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A SUBCONVEXITY BOUND FOR HECKEL-FUNCTIONS

By ETIENNE FOUVRY AND HENRYK IWANIEC !

ABSTRACT. — Let K be the imaginary quadratic fiefd(/—D ) with D a prime number congruent 8o
modulo4, and lety) be a Hecke character di with conductor(/—D ). Let L(s, ) be the corresponding
HeckeL-function. We prove the upper bound

L(s,9) = O(|s| ¥ DT %)

which is valid for everye > 0, uniformly in D ands with ®s = % Note that the exponent iy is strictly
less than the exponerétwhich can be deduced classically from the functional equatiorL{erv). It is
the first result of that type for such-functions.
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RESUME. — Soit K le corps quadratique imaginaif@(v/—D ) avecD un nombre premier congru®
modulo4, et soity un caractére de Hecke shf, de conducteufy/—D ). Soit L(s, 1) la fonction L de
Hecke correspondante. On montre la relation

L(s,%) = O(|s| ¥ DT %)

qui est valable pour tout > 0, uniformément erD et ens vérifiantRs = % Remarquons que I'exposant
de D est inférieur & I'exposang qui se déduit, de fagon classique, de I'équation fonctionnelld(dey)).
C’est le premier résultat de ce type pour de telles fonctions

0 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

The L-functions of different kind (after Dirichlet, Riemann, Hecke, Artin and others) are
fascinating subjects of study in contemporary mathematics, because they set up a common
ground where arithmetic, geometry and analysis interact strongly and gracefully. Of course, the
central problem is the Riemann hypothesis, but there are many important questions which can
be addressed and fairly solved without recourse to the Riemann hypothesis. One of these is the
order of magnitude of -functions on the critical line in terms of its conductor. If

L(s, /)= A(nn~*
1
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670 E. FOUVRY AND H. IWANIEC

with A¢(n) < n® satisfies the functional equation
QT (s+r)L(s, f) =wQ " *T(1 — s+ k)L(1 — s, f)

and some other minor conditions, then by the convexity principle one derives

(1.1) L(s, f) < (1s|Q)*"*

ons = % with exponenty = % The Riemann hypothesis would imply this with= 0, however
even a slight improvement of the convexity exponent is meaningful for applications (the bound
(1.2) witha = % is just insufficient, see the survey article by J. Friedlander [4]).

The first subconvexity bound can be traced back to H. Weyl whose method [11] of estimating
exponential sums yields
C(s) < Js[s+e.
This bound corresponds to (1.1) fbts, f) = ((s)? with a = % The next example is the bound

L(s,x) < Dis**

for Dirichlet charactersy(mod D) which corresponds to (1.1) fok(s, f) = L(s,x)? with

a= % in the D-aspect. This resultis due to D. Burgess [1]. In this profound work Burgess applied
(among some original ideas) the Riemann hypothesis for curves over finite fields. Recently,
B. Conrey and H. Iwaniec [2] got

L(s,xp) < Dst¢

for the real charactexp of conductorD by a completely different method (using the non-
negativity of central values of-functions for Maass forms and the Riemann hypothesis for
varieties). For another style @f-functions W. Duke, J. Friedlander and H. lwaniec [3] obtained
the bound

(1.2) L(s, f) < Di~ 2t

wheref is a holomorphic, primitive cusp form with respect to the gréypD). By now there is
a large variety of subconvexity bounds (not only foffunctions) many of which are motivated
by important consequences.

In this paper we are interested in breaking the convexity bound barrier for

(1.3) L(s,)= Y (a)(Na)™*,

0#aCO

whereQ is the ring of integers of an imaginary quadratic fi&ld= Q(v/—D ) ands is a Hecke
character of weight > 0 and conductod which is exactly the different oK (seeSection 2 for
the notation and a brief review of Hecke theory). Thésinctions correspond to modular forms
onTy(D?) with nebentypus charactgryp of modulusD. They satisfy the functional equation

(1.4) (%)Sr(s + g>L(s,¢) — w(®) (%)1_Sr(1 s+ g>L(1 —5,9)

from which it follows that
L(s,v) < (|s| D)3+
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A SUBCONVEXITY BOUND FOR HECKEL-FUNCTIONS 671

(seea direct derivation of a slightly more precise estimate in (6.2)). Our main result is:

THEOREM. —Assume thaD is prime,D = 3 (mod 4) and+ (mod ?) is a Hecke character
which on the principal ideals takes values given®yl9)with x (mod D) a primitive Dirichlet
character. Then foits = % we have

(1.5) L(s, ) < |s| ¥ Dot

with anye > 0, the implied constant depending only ©oandr.

Remark— The hypothesis thaD is prime is made exclusively for technical simplifications.
Our bound (1.5) is not impressive in tkeaspect. We are focused in getting a sharp result in
the D-aspect, and are satisfied with any bound in termsad long as it is of polynomial type.

The above exponerﬂg§ crops from crude estimation of our test function. Had we chosen the
test function more suitably this exponent could have been lowered considerably (though not
without an extra effort). On the other hand the hypothesis th&tas conductor equal to the
differentd is not entirely made for technical reasons. Without this hypothesis we would arrive
at congruences more involved than (5.11), and the present arguments wouldn’t work without
substantial modifications.

The recent technology for breaking the convexity bounds Kefunctions goes through
averaging over natural companions and by an amplification process of the contribution of the
chosenL-function. We do not employ the amplification methods, but rather treat the relevant
character sums like Burgess (with some new features, see the comments after (5.7)). However,
our individual character sums are relatively short so the Burgess’ results do not apply directly.

In the special case of trivial nebentypus (i.e. when (2.19) holds yithy p) the old bound
(1.2) is applicable giving (1.5) with expone@g in place of% in the D-aspect. However,
our Theorem marks the first convexity breaking for automorghitinctions with non-trivial
nebentypus characters.

2. L-functionsfor Hecke characters

In this section we review the Hecke theory in the context of an imaginary quadratic field.
Essentially everything that is needed can be found in [5], nevertheless our purpose is to bring
these results here in a more explicit form for easy references.

ThroughoutX’ = Q(v/—D) is the imaginary quadratic field of discriminantD. We assume
that D is odd, soD is a positive squarefree number3(mod4). Let O denote the ring of
integers ofK’; it is a freeZ-module generated byandw = (1 ++/=D):

1
(’):Z—&-wZ:{E(m—l—n\/—D); m,n € 7, mEn(modZ)}.

Next, we assume thdD > 3, soO has exactly two unitsD* = {1, —1}. The different ofK is
the principal ideab = +/— D O. The real charactey of conductorD given by

(2.1) wm=(=2)=(5)

is called the field character (that the Kronecker symbol equals to the Legendre symbol follows
from the quadratic reciprocity law). The value 9f,(p) determines the type of factorization
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672 E. FOUVRY AND H. IWANIEC

of p into prime ideals inD; we havep = p2,p, pp with p # p, if xp(p) =0, —1, 1 respectively.
Moreover, the norm of these idealsig = p, p?, p respectively. Hence the zeta functiongf
factors into

(2.2) Ck(s)= Y (Na)=* =((s)L(s, xD)-
0#£aCO
Let H = H(—D) andh = h(—D) denote the ideal class group and the class numbéf.of
The celebrated Dirichlet class number formula asserts that

(2.3) h—D)=n"'"D3L(1,xp).

On the other hand we have
(2.4) D¢ < L(1,xp) < log D.

Here the lower bound fak(1, xp) is ineffective (due to C.L. Siegel [10]) while the upper bound
is trivial. Therefore

(2.5) D2 ¢ < h(—D) < D7 log D.

Every class contains a unique ideak [a, (b + v/—D)] with a > 0, b* — 4ac = —D and
(a,b,c) =1 suchthat, = 5~ (b++/—D) is in the standard fundamental domain of the modular
group; this ideal is called reduced, its nornmNis = a.

The class groug{ can be represented as the factor grdup’, wherel denotes the group
of non-zero fractional idealsb—" and P its subgroup of the principal idealsy) = a© with
a € K*. The dual groupﬁ consists of characters on ideal classes. We shall denote these
characters by the letter there are exactly such characters.

Fix m C O a non-zero integral ideal. Lét, C I be the group of ideals coprime with and

(2.6) Pn={(a), «=1 (modm)}.

The factor grougdy, / P, is finite, it is called the ray class group.
Fix a non-negative integer such that2 | r if m | 2. A group homomorphismy: I, — S!
satisfying

a) if =1 (modm)

@7) (e = (
is called a Hecke character of modulwsand weightr. In particular, a Hecke character of
modulusm = O and weight- = 0 is a class group character.

We say that) (modm) is induced byy* (mod m*) if m* | m and(a) = ¢*(a) for every
a € In,. The largestn* having this property is called the conductor ®fand the character
¥* (modm*) is determined by uniquely. Theny (modm) is called primitive ifm is the
conductor o). We extend Hecke charactefs mod m) to all fractional ideals by setting

|

(2.8) (@)=0 if (a,m) 0.

To any Hecke character (mod m) we associate thé-function
-1

(2.9) L(s,¥)= Y ¢(a)Na)~* =] (1 —vpN(p) ™)

0#aCO p
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A SUBCONVEXITY BOUND FOR HECKEL-FUNCTIONS 673

PROPOSITION 2.1 (Hecke). —Suppose) (mod m) is primitive. Then the function

(2.10) A(s,) = (27)~*(DNm)*/T <s + g) L(s, 1)

is entire(except for a simple pole at= 1 if ¢ is trivial), bounded in vertical strips and it satisfies
the functional equation

(2.11) A(s, ) =w(W)A(1 — s,7).

The complex numbew(v)) is called the root number. Clearly, (2.11) implies thdt))w (1))
=1 and|w(y)| = 1. Hecke computed(¢)) in terms of a Gauss suli (), precisely

(2.12) w(t) =i""W()(Nm)~2.
To define the Gauss suli (¢) for the character) (mod m), we take an integral idealin the

class ofm~1! such thatc,m) = O socem is principal. Putmd = () with v € O (recallv is the
different, and it is a principal ideal). Then

@13 aecz/m”’( NG o(e3)

This sum does not depend on the choice ahd~. If ¢ (mod m) is primitive, then|IW (v)| =
(Nm)%. If £ is a class group character, then it follows by (2.13) that

(2.14) W(§y) = &(m)W ().

Supposem is principal, saym = SO with g € O, 8 # 0. Then one can take = O and
~ = Bv/—D giving

(2.15) = Y w(( (O‘/V> (m«g).

a modm |O[/FY| v

In particular, ifm =9 =+/—D O, we have3 = /—D, v = D and (2.15) simplifies to

W= 3 zb((a))(ﬁ)_re(“t@).

Here all classea (modd) are represented by rational integers modillcso

- S 5)

m mod D

The ring inclusiorZ C O defines the isomorphism: O /o — Z/DZ (because the orders are
|O/o| =No =D =|Z/DZ|) given by:

(2.17) (2(m+n\/—)> 2(modD)
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674 E. FOUVRY AND H. IWANIEC
Hence, for any Dirichlet charactgr(mod D) with
(2.18) X(=1)=(-1)",

we get Hecke characterg mod 9) such that on all integral principal ideals

219 sl@) = (2) ()

if «=3(m+nv—D) e 0. Of course, ify (mod D) is primitive as a Dirichlet character then
¥ (mod 9) is primitive as a Hecke character. Givgr(mod D) there are exactlji(—D) Hecke
characters satisfying (2.19), they are obtained by multiplying a fix@dod ) with the class
group characters. From now on we are only considering these charagte(snod ?).

By (2.14) all the characteig) have the same Gauss sum

(2.20) W= Y xme(%),

m (mod D)
Hence the root number of the functional equation (2.11) is
(2.21) w(y) =i"X(2)r(x)D"?,

wherer(x) is the classical Gauss sum for the Dirichlet charagtémod D). In particular, if
X = Xp. thenr is odd by (2.18)xp(2) = (—1)“F andr(xp) =iD? giving

(2.22) wy)=(~1)F
For any charactep(mod m) we put
(2.23) Ap(n) =Y ¥(a).
Na=n

Note that| Ay (n)| < 7(n). If ¥(mod d) is of the type (2.19) then the Fourier series
(2.24) fu(z) = Z Ay (n)nZe(nz)

gives a primitive cusp form of weighit = r + 1, level D? and the nebentypus characjeyp,
i.e. fy € Sk(To(D?), xxp). The charactey = x p is special because the resulting nebentypus is
trivial. This special case is the subject of studies in series of works by D. Rohrlich, F. Rodriguez-
Villegas and D. Zagier. These authors established numerous results about the central values
L(%,;{;) (such as explicit representations in terms of values of theta-series at CM-points, the
non-negativity, criteria for the non-vanishing; see, for example, [6-8]).

In this paper we are mainly interested in estimatesifos, ) on the critical linefs = %
for any)(mod ?) of type (2.19) with the aim to improve the convexity bound in the conductor

aspect.
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A SUBCONVEXITY BOUND FOR HECKEL-FUNCTIONS 675

3. An approximate functional equation

In this section we develop an exact formula fofs, ) in terms of two rapidly convergent
series. The procedure is quite standard (contour integration of the functional equation) and, when
the tails are estimated, the result is often called an approximate functional equation.

Let G(u) be a holomorphic function in the critical stripl < ®u < 1, such that

(3.1) G0)=1, Gu)=G(—u),

(3.2) uT2G () < el
Let Rs = 1. Consider the integral

1 du
I5.0) = 5 [ Als+u0)G@
(1)

where

As, ) = (%)Sr(s + g) ij:w(n)n%

Moving the line of integration to the lin®u = —1, we pass a simple pole at= 0 with residue
A(s,v) and we transform the integral gt = —1 to that onftu = 1 by applying the functional
equationA(s, ) = w(y¥)A(1 — s, ) and changing into —s. We obtain

Next, we computd (s, ) by termwise integration getting
I(s,4) —iA (n)i/ DA T e ™
T oni | \2mn 2 u
(1)
Introducing this into the equation above we obtain:

LEMMA 3.1.-— For s on the critical line)ts = % we have

2mn

63)  Lisw) —§A¢<n>n-5v3 (%) +w<s,w>gxg<n>ns-lvls (%)

where
1-2s F _ T
(3.4) w(s, ) _w(;[;)(%) %’
2
(3.5) Vily) = % / F(lf(l_ i ;u) G~ g
2

andG(u) is any function which satisfies the conditiqsl)and (3.2).
Note thatjw(s, )| =1 for Rs = 1.
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676 E. FOUVRY AND H. IWANIEC

4. Propertiesof thetest function V(y)

In applications of Lemma 3.1 we need to control the growtf¥dfy) and its derivatives. To
this end we requiré;(u) to be holomorphic in the strip 1 < ®u < 1, such that

(4.1) uwG(u) < e U,

For example we can choo&u) = (cos ) 2.

LEMMA 4.1.— LetV(y) be defined by3.5)with G(u) satisfying(3.1)and (4.1)in the strip
—1< Ru < 1. Then, fors with Rs = £, we have

-1

42) v < (14 4)

for v =0, 1, 2, with the implied constant depending onlysan
Proof. —In the integral (3.5) we have

Pls+5+w) _ (Is|+up2*
[(s+3) EE

e~ IS+ 318l |5 31U
by Stirling’s formula. This yields

vy ) I8l [ zlul v ls]

YV (y) < " e? "G (u)u" " |du| < n

(€]

Moving the integration to the lin&ku = —a with 0 < a < % we get in the same way that

Vi(y) =1+ O((y/|s)*) andy” Vi (y) < (y/|s])* for v = 1, 2, where the first term iV, (y)
comes from the simple pole at= 0. Combining the above estimates we complete the proof of
Lemma4.1l. O

Remark— Assuming the condition (4.1) in a wider stripa < Ru < a one getsV(y) <
(1+4y/|s|)~“. Hence the series (3.3) can be reduced o (|s| D)+ with e = 2o~ 1, the error
term beingO(1/|s|D).

5. Short character sums

We shall estimate
Na
=3 (e (7)
a
whereg(y) is a smooth function, supported|ih, 2], such that
(5.1) 9 (y)| <P’ 0<v<e,

for someP > 1. The trivial bound is

(3|« S

< >’<<XlogX
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A SUBCONVEXITY BOUND FOR HECKEL-FUNCTIONS 677

where the constant is absolute. Our goal here is to improve on thi&, fatisfying
D3 <X < D3,

Let A = {a} be the set of representatives of integral ideal classes which consist of ideals
such that

1 /D D
5.2 P Nag /2
(5.2) V3 =hesyy

These representatives can be constructed out of the reduced ddealisiultiplying by 2", to
ensure that the norm is in the desired interval. Note that everyl is prime toD becauséd) is
prime.

We split.Sy (X) into classes to get

a 2
53) 5000 =5 X v@ ¥ wl@)e( )

acA a=0 moda

where the factor} reflects the unit group. Put = 1(m + ny/—D) with m = n (mod?2).
Inserting (2.19) into (5.3), we get

1 » gy (W=D ' (m®+ Dn?
&4 S¢(X)_§a;4¢(a) (mn)z;é(OO) X(2m)<lm+n@> g( 4XNa )

m+ny—D=0 mod 2a

It is now the moment to eliminate from the right side of (5.4) the contribution ofthe0.
This contribution (of rational ideals) is bounded by

S {0 <m < 3X%D¥; Na|m?}| < X¥D¥+e,
acA

Hence we obtain
1 . 11,
(5.5) Sp(X) = 5Sw()()+o()(21)zﬂr )

whereS; (X) is given by (5.4) with the conditiofm, n) # (0, 0) replaced by: # 0. We simplify
the notations by setting= Na andh(z) = (z/|z])"g(|2|?), and we see thaty (X)| < T, where

m—+nyv—D
Z x(m)h| ———]|.
0 2vXa
m~+ny—D=0 mod 2a

(5.6) T=>"

acA

By splitting into classes of:» modulo2a, we get

<Y} S ;X(2a€+a)h<2a€+a+nm>’.

a€EAn#£0 —a<a<a 2vXa
a+nv/—D=0 mod2a
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678 E. FOUVRY AND H. IWANIEC

We shall separatéfrom the other variables by using the Fourier transform@f + iy) in thex
variable. We write

+oo
h(z +1iy) = / f(v,y)e(va)dv,

where after Fourier inversion

—+oo

flv,y)= / h(z +iy)e(—vx)dr < (1 + %) _2,

— 00

by (5.1) and partial integration. Hence, we get the inequality

r< [¥ % > VXalfevX ay)

acAo<|n|<N —a<a<a
a+ny/—D=0 mod 2a

Z x(2al + a)e(vl)|dv

leI<L

— 00

with y = n\/D/4Xa and L = N = 4D~ i Xz (the above restrictions of the ranges of

summations come from the support gfz), note also thatt < L = N < 4v/D). Hence, for
some reab, we have

(5.7) T<PY > >

acA0<|n|<N —a<a<a
a+ny/—D=0 mod 2a

Z x(2al + a)e(vl)|.

ll<L

The innermost sum is a short character sum of lerthfor the Dirichlet character
x (mod D). We need a non-trivial bound for it. Of course, the Riemann hypothesi(fary)
would help, however we go for unconditional estimates. The difficulty is transparent at the critical
value of X = D, giving L = 4D, which lies below the range of the famous Burgess’ result [1].
We shall take advantage of having extra points in the outer summation which enables us to apply
the Hoélder inequality, without creating a shift in theariable “a la Burgess”.

Forx moduloD, let

v(z)=|{(a,n,a); a€ A, 0<|n|<N, —a<a<a,

5.8
(5-8) a+n\/—DEOmod2a,aEZa;z:modDH.

With this notation, (5.7) becomes

T<P Y v

x mod D

2)| > x(U+w)e (vé)’.

le|<L

Holder's inequality implie€” < PR? RI V%, with

Ry = Z v(x), Ry = Z v (x),

x mod D x mod D
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A SUBCONVEXITY BOUND FOR HECKEL-FUNCTIONS 679

and

4

- %

x mod D

Z XL+ x)e(ve)

le|<L

LEMMA 5.1.—We haveR; < h(—D)N.

The proof is easy, it reduces to direct counting of elemeni4 ahd then’s. Next we prove:
LEMMA 5.2.—For 2L < D we have/ < DL? + D3 L*.

Proof. —We develop the fourth power into

DD DI

[1| <L |2] <L €3]S L [La| <L

> x(@+0) (@ +0)X((@ + L) (@ + 1))

x mod D

By Weil's bound for characters sums ([9], Theoren' 28 43, for instance) we know that the
above sum over mod D is O(Dz), provided the rational function

(x+L1)(x+ L)/ (x4 3)(x + L)

is not thedth power of a rational function, whetgis the order ofy. If this is adth power, then
d = 2 and the linear factors are pairwise equal. The number of such cases is bounddtPby
while the complete sum over (mod D) is trivially estimated byD. O

The treatment oR; does not require cancellation of terms; nevertheless, it is more delicate
than the treatment df . The problem reduces to counting the number of solutions of a system of
guadratic congruences in which some variables appear also as moduli.

LEMMA 5.3.— For every positive:, we haveR, < N(N + Dz )(DN)e.
Proof. —Clearly, R» is bounded by the number of solutions to the systeee(5.8)):
a? + Dn? =0 (mod ay),

(5.9) a3+ Dn2 =0 (mod as),
aras = asa; (mod D),

Since we have, as in the segment (5.2) and; | < a1, |az2| < az, the last congruence reduces
to the equatiomv; as = agay . Puttingd = (a1, a2), a1 = da?, as = da}, we find that the solutions
of this equation are

(5.10) a1 =taj, ag = taj.
Note that|t| < d < v/D. Introducing (5.10) into (5.9), we derive the system

(5.11) {a%—i—Dn%EO (mod d),

a3 + Dn2 =0 (mod d),

and thata|n?, a3|n3. We write a} = bic3?, a} = bac3, with b; andb, squarefree. Recall that
(a%},a3) =1s0(bye1,bace) = 1. Moreover,

(5.12) n1=bicily, nz=bacals,
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680 E. FOUVRY AND H. IWANIEC

with 0 < [¢1]| < N/bicr, 0 < [€2| < N/baca. Now (5.11) becomes

(5.13) {(blcl)z(c%t2 + D3) =0 (mod d),
' (baca)?(c3t? + D3) =0 (mod d).

This implies

(5.14) (bibacica)? (c103 — c3¢7) =0 (mod d).
From now on, we consider two cases.
Casel. -

(5.15) i3+ ci3.

We start counting the solutions to (5.13) by fixing, no. For givenn; andns, the numbers
b1, c1, 1, ba, ca, ¥ are restricted to the small sets of divisorsof and n,. Moreover,
for given by, ci1, 1, bs, c2, £2, the numberd is restricted to the small set of divisors of
(b1bacica)?(c33 — c302). Therefore, it remains to estimate the number of solutions of (5.13)
int (mod d) We writed = dida with (dl, dg) =1and (dl, blcl) = (dg, bQCg) =1.Then (513)
implies

{ t2 4+ D02 =0 (mod dy),

t2+ D"{3 =0 (mod d3),

where D’ = Der? (mod d;) and D" = D32 (mod dy). This system splits into two indepen-
dent congruences

t2 + D'(? =0 (mod d;)
t2+ D03 =0 (mod dy).
Hence we get the inequalityt (mod d)}| < |{t1 (mod d1)}||{t2 (mod da)}|.

LEMMA 5.4. — The number of solutions to
z? = A (mod d)

inz mod d is bounded by-(d)(d, A)z.

By Lemma 5.4 we get{t; (moddi)}| < 7(d1)(dy,3)z. We have(dy, (?) | (di,n?) and
(dy1,¢3) | (d1,n3) because of (5.14). Hend€, (3) | (d1,n3,n3). Therefore,

[{t1 (mod d1)}| < 7(d)(dr,n?,n3)".
Multiplying this by the corresponding inequality fpfto (mod d2)}| we get
{t (mod d)}| < 7(d)(n1,ns2).

Summing oven; andns, we conclude that the number of solutions to (5.9) in Case 1 is bounded
by O(N?(DN)?).

Case?2. -

242 242
cils = c3t7.
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Since(ci, c2) =1, we havel; = Ay, fo = £Aco with

0< A< min(%, %) < L
bic bacy c1c2v/b1by
In this case, (5.13) yields
bict(t? + DA?) =0 (mod d),
{ bici(t2 + DA?) =0 (mod d).
Since (bic, bacy) = 1, this impliest? + DA? = 0 (modd). By Lemma 5.4 the number of
solutions int (mod d), is bounded by-(d)(d, \2)2 < 7(d)(d, \). Note that

VD \/5) < VD
bic? bac3 )~ cieav/bibs

Finally, summing oveby, b, ¢1, c2, d, A we find that the number of solutions to (5.9) in Case 2

is bounded by
ZZZZZZ )(d,\) < ND*(DN)E.

by C1 Cc2

0<|d| <min(

Adding the results of both cases, we complete the proof of Lemma &3.

Putting together Lemmas 5.1, 5.2 and 5.3 we derive under the assuniptien X < D?,
that

Sy(X) < P(h(~=D)N)? (N(N + D¥)) T (DL? + DY L) T DF + X ¥ Di+e.

Using now the definition of. and N, and the classical upper bound for the class number (2.5),
we have

IS

Sy(X) < PDEXH(X3D~H(X3D~% 4+ D¥)) (DX + D-#X?) 1D 4 X3 Di+e.

Hence we conclude:

PROPOSITION 5.5. — Suppose thab is prime,D = 3 (mod 4) and thatDz < X < D?. Let
g(y) be a smooth function supported|in 2] which satisfie¢5.1). Then we have

Sy(X) < P(DT X%+ DW®XF)D*.
Remark— With no condition onX, we claim that
(5.16) Sy(X) < P(D® X3 + DT X% + D™ 16 X3)D?

because this bound is trivial if the conditions of Proposition 5.5 are not satisfied.

6. Estimating L(s, )

Lemma 3.1 reduces the problem to the estimation of

©1) Vis.) =S AoV (25
1
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because.(s, 1) = V(s,v) +w(s, )V (1—s,1), with [w(s,1)| = 1 onRs = L. Trivially, using
Vi(y) < (1+y/|s|)~! (see(4.2)), we get

<<Z ( |D> < (|s|D)= log(|s|D).

Hence
(6.2) L(s,) < (|s|D)* log(|s| D).

We shall improve on this trivial bound (which is the convexity bound) by applying
Proposition 5.5. This requires breaking 0p(s,v) into partial sums with smooth cut-off
functions supported in dyadic segments. We do so by applying a smooth partition of unity

S Qi) =1, ift>0,

l=—00

whereQ(t) is a smooth function supported i, 2|. HenceV (s,v¢) = ), V(s,;22 ), where
hereQ(t) i h functi d 5), wh

i 2mn n
(s, X Zm V( 5 )Q(})-
This is a sum of type,, (X') with

9(y) = (yX) Vs (%OQ@)-

Using Lemma 4.1 we check that

0 < lslx-H(1e 22
[SID

forv =0, 1, 2. By (5.16) we get

X —1
V(s,9;X) < D (DT XE 4 DB XF 4+ D1 X¥)[s |X_<1+W> '

Summing overX = 25 > 1 5 (the worst value being < |s| D) we arrive at
V(s,v) < |s| ¥ DT,

This completes the proof of theoremo
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