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DEGENERATED SINGULAR CYCLES
OF INCLINATION-FLIP TYPE (*)

BY C. A. MORALES AND M. J. PACIFICO

ABSTRACT. - In the present article we show that the elements of certain class of vector field cycles, called singular
cycles, yield through two-parameter families a transition from simple to more complex systems. Our cycles here
are more degenerate than the ones first described in [BLMP], due to a further nontransversal intersection between
the invariant manifolds of the elements in the cycle. Bifurcation diagrams are provided, as well as hyperbolicity is
proved to be prevalent for generic codimension-two perturbations of these degenerated cycles. © Elsevier, Paris

RESUME. - Dans Ie present article, nous montrons que les elements de certaines classes de cycles de champs
de vecteurs, appeles cycles singuliers, permettent de passer a 1'aide d'une famille a deux parametres d'un systeme
simple a un plus complexe. Nos cycles sont plus degeneres que ceux d^crits dans [BLMP], a cause d'une
intersection non transversale de plus entre les varietes invariantes des elements du cycle. Les diagrammes de
bifurcations sont donnes, et on montre que 1'hyperbolicite est prevalente pour des perturbations de codimension
deux generiques de ces cycles. © Elsevier, Paris

1. Introduction

The objective of this paper is to present new results in bifurcation of vector fields. This
is achieved by further exploring a 3-dimensional bifurcating structure for vector fields,
called singular cycle, through which a parametrized system may evolve from a simple
to a highly nontrivial dynamic. Recall that a singular cycle, for a vector field, is a finite
set of hyperbolic periodic orbits and at least one singularity, which are linked in a cyclic
way by orbits in the intersection of the stable and unstable manifolds of its periodic orbits
and singularities. Here the singularity is unique (a saddle) and it is expanding, i.e., its
expanding eigenvalue is stronger than the weakest contracting one. This kind of singular
cycle is called expanding. Otherwise, it is called contracting.

The unfolding of expanding singular cycles was studied in [BLMP] and the corresponding
study for the contracting ones in [PR] and [S]. In both cases it was showed that hyperbolicity
is a prevalent phenomenon: for generic families X^ of vector fields on R3 passing through
a vector field presenting a singular cycle, the set of parameters corresponding to hyperbolic
vector fields has total Lebesgue measure. More than this, the complement of this set has

(*) French title: "Cycles singuliers degeneres du type inclination-flip". Research partially supported by CNPq-
Brasil.
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2 C. A. MORALES AND M. J. PACIFICO

zero limit capacity when the cycle is expanding. In these papers, besides the hyperbolicity
of the critical elements in the cycle, it was assumed that the cycle is of codimension
one, that is, there was only one nontransversal orbit in the intersection of the stable and
unstable manifolds of its elements. Here we shall analyze the unfolding of a codimension
two expanding singular cycle, characterized by the existence of two nontransversal orbits
in the intersection of the stable and unstable manifolds of the critical elements in the cycle.

Let us now present the precise statements of our results. Let M be a compact and
boundaryless 3-manifold and let ^(M) be the Banach space of C^ vector fields on
M endowed with the C^-topology. If X G ^(M), a singular cycle for X is a set
r = {0-0,0-1,70,71} satisfying:

a. o-o is a hyperbolic saddle-type singularity of X, such that the eigenvalues Ai, -As, -As
of the derivative matrix DX((TQ) are real and satisfy —As < —As < 0 < Ai;

b. o-i is a hyperbolic saddle periodic orbit of X. If A and a are the eigenvalues of
the linear part of the corresponding Poincare map II induced by X, then they are real
and satisfy 0 < A < 1 < a;

c. 70 is a regular orbit of X lying in the intersection of the stable manifold W8 (o-i) and
the unstable manifold TV^o-o) of o-i and o-o respectively;

d. 71 is a regular orbit of X belonging to the intersection of the stable manifold W^ao)
and the unstable manifold W(o-i) of o-o and o-i respectively;

e. The cycle F is isolated, that is, it has an isolating block. Recall that an isolating block
for an invariant set T of a vector field X is an open set U C M such that n^pXt^U) = F
where Xt is the flow induced by X.

DEFINITION. - A singular cycle T = {0-0,0-1,70,71} of a vector field X is
called inclination-flip whenever W8 (o-o) and ^^(o-i) have a quadratic nonde generated
intersection along 71, each center-unstable manifold (see [ H P S ] ) W^ passing through o-o
is transversal to H^(o-i) along 70 and As < Ai fsee Figure 1). The cycle will be called
expansive (contractive) if Ao- > 1 fAo- < 1) (see notation in ( b ) above).

Our motivation to study this kind of degenerated singular cycles comes from [BLMP],
as well as from the study of degenerated loops associated to hyperbolic (or nonhyperbolic)
saddle singularities (see [HKK], [N], [M], and [Ry]). Indeed, our cycle is obtained inserting
in a convenient way, a hyperbolic closed orbit in the loop studied at [HKK]. As we shall
see below, the dynamical behavior arising from the unfolding of an inclination-flip singular
cycle r depends on certain conditions on the way the singularity and the periodic orbit are
linked. These conditions yield eight cases. We shall analyze in detail one of then which we
call inward type. For the others, we indicate how to proceed to obtain the corresponding
results at Remark 3.1.

Theorems A and B explain the bifurcation diagram for the unfolding of an inward
inclination-flip type singular cycle (see Figures 2(a) and 2(b) below). As a consequence,
we obtain that hyperbolicity is a prevalent phenomenon for generic two-parameter families
passing through a vector field presenting an inclination-flip cycle of either expanding or
contracting type (see Theorem C). We shall denote by We and We the subset of ^(M)
consisting of vector fields that exhibit an inclination-flip singular cycle of expansive and
contractive type, respectively.
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DEGENERATED SINGULAR CYCLES OF INCLINATION-FLIP TYPE

Fig. 1

To state our results, we use the following notation. Let X = {X^}^R be a parametrized
family of vector fields such that XQ has a singular cycle F. If U is a fixed isolating block
of r, then f^(?7) denotes the nonwandering set of X^ in U. H(U^X) denotes the set of
parameter values fi for which ^^(U) is hyperbolic (see [PT]). Hs(U,X) will denote those
parameter values ^ in H(U, X) for which ^((7) is just the continuations of the singularity
and the periodic orbit of F. Hh(U, X) denotes the subset of H(U, X) formed by parameter
values fi such that ^((7) has at least one nontrivial basic set. Recall that B is a basic
set for a vector field X if it is hyperbolic, transitive and coincides with the closure of its
periodic orbits. The Lebesgue measure for subsets in R will be denoted by m.

THEOREM A. - Let X = X^^ G ^^(M) be a two-parameter family crossing We
transversally at (/^ rj) = (0,0). Suppose that U is a fixed isolating block of the cycle
at (0,0). Assume that the cycle at (0,0) is inward. Then, through a smooth change of
parameter, there are two curves rj == K^(fi) > 0 and rj =- K^{^} < 0 for IJL > 0 such that
if e > 0 is a small positive number, then the properties below hold fsee Figure 2(a)):

1. Hs(U^X) includes the parameter regions {(/^) : —e < fi < 0, \ri\ < e} and
{(^77) : 6 > ^ > 0,r] > K^p)};

2. m({(^ry) : e > ^ > 0, -e < r] < K^(^^^rf) i H^X)}) = 0;
3. the derivatives (A^y(O) and (^/(O) are equal to z.ero. Also the curves K^(^) and

K^(fi) vanish at fi = 0 only.

Next theorem deals with two-parameter families bifurcating through a cycle of an
element in We.

THEOREM B. - Let X = X^^} € ^(M) be a two-parameter family crossing We
transversally at (/^, rj) = (0,0). Suppose that U is a fixed isolating block of the cycle
at (0,0). Assume that the cycle at (0,0) is inward. Then, through a smooth change of
parameter, there are 60 > 0 and four curves rj = K°^{^) > 0, rj = K^l^fi) > 0,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



4 C. A. MORALES AND M. J. PACIFICO

rj = A^'+(^) ;> 0, rj = A^~(^) < 0/or ^ > 0 w/nc/z ̂ r^ ̂  properties below fsee
Figure 2(b) below):

1. H^(U,X) includes the parameter regions {(^) : -co < [i < 0} <W {(/^) : 60 >
^ > 0,r? > ^+^)};

2. m({(^) : eo > ^ > 0,-6o < T] < K^^),(^T{) i Hh(U,X)}) = 0;
3. if we define B*(e) = {(/,^) : ̂  > 0,^+(/,) < ^ < ^l'+(^)}nB(6)/ore G (0,eo),

^/i^n ^^ equality below holds:

m(H(U^X)nB-(e)) ^
e^o+ m(B*(e))

4. (^'+)/(0) = oo/<9r i = 0,1 ̂ J (^+y(0) = (^-)'(0) = 0. In addition, K^^)
(i = 0,1, 2) and K^(p,) vanish at p, = 0 onfy.

(a) (b)

Fig. 2

Finally, we state a general result.

THEOREM C. - IfX == X(^) G ^{M) is a two-parameter family crossing transversally
We U We at (/^ r]} = (0,0) and U is a fixed isolating block of the cycle at (0,0), then:

^ m(H(U^X)nB(e)) ^ ^
e^o+ e2

Observe that theorems A and B give a good picture of the dynamics for two-parameter
perturbations of an inclination-flip singular cycle. Comparing with the results in [BLMP]
and [PR], we point out that the two-dimensional measure of the set of parameters outside
H(U,X) is not zero. This follows from well known facts relating chaotic dynamics with
the unfolding of a homoclinic tangency associated to a hyperbolic periodic motion. See
[PT] for an accurate description of such chaotic phenomena.

4s SERIE - TOME 31 - 1998 - N° 1



DEGENERATED SINGULAR CYCLES OF INCLINATION-FLIP TYPE 5

This paper is divided as follows. In §2 we make an initial reduction of the problem using
the expression for the Poincare map associated to the given bifurcating cycle. Next, two-
parameter families X^^ are considered. Technical and straightforward reductions lead us
to consider the right half-plane {p. > 0} only. Later, we use graph transform techniques to
find invariant foliations in order to reduce the problem to a one-dimensional map, at least
in the parameter region {(^) : p. > 0 > rf}, when the bifurcating cycle is inward. This
implies parameter exclusions, but the remaining set will be large in terms of Lebesgue
measure near the bifurcating parameter value. This is a common part of the Theorems A
and B, and it is the subject of §2. The proof of the Theorem A will be completed using
Proposition 3.2 in §3. Theorem B will be proved by making more parameter exclusions.
Theorem C will follow from theorems A and B together with Remark 3.1 at the end
of the paper.

2. The Poincare map

Let us consider a vector field X e ^(M) having an inclination-flip singular cycle F. In
this section we study the Poincare map IIy, induced by Y close to X, in a fixed isolating
block of r. Consider an isolating block U of the cycle and let (xo,yo,zo) and {x,y)
be C^-linearizing coordinates around cr^Y) and ao(Y) respectively. Then the transversal
sections S = {(x,y) : \\(x,y)\\ < A} and Eo = {(^o.^l) : ||(^o^o)|| < 1} are defined
inside the corresponding coordinate systems. The number A is chosen so that A < 1 < Aa.
Now, by assumption, the Poincare map lloy (see the notation §1) is a linear map, namely
HoY^x.y) = (Xx.ay). Here the point (0,0) is the periodic orbit ^(V).

On the other hand, the flow generated by Y nearby o-o(^) is given by the solution of
the linear system (xo, yo, zo) -^ (\iXo, -\2yo, -Aa^o) with A, depending smoothly on the
parameters; o-o(Y) is the origin (0,0,0) of the coordinate system {xo,yo,zo). A first hit
map HLY from E(J- = {(xo,yo,l) e So : XQ > 0} to Ei = {(l.^^o) : ||Q/o^o)|| <: 1}
is obtained by solving the above linear system and it has the form ULY (^o^o) =
(y^xo^, l^ol") with (3 = X^/Xi and a = As/Ai. Both a and (3 depend smoothly on the
parameters and a < 1 everywhere by hypothesis (see Figure 3 below)

Thus a Poincare map IIy defined on a subset of E is obtained as:

IWr v) = [ ̂ ? ay^ if ̂  ̂  e RY
Y{ ' y ) \ (Il2y o n^y o IIiy)(^ y) if (^ y) G R^y

1. IIiy : Dom(IIiy) C S+ = {(x,y) : x,y > 0} -> So is a smooth flow-
induced diffeomorphism IIiy(:r^) = ((f)(x,y,Y),A(x,y,Y)) satisfiying ^(0,1, X) =
A(0,1,Z) = 9^(0,1,X) = 0, (9^(0,1, X) / 0. Here (0,1) € S corresponds to the
orbit 71 of S;

2. Hay : Dom(Il2y) C {(l.^/o^o) : IK^o, yo)\\ < 1} -^ S is a smooth flow-defined
map n2y(^o^o) = (C(yo,zo,Y),B(yo,zo,Y)) with B(0,0,X) = 0, C7(0,0,Z) = ex e
(A.I) and 9^5(0,0,X) < 0. As before, the point (1,0,0) corresponds to the regular
orbit 70 e r;

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



6 C. A. MORALES AND M. J. PACIFICO

3. RY is the square {(x,y) e S : -A ^ y < a^A , x G [-A.A]};
4. R^ is the set of points { x ^ y ) such that (IIsy o n^y o IIiy)(a;,?/) G S"^. Of course

this set may be empty for some parameter values.

The inward case: a *(0,l,X)>0,a A(0,1,X)<0

Fig. 3

Remark 2.1.
(a) Property (1) above is a consequence of the quadratic contact of W(ao) and W^^a^)

along 71. In particular, four cases arise from the inequalities (9^(^(0,1, X) / 0 and
9yA(0^1^X) / 0 and they describe the shape of the parabolic-like region determinate
by the image set of IIiy. We keep one of these cases: an inclination-flip singular cycle
is called inward when Oyy(/)(0^1^X) > 0 and c^A(0,l,X) < 0. In what follows, we
study the dynamical behavior arising from generic codimension-two perturbations of an
inward inclination-flip singular cycle. In the next section, we explain how the bifurcation
diagrams of the remaining cases can be obtained using the techniques developed below
(see Remark 3.1 in the next section).

(b) Property (2) is a consequence of the definition of an inclination-flip singular cycle
given in §1. In particular, (9^B(0,0,X) < 0 because the cycle is isolated.

Now, we work with two-parameter families X = X^^ G ^r(M) crossing We U We
transversally at the parameter value (0,0), and with the corresponding cycle at (0,0)
being inward. We shall denote by n^yp (^(rr,?/,/^,^), A(x^y^fi,r]), etc. the corresponding
functions for the vector field X^^. Through a smooth change of parameters we assume
that 9^0(0,1, [i, T]) = 0, <^(0,1, [i, rf) == T] and B(0,0, /^, 77) == fi for all (/^, 77). In a similar
way (7(0,0,^,^) == Co G (A, 1) does not depend on the parameters. The remainer of this
section is occupied with the study of the dynamics of X^^ close to the vector field
X(o,o). for parameter values (/^) with T] < 0. Note that if ^ < 0, then the vector field

4e SERIE - TOME 31 - 1998 - N° 1



DEGENERATED SINGULAR CYCLES OF INCLINATION-FLIP TYPE 7

(^,77) G Hs(U^X) (see the notations in §1). So we consider parameters (^,T^) with ^ > 0
only. To start with, choose a fixed isolating block U of the cycle at (0,0).

LEMMA 2.1. - Suppose that U is an isolating block of the cycle at (0,0). Then for all
e > 0 there exist a neighborhood Ue C U and a positive number 6 such that:

1. ^(U) C U. for all (/^) G B{8);
2. all the partial derivatives ofcf) and A up to the order r at (re, ?/, /^, 77) G Ue D -R^y, ^r^

e-close to the corresponding values at (0,1,0,0)
The notation R°^^ stands for R^^^y

Proof. - Let F be the cycle ofX(o,o). It is well-known that the function (/^, 97) —> fi?^(?7)
is upper semicontinuous with respect to the Hausdorff metric. This is proved using filtration
arguments, because F is isolated (see, for instance, the appendix in [PT]). Thus it is suffice
to find, for each e > 0, a neigborhood Ue satisfying (2) for (/^, T]) close to (0,0). To do so,
fix 6 > 0 and take a small band [—eo^o] x [—1,1] C So with 60 > 0 depending on 6. If
Co > 0 s taken small then II^p od"^? ̂  x [—I; 1]) C So is a narrow parabolic-like region
enclosing the curve II 3" o o({0} x [—1,1]). Now, shrinking S along the ox axis if nessesary,
one can arrange the bounds (2) for (^, rj) = (0,0). Finally, (2) holds for parameters (^, 77)
close to (0,0) because the family X^^) ^ continuous.

Throughout the paper, U will mean U^ with e small enough. The set Ue comes
from the above lemma. The theorem below state that for a large set of parameters in
{(^,7^) : rj < O,/^ > 0}, the dynamics of X^^) ls reduced to the dynamics of certain
one-dimensional map to be exhibited later (see Figure 5).

THEOREM 2.2. - Let X(^, rj) be a two-parameter family of vector fields crossing We U We
transversally at (^,77) = (0,0). Then there exist K > 0, 8 > 0 such that for (^,77) close
to (0,0), [L > 0 and rj < -^(1+<5) the following hold:

1. there is a C1 contractive foliation F88 defined on S"^, invariant by 11^ ;̂
2. the local stable manifold W^a^rj)) = S4- H W8 (a^rj)) = {(.r',0) : x > 0}

is a leave of F^.

Proof. - In what follows we choose 6 € (0,mm{5 - l,2^o + 1}) with So = 10^1,
and K = 2sup^^^ |6^(:r,^/,/z,^)|. Recall (3 > a because of a in §1. Notice that
K > 0 because (9^(0,1,0,0) is not zero (see Lemma 2.1). Suppose that (^,77) is a
parameter with T] < -K^^. Let us consider a cone field C7(0) in R^ = [A, crA] x [0,1]
around the horizontal direction, with openness angle equal to K/^F^rj. Let N = N(fi,r])
be the first integer such that A < /^.a^ < A.a. Consider the cone field C7(z), in
n.^^A) l^l ̂ +, obtained by iteration, under DH^, of the one defined above on R^, i.e.
C(z) = Pn^C^O)) (see Figure 4 below).

Let ON be the openness angle of C(N). On [0,1] x [0, a'^A] we set the cone field with
openness angle e^v. Denote this cone field by C and by C(p) the cone of C at p G S4'. We
shall prove that C is positively invariant by 11̂ . First observe that EN = A^a"^K/^rj .
Thus ON < K'^^/^/^rj < K'^60^{~w)/2\ Therefore ON is a small positive number
for ^ > 0 close to zero. Now H^^/R^rj coincides with (J,^), where / = f^^(x^y)
and g = g^^{x,y) satisfy:

- aj = {^c7^-a+l)(a,A/a^) + ̂ C/^-^A + c^Ga}^-1)^;

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Fig. 4

ra^

- 9yf = [Qy,CQyA(^-^19y^ + Oy,C^-^A + 9^Ca}^-^Qy^
- (9^ = [Q^B^-^^AIQ^) + c^B/^-^A + O^Ba}^-1^^
- B^ = {^B^A((^-^1)/^) + Qy,B(3^-^A + c^Ba}^-1)^.

Let (1, ̂ ) be a vector in C(H^(q)), where II^(g) e [0,1] x [0, cr-^A] and q e J?^
Take (u,v) = DH^(q)(l, ̂ >). Then, using the above relations, we obtain:

p^'

(*) h/^| <
A^(/3-a+l) ^ M^-^ + (^MS + M"4 ^

M5(^-a+l)/9^) + MQ^-^ + M4 + (̂ Ma 1 1 9^

where the functions M^ are bounded (% G {1,.., , 6}) and |M4| is bounded away from zero.
Now, it follows easly from the definitions that \(f)(x,y,iJi,r]}\ < K'^l/a for (x,y) € R^^
with K ' being a positive fixed constant. In addition, we claim that the quotient I^^^Ml
is bounded away from zero. Indeed, we have:

0 < (f){x, y , ̂  T]) = (f){x, y , ̂  rj) + Qyy^x, ̂  ̂ , ri)^ - y)(y - y)

where the point ^ lies between y and y. The number y = y(x^^rj) is defined by the
equality Oy(f)(x, y , p,, T]) = 0 for all x, /^ 77. We can also deduce (f)(x, y , ̂ i, r]) < rj (here we
use 9yA(0,1,0,0) < 0) and so \y - y\ >_ v^^. The claim is proved.

The proof of the invariance of the cone field C is achieved because (*) above and the
claim imply \v/u\ ^ (1 + e)K/^/^rj for ^ > 0 small. To continue with the proof we
use graph transformed techniques (see [HPS]) as follows. First we consider the set of
continuous maps </?, defined in the square S4", for which the vector (1,^) belongs to the
cone field C. Choose a smooth function Z, defined outside the interior of S"^^^ ̂ U-R^^)
(at this time (^,77) can be taken fixed), in a way that: (1, Z(q)) belongs to C(q) for all q

4° S6RIE - TOME 31 - 1998 - N° 1



DEGENERATED SINGULAR CYCLES OF INCLINATION-FLIP TYPE 9

and (1,Z(</)) belongs to the tangent direction of the boundary of E+ \ (R° u R^^}
for </ in such a boundary set. Now, we define the graph transformed operate F(^) Is
the slope of the vector DIl^(Il(q))(l^(H{q)) if g,n(g) e S+, and Z(q) otherwise.
The following bounds hold:

\detDU^\ (^±i_(i.^))
\[9yg - ̂  o H^)9yf][9yg - ̂ ' o U^Qyf}\ - w

and
|det^n^|.||jn^|| r^-(i^))

(9y9-^on^)0yf^ -c^a

for every ( p , ^ . Here |[.|| stands for matrix norm and ci ,C2 are positive constants. Using
these relations, it can be proved that F has a fixed point (po which is a C1 map (5^
appendix in [BLMP]). The foliation y^ is then obtained integrating the function (po.
The theorem is proved. D

The following proposition says that most parameter values in N(e) = {( /^n) : 0 <
^ < e,0 < T] < K~{^)} are in fact contained in H(U,X) (recall notations in §1), where
^"(AO = -K^1^ with e is a small positive fixed number and U, 8, K coming from
theorem above.

PROPOSITION 2.3. - Let X = X(^) be a two-parameter family of vector field as the one
in the Theorem 2.2. Then m{N{e) H H(U, X)) = m(N(e)) for all e > 0 small.

Proof. - Using Theorem 2.2 one can see that the dynamic of 11̂  in S+ is given by
an one-dimensional map TT^ as below (see Figure 5):

( ay i f ^ / G [O^cr^A]
^^^(y) = ^^rj{y) if y ^ ̂  ̂  i=r,l

^ ' ^ y ^ i^
where the sets J^, 7J; ^ and ̂  ^ are intervals and the functions TT^ ^ and TT^ ^ are expanding
maps with (^ ̂ ' { y ) < -a and (^ J'(://) > /T for all y e J,^ and ?y e J;̂  respectively.

In addition, the union J,̂ , = 7^^ u /; ^ U J; ^ is a closed connected interval with
1 ,̂'̂  I ^ ci/z17", |J^ < C^^T} for some positive constants ci and 02.

Now it can be assumed that 1 is the right boundary point of 1^^. Let us denote by a^
the left boundary point of I1^. Fix 'rj < 0 small and consider ^ € [0, (l/K)^-^)1^1^].
Define the set B^{e) as those ^ G (0, e) for which ^ e (0, e) and TT^ ̂ (/^) e [0, a-16} Ul^
for all n ^ 0. We claim that B^(e) has limit capacity close to zero for e close to zero (see
[PT] for definitions). For that we proceed as follows. Take eo > 0 such that a - CQ > 1.
Let us define A = sup^^o^{|<^7r(.r^)|} where Tr(x^) stands for 7r^(x) (recall r] is
fixed). Choose a decreasing sequence (/^) converging to zero such that TT" (/^) = 1
and ̂ r^n) ^ [0^ ̂ A] for all 0 < i < n - 1. Fix no satisfying A/^ ^o^if n > no.
Define Gm : [0,^n] -^ R inductively by the relation Gm(^) = 7r(G^_i(^),^) for all
m,n. We shall prove the inequality |G^)| > (a - eo)" if p, G [0,^] for all m,n.
Indeed the following formula holds:

G'^) = ^7r(G^_i(^), ̂ )C;^_i(^) + ̂ 7r(^_i(/.), ̂

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUPERIEURE



10 C. A. MORALES AND M. J. PACIFICO

\ r
T 1 I" T 1
V,TI ^r| l^

Fig. 5

thus we have C?o(^) = 1' ̂ i^) == a'--' ^nW = an- In addition, the formula implies:

G^(/.) = [^(G.^)^) + 9^^^

therefore |G^i(^)| ^ (a - eo)^ > (a - eo)7^1 and |G^i(^)| > a71. Now for any
fc > 1 we have:

r 1 (n\ \^ ^(r ( , A a} i ^7^(G^+fc-l(^)^)1^/ f /^^n+fcW = da.7T(G^+A-l(^)^) + ———^—————;——;———^^^^_i^J
L ^n+k-lW J

Hence an inductive argument shows that:

\G^)\ > (a - A/a^a - eo)^-1 > (a - 60)n+A;

and so | G - ^ . ( ^ ) | > (J n . The claim is proved. To finish we observe that the one-dimensional
map TT^ is a hyperbolic map for fi ^ B^(e). From this and Theorem 2.2 we conclude that
^(/A,7?)(^) is a hyperbolic set if ^ ^ B^(e), completing the proof of the proposition. D

3. Proof of theorems A and B

In this section we shall prove theorems A and B at §1. The results in the preceding
section imply that we can restrict the parameter region to {(/^) : l^.rj > 0}. The proofs
go as follows. Theorem A will be consequence of an estimate of the region where the new
nonwandering points are located. This estimate, as we shall see below, improves the one
found in the last section (see Lemma 2.1). For the proof of Theorem B, we still use the
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above estimate and make two parameter exclusions. For this we introduce quasihyperbolic
and the free cusp parameters. We shall prove that these kind of parameters correspond
to hyperbolic flows and that the density (respect to the Lebesgue measure in R2) of the
remaining parameters go to zero as we approach (0,0).

Let us start with an improvement on Lemma 2.1 in §2. Denote (l^^(U) =
^^rj{U) \ {Oo(/^ T]), (7i(^ T])}.

____________________ 1 1

^fifi

4 - \. "• \
A^-te] ̂  iTy^+e] ^ ̂ }

¥
Fig. 6

LEMMA 3.1. - For each parameter (^, rf) close to (0, 0), we can choose a positive number
e == e{^, rj) with the following property: there is a positive constant K^ > 0 such that every
orbit belonging to f^^(?7) has at least one point into the set:

n^a-^i^/", ̂ va] x [-1, i]) n (|j A^co - 6, co + 6] x [o, aA])
iCN

The constant K^ does not depend on the parameter. Furthermore e goes to z,ero when
(^rj) goes to (0,0).

The proof of this lemma can be done using similar arguments as the ones in the proof
of Lemma 2.1 (see Figure 6).

For ^rf > 0, we define the integers L = L(p,, rj) and N = N(^ rj) by the inequalities
A < P^A^i^^)) ^ 1 and A < Py^P^r])) < Aa respectively, where P^
(Py) is the orthogonal projection on the rr-axis Q/-axis). P^,r]) is the point (co,/^)
(thus Py(aNP^,r]} = ̂  ̂  recall §2) and Pi (^,77) is the critical point of the curve
^^(M x [-1,1]). It is clear that L < 0 and N > 0. Theorem A is proved using the
proposition below and the results in §2. Recall the definition of H(U,X) given in §1.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



12 C. A. MORALES AND M. J. PACIFICO

PROPOSITION 3.2. - Let X = X^^ ^ Xr(M) be a two-parameter family crossing We tra
nsversally at (/^, 77) = (0,0). Then there exist AT', 6' > 0 and an isolating block of the cycle
r at (0,0) such that H(U,X) contains the set {(/^) : ^,77 > 0,77 > A^/^(l+6/)}.

Pwo/. - It can be proved that -£(^,77) > 7V(^,77) implies (^,77) C H(U^X) because
of Lemma 3.1. Now, —L > N holds when:

log^A)-^ ^ log^-^/")
log a log A

But this inequality holds if 77 > c//° + /^l/a for some positive constant c. Thus the proof
follows because the cycle F is contractive and so SQ > 1. D

Now we start with the proof of Theorem B. In what follows, a DH^ -in variant cone
field in ^t^^)(U) is called a stable cone field for IT^. We state and prove

LEMMA 3.3. - There exist 6 " , K ' z , K ^ > 0 with the following property, for (^.r?) e
R^~ x R~^~ close to (0,0) and e as in Lemma 3.1: if the distance between U^^A^CO —6, Co+e]
and K^J] is bigger than K^^^8"^, then there exists a stable cone field for 11̂  whose
vectors are uniformly contracted by the linear map Z)II^.

Proof. - We use the arguments of the proof of Theorem 2.2. First recall that the map
y = y(x,fi,r]) is defined by the relation 9y(f)(x,y,^,r]} = 0. We choose the constants
K^^K^, and 6" by the relations:

1) 0 < 6" < inf{5 - 1,1+2^};
2) K^ > inf(^,){|^p(.r-,^)|}^ where ^A^) = ^{x,y(x,iJL,r])^,r]). It follows that

9^p(x^^rj) is close to 9^(0,1,0,0) and so this quantity is everywhere negative (see
Lemma 2.1);

3) K^ = 2sup^^{|^(rr,^,77)|}.

Let us choose a vector (u, v) inside the cone with openness angle y K3 ^ around the
-^/^A1^'5 )

horizontal direction. Using (1), we conclude that if (u1\v') = (A"^,^"^), then we
have that \ u ' / v ' \ < cnt.^7 for some 7 > 0. We claim that the quotient:

Qy(f){x, y, ̂ ,77)

is bounded away from zero, for (rr, y) G (l^^(U). Indeed, for those points (rr, y) we have:

0 ^ ^(a;, y, ̂  y?) = (f)(x, y, fi, r j ) + 9y(/)(x, ̂  ̂ , ̂ )($ - y)(y - y)

for some ^ in between y and y. It follows that ^{x.y^.r]) == 77 -h Oxp((io^,r])x for
some ^o and thus:

0 < 77 + 9xp{^, ̂  r]}x + ̂ ^(rr, ̂ , ̂ , ̂ )(^ - ^)(?/ - y).

4'̂  SERIE - TOME 31 - 1998 - N° 1
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Now we assume that the distance between H{^, T]) and K^rj is bigger than K^^6"^. As
(9^(0,1,0,0) is negative (because of<^A(0,1,0,0) < 0), we have K^-^K^^6^ < x
for all (x,y) e fl^(U). This together with 2) imply:

\9.p(^ ̂  rj)\K^1^ > rj + O^p^ ̂  r j )x .

Thus
I - - |> / W^
}y m y ^2 sup |̂ | •

The claim follows using the equality 9y(f){x, y , ̂ , T]} = 9yy(x, $1, ̂ , rj)(y - y ) for some ^i.
Now one can proceed as in the proof of Theorem 2.2, proving the result. D

In what follows H(p,, rf) denotes the set U^^A^co-e, co+e] where e is as in Lemma 3.1.
Lemma 3.3 motivates the following definition.

DEFINITION. - A parameter value (^, 77) is called quasihyperbolic whenever the inequality
below hold:

dist(H{^),K^}>K^61^

where 6 " , K^ and K^ are as in the above lemma. Here dist means distance. If
(^,77) 6 R^~ x R~^, we define the interval ^(^,77) as the convex hull, in the oy axis in
S"4', of the orthogonal projection over this axis of the set

(A^^co-e.co+e] x [O.aA]) ̂ ^{[-K^^K^] x [-1,1]).

A parameter (/^, rf) as above is called free cusp ifaN^^p, does not belong to J(^, 77).
Observe that the interval J(^, 77) may be empty. The following technical lemma will be

used for the measure estimate in the Proposition 3.7.

LEMMA 3.4. - There are positive constants K^, KQ, and Kj such that ifr]>_ K^p^^,
then J(/^, 77) is contained in the interval:

[1 - ̂ A^^+Kea-^, 1 + ̂ A^)+^T-^].

Proof. - We write (f)(x, y , ̂ , 77) = 77 + 9x^x + (^9yy(f) + eo){y - I)2, where eo denotes
a function close to zero. Now, for

(^) e (A^^co-c.co+e] x [o.aADnn^d-^^,^^],
we have

finfJj^^+eolY^-ll^^i^+l^+^^l.

Since \r] + 9x(t>x\ = —77 — 9x(f>x at least for 77 > K^^l^ for some positive constant K^,
we conclude that

K^^ - 77 < (^i - ̂ 7)^l/tt < (A:i - K^^

if Kj e (0,J^i). This finishes the proof of the lemma. D

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Let Ii (i C N) be defined as

I, = [1 - ̂ K^ + K^a-^, 1 + ^ / K ^ + K e a - ^ }

and
ff, = {(^77) : 77 > 0,/z G (O.Aa-1) and /^ ^ UM>i(T~MIi}.

Denote H = U^^Hi.

LEMMA 3.5. - If (^^7) e Hi for some positive integer i, then (^,77) is a free cusp
parameter.

Proof. - If (^,77) e ̂  then fi <E (O.Acr-1) and fi ^ a-MJ, for all M -^ N. Thus
N(i^,rj) > i and ^N(^) C Jz. Therefore fi ^ cr'^'^^v^) and we are done. D

Next lemma deals with dynamical properties of X^^/^^^{U) when (^,77) is
quasihyperbolic and free cusp.

LEMMA 3.6. - If (fi,r]) is quasihyperbolic and free cusp then ^(^)(E/) is a hyperbolic
set of X^).

This lemma is proved using Lemma 3.3 and the estimates as the ones considered in the
proof of Theorem 2.2. We finish the proof of Theorem B with the following proposition.

PROPOSITION 3.7. - The set of parameter values (^77) which are both quasihyperbolic
and free cusp has Lebesgue density one in R^ x R^ at (0,0).

Proof. - It is enough to prove that both quasihyperbolic and free cusp parameters
accumulate the origin (0,0) with full Lebesgue density in R^ x R^. We deal with free
cusp parameters. Let us prove that for all e there exist 60 > 0 and No > 0 such that
(l/^)m(I^v H ([0, 8} x [0, 8})) > 1 - e if 0 < 8 < 80 and N > No. First observe that

H^ = (J?+ x J?+) \ HN C ( \J a-^) x R^.
M>N

Let Mo > 0 be such that a-^ < 8 < a-^^. Thus

ff^n([o^] x [0,8}) c (UM^M^IN) x [o^-^

and so
/ / -Mo \ \

(l/^)m(J^n(M x [0,^])) < l^lff^^^^oa^JJ <^K\I^

where K is some positive constant and |.| stands for the length of I N . A similar computation
can be performed for quasihyperbolic parameters. The proof is completed. D

Remark 3.1.
As was pointed out in §1 and Remark 2.1 (a), the bifurcation diagrams derived from

the unfolding of an inclination-flip singular cycle depends heavily on the nature of the
numbers 9yy(/)(0,l,X) and 9yA(0,l,X). The ones we have exhibited (Figures 2(a)
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and 2(b)) correspond to what we called inward type, i.e. 9yy(f){0,l,X) > 0 and
<9yA(0,l,X) < 0. Here we indicate how the bifurcating diagram varies, according to
the numbers 9yy(/)(0,l, X) and 9yA(0,l,X). For instance, if 9^^(0,1, X) > 0 and
9yA(0,1,X) > 0 we have the following picture for the cycle:

The case 9yyl>(0,l,X)>0 and &yA(0,l,X)>0

Fig. 7

The bifurcation diagrams for this case are:

HAJ,X)=[

\a<l ^a>l

Fig. 8

Here Hs(U,X) is defined as above, and H is a region enclosed by two curves with
perpendicular contact at (0,0). In a similar way we can prove that H^(U^X) D H
accumulates (0,0) with full Lebesgue two-dimensional measure (recall the definitions in

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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§1), as well as the complete description of the bifurcation diagrams for the remaining cases.
For instance, the bifurcating diagrams in Figure 8 follows from an appropriate version
of the Proposition 3.2, together with a parameter exclusion as the one explained in this
section. Using this we obtain the proof of Theorem C.
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