) � nε satisfies the functional equation

QsΓ(s + κ)L(s, f) = wQ1−sΓ(1− s + κ)L(1− s, f)

and some other minor conditions, then by the convexity principle one derives

L(s, f)�
(
|s|Q

)α+ε
(1.1)

on�s = 1
2 with exponentα = 1

2 . The Riemann hypothesis would imply this withα = 0, however
even a slight improvement of the convexity exponent is meaningful for applications (the bound
(1.1) withα = 1

2 is just insufficient, see the survey article by J. Friedlander [4]).

The first subconvexity bound can be traced back to H. Weyl whose method [11] of estimating
exponential sums yields

ζ(s) � |s| 16+ε.

This bound corresponds to (1.1) forL(s, f) = ζ(s)2 with α = 1
3 . The next example is the bound

L(s,χ)�D
3
16+ε

for Dirichlet charactersχ(modD) which corresponds to (1.1) forL(s, f) = L(s,χ)2 with
α = 3

8 in theD-aspect. This result is due to D. Burgess [1]. In this profound work Burgess applied
(among some original ideas) the Riemann hypothesis for curves over finite fields. Recently,
B. Conrey and H. Iwaniec [2] got

L(s,χD) �D
1
6+ε

for the real characterχD of conductorD by a completely different method (using the non-
negativity of central values ofL-functions for Maass forms and the Riemann hypothesis for
varieties). For another style ofL-functions W. Duke, J. Friedlander and H. Iwaniec [3] obtained
the bound

L(s, f)�D
1
4−

1
192 +ε,(1.2)

wheref is a holomorphic, primitive cusp form with respect to the groupΓ0(D). By now there is
a large variety of subconvexity bounds (not only forL-functions) many of which are motivated
by important consequences.

In this paper we are interested in breaking the convexity bound barrier for

L(s,ψ) =
∑

0�=a⊂O
ψ(a)(Na)−s,(1.3)

whereO is the ring of integers of an imaginary quadratic fieldK = Q(
√
−D ) andψ is a Hecke

character of weightr � 0 and conductord which is exactly the different ofK (seeSection 2 for
the notation and a brief review of Hecke theory). TheseL-functions correspond to modular forms
onΓ0(D2) with nebentypus characterχχD of modulusD. They satisfy the functional equation

(
D

2π

)s
Γ
(
s +

r

2

)
L(s,ψ) = w(ψ)

(
D

2π

)1−s
Γ
(

1− s +
r

2

)
L(1− s,ψ )(1.4)

from which it follows that

L(s,ψ)� (|s|D)
1
2+ε
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A SUBCONVEXITY BOUND FOR HECKEL-FUNCTIONS 671

(seea direct derivation of a slightly more precise estimate in (6.2)). Our main result is:

THEOREM. – Assume thatD is prime,D ≡ 3 (mod 4) andψ (mod d) is a Hecke character
which on the principal ideals takes values given by(2.19)with χ (modD) a primitive Dirichlet
character. Then for�s = 1

2 we have

L(s,ψ)� |s| 138 D
7
16 +ε(1.5)

with anyε > 0, the implied constant depending only onε andr.

Remark. – The hypothesis thatD is prime is made exclusively for technical simplifications.
Our bound (1.5) is not impressive in thes-aspect. We are focused in getting a sharp result in
theD-aspect, and are satisfied with any bound in terms ofs as long as it is of polynomial type.
The above exponent138 crops from crude estimation of our test function. Had we chosen the
test function more suitably this exponent could have been lowered considerably (though not
without an extra effort). On the other hand the hypothesis thatψ has conductor equal to the
differentd is not entirely made for technical reasons. Without this hypothesis we would arrive
at congruences more involved than (5.11), and the present arguments wouldn’t work without
substantial modifications.

The recent technology for breaking the convexity bounds forL-functions goes through
averaging over natural companions and by an amplification process of the contribution of the
chosenL-function. We do not employ the amplification methods, but rather treat the relevant
character sums like Burgess (with some new features, see the comments after (5.7)). However,
our individual character sums are relatively short so the Burgess’ results do not apply directly.

In the special case of trivial nebentypus (i.e. when (2.19) holds withχ = χD) the old bound
(1.2) is applicable giving (1.5) with exponent47

96 in place of 7
16 in the D-aspect. However,

our Theorem marks the first convexity breaking for automorphicL-functions with non-trivial
nebentypus characters.

2. L-functions for Hecke characters

In this section we review the Hecke theory in the context of an imaginary quadratic field.
Essentially everything that is needed can be found in [5], nevertheless our purpose is to bring
these results here in a more explicit form for easy references.

ThroughoutK = Q(
√
−D ) is the imaginary quadratic field of discriminant−D. We assume

that D is odd, soD is a positive squarefree number≡ 3(mod4). Let O denote the ring of
integers ofK ; it is a freeZ-module generated by1 andω = 1

2 (1 +
√
−D ):

O = Z + ωZ =
{

1
2
(
m + n

√
−D

)
; m,n ∈ Z, m≡ n (mod 2)

}
.

Next, we assume thatD > 3, soO has exactly two units,O∗ = {1,−1}. The different ofK is
the principal ideald =

√
−DO. The real characterχD of conductorD given by

χD(n) =
(
−D

n

)
=

(
n

D

)
(2.1)

is called the field character (that the Kronecker symbol equals to the Legendre symbol follows
from the quadratic reciprocity law). The value ofχD(p) determines the type of factorization
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672 É. FOUVRY AND H. IWANIEC

of p into prime ideals inO; we havep = p2,p,pp with p �= p, if χD(p) = 0,−1,1 respectively.
Moreover, the norm of these ideals isNp = p, p2, p respectively. Hence the zeta function ofK
factors into

ζK(s) =
∑

0�=a⊂O
(Na)−s = ζ(s)L(s,χD).(2.2)

Let H = H(−D) andh = h(−D) denote the ideal class group and the class number ofK .
The celebrated Dirichlet class number formula asserts that

h(−D) = π−1D
1
2L(1, χD).(2.3)

On the other hand we have

D−ε� L(1, χD)� logD.(2.4)

Here the lower bound forL(1, χD) is ineffective (due to C.L. Siegel [10]) while the upper bound
is trivial. Therefore

D
1
2−ε � h(−D)�D

1
2 logD.(2.5)

Every class contains a unique ideala = [a, 1
2 (b +

√
−D )] with a > 0, b2 − 4ac = −D and

(a, b, c) = 1 such thatza = 1
2a (b+

√
−D ) is in the standard fundamental domain of the modular

group; this ideal is called reduced, its norm isNa = a.
The class groupH can be represented as the factor groupI/P , whereI denotes the group

of non-zero fractional idealsab
−1 andP its subgroup of the principal ideals(α) = αO with

α ∈ K∗. The dual groupĤ consists of characters on ideal classes. We shall denote these
characters by the letterξ; there are exactlyh such characters.

Fix m ⊂O a non-zero integral ideal. LetIm ⊂ I be the group of ideals coprime withm and

Pm = {(α), α≡ 1 (mod m)}.(2.6)

The factor groupIm/Pm is finite, it is called the ray class group.
Fix a non-negative integerr such that2 | r if m | 2. A group homomorphismψ : Im → S1

satisfying

ψ((α)) =
(

α

|α|

)r
if α≡ 1 (mod m)(2.7)

is called a Hecke character of modulusm and weightr. In particular, a Hecke character of
modulusm = O and weightr = 0 is a class group character.

We say thatψ (mod m) is induced byψ∗ (mod m∗) if m∗ | m andψ(a) = ψ∗(a) for every
a ∈ Im. The largestm∗ having this property is called the conductor ofψ and the character
ψ∗ (modm∗) is determined byψ uniquely. Thenψ (modm) is called primitive if m is the
conductor ofψ. We extend Hecke charactersψ (mod m) to all fractional ideals by setting

ψ(a) = 0 if (a,m) �= O.(2.8)

To any Hecke characterψ (mod m) we associate theL-function

L(s,ψ) =
∑

0�=a⊂O
ψ(a)(Na)−s =

∏
p

(
1− ψ(p)N(p)−s

)−1
.(2.9)
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PROPOSITION 2.1 (Hecke). –Supposeψ (mod m) is primitive. Then the function

Λ(s,ψ) = (2π)−s(DNm)s/2Γ
(
s +

r

2

)
L(s,ψ)(2.10)

is entire(except for a simple pole ats = 1 if ψ is trivial), bounded in vertical strips and it satisfies
the functional equation

Λ(s,ψ) = w(ψ)Λ(1 − s,ψ ).(2.11)

The complex numberw(ψ) is called the root number. Clearly, (2.11) implies thatw(ψ)w(ψ )
= 1 and|w(ψ)| = 1. Hecke computedw(ψ) in terms of a Gauss sumW (ψ), precisely

w(ψ) = i−rW (ψ)(Nm)−
1
2 .(2.12)

To define the Gauss sumW (ψ) for the characterψ (mod m), we take an integral idealc in the
class ofm−1 such that(c,m) = O socm is principal. Putcmd = (γ) with γ ∈ O (recalld is the
different, and it is a principal ideal). Then

W (ψ) =
∑

α∈c/cm

ψ

(
(α)
c

)(
α/γ

|α/γ|

)−r
e

(
tr

α

γ

)
.(2.13)

This sum does not depend on the choice ofc andγ. If ψ (mod m) is primitive, then|W (ψ)| =
(Nm)

1
2 . If ξ is a class group character, then it follows by (2.13) that

W (ξψ) = ξ(m)W (ψ).(2.14)

Supposem is principal, saym = βO with β ∈ O, β �= 0. Then one can takec = O and
γ = β

√
−D giving

W (ψ) =
∑

α modm

ψ
(
(α)

)( α/γ

|α/γ|

)−r
e

(
tr

α

γ

)
.(2.15)

In particular, ifm = d =
√
−DO, we haveβ =

√
−D, γ = D and (2.15) simplifies to

W (ψ) =
∑

α mod d

ψ
(
(α)

)( α

|α|

)−r
e

(
α + α

γ

)
.

Here all classesα (modd) are represented by rational integers moduloD, so

W (ψ) =
∑

m modD

ψ
(
(m)

)( m

|m|

)−r
e

(
2m
D

)
.(2.16)

The ring inclusionZ ⊂O defines the isomorphismµ :O/d→ Z/DZ (because the orders are
|O/d|= Nd = D = |Z/DZ|) given by:

µ

(
1
2
(
m + n

√
−D

))
≡ m

2
(mod D).(2.17)
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674 É. FOUVRY AND H. IWANIEC

Hence, for any Dirichlet characterχ (mod D) with

χ(−1) = (−1)r,(2.18)

we get Hecke charactersψ(mod d) such that on all integral principal ideals

ψ
(
(α)

)
= χ

(
m

2

)(
α

|α|

)r
,(2.19)

if α = 1
2 (m + n

√
−D ) ∈O. Of course, ifχ (mod D) is primitive as a Dirichlet character then

ψ(mod d) is primitive as a Hecke character. Givenχ (mod D) there are exactlyh(−D) Hecke
characters satisfying (2.19), they are obtained by multiplying a fixedψ(mod d) with the class
group charactersξ. From now on we are only considering these charactersξψ(mod d).

By (2.14) all the charactersξψ have the same Gauss sum

W (ψ) =
∑

m (modD)

χ(m)e
(

2m
D

)
.(2.20)

Hence the root number of the functional equation (2.11) is

w(ψ) = i−rχ(2)τ(χ)D− 1
2 ,(2.21)

whereτ(χ) is the classical Gauss sum for the Dirichlet characterχ (modD). In particular, if
χ = χD, thenr is odd by (2.18),χD(2) = (−1)

D+1
4 andτ(χD) = iD

1
2 giving

w(ψ) = (−1)
r+1
2 + D−3

4 .(2.22)

For any characterψ(mod m) we put

λψ(n) =
∑

Na=n

ψ(a).(2.23)

Note that|λψ(n)|� τ(n). If ψ(mod d) is of the type (2.19) then the Fourier series

fψ(z) =
∞∑
n=1

λψ(n)n
r
2 e(nz)(2.24)

gives a primitive cusp form of weightk = r + 1, levelD2 and the nebentypus characterχχD,
i.e.fψ ∈ Sk(Γ0(D2), χχD). The characterχ = χD is special because the resulting nebentypus is
trivial. This special case is the subject of studies in series of works by D. Rohrlich, F. Rodriguez-
Villegas and D. Zagier. These authors established numerous results about the central values
L(1

2 , ψ) (such as explicit representations in terms of values of theta-series at CM-points, the
non-negativity, criteria for the non-vanishing; see, for example, [6–8]).

In this paper we are mainly interested in estimates forL(s,ψ) on the critical line�s = 1
2

for anyψ(mod d) of type (2.19) with the aim to improve the convexity bound in the conductor
aspect.
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A SUBCONVEXITY BOUND FOR HECKEL-FUNCTIONS 675

3. An approximate functional equation

In this section we develop an exact formula forL(s,ψ) in terms of two rapidly convergent
series. The procedure is quite standard (contour integration of the functional equation) and, when
the tails are estimated, the result is often called an approximate functional equation.

Let G(u) be a holomorphic function in the critical strip−1 ��u � 1, such that

G(0) = 1, G(u) = G(−u),(3.1)

ur+2G(u) � e
π
2 |u|.(3.2)

Let �s = 1
2 . Consider the integral

I(s,ψ) =
1

2πi

∫
(1)

Λ(s + u,ψ)G(u)
du
u

,

where

Λ(s,ψ) =
(

D

2π

)s
Γ
(
s +

r

2

) ∞∑
1

λψ(n)n−s.

Moving the line of integration to the line�u = −1, we pass a simple pole atu = 0 with residue
Λ(s,ψ) and we transform the integral on�u = −1 to that on�u = 1 by applying the functional
equationΛ(s,ψ) = w(ψ)Λ(1 − s,ψ ) and changings into −s. We obtain

Λ(s,ψ) = I(s,ψ) + w(ψ)I(1 − s,ψ ).

Next, we computeI(s,ψ) by termwise integration getting

I(s,ψ) =
∞∑
1

λψ(n)
1

2πi

∫
(1)

(
D

2πn

)s+u
Γ
(
s +

r

2
+ u

)
G(u)

du
u

.

Introducing this into the equation above we obtain:

LEMMA 3.1. – For s on the critical line�s = 1
2 , we have

L(s,ψ) =
∞∑
n=1

λψ(n)n−sVs

(
2πn
D

)
+ w(s,ψ)

∞∑
n=1

λψ(n)ns−1V1−s

(
2πn
D

)
,(3.3)

where

w(s,ψ) = w(ψ)
(

D

2π

)1−2sΓ(1− s + r
2 )

Γ(s + r
2 )

,(3.4)

Vs(y) =
1

2πi

∫
(1)

Γ(s + r
2 + u)

Γ(s + r
2 )

G(u)
u

y−u du(3.5)

andG(u) is any function which satisfies the conditions(3.1)and(3.2).

Note that|w(s,ψ)| = 1 for �s = 1
2 .
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676 É. FOUVRY AND H. IWANIEC

4. Properties of the test function Vs(y)

In applications of Lemma 3.1 we need to control the growth ofVs(y) and its derivatives. To
this end we requireG(u) to be holomorphic in the strip−1 � �u � 1, such that

u3G(u) � e−
π
2 |u|.(4.1)

For example we can chooseG(u) = (cos πu3 )−2.

LEMMA 4.1. – LetVs(y) be defined by(3.5)with G(u) satisfying(3.1)and (4.1) in the strip
−1 � �u � 1. Then, fors with �s = 1

2 , we have

yνV (ν)
s (y) �

(
1 +

y

|s|

)−1

,(4.2)

for ν = 0,1,2, with the implied constant depending only onr.

Proof. –In the integral (3.5) we have

Γ(s + r
2 + u)

Γ(s + r
2 )

� (|s|+ |u|) r
2 +1

|s| r
2

e−
π
2 |	(s+u)|+ π

2 |	s| � |s| eπ
2 |u|,

by Stirling’s formula. This yields

yνV (ν)
s (y)� |s|

y

∫
(1)

e
π
2 |u|∣∣G(u)uν−1

∣∣|du| � |s|
y

.

Moving the integration to the line�u = −α with 0 < α < 1
2 , we get in the same way that

Vs(y) = 1 + O((y/|s|)α) andyνV (ν)
s (y) � (y/|s|)α for ν = 1, 2, where the first term inVs(y)

comes from the simple pole atu = 0. Combining the above estimates we complete the proof of
Lemma 4.1. ✷

Remark. – Assuming the condition (4.1) in a wider strip−α � �u � α one getsVs(y) �
(1 + y/|s|)−α. Hence the series (3.3) can be reduced ton � (|s|D)1+ε with ε = 2α−1, the error
term beingO(1/|s|D).

5. Short character sums

We shall estimate

Sψ(X) =
∑

a

ψ(a)g
(

Na

X

)
,

whereg(y) is a smooth function, supported in[1,2], such that∣∣g(ν)(y)
∣∣ � P ν , 0 � ν � 2,(5.1)

for someP � 1. The trivial bound is

Sψ(X)�
∑

a

∣∣∣∣g
(

Na

X

)∣∣∣∣ � ∑
n

τ(n)
∣∣∣∣g

(
n

X

)∣∣∣∣ �X logX,
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where the constant is absolute. Our goal here is to improve on this, forX satisfying

D
1
2 <X <D

3
2 .

Let A = {a} be the set of representatives of integral ideal classes which consist of idealsa

such that

1
4

√
D

3
< Na �

√
D

3
.(5.2)

These representatives can be constructed out of the reduced idealsa by multiplying by 2n, to
ensure that the norm is in the desired interval. Note that everya ∈A is prime toD becauseD is
prime.

We splitSψ(X) into classes to get

Sψ(X) =
1
2

∑
a∈A

ψ(a)−1
∑

α≡0 moda

ψ
(
(α)

)
g

(
|α|2
XNa

)
,(5.3)

where the factor12 reflects the unit group. Putα = 1
2 (m + n

√
−D ) with m ≡ n (mod2).

Inserting (2.19) into (5.3), we get

Sψ(X) =
1
2

∑
a∈A

ψ(a)−1
∑

(m,n) �=(0,0)

m+n
√
−D≡0 mod2a

χ(2m)
(

m + n
√
−D

|m + n
√
−D|

)r
g

(
m2 + Dn2

4XNa

)
.(5.4)

It is now the moment to eliminate from the right side of (5.4) the contribution of then = 0.
This contribution (of rational ideals) is bounded by

∑
a∈A

∣∣{0 <m< 3X
1
2 D

1
4 ; Na |m2

}∣∣ �X
1
2 D

1
4+ε.

Hence we obtain

Sψ(X) =
1
2
S∗
ψ(X) + O

(
X

1
2 D

1
4+ε

)
,(5.5)

whereS∗
ψ(X) is given by (5.4) with the condition(m,n) �= (0,0) replaced byn �= 0. We simplify

the notations by settinga = Na andh(z) = (z/|z|)rg(|z|2), and we see that|S∗
ψ(X)|� T , where

T =
∑
a∈A

∣∣∣∣ ∑
n�=0

m+n
√
−D≡0 mod2a

χ(m)h
(
m + n

√
−D

2
√
Xa

)∣∣∣∣.(5.6)

By splitting into classes ofm modulo2a, we get

T �
∑
a∈A

∑
n�=0

∑
−a<α�a

α+n
√
−D≡0 mod2a

∣∣∣∣∑
�

χ(2a2+ α)h
(

2a2+ α+ n
√
−D

2
√
Xa

)∣∣∣∣.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



678 É. FOUVRY AND H. IWANIEC

We shall separate2 from the other variables by using the Fourier transform ofh(x+ iy) in thex
variable. We write

h(x+ iy) =

+∞∫
−∞

f(v, y)e(vx)dv,

where after Fourier inversion

f(v, y) =

+∞∫
−∞

h(x + iy)e(−vx)dx�
(

1 +
|v|
P

)−2

,

by (5.1) and partial integration. Hence, we get the inequality

T �
+∞∫

−∞

∑
a∈A

∑
0<|n|�N

∑
−a<α�a

α+n
√
−D≡0 mod2a

√
X/a

∣∣f(v
√

X/a, y)
∣∣∣∣∣∣ ∑
|�|�L

χ(2a2+ α)e(v2)
∣∣∣∣dv,

with y = n
√

D/4Xa and L = N = 4D− 1
4 X

1
2 (the above restrictions of the ranges of

summations come from the support ofg(z), note also that4 � L = N � 4
√
D). Hence, for

some realv, we have

T � P
∑
a∈A

∑
0<|n|�N

∑
−a<α�a

α+n
√
−D≡0 mod2a

∣∣∣∣ ∑
|�|�L

χ(2a2+ α)e(v2)
∣∣∣∣.(5.7)

The innermost sum is a short character sum of length2L for the Dirichlet character
χ (mod D). We need a non-trivial bound for it. Of course, the Riemann hypothesis forL(s,χ)
would help, however we go for unconditional estimates. The difficulty is transparent at the critical
value ofX = D, givingL = 4D

1
4 , which lies below the range of the famous Burgess’ result [1].

We shall take advantage of having extra points in the outer summation which enables us to apply
the Hölder inequality, without creating a shift in the2 variable “à la Burgess”.

Forx moduloD, let

ν(x) =
∣∣{(a, n,α); a ∈A, 0 < |n|� N, −a < α � a,

α+ n
√
−D≡ 0 mod 2a, α≡ 2ax mod D

}∣∣.(5.8)

With this notation, (5.7) becomes

T � P
∑

x modD

ν(x)
∣∣∣∣ ∑
|�|�L

χ(2 + x)e(v2)
∣∣∣∣.

Hölder’s inequality impliesT � PR
1
2
1 R

1
4
2 V

1
4 , with

R1 =
∑

x modD

ν(x), R2 =
∑

x modD

ν2(x),
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and

V =
∑

x modD

∣∣∣∣ ∑
|�|�L

χ(2 + x)e(v2)
∣∣∣∣4.

LEMMA 5.1. – We haveR1 � h(−D)N .

The proof is easy, it reduces to direct counting of elements ofA and then’s. Next we prove:

LEMMA 5.2. – For 2L<D we haveV �DL2 + D
1
2L4.

Proof. –We develop the fourth power into

V �
∑

|�1|�L

∑
|�2|�L

∑
|�3|�L

∑
|�4|�L

∣∣∣∣ ∑
x modD

χ
(
(x + 21)(x + 22)

)
χ
(
(x+ 23)(x + 24)

)∣∣∣∣.
By Weil’s bound for characters sums ([9], Theorem 2B′, p. 43, for instance) we know that the
above sum overx mod D is O(D

1
2 ), provided the rational function

(x + 21)(x + 22)/(x+ 23)(x + 24)

is not thedth power of a rational function, whered is the order ofχ. If this is adth power, then
d = 2 and the linear factors are pairwise equal. The number of such cases is bounded by12L2,
while the complete sum overx (mod D) is trivially estimated byD. ✷

The treatment ofR2 does not require cancellation of terms; nevertheless, it is more delicate
than the treatment ofV . The problem reduces to counting the number of solutions of a system of
quadratic congruences in which some variables appear also as moduli.

LEMMA 5.3. – For every positiveε, we haveR2 �N(N + D
1
2 )(DN)ε.

Proof. –Clearly,R2 is bounded by the number of solutions to the system (see(5.8)):




α2
1 + Dn2

1 ≡ 0 (mod a1),
α2

2 + Dn2
2 ≡ 0 (mod a2),

α1a2 ≡ α2a1 (mod D),
(5.9)

Since we havea1, a2 in the segment (5.2) and|α1|� a1, |α2|� a2, the last congruence reduces
to the equationα1a2 = α2a1. Puttingd = (a1, a2), a1 = da∗1, a2 = da∗2, we find that the solutions
of this equation are

α1 = ta∗1, α2 = ta∗2.(5.10)

Note that|t|� d �
√
D. Introducing (5.10) into (5.9), we derive the system

{
α2

1 + Dn2
1 ≡ 0 (mod d),

α2
2 + Dn2

2 ≡ 0 (mod d),
(5.11)

and thata∗1|n2
1, a∗2|n2

2. We writea∗1 = b1c
2
1, a∗2 = b2c

2
2, with b1 andb2 squarefree. Recall that

(a∗1, a
∗
2) = 1 so(b1c1, b2c2) = 1. Moreover,

n1 = b1c121, n2 = b2c222,(5.12)
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with 0 < |21| � N/b1c1, 0 < |22|� N/b2c2. Now (5.11) becomes

{
(b1c1)2(c21t

2 +D221) ≡ 0 (mod d),
(b2c2)2(c22t2 +D222) ≡ 0 (mod d).

(5.13)

This implies

(b1b2c1c2)2
(
c212

2
2 − c222

2
1

)
≡ 0 (mod d).(5.14)

From now on, we consider two cases.

Case 1. –

c212
2
2 �= c222

2
1.(5.15)

We start counting the solutions to (5.13) by fixingn1, n2. For givenn1 andn2, the numbers
b1, c1, 21, b2, c2, 22 are restricted to the small sets of divisors ofn1 and n2. Moreover,
for given b1, c1, 21, b2, c2, 22, the numberd is restricted to the small set of divisors of
(b1b2c1c2)2(c21222 − c222

2
1). Therefore, it remains to estimate the number of solutions of (5.13)

in t (mod d). We writed = d1d2 with (d1, d2) = 1 and(d1, b1c1) = (d2, b2c2) = 1. Then (5.13)
implies {

t2 + D′221 ≡ 0 (mod d1),
t2 + D′′222 ≡ 0 (mod d2),

whereD′ ≡ Dc1
2 (mod d1) andD′′ ≡ Dc2

2 (mod d2). This system splits into two indepen-
dent congruences

t21 + D′221 ≡ 0 (mod d1)

t22 + D′′222 ≡ 0 (mod d2).

Hence we get the inequality|{t (mod d)}|� |{t1 (mod d1)}| |{t2 (mod d2)}|.

LEMMA 5.4. – The number of solutions to

x2 ≡A (mod d)

in x mod d is bounded byτ(d)(d,A)
1
2 .

By Lemma 5.4 we get|{t1 (modd1)}| � τ(d1)(d1, 2
2
1)

1
2 . We have(d1, 2

2
1) | (d1, n

2
1) and

(d1, 2
2
1) | (d1, n

2
2) because of (5.14). Hence(d1, 2

2
1) | (d1, n

2
1, n

2
2). Therefore,

|{t1 (mod d1)}| � τ(d1)
(
d1, n

2
1, n

2
2

) 1
2 .

Multiplying this by the corresponding inequality for|{t2 (mod d2)}| we get

|{t (mod d)}|� τ(d)(n1, n2).

Summing overn1 andn2, we conclude that the number of solutions to (5.9) in Case 1 is bounded
by O(N2(DN)ε).

Case 2. –

c212
2
2 = c222

2
1.
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Since(c1, c2) = 1, we have21 = λc1, 22 = ±λc2 with

0 < |λ| � min
(

N

b1c21
,

N

b2c22

)
� N

c1c2
√
b1b2

.

In this case, (5.13) yields {
b21c

4
1(t

2 + Dλ2)≡ 0 (mod d),
b22c

4
2(t

2 + Dλ2)≡ 0 (mod d).

Since (b1c1, b2c2) = 1, this implies t2 + Dλ2 ≡ 0 (modd). By Lemma 5.4 the number of
solutions int (mod d), is bounded byτ(d)(d,λ2)

1
2 � τ(d)(d,λ). Note that

0 < |d| � min
(√

D

b1c21
,

√
D

b2c22

)
�

√
D

c1c2
√
b1b2

.

Finally, summing overb1, b2, c1, c2, d, λ we find that the number of solutions to (5.9) in Case 2
is bounded by ∑

b1

∑
b2

∑
c1

∑
c2

∑
d

∑
λ

τ(d)(d,λ) �ND
1
2 (DN)ε.

Adding the results of both cases, we complete the proof of Lemma 5.3.✷
Putting together Lemmas 5.1, 5.2 and 5.3 we derive under the assumptionD

1
2 < X < D

3
2 ,

that

Sψ(X)� P
(
h(−D)N

) 1
2
(
N

(
N +D

1
2
)) 1

4
(
DL2 + D

1
2L4

) 1
4Dε + X

1
2D

1
4 +ε.

Using now the definition ofL andN , and the classical upper bound for the class number (2.5),
we have

Sψ(X) � PD
1
8X

1
4
(
X

1
2D− 1

4
(
X

1
2D− 1

4 +D
1
2
)) 1

4
(
D

1
2 X + D− 1

2X2
) 1

4Dε +X
1
2D

1
4+ε.

Hence we conclude:

PROPOSITION 5.5. – Suppose thatD is prime,D≡ 3 (mod 4) and thatD
1
2 <X <D

3
2 . Let

g(y) be a smooth function supported in[1,2] which satisfies(5.1). Then we have

Sψ(X) � P
(
D

5
16X

5
8 + D

1
16 X

7
8
)
Dε.

Remark. – With no condition onX , we claim that

Sψ(X)� P
(
D

5
16 X

5
8 +D

1
16 X

7
8 + D− 3

16 X
9
8
)
Dε(5.16)

because this bound is trivial if the conditions of Proposition 5.5 are not satisfied.

6. Estimating L(s,ψ)

Lemma 3.1 reduces the problem to the estimation of

∇(s,ψ) =
∞∑
1

λψ(n)n−sVs

(
2πn
D

)
(6.1)
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becauseL(s,ψ) = ∇(s,ψ)+w(s,ψ)∇(1−s,ψ ), with |w(s,ψ)| = 1 on�s = 1
2 . Trivially, using

Vs(y)� (1 + y/|s|)−1 (see(4.2)), we get

∇(s,ψ)�
∞∑
1

τ(n)√
n

(
1 +

n

|s|D

)−1

� (|s|D)
1
2 log(|s|D).

Hence

L(s,ψ)� (|s|D)
1
2 log(|s|D).(6.2)

We shall improve on this trivial bound (which is the convexity bound) by applying
Proposition 5.5. This requires breaking up∇(s,ψ) into partial sums with smooth cut-off
functions supported in dyadic segments. We do so by applying a smooth partition of unity

∞∑
�=−∞

Q
(
2

�
2 t

)
≡ 1, if t > 0,

whereQ(t) is a smooth function supported in[1,2]. Hence∇(s,ψ) =
∑
�∇

(
s,ψ; 2

�
2
)
, where

∇(s,ψ;X) =
∞∑
n=1

λψ(n)n−sVs

(
2πn
D

)
Q

(
n

X

)
.

This is a sum of typeSψ(X) with

g(y) = (yX)−sVs

(
2πX
D

y

)
Q(y).

Using Lemma 4.1 we check that

g(ν)(y)� |s|νX− 1
2

(
1 +

X

|s|D

)−1

for ν = 0, 1, 2. By (5.16) we get

∇(s,ψ;X)�Dε
(
D

5
16 X

5
8 + D

1
16X

7
8 + D− 3

16X
9
8
)
|s|X− 1

2

(
1 +

X

|s|D

)−1

.

Summing overX = 2
�
2 � 1

2 (the worst value beingX � |s|D) we arrive at

∇(s,ψ) � |s| 138 D
7
16+ε.

This completes the proof of theorem.✷
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