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THE LENGTH SPECTRUM OF RIEMANNIAN
TWO-STEP NILMANIFOLDS *

RUTH GORNET AND MAURA B. MAST

ABSTRACT. - This paper has three main theorems. First, we express the length spectrum of a Riemannian
two-step nilmanifold in terms of metric Lie algebra data. We use the length spectrum to motivate the
definition of a new family of two-step nilpotent metric Lie algebras, which we call Heisenberg-like. This
leads to our next result, the explicit computation of the length spectrum of all Heisenberg-like manifolds.
Using a variety of characterizations of Lie algebras of Heisenberg type, we show that Heisenberg-like Lie
algebras are their natural generalization. Finally, as an application in spectral geometry, we show that all
known examples of two-step nilmanifolds that have the same Laplace spectrum on functions must also have
the same length spectrum. © 2000 Editions scientifiques et medicales Elsevier SAS

Keywords: Length spectrum; Laplace spectrum; Heisenberg groups; Heisenberg type algebras; Nilpotent
Lie algebras

RESUME. - Cet article contient trois theoremes. Tout d'abord, nous exprimons Ie spectre des longueurs
d'une nilvariete Riemannienne de rang deux au moyen de son algebre de Lie munie d'une metrique. Nous
utilisons Ie spectre des longueurs pour motiver la definition d'une nouvelle famille des algebres de Lie
nilpotentes de rang deux, munies d'une metrique, que nous appelons "Heisenberg-like." Ensuite, nous
calculons d'une maniere explicite Ie spectre des longueurs de toutes les nilvarietes "Heisenberg-like."
En utilisant plusieurs caracterisations des algebres de Lie de type de Heisenberg, nous prouvons que les
algebres "Heisenberg-like" sont une generalisation naturelle des algebres de Lie de type de Heisenberg.
Finalement, une application de notre theorie a la geometric spectrale revele que tous les exemples connus
de nilvarietes de rang deux qui out Ie meme spectre du Laplacien pour les fonctions, doivent aussi avoir Ie
meme spectre des longueurs. © 2000 Editions scientifiques et medicales Elsevier SAS

Introduction

The length spectrum of a Riemannian manifold (M, g) is the collection of lengths of smoothly
closed geodesies in M. In much of the literature [17,23,25] a multiplicity is attached to each
length in the length spectrum, but here, unless otherwise stated, this issue is completely ignored.
All manifolds considered here are closed, i.e., compact and without boundary.

The length spectrum, in addition to being geometrically interesting in its own right, is also
relevant to the Laplace spectrum. The Laplace spectrum of a closed Riemannian manifold (M, g)
is the collection of eigenvalues of the Laplace-Beltrami operator A, counted with multiplicity.
Two manifolds are isospectral if their Laplace spectra coincide. A major open question in spectral
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182 R. GORNET AND M.B. MAST

geometry is whether there can exist examples of isospectral manifolds with different periods in
the length spectrum.

Colin de Verdiere [9] used the heat kernel to show that generically, the Laplace spectrum de-
termines the length spectrum. Duistermaat and Guillemin [11] have shown that the singularities
of the wave trace e"^, a spectrally determined, tempered distributional operator, are contained
in the length spectrum.

Two closed Riemann surfaces are isospectral if and only if they have the same length spectrum,
counting multiplicities [26,27,8]; in this case a purely analytic notion, the Laplace spectrum, is
equivalent to a geometric notion, the length spectrum. (Here, the multiplicity of a length is the
number of free homotopy classes containing a closed geodesic of that length.) In contrast, the Zoll
and standard spheres have the same length spectrum (the length spectrum in both cases consists
of all integer multiples of 27r) but are not isospectral. Indeed, standard spheres of dimension less
than 6 are known to be spectrally determined [3,43]. (See [6] for details on Zoll spheres.)

This paper focuses on Riemannian nilmanifolds. A Riemannian nilmanifold is a closed
manifold of the form (r\G,g\ where G is a simply connected nilpotent Lie group, F is a
cocompact (i.e., r\G compact) discrete subgroup of G, and g arises from a left invariant
metric on G. Nilmanifolds do not satisfy the genericity assumptions of Colin de Verdiere and
Duistermaat-Guillemin, as closed geodesies of any length come in large-dimensional families;
thus we must use other means to compare the length spectrum of isospectral nilmanifolds.

The simplest example of a Riemannian nilmanifold is the flat torus F^^ where F is a lattice
of rank n. In fact, the first examples of isospectral, nonisometric manifolds were pairs of 16-
dimensional isospectral tori, constructed by Milnor [35]. The flat torus case is well understood:
The Poisson summation formula shows that two flat tori are isospectral if and only if they have
the same length spectrum, counting multiplicities (with multiplicity defined the same as for the
Riemann surface case above). Moreover, both the length spectrum and the Laplace spectrum of
a flat torus are explicitly computable. See [2] or [4] for details.

Two-step nilpotent Lie groups are the Lie groups that come as close as possible to being
abelian without actually being so; from the point of view of both the length spectrum and the
Laplace spectrum, this case is more intricate. The best known example here is the Heisenberg
Lie group, which has a one-dimensional center. Pesce [39] developed a Poisson-type formula for
Heisenberg manifolds and used it to show that continuous families of Heisenberg manifolds with
the same length spectrum must be isospectral. In contrast, Gordon [17] has constructed pairs
of isospectral Heisenberg manifolds with different multiplicities in the length spectrum (with
multiplicity defined the same as for the Riemann surface case above).

Two-step Riemannian nilmanifolds are of particular importance when considering these
questions, as they have provided a rich source of examples of isospectral manifolds, hence a
natural environment in which to study the length spectrum. Pesce [38] has explicitly computed
the Laplace spectrum of a Riemannian two-step nilmanifold. In Section 2, we establish the
following result (see Theorems 2.4 and 2.8).

THEOREM. - The length spectrum of a Riemannian two-step nilmanifold (F\N,g) can be
expressed in terms of metric Lie algebra data.

Until recently, all known examples of isospectral manifolds were also locally isometric, i.e.,
shared a common Riemannian cover. The locally isometric examples are known to have the same
length spectrum (ignoring multiplicities). See [23,25] for references and more details.

The first examples of closed isospectral manifolds with different local geometry were pairs of
isospectral nilmanifolds, constructed by Gordon [18,19]. Further examples using her method as
well as a generalization of the method were provided by Gordon and Wilson in [22]. We apply
our length spectrum calculations to their examples and show the following (see Theorem 4.11).
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THE LENGTH SPECTRUM OF TWO-STEP NILMANIFOLDS 183

THEOREM. - The examples of isospectral two-step nilmanifolds constructed by Gordon and
Wilson in [19,22] must have the same length spectrum.

The only other examples of closed isospectral manifolds that are not locally isometric are
large-dimensional continuous families constructed in [20] and simply connected continuous
families constructed by Schueth [41]. The calculation of the length spectrum in these new
continuous examples appears very difficult at present, but since they are constructed using an
adaptation of the general method used by Gordon and Wilson in [19,22], understanding the length
spectrum in the nilmanifold examples may lend insight into the other examples.

Two-step nilpotent Lie groups are interesting in and of themselves. Eberlein [12,13] has
studied their geometry extensively and we generalize many of his results. As others have done,
we study Lie algebras to obtain information about simply connected Lie groups. Let n be a two-
step nilpotent Lie algebra with inner product ( , ). Let 3 be the center of n and let ̂  be the
orthogonal complement of 3 in n. We write n = ̂  (D 5.

The main tool we use to study two-step nilpotent Lie groups and Lie algebras is the j operator,
first introduced by Kaplan [28]. Given the decomposition n = ̂  0 5 for a metric Lie algebra
(n,( , )), define a linear transformation j :3 ̂  so(^J) by {j(Z)X,Y) = ([X,V],Z) for all
X,Y € ̂  and Z e 3. The mappings [j(Z)\ Z e 5} contain the geometry of (N, { , )) in the
sense that the covariant derivative, curvature tensor [45], and Ricci tensor [36], can be formulated
entirely using j, 9J, and 3. One purpose of this paper is to describe the length spectrum entirely
in terms of n, ( , ), and j.

A two-step nilpotent metric Lie algebra (n, ( , )) is said to be of Heisenberg type if for every
Z c 5, j(Z)2 = -\Z\2Id\y. Heisenberg type Lie groups and Lie algebras were originally defined
by Kaplan in [28,29]. Since then, the Heisenberg type Lie algebras have played an important role
in such areas as spectral geometry, producing the first examples of isospectral manifolds that are
not locally isometric [42,18], and harmonic analysis, playing a critical role in the construction
of a counterexample [10] to the Lichnerowicz conjecture on harmonic manifolds. See [5] for an
introduction to generalized Heisenberg groups and Damek-Ricci spaces.

Eberlein calculated the length spectrum of all nilmanifolds of Heisenberg type. In Section 3,
we use our formulation of the length spectrum in terms of metric Lie algebra data to motivate
the definition of a new family of two-step nilpotent Lie groups and Lie algebras that we call
Heisenberg-like, and we prove the following (see Theorem 3.10).

THEOREM. - The length spectrum of Heisenberg-like nilmanifolds can be explicitly calcu-
lated.

Heisenberg-like Lie groups generalize naturally from those of Heisenberg type in a variety of
ways: by the definition, by the formulation of the length spectrum of resulting nilmanifolds, and
in terms of the prevalence of periodic geodesies contained in three-dimensional totally geodesic
submanifolds. In particular. Lie groups of Heisenberg type are characterized by the fact that
periodic geodesies are always contained in three-dimensional totally geodesic submanifolds. We
prove that Lie groups that are Heisenberg-like are characterized by the fact that every central
period in the length spectrum may be realized by a periodic geodesic that is contained in a three-
dimensional totally geodesic submanifold (see Theorem 3.13).

Because of the importance of algebras of Heisenberg type in geometric analysis. Lie groups,
and mathematical physics, the authors suggest that the most general setting for many results in
these areas is that of Heisenberg-like Lie algebras, rather than those of Heisenberg type.

This paper is organized as follows. In Section 1 we review background material; in particular,
we define two-step nilpotent metric Lie groups and Lie algebras. In Section 2 we establish a
primary result of this paper, an expression of the length spectrum of a Riemannian two-step
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184 R. GORNET AND M.B. MAST

nilmanifold (F\N, g) entirely in terms of the Lie algebra n of N, the inner product ( , ) on n, and
the inverse image of the subgroup F under the Lie group exponential mapping. The formulation
of the length spectrum motivates the definition of a new family of Riemannian nilmanifolds,
the Heisenberg-like nilmanifolds. In Section 3 we explicitly compute the length spectrum of
all Heisenberg-like nilmanifolds. In addition, we study the geometry of these nilmanifolds and,
using a variety of characterizations of Heisenberg type nilmanifolds, we show that Heisenberg-
like nilmanifolds are their natural generalization. As an application of the length spectrum
formula from Section 2, we prove in Section 4 that examples of isospectral two-step nilmanifolds
constructed by Gordon and Wilson necessarily have the same length spectrum.

The authors would like to thank Carolyn Gordon and Pat Eberlein for many helpful and
useful comments, John McCarthy for providing references in operator theory, and the referee
for detailed and helpful suggestions and comments.

1. Two-step nilmanifolds and two-step nilpotent metric Lie algebras

Let n denote a two-step nilpotent, finite-dimensional, real Lie algebra with nontrivial center
3 and Lie bracket [ , ]. Recall that a Lie algebra n is two-step nilpotent if n is nonabelian and
[X, Y] e 3 for all X, Y € n; a Lie group is two-step nilpotent if its Lie algebra is. Let N denote
the unique, simply connected Lie group with Lie algebra n.

The Lie group exponential exp:n —^ N is a diffeomorphism [40], so N is diffeomorphic to
R^ where n = dimn. By the Campbell-Baker-Hausdorff formula [44], we may write the group
operation of N in terms of the Lie algebra n by

(1.1) exp(X)exp(y) = exp(x + Y + ^[X, Y]\,

where X, Y e n. Thus,

exp(X)~1 =exp(—X),
(1.2) exp(X)exp(y)exp(X)~1 = exp(V + [X,Y]).

A Riemannian metric g on N is left invariant if left translations Lp are isometries for all
p C N. Note that a left invariant metric on N determines an inner product on n = TeN and an
inner product ( , ) on n induces a left invariant metric on N. A Lie algebra together with an inner
product (n, { , )) is called a metric Lie algebra. We will use ( , ) to denote both the inner product
on n and the corresponding left invariant metric on N. We denote the orthogonal complement of
3 in n by 2J and write n = 2T (D 3.

Our objects of study are Riemannian nilmanifolds. Let r denote a cocompact (i.e., r\N is
compact), discrete subgroup of N . The quotient manifold r\N obtained by letting r act by left
translations on N is a two-step nilmanifold, and the left invariant metric ( , ) on N descends to
a Riemannian metric on r\N, also denoted by ( , ).

Example 1.3 (The Heisenberg Lie group and Lie algebra). - The Heisenberg group is, up to
isomorphism, the only two-step nilpotent Lie group with a one-dimensional center. As such, it
is the nilpotent Lie group that is as close as possible to being abelian. The (In + 1)-dimensional
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Heisenberg group Hn is the set of all real (n + 2) x (n + 2) matrices of the form

/I

\

x\
1

0

^2
0

1

• • • Xn... o

' • • 0
1

^ \
?/1

V2

Vn

1 /

for Xz, yi, z € R, % = ! , . . . , n. The group operation is matrix multiplication. The Lie algebra ()n
of Hn is the (2n + l)-dimensional vector space with basis [X\,..., X^, Vi , . . . , Yn, Z ] and Lie
bracket [X^ VJ = —\Yi, Xi\ = Z for 1 ̂  z ^ n, and all other basis brackets zero.

The center 3 of ()n equals 3 = span^{Z}. One determines a left invariant metric on Hn by
specifying an inner product { , ) on \}n-

Definition 1.4. - The length spectrum of a Riemannian manifold (M,g) is the set of lengths
of smoothly closed geodesies.

Note that we are not assuming that the closed geodesies are simply closed, thus if uj is in the
length spectrum of (M, g), so is muj for all m G Z~^.

Remark 1.5. - In much of the literature [17,23,25] a multiplicity is attached to each length in
the length spectrum. Note that there are several definitions of multiplicity in the literature. For
example, one definition of the multiplicity of a length uj is the number of distinct free homotopy
classes containing a smoothly closed geodesic of length uj. In this paper, unless otherwise stated,
multiplicity is completely ignored and we concern ourselves exclusively with existence.

We study closed geodesies on (F\N, ( , )) by lifting them to the universal cover (N, ( , )).

Definition 1.6. - Let a be a unit speed geodesic in (N, ( , )). A non-identity element 7 C N
translates a by an amount uj > 0 if ^a(t) = a(t + u) for all t € M. The number u is called a
period of 7.

As N is simply connected, the free homotopy classes of r\N correspond to the conjugacy
classes in the fundamental group -T. Note that (N, ( , )) —>• (F\N, ( , )) is a Riemannian covering.
Thus there exists a closed geodesic of length uj in the free homotopy class represented by 7 G F
if and only if there exists a unit speed geodesic a(s) on (N, ( , )) such that 7 translates a with
period uj. The geodesic a then projects to a smoothly closed geodesic of length uj on (T\7V, ( , ))
in the free homotopy class represented by 7.

We use the following information about two-step nilpotent metric Lie algebras to study
periodic geodesies on two-step nilpotent Lie groups equipped with a left invariant metric. See
Kaplan [28] for further information.

Definition 1.7. - Let (n, ( , )) be a two-step nilpotent metric Lie algebra, n = ̂  (B 3. Define a
linear transformation j :3 —^ .so^) by j(Z)X = (adX)*Z for Z e 3 and X e ^U. Equivalently,
for each Z € 3, j(^): 9J —>- ̂  is the skew-symmetric linear transformation defined by

(1.8) <j(Z)x,y)=(z,[x,y]),
for all X, V in ST. Here adX(V) = [X,V] for all X,Y e n, and (adX)* denotes the (metric)
adjointofadJC.
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186 R. GORNET AND M.B. MAST

By skew-symmetry, j(Z) has dimp^) purely complex eigenvalues counting (algebraic)
multiplicities and the nonzero eigenvalues occur in complex conjugate pairs; the eigenvalues
of j(Z)2 are then real and nonpositive. If j(Z) is nonsingular for some Z in 3 - {0}, then the
(real) dimension of V is even.

Thus each two-step nilpotent metric Lie algebra carries with it the j operator. On the other
hand, given inner product spaces ^J and 3 and a linear transformation j: 3 -^ so(V), one can
define a two-step nilpotent metric Lie algebra (9J C 3, ( , )) by requiring that 3 be central, that
© be orthogonal direct sum, and by defining the Lie bracket [ , ] via Eq. (1.8). All two-step
nilpotent metric Lie algebras are determined this way.

Definition 1.9. - A two-step nilpotent metric Lie algebra (n, ( , }) is of Heisenberg type if
j(Z)l=-\Z\lId^io^\\Z^^.

Note that if n is of Heisenberg type, the distinct eigenvalues of j(Z) are d=|Z|z.

Example 1.10.- Let n = 2J © 3 be a 6-dimensional real vector space with inner product such
that {X\, X2, X^, X^} is an orthonormal basis for ̂  and {Z\, Z^} is an orthonormal basis for 3.
Define a bracket operation on n by

[Xi,X2] = -[X2,Xi] = Zi, [Xi.Xs] = -[Xs.Xi] = Z^

[X2.X4] = -[X4.X2] = -Z2, ?,^4] = -[X^] - Zi,

with all other brackets of basis elements equal to zero. With this bracket, (n, ( , )) is a two-step
nilpotent metric Lie algebra with center 3. Using the relationship (j(Z)X, Y) = ([X, V], Z) and
the basis [X\, X^ X^, X^ Z\, Z^}, we obtain the following matrix representations for j(Z\) and
J(^2):

(0 -1 0 0 \ /O 0 -1 0^
.(7\ 1 0 0 0 |0 0 0 1^= o o o -i h ^2)= 1 o Q Q

0 0 1 0 / \0 -1 0 0.

It follows that Z = aZ\ + ftZz has distinct eigenvalues {±i^/a2 + f32] and n is of Heisenberg
type.

Remarks 1.11.-
(a) It is known [28] that there exist Lie algebras of Heisenberg type with centers of arbitrary

dimension.
(b) The (In + 1)-dimensional Heisenberg Lie algebra with the natural inner product (that is,

the inner product making the basis an orthonormal basis) is of Heisenberg type. In general,
however, a Heisenberg metric Lie algebra (i)n, ( , )) is not of Heisenberg type. (See [21,17]
for more details.)

Defin itions 1.12.-
(1) A two-step nilpotent Lie algebra n is strictly nonsingular if there exists an inner product

( , ) on n such that j(Z) is nonsingular for all Z e 3- {0}.
(2) A two-step nilpotent metric Lie algebra (n, < , )) is almost nonsingular if j(Z) is

nonsingular for all Z e P, where V is a dense open subset of 3.
(3) A two-step nilpotent metric Lie algebra (n, ( , )) is strictly singular if j(Z) is singular for

al lZ€3.

Remark 1.13.-Eberlein showed that strict nonsingularity, which he called nonsingularity,
may be defined as follows: A Lie algebra n is strictly nonsingular if for every Z e 3-{0} and
for every X e n - 3 there exists Y e n such that [X, Y] = Z. (See [12, Lemma 1.8].) Thus strict
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THE LENGTH SPECTRUM OF TWO-STEP NILMANIFOLDS 187

nonsingularity is a purely algebraic notion; i.e., it is independent of the choice of inner product
( , ) on n. Likewise, by comparing the structure constants with respect to different bases of n,
one may show that strict singularity and almost nonsingularity are also independent of the choice
of inner product; i.e., strict singularity and almost nonsingularity are algebraic notions.

Note that all Lie algebras of Heisenberg type are strictly nonsingular. The almost nonsingular
and strictly singular conditions are illustrated in the following examples.

Example 1.14. - Let (n, ( , )) be a 6-dimensional Lie algebra such that ^3 has orthonormal
basis [X\,X^X^,X^}, 5 has orthonormal basis [Z\,Z^}, and j(Z\) and j(Z^) have the
following matrix representations:

^0 0 0 0 \ /O -1 0 0>
^, I 0 0 0 0 . . - . 1 0 0 0

J(zl)= 0 0 0 - 1 ' J(Z2)= 0 0 0 0
\o o i o / \o o o o.

For Z = aZ\ + ftZ-^, the eigenvalues of j(Z) are [±ia,±i(3]. It follows that n is almost
nonsingular.

Example 1.15([12]).- Let n = QJ (D 3 be a 5-dimensional Lie algebra with inner product such
that [X\, -X2, X^ ] is an orthonormal basis for ̂  and [Z\,Z^} is an orthonormal basis for 3. Set

/O -1 0\ /O 0 -1\
j(Zi)= 1 0 0 , j(Z^)= 0 0 0 ,

\0 0 O/ M O O /

and extend the definition of j to 3 by linearity. For Z = aZ\ + ftZ^ j(Z) has eigenvalues
{0, =Lz \/a2 + /32}, hence n is strictly singular.

LEMMA 1.16.-A two-step nilpotent metric Lie algebra (n, ( , )) is exactly one of strictly
nonsingular, almost nonsingular, or strictly singular.

Proof. - The result follows from properties of the map detoj :3 —)• R. See [33] for further
details. D

Definition 1.17. - Let (n, ( , )) be a two-step nilpotent metric Lie algebra and let Z e 3.
(1) Let -<9i(Z)2, -Oz(Z)2,.... -0n(Z)2 denote the n = dim(^) eigenvalues of j(Z)2, with

the assumption that 0 ̂  0\(Z) ̂  6^(Z) ̂  • • • ^ On(Z).
(2) Let ^(Z) denote the number of distinct eigenvalues of j(Z)2. For ease of notation, we

write IJL rather than ^i(Z) when Z is understood.
(3) Let -^i(Z)2, -^(Z)2,.... -^(Z)2 denote the ^ distinct eigenvalues ofj'(Z)2, with the

assumption that 0 ̂  ^i(Z) < ̂ (Z) < " ' < ̂ p,(Z). The distinct eigenvalues ofj(Z) are
then{±^i(Z)z,...,=L^(Z)z}.

(4) Let Wm(Z) denote the invariant subspace of j(Z) corresponding to ̂ ^(Z), m= 1,..., fi.
Then j(Z)2^^) = -^(Z^Id^w. i.e., Wm(Z) is the eigenspace of j(Z)2 with
eigenvalue —^(Z)2. By the skew-symmetry of j(Z), ^J is the orthogonal direct sum
of the invariant subspaces Wm(Z). Note that if ^m(Z) 7^ 0, then j(Z)~1 is well defined
on Wm(Z).

It is straightforward to construct two-step nilpotent metric Lie algebras for which ^ is
nonconstant; the Lie algebra in (1.14) is one such example. See Section 3 for examples of two-
step nilpotent metric Lie algebras such that fi is constant on 3 — {0}.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



188 R. GORNET AND M.B. MAST

Because of the possibility that the number of distinct eigenvalues ofj can change, we need the
following.

Definition 1.18. - For a two-step nilpotent metric Lie algebra (n, ( , )), define U = [Z e 3:
there exists an open neighborhood 0 of Z such that JJL is constant on 0]. We call U the simple
subdomain of 3.

PROPOSITION 1.19. - Let (n, ( , )) be a two-step nilpotent metric Lie algebra. The following
hold for n.

(1) The simple subdomain U is open and dense in 3.
(2) The function Om ^ 3 - {0} —> R is continuous on 3 - {0}, m = 1,... ,n.
(3) The/unction fi is constant on U.
(4) IfZ is a limit point ofU then //(Z) ̂  ^i(U).
(5) The junction i9rn 'M —>Ris smooth on U, m = 1,..., ̂ (U).
(6) The function -^ is continuous on 3 — {0}, where [i == 1^(Z).

Proof. -
(1) See Theorem 4.1, claim (1) in [34]. Note that the nonsingularity condition used there is

not needed for this proof.
(2) This follows from Theorem 5.2 in Chapter 2 of [31].
(3) Let Zi, Zz e U. Define A(t) = j(( 1 - t)Z^ + tZ^) for all t <E M. Then A(t)2 is a real analytic

family of self adjoint operators on the n-dimensional space 2J. By [16, Theorem S6.3],
there exist eigenvalue curves <^i (t),..., (f)n(t) for A(t)2 that are real analytic in t. Note that
we cannot specify an order on the <^, or analyticity may be lost. Now at t = 0 the <^s
group into ^(Zi) sets S'i,..., 5^; i.e., ̂  is in Sm if and only if ^(0) = -^(ZQ2. Since
Z\ C ^/, there exists an open neighborhood of Z\ such that [i(Z\) does not change. So
there exists an open neighborhood (-£, e) of 0 in R such that if 0/c e Sm and (^/ € S^,
then (f)k(t) = ( t )k ' ( t ) for all t e (-£,£). By real analyticity, (f)k(t) = ̂ (t) for all t C R, in
particular, ^/c(l) = 0A/(1). Thus there can be no more than /^(Zi) distinct eigenvalues of
A(t)2 at ^ = 1, i.e., ^(^2) ^ A^i). Reversing the roles of Z\ and ^2, we conclude that
/^(Zl)=^(Z2).

(4) If limfe Zk = Z* for some Z^ Z* e 3 - {0}, then by (2) the eigenvalues of j(Z*)2 are
contained in the limit of the eigenvalues ofj(Z/c)2.

(5) See pp. 568-569 of [31].
(6) This follows from (2) and the fact that ̂ (Z) = max{(9^(Z)} for all Z. D

m

PROPOSITION 1.20. -Let (n, ( , )) be a two-step nilpotent metric Lie algebra and let Z C
U. Fix m e {! , . . . , /^(Z)} and let Xm € Wm(Z) be a unit vector. Then [XmJ(Z)Xm] =
^(Z)Wyn(Z), where V is the gradient.

Proof. - The result follows from Lemma 3.2 of [33]. D

2. The length spectrum of a Riemannian two-step nilmanifold

In this section, we calculate the length spectrum of an arbitrary two-step nilmanifold by
calculating the periods of elements in an arbitrary two-step nilpotent metric Lie group (N, ( , )).
(See Definition 1.6 ft.) "

Notation 2.1.- Let XQ + ZQ be a vector in n with ZQ e 3 and XQ e V.
(1) Define Xi and X^ by XQ = Xi + X^ such that Xi e kerj(Zo), and Xz -L kerj(Zo).
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(2) The index m will range from 1 to /^(Zo) if J(ZQ) is nonsingular, and from 2 to ^(Zo) if
j(Zo) is singular. Recall that /^(Zo) denotes the number of distinct eigenvalues ofj'(Zo)2.

(3) Let ^rn denote the component of X^ in Wm(Zo), for each m. We write X^ = ̂ ^m-
Note that if ker^(Zo) is not empty, then ^i is not defined.

Definitions 2.2.-
(1) For V in ^U, define Py:3 -^ [V,n] as orthogonal projection onto [V,n]. Define

P^ '•I —^ \V, ̂  as projection onto [V, n]^, the orthogonal complement of [V, n] in 3.
(2) For V C 9J and Z e 3, define Zy = Py(Z) and Z^F = P^-(Z). We write Z = Zy + Z^.
(3) With notation as in (2.1), define K : n —> 3 by

K(Xo + Zo) = Zo + ̂  [^or^m,^].
m

(4) Set JCy = Pv o K and K^=P^oK.

By definition, ̂  ^ kerj(Zo), thus jX^o)"1^ is defined. Furthermore,

(2.3) <Zo,^(^2+^o)> = |^o|2+ ̂ E<^ [^o)-1^^]} = |^o|2+ ̂ 2 2.
7n

Thus K(Xz + Zo) = 0 if and only if J^ + Zo = 0, and K(Xz + Zo) = ^o if and only if X^ = 0.
Note also that if Zo -L [V, n], Zo ̂  0, then K^(X^ + Zo) ̂  0.

THEOREM 2.4. - L^ N be a simply connected two-step nilpotent Lie group "with left invariant
metric ( , ). Let (n, ( , )) be the associated metric Lie algebra. With notation as above, let
7 = exp(V + Zy + Z^r) be an element ofN. The periods of^ are precisely

{ I | ^ - L | 2 ^ 1
(+) \\V\2 + l y l . , : X2 + Zo satisfy (i)-(iv) ̂ w ,

V |Av(A2+Zo)|z J

W/Z^/T

{ZY—————^^ tf^=^|X^(X2+Zo)|

G^n X2 € ̂  and ZQ e 3, ^^ conditions referred to in (f) are the following'.
(i) |X2+Zo |= lo rX2+Zo=0 .

(ii) V C kerj(Zo) a^ ̂ 2 ± kerj(Zo).
(iii) Z^ e span^+ [K^(X^ + Zo)}.
(iv) for all m such that f^rn ¥- 0,

\Z^(Zp)
27T|^(X2+Zo)| •

Let a be a geodesic in N such that cr(0) = e and a(0) = Xo + Zo, where Xo G 9J and Zo G 3.
We write a(s) = exp(X(5) + Z(s)), X(s) e SJ, Z(s) e 3; note that X(0) = XQ and Z(0) = Zo,
where X(^) and Z(s) denote the derivatives ofX and Z, respectively, with respect to s. Geodesies
in two-step nilpotent Lie groups were studied extensively by Kaplan [29,30] and Eberlein [12].
See Sections 3 and 4 of [12] for proofs of the following properties of geodesies, which are used
in the sequel.
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THEOREM 2.5 ([12]). -Let N be a simply connected two-step nilpotent Lie group with left
invariant metric { , ) and metric Lie algebra (n, ( , )). Let (j) = exp(V + Z) be an element
of N with V C % Z G 3. Let XQ + ZQ be a unit vector in n with XQ C % ZQ € 3. W? wn'̂
Xo = X\ -\- ^2, ^2 = S^^m ^s in (2.1). Given a unit speed geodesic a with a(0) = e and
a(0) = XQ-\- ZQ, the following statements hold.

(1) X(s) = 5X1 + ̂  X^(5), w/^ X^(5) e V^n(^o) and X^(s) -L kerj(Zo)/^ ̂ / s and
for all m.

(2)

X^(s) = (cos(^UZo)) - l)j(Zo)-^m + -^——— sin(^(Zo))^m.
'^m(^o)

(3) If there exists uj > 0 ^MC/Z r/iar (^a(5) = a(s + a;) /or all s, then X(uj) =V= ujX\ and
Xm(^) = Ofor all m. Thus, ^rn ̂  0 implies uj^rn(Zo) ̂  27rZ+. Furthermore,

Z(cj) =Z= ̂ K(Xz + ZQ) + [V^^Zo)-1^}.

(4) Suppose (j) = (r(uj). Then (l)cr(s) = a(s + uj)for all s if and only if ZQ _L [V, n].

Proof of Theorem 2.4. - We first show that all periods of 7 are contained in (f).
Let a(s) be a unit speed geodesic in (N, ( , )) such that a(0) = p and 7 translates a with

period uj > 0. Then a(s) = Lp-i(a(s)) is also a unit speed geodesic, since left translations are
isometries, and a(0) = e. Set (f) = p^^p. Then (f) translates a with period uj, since

(j)(r(s) = ̂ "^a^) == ̂ "^(^ -}-u)= a(s + aQ.

Using (1.2),

^=J)-17p=exp(log7-[logp,log7]) = exp(V" + Zy + Z^ - [logp.V]).

Since 7 = exp(V + Zy + Z^), it follows that (f) = exp(V + Zy + ^), where Zy =
Zy-[logp,y]e[y,n].

Let Xo e ̂  and Zo ^ 3 be chosen such that a(0) = XQ + Zo. Write 0(5) = exp(X(.s) + Z(^)),
where X(s) G % Z(^) e 3. Let Xo = -Xi + J^ and X^ = ̂  ̂  as in (2.1).

If Xz + ZQ = 0, then ^2 = 0 (and thus ̂  = 0 for all m). Thus (i), (ii), and (iv) are trivially
satisfied. By (2.5.3),

Zy + Z^ = ijK(X^ + Zo) 4- [V.^Zo)"1^] = 0.

It follows that Z^ = 0 and (iii) is satisfied. Finally, by (2.5.3), V = uXi. Since a is unit speed,
uj = \V\, which is contained in (f) in the case that Z^ = 0.

If XZ^ZQ 7^0, define

^ ^7 ^+^0"^^'^T^r
We show that X^ + ^o satisfies conditions (i)-(iv).

Clearly \X^ + ZQ\ -= 1, and (i) follows. To prove the remaining statements we first note that

K^cXz + cZo) = cK^(Xz + ZQ)

for all real c. This follows from the fact that ^(cZo)"1 = \j(Zo)~^ for all nonzero c.
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Recall that X\ C kerj(Zo) = kerj(Zo). By (2.5.3), ujX^ = V. This and (2.5.1) imply condition
(ii) is satisfied. Using (2.5.3) again, we obtain

Z^ = (^K^(X2 + Zo) = o;|X2 + Zo\K^(X2 + Zo),

hence condition (iii) holds.
Now |Z^ = o;|X2 + Zo| \K^(Xi + Zo)|. By (2.5.3), for all m such that ̂  ̂  0 there exists

A:m e Z4' such that

C^(Zo) _ ^\X2 + Zo|^n(Zo) _ |Z^|^(Zo)
•^"m — 27r 27r 27r|J^(X2 + Zo)\'

This implies condition (iv). Finally, by (2.5.3), \V\ = tj\X\ , hence

IVI^ ^ _ -^(IX^+l^+Zol2)-^2,
|A^(A2+Zo)|2

and cj is an element of (f).
We now show that all the elements of (f) must arise as periods of 7.
Let X^ and Zo satisfy (i) through (iv) of the hypothesis and let

^=\ W+
l^l2

|^(X2+Zo)|2'

Define Zi = V/o;. Define ^2 + Zo = (1 - |Xi l^^^^ + Zo), so by (i), Xi + ~Xi + Zo is a
unit vector.

Let 0(5) = exp(X(5) + Z(^)) be the unique geodesic through a(0) = e with initial velocity
X\ + ^2 + Zo. Recall that since left translations are isometries, Lp(a(s)) is also a geodesic.
To complete the proof, we show that there exists an element p == exp(A) such that for all 5,
pa(s + uj) = 7pcr(s).

By condition (iv),

^m(Zo)2 =^(i - iXii^^uzo)2 = ̂  - lyD^uzo)2

}zv ^.^m(Zo)2 = (l^kmf
|^(^2+Zo)|2

for some fcyn C Z"^. By condition (ii) and parts (2.5.1) and (2.5.2) of Theorem 2.5, X(cj) =
V G kerj(Zo), which implies Zo -L [V, n]. Let (f) = (r(uj). By (2.5.4), ^a(5) = a(s + c^) for all s.
It remains to show that there exists p such that (f) = p~l^p.

Now
.21 7^-La;2!^^ + Zo)|2 = c^(l - |Xi 2) |^(X2 + Zo)|2

=(a;2-|y|2)|^(X2+Zo)|2=|Z^|2.

So ̂ K^(X2 + Zo) = Z^ by (iii). By (2.5.3),

Z(^)=^(^(X2+Zo)+Xy(X2+Zo)) + [V.^Zo)-1^]

= Z^ + [V.^Zo)-1^] +^^y(X2 +Zo).
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Now [VJ(Zo)-lX2] + uKy(Xz + Zo) - ̂ y = [V, A] for some A e V. Let p = exp(A). Then
by the equations in (1.2),

p-^pa(0) = exp(V + Zy + ̂  + [-A, V}}

= exp(V + Z^ + [yj(Zo)~%] + ̂ v(^2 + Zo))
= exp(X(c^) + Z(^)) = a(^) = ̂

as desired. D

Remarks 2.6. -
(a) The value uj = | V + Z^ is always a period of 7 = exp(V + Z). If Z^ = 0, this is obvious.

IfZ^ ^ 0, set Zo = Z^/\Z^\ andX2 = 0, then \K^(X^+Zo)\ = \ZQ\ = 1 and conditions
(i)-(iv) of Theorem 2.4 are clearly satisfied.

(b) Theorem 2.4 explains a phenomenon previously discovered by Eberlein. In [12], Eberlein
studied the uniqueness of periods in certain free homotopy classes. In particular, he
noted that all but finitely many central elements must have more than one period. In the
strictly nonsingular case, noncentral elements always have a unique period. In contrast,
he constructed a strictly singular example (Example 1.15 here) that exhibited noncentral
elements with nonunique periods. Theorem 2.4 shows that for noncentral elements, a
necessary condition for nonunique periods to occur is \Z^ ^ 0. See also Remark 3.12(b).

Notation 2.7. - Given XQ + ZQ as in (2.1) and 7 = exp(V + Z) with V e ^J and Z e 3, let /3
denote the angle between ZQ and K^(X^ + Zo).

The following theorem is a restatement of Theorem 2.4 that incorporates the geometric data
cos(^) to describe the periods. Clearly, if K^(X^ + Zo) e span^+{Zo} then cos(/?) = 1. In
Section 3, we study the case cos(^) = 1 for all ZQ e 3.

THEOREM 2.8.— Let N be a simply connected two-step nilpotent Lie group with left invariant
metric ( , ) and associated metric Lie algebra (n, ( , )). With notation as above, let 7 =
exp(V + Zy + Z^r) be an element ofN. The periods 0/7 are precisely

/ . „ f | v , 7 ± | / IT712 . ^km(^m(Zo)CQSf3\Z^\-7rkm) . 1(?) ^ I1' + ̂ y \.\ l ^ l + —————————_ 2 — — — — : -^ + Zo satisfy (i)-(iv) ̂ /ow ^,
'< V ^n(^o) J

w/^r^ ZQ = ZQ/\ZQ\. Given X^ G V and ZQ G 5, r/z^ conditions referred to in (f) ar^ ̂
/o//6wm^:

(i) |X2+Zo|=l ,
(ii) V (E kerj(Zo) ̂  -^2 -L kerj(Zo),

(iii) Z^ e span^+ {X^(X2 + Zo)},
(iv) /or ^// m such that ^rn ̂  0, there exists km ^ ̂ + ^MC/? r/zar

, _ \Z^m(Zo)

m 27T|^(X2+Zo)|'

Remark 2.9. - For each ^2 + ZQ satisfying (i)-(iv) above there is only one corresponding
period; note that by condition (iv), i9m(Zo)/km has the same value for all m such that ^rn 7^ 0.

Proof of Theorem 2.8. - If X^ + ZQ satisfy conditions (i)-(iv) and X^ = 0, then uj = | V + Z^ \,
by Remark 2.6(a). Using Theorem 2.4, it suffices to show that if X^ + ZQ and km satisfy (i)-(iv)
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and Xt ̂  0, then

W2 ^ 4TTkm(-9m(Zo)COSf3\Z^\ - Trfc^)

|^(X2+Zo)|2 ^(Zo)2

Since V £ kerj(Zo), (Zo,A'(^2 + Zo)) = {ZQ,K^(XZ + Zo)). Then

{Zo,K(X2 + Zo)} = K^(Xz + Zo) \Zo\ cosf3 = \Zo\2 + ̂ 2 2 = 1+^0 .

The second equality follows from (2.3).
Hence

(2.10) |̂ (̂ )|. ̂ H^.

Since | Zo \ ̂  1, we obtain

|Zo| = cos/3|^(X2 + Zo)\ - ^/cos2/3 A^(X2 + Zo) 2 - 1.

By condition (iv), we know that there exists km € Z4' such that

27rfc^ | K^(Xz +Zo)\= ^m(Zo) \Z^ ,

so

2^km\K^Xz+ Zp)\
I 01 \Z^m(Zo) '^V l^^v

Setting the two values of \ZQ equal and solving for \K^(X^ + Zo)\, we obtain

^m(Zo)\Z^\

kmWm(Zo)\Z^\COSf3-7Tkm)

|j^(X2+Zo)|= ._________=_________________,

^^km^m(Zo)\Z^\ cos (3 - Trkm)

as desired. D

3. Heisenberg-like two-step nilmanifolds

Lie groups and Lie algebras of Heisenberg type were first introduced by Kaplan [28,29,30]
as natural generalizations of the (classical) Heisenberg groups. Since then, the Heisenberg type
algebras have played an important role in such areas as spectral geometry, producing the first
examples of isospectral manifolds that are not locally isometric [42,18], and harmonic analysis,
playing a critical role in the construction of a counterexample [10] to the Lichnerowicz conjecture
on harmonic manifolds.

In this section, we introduce a new family of two-step nilpotent Lie algebras and Lie groups
that we call Heisenberg-like. The related class of nilmanifolds generalizes naturally from those of
Heisenberg type in a variety of ways: by the definition, by the formulation of the length spectrum,
and in terms of the prevalence of simply closed geodesies contained in three-dimensional
totally geodesic subgroups. Throughout this section, we give numerous examples showing that
manifolds that are Heisenberg-like need not be of Heisenberg type.
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Because of the importance of algebras of Heisenberg type in geometric analysis. Lie groups,
and mathematical physics, the authors suggest that the most general setting for many results in
these areas is that of Heisenberg-like Lie algebras, rather than those of Heisenberg type.

Definition 3.1. - Let N be a two-step nilpotent Lie group with left-invariant metric ( , ) and
metric Lie algebra (n, ( , )). A simply connected subgroup N * of N is totally geodesic if every
geodesic that starts in N * remains in TV*; equivalently, \/xY e n* for all X,Y e n*, the Lie
algebra of N * .

If n is of Heisenberg type, then for all X,Z e n with X e 2T and Z e 3, the subalgebra
sp2in^[XJ(Z)X,Z] is totally geodesic [13]. Using notation established in Section 1, we
generalize this property to define a Heisenberg-like Lie algebra.

Definition 3.2. - A two-step nilpotent metric Lie algebra (n, ( , )) is Heisenberg-like if the
subalgebra spQ.n^{XmJ(Z)Xm, Z} is totally geodesic for every Z G 5 and every Xm e Wm(Z),
m = 1,..., /2(Z). A two-step nilpotent metric Lie group is Heisenberg-like if and only if its Lie
algebra is. We say that a Riemannian two-step nilmanifold is Heisenberg-like if and only if its
simply connected Riemannian cover is Heisenberg-like.

We now establish an alternate definition of Heisenberg-like, using properties of the covariant
derivative.

LEMMA 3.3. - A two-step nilpotent metric Lie algebra (n, ( , )) is Heisenberg-like if and only
tflJWX^Xm] € span^{Z} for all Z e 3 and all Xm € Wm(Z\ m = 1,... ,/^(Z).

Proof. - The covariant derivative on n = 9J © 3 has the following properties:

Vxy=|[X,r],

\/xZ=^zX=-^j(Z)X,

VzZ*=0,

where X,Y <E ̂  and Z,Z* e 3 (see [12]). Therefore, for X <E ̂  and Z c 3, the subalgebra
span^{X,j(Z)X, Z ] is totally geodesic if and only if [j(Z)X, X] = cZ for some c G R. D

Examples 3.4. -
(a) By Lemma 3.3, any two-step nilpotent metric Lie algebra with a 1-dimensional center must

be Heisenberg-like; in particular, this holds for all examples of Heisenberg Lie algebras
(see Example 1.3). Note that for an arbitrary choice of inner product, (\}n. ( , )) need not
be of Heisenberg type.

(b) By Remark 3.8 of [12], a metric Lie algebra that is of Heisenberg type is necessarily
Heisenberg-like. In particular, Example 1.10 is Heisenberg-like.

If n is of Heisenberg type, then for all Z e 3 and X e 2T,

[XJ(Z)X]=\X\2Z.

If n is Heisenberg-like, then for all nonzero Z C 3 and every Xm € Wm(Z), m = 1,.. . , ̂ (Z),

\X -i(7^X 1 - ^^n(^)|^m|\2[Ayn,j(Z)A^J — ——————— Z.
\ \ZJ\ }

Recall that a simply connected Riemannian manifold (M, g) has a Euclidean deRham factor
if it can be factored as (N, h) x M^. In the two-step nilpotent case, this can be determined at the
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Lie algebra level using the j operator. In particular, a simply connected two-step nilpotent metric
Lie group has a Euclidean deRham factor if and only if there exists nonzero Z in 3 such that
j(Z)=0.(See[12].)

LEMMA 3.5.-A Heisenberg-like two-step nilpotent metric Lie algebra has no Euclidean
deRham factors.

Proof. - Let (n, ( , )) be a Heisenberg-like Lie algebra. We show that the set £ =
[Z e 3: j(Z) = 0} contains only the zero element. Suppose Z* € <?, Z* 7^ 0. Then for
all Z e 3, j(Z + Z*) = j(Z). Hence /^(Z) = /^(Z + Z*) and, for each m e { 1 , . . .,/<Z)},
TVyn(Z) = W^(Z+ Z*). Let X e H^(Z+ Z*). Since n is Heisenberg-like, [j(Z+ Z*)X, X] =
c*(Z + Z*) and |j(Z)X,X] = cZ for some c*,c C R. But Z* ^ 0, so [j(Z + Z*)X,X] = 0.
That is,

\j(Z)X\2={Z,[XJ(Z)X]}=0

for all Z (E 3 and for all X e Wm(Z), m = 1,..., /^(Z). Thus j(Z) = 0 for all Z C 3, contradicting
n two-step nilpotent. D

Note that a Heisenberg type metric Lie algebra is strictly nonsingular. That is, j(Z) is
nonsingular for all Z C 3 — {0}.

THEOREM 3.6. - A Heisenberg-like metric Lie algebra is either strictly nonsingular or strictly
singular.

See Examples 3.9 below for Heisenberg-like Lie algebras that are strictly nonsingular and
strictly singular.

Theorem 3.6 follows directly from the following characterization of Heisenberg-like Lie
algebras, which was obtained independently by Hugues Blanchard [7] and the authors.

THEOREM 3.7. - The two-step nilpotent metric Lie algebra (n, ( , )) is Heisenberg-like if
and only if for every m = I , . . . ,JLA there exists a constant Cm such that for every Z G 3,
^^(Z) = Cyn|Z|. That is, the eigenvalues ofj depend only on the norm of Z.

Remarks 3.8. -
(a) Blanchard [7] uses this characterization when he compares the eigenvalues of the Laplace

operator and the lengths of closed geodesies on manifolds that are Heisenberg-like.
(b) Theorem 3.7 shows again that Lie algebras of Heisenberg type must by Heisenberg-like,

since by definition, a metric Lie algebra (n, ( , )) is of Heisenberg type up to scaling if and
only if there exists a constant c such that the only eigenvalues ofj(Z) are =Lc|Z|.

(c) In [14,15], H. Fanai shows that nilmanifolds that are in strong resonance and satisfy
the condition j*j = cld\^ must be Heisenberg-like, via the equivalent formulation in
Theorem 3.7. He uses this to prove his main result: Any two-step nilmanifold in this class
is (7°-geodesically rigid within the class of all Riemannian nilmanifolds.
Conversely, nilmanifolds that are Heisenberg-like necessarily satisfy the condition j* j =
c ld\^ as follows. Let n be Heisenberg-like and let Zi, Z^ be orthogonal vectors in 3 — { 0 } .
Let {£'1, . . . , En} be an orthonormal basis of ̂  composed of invariant vectors of j(Z^).
Then

(j*j(Zi),Z2) = {j(Z^j(Z^} ̂ trace^Zi)^)1)
n n

= - ̂  {j(Z,)j(Z^)E^ E,} = - ̂  (Zi, [jWEi, E,] > = 0
i=l i=l
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by Lemma 3.3. Thus j * j ( Z ) e span^{Z} for all Z c 3, from which one easily concludes
that j^j is a constant multiple of Id\^.
Nilmanifolds that are Heisenberg-like need not be in strong resonance.

Proof of Theorem 3.7. - Assume (n, ( , )) is Heisenberg-like.
Let Z <E U, and let m e { 1 , . . . , p.]. Let $ e Wm(Z) be a unit vector. For the nonzero ̂ , we

show that the function ^(Z)/|Z| is constant on connected components oiU by showing that
V (^(Z)/|Z|) = 0. We then show that U = 3-{0}; i.e., U has only one connected component,
and we are done.

Now
/^(Z)\ ^ |Z|V^(Z)-^(Z)V|Z|
V 1^1 ) \z\2

Since n is Heisenberg-like, [j(Z)^] = -^m(Z)2Z/\Z\2. On the other hand, by Proposi-
tion 1.20, [j(Z)^] = -^n(^)V^UZ). So if ^(Z) ̂  0, then V^(Z) = ,UZ)Z/|Z|2 for
all Z -^ 0. One easily calculates that V|Z| = Z/\Z\. Substituting, we obtain V(^n(Z)/|Z|) = 0.

We now show that U = 3- {0}; that is, we show that p. is constant on all of 3- {0}. Let Z* e ̂ ,
the simple subdomain ofa-{0}, and let /^ = /^(Z*) == /^). Let Z be any nonzero element in
3-{0}. Note that ^m(cZ) = ci}m(Z) for all nonzero real c, so we may assume Z and Z* are
linearly independent.

Define A(t) = j((l - ̂ )Z* + ^Z) for all t e M. Now A(t)2 is a real analytic family of self
adjoint operators on the n-dimensional space ^J. By [16, Theorem S6.3], there exist eigenvalue
curves ^i(^),.. . . <^(f) for A(t)2 that are real analytic in t. From Lemma 3.5 we may assume that
one of the eigenvalue curves, say (f)n(t\ is nonzero in a neighborhood of 0. From above, there
exist cj, e R, k = 1,..., n, such that for all t in a neighborhood of 0, <^(t) = c^nW- If c/, ̂  0,
then the two real analytic curves (f)k(t)/Ck and (j)n(t) agree in a neighborhood of 0, hence agree
for all t (E R. That is, (f)k(t) = c^nd) for all t e R. If cj, = 0, then the two real analytic functions
(f)k(t) and a(t) = 0 agree in a neighborhood of 0, hence (/)k(t) = 0 for all real t.

Hence the number of distinct eigenvalues of A(t)2 remains constant for all t, except possibly if
^n(t) = 0 at some point. But if (f)n(t) = 0, then all of the eigenvalues are zero, and by Lemma 3.5,
this can only happen if Z and Z* are linearly dependent. Thus ^(Z) = /^, and the number of
eigenvalues remains constant on 5-{0}, i.e., U = 3-{0}.

It now follows that if ^i(Z) ̂  0 for some Z in U, then ^i is nonzero on all of 3-{0}, and the
case ^i(Z) = 0 now follows.

For the converse direction, we assume that for every m = 1,. . . , ̂  there exists a constant Cm
such that for every Z <E 3, ^rn(Z) = c^|Z|.

Let Z c 3-{0}, and let m e { 1 , . . . , p.}. Let ^ c l^m(Z) be a unit vector. By Proposition 1.20,
D'(^)U] = -^m(^)V^(Z). But by hypothesis, W^(Z) = c^V|Z[ = (c^/|Z|)Z, which is
clearly an element of span^{Z}, and n is Heisenberg-like by Lemma 3.3. n

Proof of Theorem 3.6. - Let (n, ( , )) be a Heisenberg-like Lie algebra. From Theorem 3.7, if
^i(Z) = 0 for some nonzero Z in 3-{0}, then ^i(Z) = 0 on all of 3-{0}. Thus n cannot be
almost nonsingular. The result follows by Lemma 1.16. D

We now present examples of Lie algebras that are Heisenberg-like, but not ofHeisenberg type.
We also examine the Heisenberg-like condition on examples presented in Section 1.

Examples 3.9. -
(a) Example 1.14 is not Heisenberg-like by Theorem 3.6, since it is almost nonsingular. In

addition, the number of distinct eigenvalues changes.
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(b) Example 1.15 is Heisenberg-like by Theorem 3.7, with ^i(Z) = 0, ̂ (Z) = \Z\.
(c) Let n = 2J © 3 be a 6-dimensional Lie algebra with inner product such that [X\,X^X^,X^}

is an orthonormal basis for 9J and {^1,^2} is an orthonormal basis for 3. Let a, &, c, d be
real numbers, and set

( 0 a 0 0\ / 0 0 c ( ^
._, -a 0 0 0 ._, 0 0 0 d
J(zl)= 0 0 0 J9 J(Z2)= -c 0 0 0

0 0 -b 0/ V 0 -d 0 0,

The matrix j(aZ\ + {3Z^) has eigenvalues

^±- (\/(a - 6)W + (c + d)2/?2 ± ̂ (a + ̂ a2 + (c - d)2/?2^.

A straightforward calculation shows that n is Heisenberg-like if and only if a2 + b2 =
c2 + d2 and ab + cd = 0. A sufficient but not necessary condition is that

( a b\
{c d )

be a scalar multiple of an orthogonal matrix.

If N is of Heisenberg type, then geodesies in N are well-behaved. Let a denote a unit speed
geodesic with initial velocity XQ + ZQ, XQ G ^J and ZQ G ^ZT, and initial position a(0) = e. We
write a(s) = exp(X(^) + Z(^)). If N is of Heisenberg type, then Z(^) is a multiple of Zo for
all s (see [12]). In the Heisenberg-like case, such a geodesic will have the property that Z(.s)
periodically lands on a multiple of ZQ. We use Theorem 2.8 to determine the lengths of closed
geodesies for a two-step nilpotent Heisenberg-like nilmanifold.

THEOREM 3.10. - Let (N, ( , )) be a Riemannian two-step nilpotent metric Lie group that is
Heisenberg-like. Let 7 e N , 7 -=/=• e. With notation as in (2.2), write 7 = exp(V + Zy + Z^).
Then the periods 0/7 are precisely

[ , n / 47^^|Z,L|2(^(Z^)-7^fc^) .ZK fc . ̂ ^^\v+Zy\,^v\ +————-^^————.^ez,i<^<^—,

m = 1, . . . , [L ->.

Note that if (N, ( , )) is of Heisenberg type, then A^ is nonsingular. It follows from
Theorem 3.10 that in this case the periods of 7 = exp(Z), Z e 3 — {0}, are

!\Z\^47rk(\Z\-7rk): A; e Z, 1^<^1.

This result was obtained originally by Eberlein in [12].

Proof of Theorem 3.10. -Let XQ + ZQ e n, XQ = X^ + J^, such that Xi e kerj(Zo),
^2 -L kerj(Zo) and X^ + ^o satisfy conditions (i) to (iv) of Theorem 2.8. Let a be a geodesic
such that (7(0) = e, cr(0) = XQ + ZQ, and 7 translates a with period LJ. Recall from Theorem 2.5
that ZQ _1_ [Y,n] in this case.
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If N is Heisenberg-like, then K^(X^ + ZQ) = cZ^ for some c > 0 if and only if ZQ == c'Z^
for some c' > 0. Hence /?, the angle between ZQ and jFC^(X2 + Zo), equals 0. It follows that

^{Z^=\Z^m(Zo), ZO=T^
\Zo\

and the periods take on the desired form, provided we show that 1 ̂  k < i9rn(Z^)/27T.
If \Zo\ = 1, then \Xz\ = 0 and ^ = \V + Z^ . If \ZQ\ = 0, then kerj(Zo) = ̂  so X^ = 0,

which implies Z^ = 0, and cj == \V\ is the unique period of 7.
So we may assume 0 < \ZQ\ < 1. Using ZQ -L [V,n], \X^ -\- ZQ =1, and (2.3), we obtain

{ZQ^K(XZ + ZQ)} = <Zo,^(^2 + Zo)> = 1(1 + |Zo|2).

Thus

<Zo,^(^2+Zo)>=^f——T+|Zo|y
2\|Zo| /

One easily checks that for 0 < \ZQ < 1, — + \ZQ > 2, so \K^(X^ + Zo)\ > 1. By (iv),

^m(Z^) ^m(Z^)

Km 2^|^(X2+Zo)| 2^ '

as desired.
It remains to prove that if 1 ̂  k < '^(Z^)/27r, then there exists X'z + ZQ satisfying conditions

(i) through (iv) of Theorem 2.8. Let

7 - 1 / 7rk ^
^-W^Wm^)-^'

Note that k < i9m(Z^)/27r implies \ZQ < 1. Let ̂  e Wm(Z^) be a unit vector. Set Xz =
^/\ — [Zol^m. so X^ + ZQ is a unit vector. Note that by the assumption on A-, i9rn(Z^) > 0,
hence ̂  and X^ are orthogonal to kerj(Z^). Similarly, Z^ A, [V,n] implies V € kerj'(Zo).
and conditions (i) through (iii) of Theorem 2.4 are satisfied. To show condition (iv), by (2.10),

\^(Y . 7 ^ 1 ^I^O2 ^rn(Z^) \Z^(Zp)
\Ky(X2 + ZQ)\ = = = —————————,

^zo 2^k^(Z^)-^k) 27rk

and we are done. D

Example 3.11.- Consider the 5-dimensional Lie algebra of Example 1.15. We briefly review
the construction. Let n == V © 3 be a 5-dimensional Lie algebra with inner product such that
{X\, ̂ 2, X^} is an orthonormal basis for ^ZJ and {Z\, Z^} is an orthonormal basis for 3. Give n a
Lie bracket such that

/O -1 0\ /O 0 -1\
j(Zi)= 1 0 0 , j(Z2)=( 0 0 0 .

\0 0 O/ \1 0 0 )
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For Z = aZi + /?^2, J'(^) has eigenvalues {0, ±i^a2 +/32}, that is, 2?i(Z) = 0 and ^(^) =
|Z|. This Lie algebra is strictly singular and (from Theorem 3.7) is Heisenberg-like. The invariant
subspaces of j(aZi + l3Zz) are W^(Z) = span^J/^ - 0X3} and H^) = span^{Xi, aX^ +
/^3}.

We compute the periods of various elements in n. Let 7 = exp(V + Z), where V = v\X\ +
^2-^2 + ̂ 3^3 and Z = ziZi + z^Z^.

One easily checks that [V, n] = 3 if and only if ^i -^ 0. In this case, Z^ = 0 and the unique
period of 7 is uj = \V\.

If^i = 0 and |V| ̂  0, then [Y,n] = span^f^i +^3^2}, and [V.n]-1 = span^^Zi -^2}.
So

i ^3-^2 / ., „ ,
z^ = ———p^|2———^3Z! - V2Z2)

and

|y±l n / ^ ^ \ZlV3-W2\
\Zy\=^[Zy)=—————————————.

\V\

By Theorem 3.10, the periods of 7 are

{^|y|2+|^^p,J[y|2+4^(|^^|-^):^eZ, l^k<{z^}.
L v v 27T J

Note that in this case, 7 will have more than one period if and only if \Z^ \ > 27r.
Finally, if V = 0, Z ^ 0, then the periods of 7 = exp(Z) are

1 ^ 1 '\\Z\^47rk(\Z\-7rk): k C Z, 1 ̂  k < -^l.
I 27T J

Remarks 3.12.-
(a) Note that the length spectrum result for central periods of Example 3.11 mimics the

Heisenberg type result, since the Lie algebra in 3.11 is, up to nonsingularity, Heisenberg
type; that is, the only nonzero eigenvalues are =bz|Z|.

(b) Eberlein used Example 3.11 to demonstrate the phenomenon of nonunique, noncentral
periods (see (4.8) of [12]). Let a and f3 be nonzero and set ^ = 1 + ^/32. Let 7 =
exp(27raX3 + 27r/3*Zi). By the calculation in Example 3.11, with V = 2^0X3 and
Z = Z^r = 27r/3*Zi, it follows that 7 has at least two periods,

^ = ^\V? + 4^(1^1 - 7r) = 2^1 + a2 + (32

and

^ = yW+1^12 = 27^V/a2+/3*2.

For the existence of the first period, note that 1 < \Z^ |/27r = /?*.

We denote the center of a Lie group N by Z(AO. Note that for simply connected two-step
nilpotent Lie groups, Z(N) = exp(3).

THEOREM 3.13. -Let (N, ( , )) be a simply connected two-step nilpotent metric Lie group.
Then N is Heisenberg-like if and only if for every 7 G Z(N) and every period uj 0/7 there exists
a ^-periodic geodesic a of period uj that is contained in a three-dimensional totally geodesic
subgroup of N.
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Theorem 3.13 is a natural generalization of the following characterization of Heisenberg-type
metric Lie groups.

THEOREM 3.14 ([13]). -Let (TV, ( , )) be a simply connected, strictly nonsingular two-step
nilpotent metric Lie group. If N is of Heisenberg type, then every ^-periodic geodesic of N
is contained in a three-dimensional totally geodesic submanifold H. On the other hand, if for
every geodesic 7 with 7(0) = e there exists a connected, three-dimensional totally geodesic
submanifold H such that Y(0) C U = TeH and U H 3 ̂  {0}, then N is of Heisenberg type.

Proof of Theorem 3.13. - Let N be Heisenberg-like and let 7 = exp(Z) for some Z C 3 - {0}.
Suppose that 7 has period uj. If uj = \Z\, then a(s) = exp(sZ/\Z\) is a unit speed 7-periodic
geodesic with period |Z|, and by the Heisenberg-like assumption, a(s) is contained in the totally
geodesic subgroup corresponding to the subalgebra sp2Ln^{XmJ(Z)X^Z] for any Xm in
Wm(Z\ and any m e { 1 , . . .^(Z)].

\iuj 1=- |Z|, by Theorem 3.10,

_27^A;|^|v^U^)-7^A:

^~ ^m(Z)

for appropriate choices of m and k. Note that this implies i9m(Z) ̂  0. Let a(s) be a unit speed
geodesic that is translated by 7 with period uj such that a(0) = e and a'(0) = XQ + ZQ. Since N
is Heisenberg-like, ZQ e span^{Z}. If span^{Xo,Zoj(^o)^o} is not totally geodesic, then let
XQ = ̂ /}~\Zo 2^m for a unit vector ̂  e Wyn(Z). Let a be the unique geodesic with a(0) = e
and cr'(O) = XQ + ZQ. Then span^{Xo, Zo»j(^o)^o} is totally geodesic, so a is contained in a
three-dimensional totally geodesic subgroup. Using (2.3), the Heisenberg-like assumption, and
the fact that \XQ\ = |Xo|, we know K(XQ + Zo) = K(XQ + ZQ\ and since XQ^-ZQ satisfies (i)
to (iv) of Theorem 2.8, so does XQ + ZQ. Hence a is translated by 7 with period uj.

For the converse direction, assume that for every 7 G Z(AO and every period uj of 7 there exists
a 7-periodic geodesic cr of period uj that is contained in a three-dimensional totally geodesic
subgroup of N. Note that by Theorem 3.7 and continuity of the eigenvalues, it is enough to prove
Heisenberg-like on the simple subdomain U of 3, i.e., we may assume that locally, the number
of distinct eigenvalues does not change, and the eigenvalues i9m, their invariant subspaces Wm,
and their gradients Wyn are well-defined and smooth as functions of Z.

Assume that N is not Heisenberg-like, i.e., there exist ZQ e U and Xm e Wm(Zo) such that
[j(Zo)Xm,Xm] i span^Zo}. This implies i?m(Zo) + 0, so \j{Z^X^X^\ ̂  span^Zo).
We may assume ZQ and Xm are unit vectors. Recall that

[jW-^m^m] = wm(zo) for all ̂  e W^(Zo).
^m^O)

So ̂ (Zo^Xm^Xm] i span^{Zo) if and only if W^(Zo) ^ span^{Zo}.
Let Zr = 27rK(rXm + Zo)/^m(^o). Note that

^ 27r|^(rX^+Zo)| ̂  27r\K((rXm + Zo)/^rT^)|
^(Zo) ^n(^o/\/TT72)

Using the definition of K, it follows that lim^^o |^(^m + Zo)\ = l .Letcr^ be the unit speed
geodesic such that oy(0) = e and having initial velocity (rXm + Z p ) / V l +r2. By Theorem 2.4,
cr^ is an exp(Z^)-periodic geodesic with period ujr = (27r^l + r2)/^^).
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By hypothesis, there exists X^ G Wm'^Zr) such that n* = span^{X^, J(Zr)X^ , Z r ]
is totally geodesic, and the corresponding subgroup contains a geodesic that is translated by
exp(Zr) with period cc^. To see that n* must be of this form, note that since ujr ^ Zr\, n*
must contain a vector of the form X + Z as in Theorem 2.8. Using the covariant derivative, as
given in the proof of Lemma 3.3, one easily computes that n* must contain j(Z)nX for n e N.
If [jW^X.X + Z'. n e N} spans a 3-dimensional vector space, then j(Z)'2X e span^{X},
which implies X lies in a single invariant subspace Wm(Z). From this we conclude that
K(X + Z) e span^ { Z }, which implies Z e span^ {^}.

By Theorem 2.8,

47vkm^ (̂  (Z^I^I-TTA^)

\ ^(Zr)2

where Z^ = Zr/\Zr\. Thus

4^(1 + r2) ^ 47r^(^(^)|^| - TT^)
^m(Zo)2 ~ ^(Zrf

Define

^ ^(Zr)

km^7n(Zo)'

Substituting, we obtain the quadratic equation

(l+r^A^A^r^+Zo^+l^O.

Solving for \r and letting r -^ 0, we obtain lim^o Ar = 1, i.e.,

lim^-^=^(Zo).
r^O km',

As lim^o Zr = ZQ, and the finitely many ^rn', are continuous in Z, we have

,. ^(Zr) ,. ^(ZQ) . _ ^lim ———— = hm ———— = ̂ (Zo).
r-^O A;^^ r^O A;yn^

By passing to a subsequence, if necessary, we may assume m^ and km' are independent of r.
Letting m' = m^ and /c^/ = A;^, we obtain ^m'(Zo) = km^m(Zo)-

Assume for the moment that ZQ satisfies the property that ^n(Zo) is an integer multiple of
^yn(Zo) if and only if n = m. Then we are done, since this implies m' = m and km' = 1. So
span^{XmJ(Zr)Xm,Zr] totally geodesic implies V^(Z^) <E span^{Z^}. Since these are all
continuous in r, letting r -^ 0 we obtain W^(Zo) € span^{ZoL a contradiction.

Now assume ^(Zo) = km'^m(Zo), where m' 7^ m. Since Wm(^o) ^ span^{Zo}, by
continuity there exists e > 0 such that V'ffm(Z) ̂  span^{Z} for all Z within e of Zo. Also,
there exists Zi within e of Zo and 6 > 0 such that the (5-neighborhood of Z\ is contained in the e-
neighborhood of Z^ and ^m'(Z) -^ km^m(Z) for all Z within 6 of Zi. To see this last assertion,
note that if this were not the case, then ^m'(Z) = km^m^) would be a dense condition on the
e-neighborhoodof ZQ, which would imply -ffm^Z) = km'^m(Z) on a neighborhood of ZQ. Thus
\/i9rn(ZQ) and V^/(Zo) lie in the same one-dimensional subspace, a contradiction.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



202 R. GORNET AND M.B. MAST

We thus have Zi e U such that V^n(Zi) ^ span^{Zi}, and a ^-neighborhood around Zi
such that ^m^^i) is not an integer multiple of ^m(^i). (We can shrink e to avoid ^m'(Z) being
any integer multiple of ^n(^).) If we repeat this process at most ^ = ^(Zo) times, we obtain
Z^ e U such that V^(Z^) ^ span^{Z^}, and such that Z^ satisfies the property that ^n(Z^) is
an integer multiple of ^yn(^) if and only if n = m, and we are done. D

4. The length spectrum and isospectrality

Two-step nilmanifolds have played a vital role in comparing the Laplace spectrum of
Riemannian manifolds. Until recently, all known examples of isospectral manifolds were also
locally isometric, i.e., shared a common Riemannian cover. The locally isometric examples of
isospectral manifolds are known to have the same length spectrum (ignoring multiplicities). See
[23,25] for references and more details.

Then Gordon [18,19], [22] introduced a method for producing pairs of isospectral two-step
nilmanifolds that need not be locally isometric, i.e., she does not assume a common cover.
We briefly review this construction and prove that all known examples of isospectral two-step
nilmanifolds arising from this method must have the same length spectrum. This result does not
follow from the generic results of [9], as nilmanifolds do not satisfy the genericity hypotheses of
that paper.

The following definitions are used in the Gordon construction.

Definitions 4.1. -
(a) Let spec(M, g) denote the eigenvalues of the Laplace-Beltrami operator A acting on

smooth functions on the Riemannian manifold (M, g).
(b) Let N(j) denote the simply connected nilpotent Lie group with Lie algebra determined by

the inner product spaces % 3, and the mapping j: 3 -^ so(2J) as described in (1.7). Let < , )
denote the left invariant metric on N(j) corresponding to the inner product on V e 3. Let
F be a cocompact, discrete subgroup of N(j). Then N(j,F) = F\N(j) with the metric
induced from ( , ) on N(j) is a Riemannian two-step nilmanifold.

(3) Define T T : N ( J ) -^ N(j)/N^ where N^ is the derived group of N(j). The Lie group
^(N(j)) is abelian and isomorphic to Euclidean space. The image 7r(r) is a cocompact
discrete subgroup (i.e., a lattice) of 7r(N(j)). Let TVoQ', F) = 7v(r)\7r(N(j)) together with
the unique metric making N(j,r) -^ NQ(J,F) a Riemannian submersion with totally
geodesic fibers. One easily checks that the manifold 7VoO\ -0 is a flat torus.

Definition 4.2. - Let 9J and 3 be fixed and let j and j ' be two linear transformations from 3 to
so(9J). We say j is isospectral to j\ denoted j ~ j\ if for all Z e 3, j(Z) and j\Z) are similar,
i.e., the eigenvalues of j(Z) and j ' ( Z ) coincide.

We examine pairs of isospectral two-step nilmanifolds, constructed as follows.

THEOREM 4.3 ([22, Theorem 3.4]). -In the notation of (4.1), let Mj.F) and N ^ j ^ r ' ) be
compact, strictly nonsingular, two-step Riemannian nilmanifolds associated with the same inner
product spaces ^3 and 3. Assume

(i) \og(^nN^)=\og(rnN/(l\
(ii) spec(7Vo(j, F)) = spec(7VoO'/, F')), and

(iii) J~y.
Then spec(A^j, F)) = spec(7VO•/, F')).

THEOREM 4.4.-//7VO',r) and N ( j ' , r ' ) are isospectral by satisfying the hypotheses of
Theorem 4.3, then N(j, F) and N(j\ r ' ) have the same length spectrum, ignoring multiplicities.
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Before proving Theorem 4.4, we need the following.

Definition 4.5. - Let K : 9J C 3 -^ 3 and JC': 2J C 5 -^ 3 be the mappings denned in (2.2)
determined by W^J) and (^,3,^), respectively. We say K is similar to K\ denoted K ~ K ' ,
if for all Z e 3, /^(Z) = //(Z), and for all X c V there exists X' c 2T such that K(X + Z) =
^(X7 + Z) and such that

(i) \X,\=\X[\^nd
(ii) if^(Z)^0,then |̂ | = |^J, m= 1,.. .,/,(Z);

we also require that for all Z e 3 and X' e 2J there exists X e % such that X(X + Z) =
JC^X' + Z) and such that (i) and (ii) hold. Here /z, // are the counting functions associated to
j , j ' respectively, as defined in (1.17), and X\,X[,^rn. and ̂  are determined by decomposing
X = ̂  + Em ̂  and X' = X[ + ̂  C as in (2.1).

LEMMA 4.6. - Let 9J an^ 3 be fixed and let j and j / be linear transformations from 3 to so(^).
I f J - J ' t h e n K ^ K ' .

Proof. - Consider K(X + Zo). Decompose X as Xi + ̂ 2, X^ = Em ^m as in (2.1). Observe
that K(Xi + X^ + ^o) = ^(^2 + ^o)- By similarity, kerj(Zo) is nonempty if and only if
kerj^Zo) is nonempty, so it is enough to prove the theorem in the case X\ = 0, i.e., we may
assume ^^(Zo) is nonzero in what follows.

LetU be the simple subdomain of 3 defined in (1.18). By Proposition 1.19, 'ffm(Z) is smooth
on U, m = 1,..., p.. For Z in U, Lee and Park [33, Lemma 3.2] showed that for ^m(Z) -^ 0,

(4.7) ——^wm(z) = [^r'X^Z^XmW],
^mv-^ )

where Xm(Z) is any smooth (in Z) choice of unit vector in Wm(Z).
If Zo is in U then by (4.7), if ̂  ̂  0,

[jW-^m^m] = \^[j{ZQ)-'Xm(ZQ\Xm(ZQ)\ = \^\2——————\/^(ZQ).
^m^O)

Note that this value depends only on the local behavior of the eigenvalues ^yn(Zo) and the
magnitude of the orthogonal projection of X^ onto Wm(Zo), m = 1,..., p.(Zo).

If j ~ j\ then for each m, let ̂  be a vector in IV^(Zo), the invariant subspace of j '
associated to the eigenvalue ^m(Zo), such that |̂  = |<^ . Let X^ = EmG- KY (4-7).
K(Xz + Zo) = K\X^ + Zo), and we are done.

Now assume that Zo ^ U. As ^ is dense in 3, Zo is a limit point of U. By (1.19.4) and
continuity of the set of eigenvalues [32, §11.5.7], two (or more) of the eigenvalues must approach
each other as Z approaches Zo e 3 - U. That is, there exists Z^ —^ Zo, Z^ c ̂ , such that as i —> 0,

lim^(Z,)=^(Zo) and lim^(Z,) =^(Zo).
t—^(J c—>0

We proceed as though only two eigenvalues approach each other; it will be clear that this does
not affect the argument.

By Anselone [1, Theorem 4.16], since j(Zt) -^ j(Zo) and skew-symmetry holds, we may
define

Vm(ZQ)=\mWm(Zt) and V^(Zo) = limH (̂Z,).
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Note that since Wm(Zt) and Wm'(Zt) are orthogonal, invariant subspaces of j(Zf) for all t, their
limit spaces Vm(Zo), Vm'(Zo) are orthogonal, invariant subspaces ofj'(Zo), and

Wh(Zo) = Vm(Zo) C Vm'(Zo).

We refer to Vm(Zo), Vm'(Zo) as refined invariant subspaces of j(Zo).
Let X^ e H^(Zo). We now show that K(X^ + Zo) depends only on the norms of the

projections of X^ onto the refined invariant subspaces of Wh(Zo), and on the nearby behavior
of "ffrn and ^rn' • Once we do this, using the similarity ofj and j\ we choose X^ e W^(Zo) such
that the norms of projections of X^ and X'^ onto their corresponding refined invariant subspaces
are equal. (Clearly, this implies that the norms of their projections onto corresponding invariant
subspaces are equal.) Then K(X^ + Zo) = 'K'(X1^ + Zo) and we are done.

Consider first the case X^ e Vm(Zo), i.e., X^ is contained in a single refined invariant
subspace ofj'(Zo). Then for all t there exists X^ e Wm(Zt) such that lim^o X^ = X^. Using
continuity of the Lie bracket and Zt G U,

K(XH + Zo) = Zo + ^ [^Zo^X^Xh]

=Z^^m{[j(Zt)-lX^Xt^}

7 - ^ 1 ! ^ l2^^^^^=ZO+^|A^| [im< .-limf^^l
t-^0\ ^m(Zt) J2 t-^O ^ Vrn(Zt)

and we are done in this case.
Now consider the case Xh = Xm + Xm' where X^ e Vm(^o) and Xyn/ G Vyn^^o). We show

that

K(Xh + Zo) = K(Xm + ^o) + K(Xm' + Zo) - Zo.

From above, the right hand side of this equation depends only on \Xm\, \Xm' \ and the nearby
behavior of i9rn and '9rn' - Now

K(Xm + Zo) + K(X^ + Zo) - Zo
= ZQ + I [j(Zo)-1^,^] + ^ [^(Zo)-1^/,^/].

On the other hand, since Xh is in the single invariant subspace H^(Zo),

^(X^+X^+Zo)=Zo+^[J(Zo)- l(X^+X^),X^+X^].

Thus

^(X^ + X^ + Zo) - {K(Xm + Zo) + X(X^/ + Zo) - Zo}

=j[J(Zo)-lX^,X^]+^[J(Zo)-lX^,X^]

=2^^^xmJ(zo)xm^ + ̂ '^o)^]).

We show that this value is zero by showing that for any vector Z in U,

(Z, [X^j(Zo)X^] + [X^J(Zo)Xm]} =0.
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Note that (Z,[XmJ(Zo)Xm']) equals -(j(Z)j(Zo)X^,Xm} by the definition of j(Z). Also,
(Z, [XhJ(Zo)X^]) equals -(j(Zo)j(Z)Xm, Xm'}. using the definitions ofj(Z) and j(Zo) three
times. So that

(Z, [X^(Zo)^m/] + [Xm'J(Zo)Xm\}= {(J(Z)J(Zo)+J(Zo)J(Z))X^,Xm}.

Let X^(Z) and Xm^Z) be any smooth (in Z) choice of unit vectors in Wm(Z) such
that Xm(Zy) = Xm/\Xm\, and Xm'(Zo) = X^ /\Xm'\. Let X/,(Z) = X^(Z). Note that
(i^(Zo), Xm(Zo)) = 0. By Lee and Park [33, Lemma 3.2]

{j(Z)j(Zo) + j(Zo)j(^))^(^o) = - (j(^o)2 + ̂ (Z^Id) 9^- - 2^(Zo)^^(^o),

provided QX^/Qz and Q^^jQz make sense.
Here (?/<9^ is the derivative of the expression taken in the direction Z. Let A(s) = j(Zo + ̂ Z).

Then A(s)2 is self-adjoint for every s e R and is analytic in the real variable s. By [16,
Theorem S6.3], the eigenvalues and normalized eigenvectors of A(s)2 can be chosen to depend
analytically on s. A curve —i9k(Zo + sZ)2 corresponds to one of the analytic eigenvalue curves,
and Xk(Zo + sZ) corresponds to one of the analytic eigenvector curves of A(^)2. We choose
analytic curves such that ^(Zo) = 'ffh(Zo) and Xk(Zo) = X^Zo). Then define

9^(Zo) d^k(Zo^sZ)
9z ds and 9Xh(Zo) dXk(Zo + sZ)

5=0
9z ds s=0

which exist and are bounded.
While 9Xh/9z and Q^^jQz may not be well defined, they are defined up to the choice of the

curves ^/c(Zo + sZ) and Xk(Zo + sZ\ which is all we need, since

< {j(Z)j(Zo) + J(ZO)J(Z))X^(ZQ\ Xm}

I ( . ( 7 ^ ^ Q (7 \l\^^h(Zo) _ \
= < (j(Zo) +^(Zo) )——^——— ,Xm )
\ oz I

= (^(Zo)2 - W,)1} /9XI^,X^\ = 0,

and we are done. D

Proof of Theorem 4.4. - This follows from the formulation of the length spectrum given in
Theorem 2.4.

Consider elements of the form 7 = exp(Z) with Z -^ 0. In this case, V = 0, Zy = 0, Z^r = Z,
and K^(Xz + Zo) = K(X^ + Zo) for all X^ C % ZQ C 3 - {0}. Hence all the periods of 7 are
of the form \Z\/\K(X^ + Zo)| where J^ + ^o satisfies (i)-(iv) of Theorem 2.4. Note that (ii)
is automatically satisfied, as kerj(Zo) is empty by the nonsingularity assumption. The fact that
these periods must correspond now follows from Lemma 4.6 and the first and third hypotheses
of Theorem 4.3.

Consider elements of the form 7 = exp(V + Zy + Z^) with V ^ 0. By the nonsingularity
assumption, [V.n] = 3, so Z^ = 0 and K^(X + Zo) = 0. By Theorem 2.4, the unique period
of 7 is |V|. Geometrically, the closed geodesies corresponding to these periods are horizontal
in the Riemannian submersion N(j, F) —^ NQ(J, F). Thus, the set of periods of the form \V\ is
precisely the length spectrum of the quotient torus TVoO', F). (See [25] for more details.)
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It is known that pairs of flat tori are isospectral if and only if they have the same length
spectrum, including multiplicities. The result now follows from the second hypothesis of
Theorem 4.3. D

Remark 4.8. - The following pair of isospectral two-step nilmanifolds was constructed using
a generalization of Theorem 4.3 [22, Proposition 3.7]. This is the only example of a pair of
isospectral nilmanifolds whose length spectrum could not previously be compared and that is not
subsumed by Theorem 4.4. We prove by a direct computation in Theorem 4.11 below that even
this example has the same length spectrum. In summary, all known examples of isospectral two-
step Riemannian nilmanifolds also have the same length spectrum, ignoring multiplicities. The
authors have recently shown that all examples constructed using the generalized method must
have the same length spectrum; a manuscript is in preparation.

Example 4.9 ([22, Items 2.3, 3.9, 3.10, 3.11]).-Let 01,02,03 be integers satisfying
0 < oi < 02 < 03. Define ja by

Ja=

/ O
oi
0
0
0

\ 0

-0,1
0
0
0
0
0

0
0
0
02

0
0

0
0

-02

0
0
0

0
0
0
0
0
03

0
0
0
0

-03

0

\

1
Let b\,b^ &3, b[, b^ b^ be integers with g.c.d.(&i, b^ 63) = g.c.d.(^, b^ b^) such that there exists
u in the interval

f \ -bi — — b 3 \7 2 7 2
-&1 -&3max^ ————-,————- \,

[ [ 022 - Oi2 032 - 022 J

b2

a^ -a\1

satisfying

(*)

^=^^u{a^-0^\

^=^^n^-a^\

^=^+^32-a22).

Define jb by

3b=

^ 0 0 bi 0 &2 0\
0 0 0 0 0 0

-bt 0 0 0 &3 0
0 0 0 0 0 0

-k O -&3 0 0 0
\ 0 0 0 0 0 O/

Define jy analogously.
Let ^3 be six-dimensional Euclidean space with the standard inner product, and standard basis

denoted {e i , e^..., 65}. Let 3 be two-dimensional Euclidean space with standard inner product,
and standard basis denoted {Co, Q) }. Define j : 5 -^ so(9J) by jOiCi + ^€2) = z\ja + zijb- Like-
wise, define j ' :3 -^ so(9J) by j\z^ + ^€2) = ̂ ija + ̂ /. By comparing their characteristic
polynomials, one computes that j ~ j ' .

Let (n, ( , )) and (n7, ( , )) denote the resulting metric Lie algebras, and N(j), Nfj') the
corresponding simply connected Lie groups. Let F denote the image under the exponential
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mapping of the integer lattice of n (i.e., the integer span of 61,.. . ,66,Ci»C2). Define F '
analogously. One easily checks that F (respectively, F') is a cocompact, discrete subgroup of
N(j) (respectively, N^j')).

THEOREM 4.10 ([22]). - The manifolds N(j, F^b) and N(j\ F^,) are isospectraL

THEOREM 4.11. - The manifolds N(j, F^) and N(j\ F^/) have the same length spectrum.

Proof. - The central lengths are equal by Theorem 4.6 above, so we need only consider the
noncentral lengths.

Let 7 = exp(V + Z) G F, V •=/=• 0. A straightforward calculation shows that if

V G span^{62, 64, 65, b^e\ - ̂ 263 + ^165},

then [V, n] = span{ Z^ ]; otherwise [V, n] = 3. Likewise for 7' = exp(y' + ZQ e F', V 7^ 0, if

V € span^ {62, 64, e^ ̂  - 62^ + b[e^},

then ly'.n'] = span^}; otherwise [y'.n'] =3.
Assume 7 satisfies

V = 77,162 + ^264 + ^366 + ^4(^361 - &263 + b^)/g.C.±(bi,b^ ^3),

i.e., [y,n] = span{Z2}- Now let

-,w. w
|^(X2+Zo)|2

be a period of 7. The requirement that V G kerj'(Zo) of Theorem 2.4 implies that ZQ e span{ Z\}.
Let

V = me; + ̂ 264 + H366 + n^e\ - b^ + b[e^/g.c.d.(b\^b^.

Note that \V\ = \V'\, by (*) and by the assumption on the greatest common divisors. Also,
V e kerj'(Zo). Now define X^ as a vector in 9J', such that {X^W^(Zo)} = (X^Wm(ZQ))
for all m = 1,..., /^(Zo). Then as in the proof of 4.5 above, K(X^ + Zo) = K'(X^ + ZQ). Since
V G kerj(Zo), ^/ e kerj^Zo) and [y,n] = [y'.n'], we have Z^ = Z^, and K^(X^ + ^o) =
K'yW^ZQ).

Note that we have constructed a length-preserving correspondence between vectors V in 7r(r)
and 7r(r') that have the property dim[7v~\V), n] < 2. Since 7r(r) and ^(F') produce isospectral
tori, this correspondence must extend to a length-preserving correspondence between the entire
lattices 7r(r) and ^(FQ. In particular, if [Y,n] = 3, there exists V C W with IY'I - [y] and
[V\ n'] = 3, which implies Z^ = 0, and we are done. D
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