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TRANSVERSELY AFFINE AND TRANSVERSELY
PROJECTIVE HOLOMORPHIC FOLIATIONS

By B. Azevepo SCARDUA

ABSTRACT. — Let F be a codimension one holomorphic singular foliation on M™. F is transversely affine
respectively transversely projective if so it is its regular foliation. We consider foliations which are transversely
affine or projective in M\A for some analytic codimension one invariant subset A C M. Examples are logarithmic
and Riccati foliations on CP(2). In the projective case ther is a dual foliation L generically transverse to F.
F2L is a fibration if F is Riccati. We prove: 1. Let F be given on CP(2), transversely affine outside an algebraic
invariant curve A. Suppose that F has reduced non-degenerate singularities in A. Then F is logarithmic. 2. Let
F be given on CP(n), transversely projective non-affine, outside an invariant algebraic hypersurface A. Then F L
extends to CP(n). If this extension has a meromorphic first integral, then F is Riccati rational pull-back.

Introduction

In this paper we consider holomorphic singular foliations of codimension one on a
complex n-manifold M, n > 2. Let F be such a foliation and assume that the singular set
of F, denoted s(F), has codimension > 2. Define M’ = M\s(F) and F' = F/M’ the
non singular associated foliation. Thus F’ can be defined by a covering of M’ by open
subsets U;, ¢« € I, and distinguished mappings f;:U; — C, i.e. each f; is a holomorphic
submersion and the leaves of F'/U; are the connected components of the level surfaces
f7(z), z € C. Whenever U;nU; # ¢ we have f; = f;;o f; for some local biholomorphism
fii: f;(UinU;) c C— fi(UnU;) c C.If UynU; N U, # ¢ then we have in the
common domain the cocycle condition f;; o fjx = fix. The transversal structure of F
in M is defined by the pseudogroup {f;;}-i,j € I so that F has a “simple” transversal
structure if this pseudogroup is “simple” for some choice. The correct meaning of the
expression “simple” above is given by the notion of transversely homogeneous foliation
(Chapter II §6) where the local biholomorphisms f;; are restrictions of elements of a
Lie group action on an homogeneous space. In the codimension one case the remarkable
examples are derived from the following ones: transversely additive, affine and projective
structures; where the submersions f;: U; — C are related by f; = f; +bij, fi = ai; f; + bij
and f; = % (@ij, bij, cij, dij € C); respectively, where in the affine case we require
a;; # 0 and in the projective case that a;;d;; — b;jc;; = 1. Of course the afffine case is a
particular case of the projective case but we shall deal with the affine and the projective
non-affine separately. We will investigate how often these structures appear. We remark that

the existence of an affine resp. projective transverse structure implies that the non-singular
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170 B. A. SCARDUA

associated foliation is given by a holomorphic resp. meromorphic submersion in any simply
connected open set. This is a consequence of the well known notion of development of
a transversely projective foliation (see [17] for instance). Using well known extension
theorems for holomorphic or meromorphic functions through codimension > 2 analytic
subsets (in our case s(F)) we can obtain a holomorphic resp. meromorphic first integral
for a transversely affine resp. projective foliation on a simply connected manifold and then
conclude that there exists no transversely affine foliation on a compact simply connected
manifold (for instance, the complex projective n-space CP(n)), and that the transversely
projective foliations on CP(n) are the ones which have a rational first integral. Motivated
by this we will consider foliations which are transversely affine or projective in M\S
for some analytic codimension one set S C M, invariant by the foliation F. Well known
examples of these foliations are given by linear logarithmic and Riccati foliations on
CP(n) and its pull-backs to spaces M (see Chapter I, §1, Example 1.3, and Chapter II,
§1, Example 1.1, for the definitions). These two families of examples play a fundamental
role in our study being used as models.

In Chapter I we study transversely affine foliations proving the following (see Thm. 4.5):

THEOREM L. — Let F be a codimension one foliation on CP(n) which is transversely
affine outside an algebraic codimension one invariant subset S C CP(n). Suppose that
F has reduced non-degenerate singularities in S (see Ch. I Section 2 for the definitions).
Then F is a logarithmic foliation.

For the proof of this theorem we need to study the holonomy of an irreducible component
S, of S. This goes as follows (see Theorem 4.1 and Proposition 5.1):

TueoreM II. — Let F be a foliation on M? having A C M as an analytical connected
invariant curve. Suppose

i) all singularities of F in A are of I°*-order

ii) the foliation F obtained by the resolution of the singularities of F in A exhibits some
linearizable non-resonant singularity. Then the following conditions are equivalent:

a) F is transversely affine in some neighborhood of A minus A and its local separatrices
sep(A);

b) the holonomy group of the leaf A\s(F) and of any projective line in the
desingularization of F in A is a solvable group and we have the solvability compatibility
between them (see Ch. 1, Section 5 for definition). This is called the property (S) for the
holonomy of A.

Using this theorem an the topological invariance of the projective holonomy, for stable
deformations of germs of 1-forms having a generic first jet [15] we obtain the following
theorem (see Proposition 5.2, Ch. I).

THEOREM III. — Let w = Adx + Bdy be a germ of holomorphic 1-form in the origin of C?
having w,, generic as first v-jet, v > 2 and let w' = A'dx + B'dy be a stable deformation of
w. Suppose w has a multiform integrating factor of the form f = 11 f%j , [i € Vo, Aj € C*.
Then w' has an integrating factor of the same type.

Chapter II is devoted to the study of foliations which are transversely projective outside
an invariant codimension one analytic subset. We associate to such a projective non-affine
structure for F in M, a dual codimension one foliation F+ on M which is transverse
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TRANSVERSELY AFFINE FOLIATIONS 171

to F almost everywhere. The duality between F and F is such that one determines the
other. For example if F is a Riccati foliation F: p(z)dy — (y*a(z) + yb(z) + c(x))dz = 0
on C x C then the natural dual foliation F= is the fibration z = Cte by vertical projective
lines of C x C. The existence of such a dual fibration is persistent under rational pull-backs.
One central result proved in II §4 states that indeed this characterizes the existence of the
pull-back from a Riccati foliation (see Theorem 4.1, Ch. II).

THEOREM IV. — Let F be a foliation on CP(n) which is transversely projective but not
transversely affine, outside an invariant analytic subset S of codimension one. Then the dual
foliation F+ on CP(n)\S extends to a foliation on CP(n) and if F* has a meromorphic
first integral then F is the rational pull-back of a Riccati foliation on CP(2).

We also study the cases where F has an affine transverse structure in CP(n)\S and the
local case for F. The techniques introduced here are used to give different proofs of well
known results about stability of logarithmic foliations on CP(n), n > 3 [3] and rational
foliations on CP(n), n > 3 having first integrals of the form f?/g?, (p,q) = 1 [18]. We
also give a proof of a theorem due to A. Lins Neto and D. Cerveau on the existence of
meromorphic first integrals for foliations on CP(n), n > 3, having a complete intersection
Kupka component [11]. One important remark about the generality of the context is the
following (see Theorem 6.1):

THEOREM V. — Let F be a holomorphic singular transversely homogeneous foliation of
codimension one on M™. Then F is transversely projective foliation on M™.

These notes are derived from my doctoral thesis ([27]) held at IMPA in the year of 1994,
under the advise of Prof. César Camacho to whom I am very grateful and who suggested
to me the subject. I am also in debt with A. Lins Neto, P. Sad and M.Brunella for many
valuable conversations and suggestions during the preparation of my thesis and of this text.
I would like to thank Prof. E. Ghys for valuable discussions during the beggining of this
work, for suggesting me the book of C. Godbillon “Feuilletages: Etudes Géométrics I” and
the references on real transversely affine foliations, which where very valuable, and for
suggesting me the geometric approach I use here. I am grateful to D. Cerveau for pointing
out the necessity of the use of Stein’s Fatorization Theorem in Chapter II. Finally I want
to thank the referee for his kind interest and careful reading of the original manuscript,
which has helped me to improve the paper.

Chapter 1
Transversely Affine Holomorphic Foliations

1. Transversely affine foliations and differential forms

Throughout this chapter I, except for explicit mention, the 1-form €2 will be assumed to
have singular set s(€2) of codimension bigger than one.

The problem of deciding wether there exist affine transverse structures for a given
foliation is equivalent to a problem on differential forms as stated below (see [1] for the
case of real non-singular foliations):
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172 B. A. SCARDUA

PROPOSITION 1.1. — Let Q2 be an integrable meromorphic 1-form which defines F outside
the polar divisor (Q)o. The foliation F is transversely affine in M if and only if there
exists a 1-form n in M satisfying: 1 is meromorphic, closed, dQQ = 1A, (N)oo = (D)oo
and Resn = —(order of (0 00| ) for each irreducible component L of ()0, and (1)eo
has order one. Furthermore, two pairs (2,m) and (', 1) define the same affine structure
for F in M if and only if there exists a meromorphic map g: M — C satisfying Q' = g
and ' = n+ df.

Remark 1.1. — (a) For the case where M is open and 2 is holomorphic the form 7 is
holomorphic. (b) The existence of a meromorphic 1-form 2 which defines F globally in
M is always true if M is a complex projective space CP(n) or an algebraic non-singular
projective variety (see [13] for instance), but is not really necessary (see Section 6 of
Chapter I).

Proof of Proposition 1.1. — Let 2 be a meromorphic 1-form which defines F in M and
suppose {y;: U; — C} is a transversal affine structure for F in M. Since the submersions
y; define F locally, we can write Q'U,- = g; dy; for some meromorphic ¢g;. In U;NU; # ¢
we have: (1) ¢;dy; = g;dy;; (2) yi = a;;y; + bij. From (2) we have dy; = a;; dy;
and then from (1) we have a;;g; = g; so that dg;/g; = dg;/g; and this allows us
to define 7 in M\s(F) by nlU = dg;/g;. The 1-form 7 is closed, meromorphic and
satisfies d2 = n A 2. Since codimension (s(F)) > 1 we can extend by Hartogs’ Extension
Theorem (see [30]) the 1-form 7 meromorphic to M. We also have (7)o = ()00 of
order one and Resy n = — order of Q| L’ for each component L of (Q)s: In fact, it
is clear by the construction that (7). = (2)e. Now given a point p € (Q)., say,
p € L, L an irreducible component of (£2).., choose a holomorphic function z:U — C
defined in p € U such that 2™.Q is holomorphic at p, where n = order of (2),, along
L. Then z".Q2 = gdy in a small neighborhood of p so that by construction we have
Q=z""gdy and n = df__:fgg = —"—i’” + %-‘1. Since g is holomorphic along L it
follows that Resy 7 = —n. This proves the first part of the proposition.

Assume now that € and 7 are as in the statement. Since 7 is holomorphic and closed
in M\(Q)oo, there exists an open cover {U;} of M\(2) and there are holomorphic
functions h; € Hol(U;) such that 77|U,- = dh;. We define g; = exp(h;), g; € V(U;)* to
obtain 17|Ui = dg;/g;. Now, from condition d2 = n A Q we have d(%) = 0, and then
Q = g; dy; for some holomorphic function y; € V(U;). This we can do in M\ (). Now,
given a point p; € () We can choose a local chart (z,y) € U; such that p; = (0,0),
(2)ooNU = {y = 0} and n(z,y) = —n + % where n = order of (Q) and f € V(U;)*.
Therefore we have n = d(;:__:) = i g, = fy~". Thus the 1-form < o, 1s closed and
holomorphic so that it can be writen % = dy; for some holomorphic y;. Thus we have
covered M\s(F) with open sets U; where we have the relations 2 = g; dy;, n = dyl .In
each U; NU; # ¢ we have ‘% =n= dng and g;dy; = 2 = g; dy;. The first equahty
implies g; = a;;.g; for some locally constant a;; and it follows from the second equality
that dy; = a;; dy; and then y; = a;; y; + b;; with b;; locally constant in U; N U;. This
shows that F is transversely affine in M.
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TRANSVERSELY AFFINE FOLIATIONS 173

Now we prove the last part of the proposition. Let (£2,7) be given and let g: M — C
be a meromorphic function. We define 2’ = ¢Q and ' = n+ =2 d . Using the same notation

_ dg __ dg; dg __ d(gig) — —_ . .
above we have n’lUi = nlUi + 32 =24+ 2 =720 anc,l Q’|U g Q|U = (99i)dyi,

and this shows that: g; = a;; g;- and y.=1vy; so that a;; = a;; and b’ = b;;. Hence,
the pairs (2,7) and (€',7) define the same transversal structure for ]-' in M. Finally,
suppose that (€2,7) and (€,7’) define the same transversal structure for F in M. Since
Q and Q' define F, we have (' = g for some g: M — C meromorphic. Using the same
notation above we write (locally) Q = g; dy;, Q' = g dy;, n = dgi/g; and 7' = dg./g;;
but g} = gg; so ' = n+ dg/g completing the proof. O

Example 1.1. — Transversely affine foliations on simply-connected manifolds. Let M be
simply-connected and let F be given by a holomorphic 1-form 2. The transversal affine
structures for F are given by the holomorphic maps f: M — C which are submersions
outside s(F): In fact, it is a consequence of the well-known notion of development of
a transversely homogeneous foliation (see [17] Prop. 3.3 pp.247-248), that the foliation
exhibits a holomorphic first integral on M’ = M\s(F) (notice that M’ is also simply
connected). Hartogs’ theorem [20] implies that this first integral extends holomorphically to
M. In particular, the existence of an affine transverse structure on a punctured neighborhood
of a singularity implies that this singularity has a (local) holomorphic first integral and is
therefore of first order (see Section 2 for the definition).

Example 1.2. — Let ®: N — M be a holomorphic map transverse to the foliation F. If
F is transversely affine then so it is the induced foliation ®*F. This is easily verified by
taking the local submersions which define the affine transverse strcture for F.

Example 1.3. — Logarithmic foliations on CP(n). The foliation 7 on CP(n) is called
logarithmic if there is a rational map 7: CP(n) — CP(m) such that F = 7*(L) where L is
the linear logarithmic foliation on CP(m) given by @ = [T'_; z: > ;_; A; del = 0 in some

affine chart (z1,...,Z,) € C™ < CP(m). If we define the 1-form n = Y- 5 we
can conclude from Proposition 1.1 that L is transversely affine in CP(m)\A where
A C CP(m) is the algebraic invariant set given by U,_, {z; =0}, hence using
Example 1.2 we conclude that F is transversely affine outside an algebraic invariant
set D = m71(A) ¢ CP(n). Let n(z1,...,%n) = (fi(Z1,.-,Tn),-- s fm(T1,...,T,)) in
affine charts; where the f;’s are irreducible smooth polynomials; then D = |J; {f; = 0}
and the hypersurfaces {f; = 0} are the compact leaves of F; they have linearizable
holonomy and any other leaf has trivial holonomy. For more information on logarithmic
foliations the reader should consult [2].

Example 1.4. — Bernoulli foliations on CP(n + 1). In CP(n + 1) we consider affine
coordinates (1, . .., Zn,y) € C"*! < CP(n+1). Let  be the meromorphic 1-form given
by Q1.+, %n,y) = ([[=y pi(@i))dy — 37— (T, pi(2:)) (v ei(x;) — ybs(z;))da;;
where p;, bj, c; are polynomials of one variable. We say that () defines a Bernoulli
foliation of order k on CP(n + 1), if Q satisfies the following integrability condition:
c,(w,) b, (:1:]) = C](J;j).bz’(.'l;j) Vi,7. Under this hypothesis we define the 1-form
n = k% + Z] 1 p](w’”(k 1))b it2;) dz;, and we obtain a transversal affine structure
for ]-' ]-' (Q) outside of an algebraic invariant set I' C CP(n + 1), which is a
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174 B. A. SCARDUA

finite union of hyperplanes CP(n) C CP(n + 1). If n = 1 we have Q(z,y) =
p(z)dy — (v* c(x) — yb(x))dz which is the pull-back of the particular Riccati foliation
(p(u)dv — (k —1)(c(u)v? —vb(u))du by a map (u,v) = (z,y*1). The point p, € CP(2)
given by z = 0, y = oo is a dicritical singularity of F (see definitions in §2). This
dicritical singularity plays a fundamental role in the study of the structure of F and is the
responsible for the non linearization of F. In fact in general F is not the pull-back of a
linear logarithmic foliation because of the non-algebraic separatrices of p...

Example 1.5 (see [1],[16]). — We will define a transversely affine foliation on a compact
3-manifold. This will be a non-singular foliation with dense leaves which are biholomorphic
to C* x C* or cylinders C*/Z x C*. We begin with a general construction inspired in [1]
and [16]. Let M be a compact complex n- manifold. Let w be a closed 1-form on M and
let f: M — M be a biholomorphism such that f*w = Aw for some A € C* with |A| # 1.
Define 2 on M x C* by (z,t) = t.w(z). Then we have d2 = n A Q where n(z,t) is
defined by 7(z,t) = %3. We have dn = 0 and 7 holomorphic, thus (2 defines a codimension
one foliation F on M x C* which is transversely affine in the sense of Definition 1.1.
Now we consider the action ®:Z x (M x C*) — M x C*,n, (z,t) — (f™(z),\"™.t).
This is a locally free action generated by the biholomorphism ¢: M x C* — M x C*,
o(z,t) = (f(x),A"'t). We have ¢* Q(z,t) = A" tAw(z) = Q(z,t) and p*n = 7.
Thus, the foliation F induces a codimension one foliation F on the quotient manifold

= (M x C*)/Z, this foliation inherits a transverse affine structure induced by the pair

(2,7m). For instance, we consider a variant of the Furness example (see [1]): Consider
1 ; :C?2 - C?% U(z,y) = (x + y,z + 2y). This map
induces a biholomorphism f: M — M, where M = C*/Z x C*/Z and where C* = C/Z
has the coordinate obtained from the action Z x C — C(n,z) — z +n, and C*/Z is
defined from the action Z x C* — C*, (n,t) — p~".t; where u € C*\S! is arbitrary.
The biholomorphism f is induced by F:C* x C* — C* x C*, F(z,w) = (zw, zw?).
We consider w = (1 + v/5)dz — 2dy in C2. We have U*w = \.w where A = 57 and
UisZxZ 1nvar1ant (Z x Z acts on C x C by the natural product action) so that it
induces a 1-form @ in C* x C*, this last is also Z x Z invariant so that it induces a closed
holomorphic 1-form w in the bitorus M. The 1-form w satisfies f*w = A.w. The foliation
induced on V = (M x C*)/Z = ((C*/Z x C*/Z) x C*)/Z is transversely affine, has
dense leaves and its leaves are biholomorphic to C*/Z x C* or C* x C*.

the unimodular map U =

Example 1.6. — The Integration Lemma for closed rational 1-forms. Let F be a foliation
on CP(n) which is given by a closed meromorphic 1-form, say, w. Then F has a
transverse structure by translations in CP(n)\(w). where the polar divisor (w)s is
invariant and algebraic of codimension one. The Integration Lemma ([12]), states that
if W = 7w where m:C"*1\0 — CP(n) is the canonical projection then we have
W= 30N dfi’ + d( ,‘jyl) for some \; € C, and some homogeneous polynomials

fi» g in C™*1. We have n; = order of (W) along the hypersurface (f; = 0) and

(D)oo = Ujzy (f5 = 0), s0 that (w)eo = 7((W)ee) = Uy 7(f; = 0). As it is easy to
see F may not be of a logarithmic or Bernoulli type. The reason is on the type of the
singularities that may arise.
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As a corollary of Example 1.1 we obtain:
PROPOSITION 1.2. — There is no transversely affine foliation on CP(n).

Proof. — In fact, CP(n) is simply-connected and, since it is compact, it admits no
nonconstant holomorphic function. [

2. Resolution of singularities

Let F be a holomorphic singular codimension one foliation with isolated singularities
on a compact two dimensional complex manifold M?2. Let A C M be an analytic invariant
curve. A theorem of Seidenberg [28] gives a resolution of the singular points of F on A.

THEOREM 2.1 [28]. — There is a finite sequence of blow-ups at the points of s(F) such
that their composition gives a proper holomorphic map w: M — M a complex compact
2-manifold M and a foliation F* = ©*F with isolated singularities such that:

i) 77 Y(s(F)) = Ule P; is a finite connected union of complex projective lines
with normal crossings and ™M \ U?:o P; — M\s(F) is a biholomorhism (the union
D = 771 (A) = 77 1(s(F)) U m Y (A\s(F)) = U?:o P; is called the desingularizing
divisor of s(F) N A), P, is the closure of m=1(A\s(F)) on M);

ii) At any singularity p € U?:o P; of F* there is a local chart (x,y) such thai
z(p) = y(p) = 0and F* is given by one of the Pfaff forms: (i) xdy— Ay dz+h.ot, X\ ¢ Q4
(non-degenerate linear part); (ii) x?*1 dy+y(1+ A\z?)dz + (h.o.t)dz, p > 1 (called saddle-
node). In case (i) we say that p is resonant if A € Q_. Let p € s(F), be a singular point of
F, by the Separatrix Theorem [5] the foliation F admits at least one separatrix through p;
if the number of these separatrices is finite the singularity is called non-dicritical. This fact
is equivalent to the fact that all the projective lines P; belonging to m~!(p) are tangent to
F*. The foliation F* is called the resolution of the foliation F (for more information the
reader should consult [4] or [24]). We remark that if a foliation F has only non-dicritical
singularities in an invariant irreducible hypersurface A C M then it is well defined the
analytic codimension one set sep(A) of the local separatrices of F through the points of
A N s(F), in a neighborhood of A in M.

Drrinerion 2,10 — A singularity p € s(F) is said to be of first order when it is
non-dicritical and there are no saddle-nodes in its resolution (see [6]).

We finish this scction defining what we will consider as an extended affine structure.

DepiNiion 2.2, — Let F obe given by €2, and let A C M be an analytic invariant
hypersurface, not containing dicritical singularities of Q. A 1-form 7 defined in a
neighborhood of A is adapted 1o € along the hypersurface A if: (i) n is meromorphic,
closed, d2 = 1 A S2; (ii) the polar divisor (1)~ = AUsep (A) U (), has order one along
A and (), and Res;, = — (order of (§2),. along L) for each irreducible non-invariant
component L of (§2)..

For example, if we consider 2 = xdy — y* dx in affine coordinates in CP(2) then
n= kiyu + 92 is an adapted form to {2 along the algebraic leaf {y = 0} and also along the

algebraic leaf {x = 0}. The same does not hold for the singular leaf L., = CP(2)\C?,
because Resy_ n = —(k + 1) and (order of (). along Lo,) = k + 2.
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176 B. A. SCARDUA

3. Extended affine structures

Our basic tools in the study of the holonomy of transversely affine foliations are the
two following lemmas.

LeEMMA 3.1. — Let F be given by €, let A C M be an analytic non-singular invariant
hypersurface and let n) be an adapted form to € along A.

(1) Suppose Resxm = a ¢ {2,3,...}. Then given a regular point p € A\s(F) there
exists a local chart (z,y) € U such that p = (0,0), ANU = {y = 0}, Q = gdy and
n = a%‘i + dg 7 where g is meromorphic in U. Furthermore if (£,4) € U is another such

system with U N U # ¢ and connected, then we have jj = c.y for some c € C*.

(2) Suppose Resyn =k € {2,3,...} and suppose that we have Q = §dj, n = k%@ + %g
for some local chart (%,7) € UwithUnA = {9 = 0} and § meromorphic in U. Then
given a regular point p € A\s(F) there exists a local chart (z,y) € U such that p = (0,0),
ANU ={y =0}, Q= gdy and n = k% + %,

Furthermore if (Z, y) € U is another such chart with U N U # ¢ and connected, then

we have §*~1 = h(y*~1) for some homography h(z) = $2=.

Remark 3.1. — We will show as a consequence of Lemma 3.2 that condition (2) is always
satisfied if s(F) N A contains some linearizable non-resonant singularity.

Proof of Lemma 3.1. — We will assume that M is 2-dimensional. The general case is
proved in the same way. First we consider the case (1) where Resyn = a ¢ {2,3,...}
and make the following claim:

CLamM 1. — Given a holomorphic function r(y) defined in a neighborhood of y = 0 € C
with r(0) = 1, there exists a local holomorphic non-vanishing function v = u(y) defined
in a neighborhood of y = 0 € C, such that *— = = r(y).

Proof of Claim 1. — To prove the claim we consider the distinct cases a = 1 and
a ¢ {1,2,3,...,}.

Case 1. — a = 1. We define &(y) = r(y) — 1. Since £(0) = 0 we have
&(y)/y holomorphic in y = 0. So it is enough to define u(y) = exp (f%dy)
which is holomorphic, non-vanishing and satisfies % (y) = (ﬁ — 1) /y, which gives
") = -

u(y)+y.u'(y)
Case 2. — a ¢ {1,2,3,...}: In this case we solve the problem formally and then

a !
we conclude that the solution converges. First we rewrite -*— = as ((;‘5))(1 = r;a.
We can write ﬁ = 1+ a1y + azy? + --- in a convergent series. Thus, we have

%= L + + +ﬂ'—+---and sincea¢{l,2,3,...} we have the formal
1

solution W = go-t + yakz + -+ which gives wrl = - ; this
formal solution is convergent in a neighborhood of 0 € C. In fact smce 1 + ay+ad+---
is convergent in some neighborhood of the origin we have that lim supk_,oo Vlar| < +o0

,’”/Iaf;fl ak| < 00 so that the series 1+a 2 a1y+— asy’+--

is convergent in some neighborhood of 0 € C. This proves Claim 1. [

and then lim sup;_,
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Now given a local coordinate system (z,y) € U with ANU = {y =0} and Q = gdy
we have ) = a%y + %g + % for some holomorphic local function r = r(y) with r(0) = 1.

We define § := u(y).y where u is given by the Claim 1 above. Then we have
r(y)dy = u®(y)dy. Now, define § := fL:((;’)) so we have §dy = gdy and since u®.g = g.r
we have “d"+'—i§‘z = %+4} and then we have %+% = “;ﬂ+%+% = n(z,y) which
proves the first part of case (1). Now we make another claim:

CrLaM 2. — Let u = u(y) be a holomorphic local function defined near y = 0 € C
with u(0) # 0. Assume that we have r.u® = u + y.u' for some r,a € C. Then u
is locally constant provided that a ¢ {2,3,...}. If a = k € {2,3,...} then we have
uk=1 = for some a € C.

1
T‘+a‘yk_l

Proof of Claim 2. — We write u(y) = u(0) + v/ (0)y + - - - + —32 >(0)y + - - - in convergent

power series. Assume that ¢ ¢ {2,3,...,}. Derlvatlng the expressmn ru® =u+ y.i—z
and using 7.u*1(0) # 0 we obtain by induction that u(’“)( ) = 0 Vk > 1 and then u is
constant. Suppose nowa =k € {2,3,...,}. From ruf = u+ y we obtain Si.‘z),c =0

and then (_T_ = y,f : + a for some constant a« € C. The cla1m now follows easily.

This is enough to finish the proof of Case 1: In fact, given (z,y) € U, (Z,7) € U such
that Q = gdy, n= w+—="- Q=gdy, n= “dy-}—d andUﬂU;égbthenwnttmg

9y = u.y we obtain r.u® = u + Ly for some r € C* Usmg Claim 2 we conclude that:

a¢{2,3,..} =>y=cyforsomece C* a=ke{23,.. }i"k 1 ! for

1+a.yk-1
some A, € C. This finishes the proof of Case 1. !

Case 2. — Respn = k € {2,3,...}.

Let (z, y) € U be a local coordinate system such that 2 = gdy, A = {y = 0} and then
n= M + —-‘l + 4= for some holomorphic 7 = r(y) with 7(0) = 1 and U N U # ¢.

In UﬂU;éque have §dj = gdy and@—u+d"=’—c§1+i"+‘i” This gives
5;.—%3— =c- yd—r(y) for some constant ¢ € C*. Therefore Res(,—o) (ykd—j’(y)) = 0 and this
allows us to use the same proof given for Claim 1 to show that there exists a new
coordinate system (Z,y) € U such that n(z,9) = ’—c%y.- + %@ and = gdy. Since A is
connected this implies that the first part of (2) is true. The last part follows from what
we have observed above. [J

Lemma 3.2 (Extension Lemma). — Let F be given by Q on M? and let A C M? be an
analytic smooth invariant curve. Suppose:

(1) Given any singularity p € A N s(F) there is a local coordinate system (x,y) such
that p = (0,0), A = {y = 0} and F is given by xdy — A\ydz = 0, A € C*\ Q4.

(2) One of the singularities, say p, € A N s(F), is non-resonant (which means that we
have X ¢ Q in (1).)

(3) There exists a 1-form 1 defined in some neighborhood of A minus A and its local
separatrices satisfying: (i) 1) is meromorphic and closed; (ii) dQ2 = nAQ; (i) (7)oo = (2) oo
has order one and Resp ) = — order of () along L, for each non-invariant component
L of ().

Then n extends meromorphically to a neighborhood of A as an adapted form to §) along
the curve A.
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Proof. — Using Hartogs’ Extension Theorem (see [30]) we conclude that it is enough to
prove that 1 extends as a meromorphic 1-form to a neighborhood of an arbitrary singularity
p € s(F) N A. First we consider the case p = p, given in (2). Choosing local coordinates
(z,y) such that p, = (0,0), A = {y = 0}, Q(z,y) = g(xdy — Ay dz), A ¢ Q we can write
n(z,y) = Al%’i + )\2%”5 + 45‘1 + df with f € V*({zy # 0}). From condition dQ = n A Q
we conclude that df A (zdy — Ay dz) = 0 and then z f, + Ay f, = 0. Using Laurent Series
f= Y fijz'y’ we obtain (i + \j) - fi;; =0, V(4,5) € Z* and since A ¢ Q we obtain

i,j€Z
fi; =0,VY(3,5) # (0,0), so f is constant and n = /\1 + AL + 99 (It is now easy to
check that we also have 1 + A = A1\ + Xy. This fact w1ll be used later).

Therefore 7 extends meromorphically to a neighborhood of p, having poles of order
one. Now, this implies that 7 extends meromorphically to all A\(s(F) N A) having order
one polar divisor (Hartogs’ Extension Theorem).

Now we fix an arbitrary singularity p € AN s(F) p # po, and choose (z,y) as in (1).
Again we have ) = /\1 + A2 de | dg - +df and zfz+ Ay fy = 0 and then (i +Aj)- fi; =0,
V(i,7) € Z2%. Since (77) has order one along A\(A N s(F)) we have f holomorphic
along A and then f;; = 0, V(¢,7) € Z x Z_. Now, fixed j € Z, since A ¢ Q4 we
have f;; = 0, Vi € Z_. Thus we have f;; =0, V(i,5) ¢ Z2, so f is holomorphic and
this proves the Lemma 3.2. O

We finish this section with a lemma that we will use to linearize some singularities in
the proof of the main theorems. Consider F a germ of singular foliation on (C?2,0) with
non-degenerate linear part and in the Siegel domain; i.e., zdy — Ay dz+h.o.t., A € C*\R._.
We can assume that {y = 0} is a separatrix of F.

LemMMA 3.3. — Let F be as above and let p € (C%,0)\0. Suppose that there exists
a local transversal section &, ¥ N {y = 0} = {p} and coordinate system y € %,
y(p) = 0, such that the holonomy of the local separatrix {y = 0} is given by

h(y)k—1 = T/:T‘;ﬁ for some k € {2,3,...},pu,a € C,pu*~1 # 1. Then FE can be made
linear in some system of coordinates Z = T(y) for some homography T

Proof. — 1t is enough to show that h: (X, p) <« can be made linear in some coordinate

1

system z € X, z(p) = 0 [24]. Let H: P;(C) — P1(C) be the homography H(z) = 1:1_‘”.
Since p*~1 # 1 there exists an other homography T such that if Z = T(y) € (C,0)
then H(Z) = pZ. By the hypothesis we have h(y)*~! = H(y*~!) and therefore

h(Z)k=1 = p*=1. Zk=1 g0 that h(Z) = - Z. O

4. Statement and proof of the main results

THEOREM 4.1. — Let F be a foliation on M* having A C M as an analvtical connected
invariant curve, and given by a meromorphic 1-form Q. Suppose:

(i) all singularities of F in A are of 13- order;

(i1) the foliation F obtained as the resolution of the singularities of F in A, has one
linearizable non-resonant singularity.

Then the following conditions are equivalent:

(a) F is transversely affine in some neighborhood of A minus A and its local separatrices.

(b) The form Q admits an adapted form along A.
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Moreover, if one of these conditions holds then the holonomy group of A and of any
component P; of the desingularization divisor D of s(F) N A is either linearizable or is a
finite covering of a group of homographies. In the linearizable case there exists a closed
meromorphic 1-form w; defined in a neighborhood U of P;j, with (W;)eo = P;j U sep (P;),
such that F |~> is given by w; outside the polar divisor (W;)oo.

We remark that the hypothesis i) above comes from the difficult exhibited by our
approach in dealing with the dicritical case (the complementar of the divisor D is not
necessarily a Stein manifold so that Levi’s Extension Theorem does not apply), and
from the fact that we do not know wether an affine transverse structure defined in the
complementar of the separatrices of a germ of saddle-node extends to these separatrices in
the sense of section 3 above. With respect to hypothesis ii) above, it seems that actually it
is possible to construct examples of germs of resonant non degenerate singularities, which
admit affine transverse structures on the complementar of the two local separatrices, but
do not exhibit a Liouvillian first integrals i.e., extended affine structures. The construction
of these examples is based on the techniques of [25].

Proof. — The implication (b) = (a) i is a stralghforward consequence of Proposition 1.1.
Now we prove that (a) = (b). Let 7: M->MF=nx *(F) be the resolution of the singular
points of F in A and let D = 771(A) = U, P, the desingularizing divisor of :3(.7-~ )NA
given by Theorem 2.1. Let ¢;, € P; j,_be a linearizable non-resonant singularity of F. The
foliation F is transversely affine in V\[ U, P ) U~ (sep( A))] for some neighborhood

V of D in M. Therefore there exists a pair ( M) with Q = = *(Q), n = 7*(n), and
7] meromorphic closed in V\[(U ; P U ﬂ‘l(sep( ))] satisfying the conditions stated in

Proposition 1.1. Our objective is to show that 7 extends meromorphically to V. Using
Lemma 3.2 we show that 7j extends meromorphically to P;, minus the other singular points
of Fin P j,- But this extension already allows us to calculate the holonomy of the leaf P,
of F. According to Lemma 3.1 this holonomy is either linearizable or is a finite covering
of a group of homographies and in particular given any singular point ¢; € P;, N s(F)
there is a local coordinate y € ¥ in any local transversal Y, such that the holonomy of
the separatrix P;_ in this singularity is of one of the following forms: (A) h(y) = a.y,
a € C*; (B) h(y)t = H‘fgkyk a € C*, b € C (in this case we have Resp, 7 =k + 1).

In case (B) we have two possibilities:

(1) If a* # 1: In this case the homography (z — T"{Tzz—) can be made linear in some
local coordinate ¥ € ¥ which is obtained by an homography from y and therefore we can
assume that h(y) = py as in (A) (see Lemma 3.3). Therefore in this case and in case (A)

the smgulanty is linearizable and we use Lemma 3.2 to extend 7 to the singularity q]

(2) a* = 1: In this case we have that q;, is a singularity of the form w|U =
g(zdy — )\ydx+hot) A= -2 € Q_, (mmn) =1, and we assume that it is
nonlinearizable with (y = 0) C P;,. The local holonomy h of ¢} in P;, satisfies

h(y)* = 1 +:y This implies that mk = In for some [ € N. Furthermore we can assume
that a = 5- and so this holonomy is conjugated to the holonomy of (y = ()) of the germ of

foliation wy; = Iz dy+k y(1+ 5=z*y')dz = 0. Thus by [25] the foliation Fis conjugated
near q]o to the germ of fohatlon wi,1. Thus there are local coordinates (z,, ¥, ) centered at
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q;, € P;, such that for some meromorphic function g, ,ZIJ{U = Jowk, (We observe that

N A~ ~ yl k ~ _ kb y! logza—1)2
Wk, = Gk, dYr, where yp; = W and gi; = J—“'k_—l_lT") We define

Njo,a = (k + )JL +(+ 1)% + % The form 7 extends to ¢;_as 7, . because both
define affine transverse structures outside the axis (x = 0),(y = 0) and have the same
residue (k + 1) along the axis (y = 0).

Thus we have showed that the form 7 extends meromorphically to all P;, and given
any projective P; with P; N P;, # ¢, then 7) extends meromorphically to P; minus
the other singularities of F in P;. Using these arguments we can show that 7 extends
meromorphically to all the divisor D = |J; P; and the local separatrices 7~ 1(sep (A)).
This shows that (a) = (b). The last part of Theorem 4.1 is a consequence of the following
remarks: _

(D: Let (z,y) € U be a local chart around any linearizable singularity of 7 in P;, say,
a singular point p € P; N s(F), such that we have (z,y) = g(zdy — Ay dz), A € C\Q;.
Let (¢,0) € U\{p} be any regular point of F and choose V' a small neighborhood of (g, 0)
such that V N {z = 0} = ¢ and V N P; is simply-connected. Let £ = z — ¢, § = yz~?*,
g = gz'**. Then (£,9) define new coordinates in V such that P; NV = {§ = 0} and
2 = gdg. Now, since the singularity is linearizable it follows (as remarked in the proof of
Lemma 3.2) that we have 7(z,y) = a%u + b%’” + ig‘l, where 1+ A =a- A+ 0. Therefore

we have 7(z,y) = a— +(1+A)%E —arde 4 %‘1 = ad(yf:f) + d(g::) a—yy + 42 3 inV.

(II): For the hnearrzable case we assume that a ¢ {2,3,...}. Notice that since the
holonomy is linearizable all the singularities are linearizable ([24] and [25]). Using now
Lemma 3.1 we can conclude that there exists a family of local charts (z4,ya) € U,
with the U,’s covering a neighborhood of P;, such that: (1) P; NUs = {ya = 0}, Vo;
Q) If F| y, is regular it is given by dy, = 0, and if F Fl, is singular it is given by
To o — AaVa dZa = 0, Aa € C\Q; 3) If U, NUsz # ¢; and (U, UUp)Ns(F) =
then we have y, = cop.ys for some ¢, € C* and if U, N s(F) # ¢ then Ug N s(F) =
and we have yax‘;*a = Cop.yp for some co,g € C*.

(III) Finally, we proceed as in [13] and [6]. We define local meromorphic forms w, in
the U,’s by: Wa(Za,Ya) := o Yo if }'lU is regular; wo(Ta,Yo) = y —da d—% 1f.7-'|
is singular. Using condition (3) above we have w, = wg in each U, N Uy # ¢ and thus
we have defined a closed meromorphic 1-form w;, (which defines F)ina neighborhood
of P;, having order one polar divisor (w;)sc = P; Usep(P;). O

Remark 4.1. Generalized Levi’s Extension Theorem.

Let M be a compact complex manifold (of dimesion > 2), and let A C M be an analytic
subset of codimension one, such that M\A is a Stein manifold. Then any meromorphic
differential q-form defined in a neighborhood of A extends meromorphically to M.

This is a consequence of Levi’s extension Theorem [30] (see [6] Lemma 5 Section 3).

In particular if A C CP(n) is an algebraic hypersurface then CP(n)\A is a Stein
manifold [30] and any meromorphic differential q-form w defined in a neighborhood of A
extends meromorphically to CP(n).

Remark 4.2. — Let F be a foliation on CP(2). The foliation F has degree n if and
only if in affine coordinates (z,y) € C? — CP(2), F is given by Q = Pdy — Qdz =0
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where P = Y30 P; + x.g, Q = Y Qj + y.g where P;, Q; are homogeneous
polynomials of degree j and g is an homogeneous polynomial of degree n+1. Geometrically
the degree of F is the number of tangencies of its leaves with a generic projective line
CP(1) C CP(2) (see [22]). If  is like above and the line L., = CP(2)\C? is not
invariant then ()., = Lo, has order = deg F + 2. The Poincare Problem for foliations
on CP(2) is to bound the degree of a projective foliation F in terms of the degree of
an algebraic solution S C CP(2) of F (see [22] and [9]). In the non-dicritical case it is
proved that degF < degS + 2 [9].

The next theorem proves that we have an equality in the “Poincare Problem” for a
foliation under our assumptions. We refer to [9], [13] and [22] for any further information
on this subject.

THEOREM 4.2. — Let F be a foliation on CP(2) and let A be a smooth algebraic curve
invariant by F. Suppose: (i) all singularities of F in A are of first order; (ii) the foliation F
obtained by the resolution of s(F)NA has at least one linearizable non-resonant singularity;
(iii) F is transversely affine in some neighborhood of A minus A and its local separatrices.

Then: (a) F has a finite number of algebraic leaves; let Sep (F) denote this set: (b)
deg F + 2 = degree of Sep (F).

Proof of Theorem 4.2. — The Rroof is based on the Index Theorem [5] and the Residue
Theorem. Let 7: M — CP(2), F = n*(F), be the desingularization of the singularities of
Fin A. Let 77 1(s(F)) = ; Pj = D denote the divisor D of the desingularization and
let A denote the curve 7L (A\(A N s(F))). It follows from Theorem 4.1 that F can be
given by a meromorphic 1-form {2 which admits an adapted form along A, say 7, defined
in all CP(2). We have (1). = Sep (F) which proves (a).

By the Integration Lemma (see Example 1.6) we have n = Z Aj ‘j,f; — n.%ﬂ in some
affine chart (z,y) € C? — CP(2), where f; and g are polynomials transverse to
CP(2)\C?, Sep(F) = U; (fi =0), (Ve = (9 = 0), g has degree one, n = order of
(Voo = deg F+2. The Res1due Theorem shows that (1) >°; Ajdeg f; =n = deg F+2.
Let A, = A = (fi =0) and A; = (f; = 0); ;Vj # 1. and A; = 7 1(A;\(A; N s(F))).
Now we ﬁx a singularity p € A ﬂD say, p € A NP, . We know that the residue A; and the
index ind (p; P, ) are related by the formula: /\j =1+ (1-a,).ind(p;P,) where a, =
Resp, (7*n). (In fact as in the first part of the proof of Lemma 3.2 we have that
1+ ind(p; P,) = ind(p; P,).a, + Resxj n). Hence we have ind(p; P,) =

singularity p € P, N 1~X]~. Let w(P,) denote the weight of the projective P, in the
desingularization process, that is, the number of times that we havi blowed-up points over
P, plus one; we have —w(P,) := first Chern class of P, in M. Using Camacho-Sad

Index Theorem [5] we obtain —w(P,) = ZpEs(f)mPu ind(p; P,). Now we have
LT Xt r ot
pEs((F)NP, PES(F)NPy pES(F)NP, PEPLNS(F)
pEPVﬂUAj PEP, . u#y pEA

i#l
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Therefore we obtain

P.,) =

J#1
- #(P, mA>( - Y #P.R)L

P,NP,#¢
n#v

and then

(2)w(P,)-(ar = 1) =Y #(P, N 4;) (A — 1)
i#1
+#P,NA).(\ = 1)+ ) #(P,NP,).(a, — 1).
p#EV
Now we sum over all P, obtaining

> w(P,).( )= O_#(P,nA))(N - 1)
v J#1 v
+ (M —1D). D # P NA)+ D #P ).(a, — 1).
v TRTE 27
We observe that:

(a) Z#(Pu NAD) = 1) = #(s(F) N A)(A — 1)
® SO #®,nA))A - 1)

J#l1 v
=) (A —1).degA;.deg f = deg fi.[>_ Aj.deg f; — > _ deg f;]
J#1 J#1 J#1
= deg fi.[deg F + 2 — \;.deg f1 — Zdegfj].

J#1
© Y #P,NP,).(au — 1)
- > #P,NP,).(a, — 1)
= Z (a = D#P, NP+ > (a, —1).#([P,NP,).

u;i;/:. ”;iff
PLNA#d P,NA=¢

= Y wP)(a-+ Y (wP,)-1).(a, -1
P,NA=¢ P,NA#d

=S w®,)(a, 1)~ > (a, ~1).

v P,NA#¢
Now, using (1), (2), (a), (b) and (c) we obtain (*) 0 = deg f;.[deg F + 2 — \;.deg f; —

Y izrdeg fil + (A = )F#(s(F) NA) — ZPUOK#¢(aV — 1). Now applying the Index
Theorem for the curve A we obtain: (deg fl) — #(s(F)NA) EP ARss ind(p,, A),
where P, N A = {p,} and ind(p,,A) = —%=L Thus we have b, igeler —1) =
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(A1 — 1).[(deg f1)? — #(s(F) N A)]. Using this last equation and (*) we obtain 0 =
deg fi.[deg F +2—3_,5, deg f;] and then deg F +2 = } .., deg f; = degSep (F). O

In the following theorem we make hypothesis on all the singularities of F lying over
algebraic leaves.

THEOREM 4.3. — Let F, A be as in Theorem 4.2. Suppose: (i) all singularities of F lying
over algebraic leaves of F, are non-degenerate of the form xdy — Aydx + h.o.t. = 0,
A € C\Qy; (ii) at least one of the singularities of F in A is linearizable non-resonant;
(iii) F is transversely affine in some neighborhood of A minus A and its local separatrices.

Then F is a logarithmic foliation and deg F + 2 = deg Sep (F).

Proof. — As in the proof of Theorem 4.2, given any affine chart (z,y) € C? —
CP(2) such that the line CP(2)\C? is not invariant and given a polynomial 1-form
Q) = Pdy — Q dx which defines F in C?, we can find a meromorphic 1-form 7 defined
in a neighborhood of A in CP(2) and adapted to 2 along this curve. Since CP(2)\A
is a Stein manifold, 7 extends meromorphically to all CP(2) (Remark 4.1). As in the
proof of Theorem 4.2 we have 7 = 3, )\j% where Sep (F) N C% = |J(f; = 0) and
DIFRYE deg(f;) = deg F + 2 as a consequence of the Residue Theorem. Now according
to Theorem 4.2 we have Y deg f; = deg F + 2 and then 3_;(A; — 1) - deg f; = 0 and
this shows that \;, ¢ {2,3,...} for some j,. Using now Theorem 4.1 we conclude that
the algebraic leaf A; = (f;, =0) of F has a linearizable holonomy in the same way
that in the proof of Theorem 4.1.

Therefore, (since the singularities of F on A are already reduced) according to Theorem
4.1 and to Remark 4.1, F is defined in CP(2) by a closed meromorphic 1-form w having
order one polar divisor (w)., = Sep (F). By the Integration Lemma w is a logarithmic
I-form. O

Remark 4.3. — We remark that Theorem 4.3 still holds (and with the same proof) if
we replace condition i) by: (i’)all the singularities of F lying on some algebraic leaf of F
are of first order and exhibit local meromorphic integrating factors (that is, the foliation
is given by a closed meromorphic local 1-form in a neighborhood of a singularity): In
fact using the abelian holonomy of a leaf A; \s(F) as in the proof above we can glue
the local closed meromorphic 1-forms given by the local integrating factors around the
singularities, in order to obtain a closed meromorphic 1-form w which describes the
foliation F in a neighborhood of the algebraic curve A, (see [13] or [6] for a similar
procedure). Thus we obtain:

THEOREM 4.3'. — Let F, A be as in Theorem 4.2. Suppose: (i) all singularities of F lying
over algebraic leaves of F, are of first order and admit local meromorphic integrating
factors; (ii) at least one of the singularities of F in A is linearizable non-resonant, (iii) F
is transversely affine in some neighborhood of A minus A and its local separatrices.

Then F is given by a closed rational 1-form w on CP(2) and deg F + 2 = deg Sep (F).

Finally, we remark that in the next results we do not require that F exhibits a linearizable
singularity in its desingularization. However we suppose that F is transversely affine in
all CP(n) minus the algebraic invariant set S of codimension one.
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THEOREM 4.4. — Let F be a codimension one foliation on CP(n) which is transversely
affine outside an algebraic codimension one invariant set S C CP(n). Suppose that F has
only 1%*-order singularities in some component S, of S. Then deg F + 2 = deg S.

THEOREM 4.5. — Let F, S be as in Theorem 4.4 above. Suppose that F has only non-
degenerate singularities in S. Then F is given by a closed rational 1-form on CP(2) and
deg F + 2 = deg S. The foliation F is a logarithmic foliation on CP(n) provided that it
exhibits only non-resonant singularities on S.

We would like to call the reader’s attention to the fact that both Theorems 4.4 and
4.5 above are stated for codimension one foliations on CP(n). We recall that according
to [6] a codimension one foliation F on CP(n) is said to have only non-dicritical
singularites in some algebraic codimension one invariant set S C CP(n) if there exists
a linearly embedded E = CP(2) — CP(n) in general position with respect to F (see
[6] for a definition), such that the induced foliation F* = F I cP) (by the inclusion
i:E — CP(n)) has codimension > 2 singular set in CP(2) and has only non-dicritical
singularities in S* = i~1(S) C CP(2). Proceeding the same way we say that F has only
18t (non-resonant) singularities in S if F* has only 15! (non-resonant) singularities in S*.

Proof of Theorem 4.4. — We can assume that n = 2: In fact if F is a codimension one
foliation on CP(n) then given a generic linearly embedded CP(2) — CP(n) the induced
foliation F7* = F | cPE has the same degree that F. Moreover the singular set of F*
consists of the intersection s(F) N CP(2) and of the tangencies of F with CP(2). The
tangencies of F with CP(2) originate singularities wich have a local holomorphic first
integral (in fact if p € CP(n)\s(F) then F has a local holomorphic first integral at p)
and thus these are non-dicritical singularities. This shows that 7* has only non-dicritical
singularities in S N CP(2). Thus we assume n = 2. Let Q = P dy — Q dz be a polynomial
1-form which defines F in affine coordinates (z,y) € C? as in the proof of Theorem
4.2, with S transverse to the line CP(2)\C?. Write SN C? = J; (f; = 0) f; irreducible
polynomial relatively prime with f; for i # j. Since F is transversely affine in CP(2)\S
we have a 1-form 7 defined in CP(2)\S, closed and meromorphic with polar divisor
(Moo = (Voo = (CP(2)\C?) and satlsfymg the conditions stated in Proposition 1.1. By
the Integration Lemma we have n = 3, A; J LS dF for some holomorphic F: C?\S — C*.
By the Residue Theorem we have () Z /\ deg fJ = deg F + 2. Now we remark that the
arguments used in the proof of Theorem 4. 2 can be repeated in this case using equation
(*) above even in the non-linearizable case (notice that we suppose the singularities to be
of ISt—order). Thus, we leave the rest of the proof to the reader. [

Proof of Theorem 4.5. — According to [6] if a codimension one foliation F on CP(n)
is such that F |C P@) is (given by a closed rational 1-form) a logarithmic foliation for
some linearly embedded CP(2) — CP(n), in general position with respect to F, then
F is (given by a closed rational 1-form) a logarithmic foliation on CP(n). Therefore
we will assume, as in the proof of Theorem 4.4, that n = 2. Let 2 = Pdy — Qdx,
n=3X; df’ +4E be as in the proof of Theorem 4.3 above. Since 3 A; deg f; = deg F +2
and Zdegf] = degF + 2 we have ) (A\; — 1)degf; = O and then there exists
Ai, ¢ {2,3,...}. Now we put ' = F.Q and ¢/ = E/\jd?fjl =1 — 9. Then, according to
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Proposition 1.1, the pair (2, 7’) defines the same affine structure for F in CP(2)\S and
in this case 7’ is meromorphic in CP(2). "

CraM. — For each regular point p € A; \s(F) there exists a local chart (z,y) € U such
that p = (0,0), A;, NU ={y =0}, ' = F.gdy and f/ = ), - iyu + iga. Furthermore
if (z,y) € U is another such chart with Z(P) = §(p) = 0, UNU # ¢ then we have
y = c.y for some ¢ € C*.

This claim is proved as Lemma 3.1 (1) because \;, ¢ {2,3,...}. Using the claim we
prove that the holonomy of the algebraic leaf (f;, = 0) = A, is linearizable in the sense of
Theorem 4.1. Proceeding as in Theorem 4.3 we prove that F is a logarithmic foliation. [J

The same way we prove Theorem 4.3’ we can prove:

THEOREM 4.5'. — Let F, S be as in Theorem 4.4. Suppose that all singularities of F lying
over S are of first order and admit local meromorphic integrating factors. Then F is given
by a closed rational 1-form w on CP(2) and deg F + 2 = deg Sep (F).

5. Solvable holonomy groups and transversely affine foliations

A subgroup G C Bih(C,0) is solvable if the group of commutators [G,G] is
an abelian group. In particular any abelian subgroup G C Bih(C,0) is a solvable
group. A less trivial example of solvable groups is given by the subgroups G C Hj

where H, = {g € Bih(C,0)/g(z) = V;\:W;A,a € C}, k € N. A theorem of

Cerveau-Moussu ([14]) states that except for some exceptional cases these are the only
non-commutative solvable groups. Let F be a foliation on M? and let A C M? be an
analytical invariant curve. Under generic hypothesis on s(F) N A, F is transversely affine
in some neighborhood of A minus A and its local separatrices if and only if the holonomy
of A is a solvable group in a strong way which we define below:

DEFINITION 5.1. — Assume that s(F) N A is non-dicritical. We say that the holonomy of
A has the property (S) if:

(i) the holonomy group G; of each component P; of the divisor obtained in the
desingularization F of F on A; is either an abelian analytically normalizable group (that
is, the group embedds in the flow of a holomorphic vector field on (C,0)), or a solvable
normalizable group G; — Hy, as above.

(ii) We have the following compatibility condition: Given any corner {q} = P;NP;, such
that F has a holomorphic first integral in a neighborhood of g, say z9y? with P; = (z = 0)
and P; = (y = 0); then, if the holonomy group G; of P; is nonabelian G; C Hy,, we have
p|(qu) in N. In the case both groups are nonabelian, if we take normalizing coordinates
z and w such that the holonomy groups of G;, and G; are. of the form z +— —22— and

an
k{/ 14+azki
. A’l[} . . . .
w— —=2— respectively then (via the Dulac correspondence which is defined by the
Y v p y ( k % y
aw" I

: k; ax
local first integral) we have 2™ = Tp057 for some homography z — 5.

PROPOSITION 5.1. — Let F, M and A be as in Theorem 4.1. Assume that each component
D; of the desingularizing divisor D of s(F) N A exhibits some non-resonant linearizable
singularity. Then the following conditions are equivalent:
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(1) F is transversely affine in some neighborhood of A minus A and its local separatrices.

(ii) The holonomy of A has the property (S).

In particular if M\A is a Stein manifold with M compact then any local separatrix of
F through some singular point in s(F) N A is the germ of a global analytic separatrix of
F in M, provided that (i) or (ii) holds.

The proof of the Proposition 5.1 is based on the refered characterization of Cerveau-
Moussu (see [14]) and in the following lemma whose proof is a straighforward calculation
left to the reader.

LemMMA 5.1. — Let G C Bih(C,0) be a subgroup such that:
(i) There exists a holomorphic coordinate y € (C,0), y(0) = 0 such that each element

; — Ag-y . * ;
g € G is of the form g(y) = Vi ag € C,\; € C*, where k € {1,2,...} is
independent of g; (ii) G contains a non-periodic linearizable element, say, g, € G, g,(z) =
Ao+ 2 + hoo.t., A" # 1,Vn € N*. Then there exists a holomorphic coordinate z € (C,0),

2(0) = 0, such that g,(z) = Xo.2, and each g € G is of the form g(z) = {/—;\—j_;—zk' indeed

this holds for any holomorphic coordinate z which linearizes g,.

Proof of Proposition 5.1. — According to (the proof of) Lemma 3.1, (i) = (ii), except for
the compatibility condition (ii). This condition is easily proved using the local expression
Q= g(prdy + qydx),n = a%’ + b% + 99 in suitable coordinates around the corner g,
which admits a local holomorphic first integral 29y? (see the proof of Lemma 3.1). Now
we proceed to prove that (ii) = (i): Let G; denote the holonomy group of a component
P; of the divisor D.

157 case. — G; is a commutative group. In this case since G; contains a non-periodic
linearizable element, G; is linearizable in some coordinate system and therefore F is
given by a closed meromorphic 1-form w; defined in a neighborhood of P; in M, with
(W;)oo = P; Usep (P;) (see the last part of the proof of Theorem 4.1).

21d cqse. — G is a solvable non-commutative group. In this case since G; contains a
linearizable non-periodic element G; is holomorphically conjugated to a subgroup of Hy,;
for some unique k; € {1,2,...} [14].

CrLamm 1. — There exists a collection of charts (z,,ys) € U,, @ € A, such that:
() Uaea Ua = V\sep (F;), V = some neighborhood of P; in M; (i) UsNP; = {yo = 0}
and U, N s(]?) = ¢, Va € A; (iii) ]T"|Ua is given by dy, = 0; (iv) If U, N Us # ¢ then
Y& = hap(yp) for some homography has € Hi.

Proof of Claim 1. — The claim is proved using the embedding G; — Hy,, Lemma 5.1
and a procedure similar to that used in [6]. [

Now, for each a € A there exists a holomorphic function g, € V(U,) such
that Q(Za,¥Ya) = 9o dys in U,. We therefore define the local model 7, (%o, ¥ya) =
(ki +1)%= 4 %= in U,

CLamm 2. — In each U, N Ug # ¢ we have 7, = 7;.
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Proof of Claim 2. — In fact in U, N Uz we have Q= 9o dyo = gpdys and

Aag.yti

ki — _2e8Y _ 1 dy R4l _ ki+1

Yot = —257 FAT = %o —o4r and that gy = s 98Yg’ and thus
I+aas.yg Yo aB oy,

(ki + 1) % 4 L2 — (k4 1)22 4 %2 O

It follows from the claim that there ex1sts a meromorphic 1-form 7; in V'\sep (F;) with,
(7i1)oo = (P U (2)eo) N (V\sep (P;)) wich defines a transverse affine structure to F in
V\(P;Usep (P;)). This form 7; extends to the singularities s()N P; as in Lemma 3.1 and
part (2) of case (B) in the proof of Theorem 4.1. Now, using condition (iii) in Definition 5.1
we can glue 7); to the analogous ones constructed in a neighborhood of the D;’s and obtain
7] in a neighborhood of D in M. This form blows down and extends (by Hartogs’ Theorem)
to a closed meromorphic 1-form 7 in a neighborhood of A = w(D) as required to define
an affine transverse structure to F in this neighborhood minus A U sep(A) as stated. O

We recall that according to [15] a germ w = A dz + B dy has its v-jet w, called generic
if w,(z,y) = a,(z,y)dz + b,(z,y)dy where a,, b, are homogeneous polynomials of
degree v having P, 1(z,y) = za,(z,y) + yb,(z,y) as the tangent cone, satisfying:

(1) w, is non-dicritic, i.e., P,4q1 Z 0

(ii) the residues \; = 5= J,, P2 where the ;s are generators of H 1(C?—(P,41 =0)),

are non-real and P,1(z,y) = c. H”+1 (y —tix), t; # t; Vi # j, ¢ € C so that
w, = ¢TI (v = tix) - S0H ) A % In particular w is desingularized with one
blow-up.

One basic tool here is the following consideration: Let «, 3 be germs of holomorphic
1-forms in (C2,0). The 1-form 3 is a stable deformation of « if there exists a family
t — a4, continuous in ¢ € [0,1] such that o, = o, oy = 3 and {a;} is topologically
trivial in the sense that there exists a continuous family of germs of homeomorphisms
{hs:(C%,0) — (C2%,0)} such that h, = Id and h; is a topological equivalence between
a; and o, for all ¢. According to [15] any stable deformation of a germ of holomorphic
I-form w = Adz + Bdy in (C?,0) having v-jet, w, generic v > 2, has projective
holonomy topologically conjugated to the projective holonomy of w.

The main result of this section is the following proposition:

PROPOSITION 5.2. — Let w = Adz + B dy be a germ of holomorphic 1-form in the origin
of C? having w, generic as v-jet, v > 2 and let w' be a stable deformation of w. Suppose
that w has a multiform integrating factor of the form f = H;=1 ff\j, fi € Vo, Aj € C~.
Then w' has a multiform integrating factor of the same type.

The proposition follows from what we have remarked above, from Proposition 5.1 and
from the two following remarks:

(a) Let G and G’ be subgroups of Bih(C,0) topologically conjugated. Then G is
solvable if and only if G’ is solvable.

(b) Let w = Adx + B dy where w is as in Proposition 5.1. Then w has an integrating
factor of the form f = II; ff\j , [; € Va2, Aj € C* if and only if the projective holonomy
‘H., of w is a solvable group.

We supply a proof for (b): Assume that w has such an integrating factor f. Then
n= df =3 'ﬁ{ is an adapted form to w along the separatrices set | J;{f; = 0}. Therefore
it follows that the holonomy of the projective P! arising in the desingularization of w is
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solvable (see Theorem 4.1). This proves the first part. Conversely if the projective holonomy
is solvable, then since it contains non-periodic linearizable elements it is nonexceptional
[14] and therefore it is, either abelian analytically linearizable or it is conjugated to
a subgroup of Hj as above. In the abelian case w admits a meromorphic integrating
factor f [13]. In the nonabelian linearizable case we can construct 7 as in the proof of
Proposition 5.1. According to the local version of the Integration Lemma [13] we can
write n = ), % = %, f=1; f;\ 7, as stated (recall that by construction 7 has simple
poles). O

6. Transversely affine foliations on complex manifolds

A holomorphic singular codimension one foliation F on a complex manifold M is defined
by a colection (£2;,U;) of holomorphic integrable 1-forms §2; in open sets U; such that
U; Ui = M and in each U; NU; # ¢ we have Q; = f;; Q; for some f;; € V(U; NU;)*. If
M is a complex projective space then we can describe F by global integrable meromorphic
1-forms, but this may not be possible if M is not projective. For this general case we
have in the place of Proposition 1.1 the following:

ProPOSITION 6.1. — Let F, M be as above. The possible transverse affine structures
for F in M are classified by the collections (2;,m;) of differential 1-forms defined in the
open sets U; C M such that: (i) (2, U;) is like above; (ii) n; is holomorphic, closed and
dQ; = n; A S, (iii) In each U; N U; # ¢ we have n; = n; + ‘—if—L

Furthermore two such collections (Q;,m;) and (2., n.) define the same transverse affine
structure for F in M if and only if O, = f;Q; and n} = n; + % for some f; € V(U;)*.

Now in the place of Theorem 4.1 or Proposition 5.1 we have:

PROPOSITION 6.2. — Let F, M? be as above with M of dimension 2. Let AN\ M be an
analytic invariant curve and assume that s(F) N A contains only first order singularities and
that the foliation F obtained as the desingularization of the singularities of F in A exhibits
some linearizable non-resonant singularity. Then the following conditions are equivalent:

(i) F is transversely affine in some neighborhood of A minus A U Sep (A)

(ii) The holonomy of A has the property (S).

(iii) There is a collection (;,m;, U;) with | J, U; = some neighborhood of A in M such that
n; is meromorphic in U;, (n;)-00 = (AUSep (A)) NU; has order one and (2;,n;, U;) defines
(in the sense of Proposition 6.1) a transverse affine structure for F in | J, U;\(A U sep (A)).

7. Generalizations for algebraic projective manifolds

Most of the results present in this chapter established for projective spaces extend
naturally to algebraic non-singular projective varieties (). We pay special attention to
the so called Poincare Problem application (Theorem 4.2). We show how to extend
Theorems 4.4 and 4.5 to any non-singular algebraic projective surface: Let F be a foliation
by curves on M2, a non-singular algebraic projective surface. Since we can define in
a natural way, polynomial and rational functions on M? we can define in a natural

(") I thank M. Sebastiani for suggesting this.
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way algebraic leaves of F. Now we show how to extend the notions of degree of the
foliation F and of degree of the set Sep(F) of the algebraic leaves of F (according
to [8]). Denote by S = Sep(F) and denote by L the holomorphic line bundle in M
that extends canonically the tangent bundle T'F of F. We will denote by S.S the
intersection index of S with itself in M (if M = CP(2) then we have S.S = deg(S)?).
Let us denote by c;(L) the first Chern class of L in M and by [E] the fundamental
class of any projective line E — M. We know that if M = CP(2) then using the
geometric meaning of the degree of F as the number of tangencies of F with a generic
CP(1) — CP(2), then lgc (L), [E]) = 1 — deg(F) and this shows us how to extend
the notion of degree of F. According to the proof of Theorems 4.4 and 4.5 we have
(under the hypothesis of these theorems): (deg F + 2) - deg Sep(F) = (deg Sep(F))2.
So for our present context we would have: (1) (deg F + 2) - deg S = S.S. On
the other hand we have lgc;(L),[S])) = (1 — deg(F)) - deg S; and if we denote
by K the canonical divisor of CP(2) then we have, for the case M = CP(2),
K = —3E so that K.S = —3deg S. Therefore for the case M = CP(2) we have:
(2) lger(L),[S])+K.S = —(2+deg(F))-deg S.. Using (1) and (2) we can the equivalent
formulation which generalizes immediately: S.S + 1g¢;1(L),[S]) + K.S = 0. Thus we can
state:

THEOREM 7.1. — Let F be a foliation by curves on a non-singular algebraic projective
surface M? and suppose F is transversely affine outside and algebraic codimension one
invariant set S C M. Assume that S C M is such that M\S is an affine variety, and
that F has only non-dicritical singularities in some component S, of S. Then, we have
S.S +1gei(L),[S]) + K.S = 0; where L is the holomorphic line bundle that extends
canonically TF and K is the canonical divisor of M.

The hypothesis that M\S is affine is equivalent to say that it is a Stein manifold. This
does not hold in general (for instance if M = C x C and S is a “vertical” projective line.
But holds for example if S C C x C is the “diagonal”).

THEOREM 7.2. — Let F, M and S be as in Theorem 7.1 above. Assume that F has only
152 -order singularities in S and which admit local meromorphic integrating factors. Then F
is given by a closed meromorphic 1-form on M. This form has only simple poles provided
that the singularities of F on S are desingularized into non-resonant singularities.

Chapter II
Transversely Projective Holomorphic Foliations

1. Transversely projective foliations and differential forms

Throughout this chapter II, except for explicit mention, the 1-form Q will be assumed
to have singular set of codimension bigger than one.

Analogously to the affine case, the problem of deciding if there exist projective structures
for a given foliation is equivalent to a problem on differential 1-forms as stated below
(see also [17] Proposition 3.20 pp-262):
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PrOPOSITION 1.1. — Let F be a singular codimension one foliation on M which is defined
by a holomorphic integrable 1-form ) and suppose that there exists a holomorphic 1-form
1 in M such that dQ) = n A Q. The foliation F is transversely projective in M if and only
if there exists holomorphic 1-form £ in M satisfying:(1) dn = Q A &; ()dE = € A .

Furthermore, two such triples (Q,n,€) and (', 1/, &) define the same projective structure
if and only if we have: Q' = fQ;n' = n+ ift + 290 ¢ = %(f — 2dg — 2gn — 2¢*Q); for
some holomorphic functions f,g: M — C*, C. In particular (Q,n,€) and (fQ2,n+ éfﬁ, % &)
define the same projective transverse structure for F.

Now, if Q,n are meromorphic then we have: If F is transversely projective in M then
there exists €& meromorphic on M.

We give some remarkable examples of transversely projective foliations.

Example 1.0. — Transversely projective foliations on simply-connected manifolds. Let F
be defined by a meromorphic function f: M — C then F is transversely projective on M.
Conversely any transversely projective foliation defined on a simply-connected manifold
admits a meromorphic first integral: In fact, as in I Example 1.1 the foliation F admits a
meromorphic first integral on M’ = M\ s(F) (which is simply-connected), and this extends
by Hartogs’s Theorem to a meromorphic first integral on M because codim.s(F) > 2.

Example 1.1. — A Riccati foliation F on CP(2) is given in some affine chart
(z,y) € C? — CP(2) by a polynomial 1-form 2 = p(x)dy — (y? c(z) — yb(z) — a(z))dz
where p, a, b and c are polynomials. Motivated by the affine case (see I Proposition 1.1)
we define 7 = 2%! + P% dz + 3—; drand{ = y}i‘; dz. Then (2,7, §) satisfies the relations
stated in Proposition 1.1. This shows that F is transversely projective in CP(2) minus the
algebraic subset {z € C | p(z) = 0} x CUC x {y = 0}. But since in the case a(z) Z 0,
only the subset S = {p(z) = 0} x C is F invariant it follows that the transverse projective

1

structure extends to CP(2)\S. Indeed according to Proposition 1.1 if we define g = e

then ' = n+ 2¢Q = ’i_—bf?—y—c drand &’ = € — 2dg — 2gn — 2¢*Q = 1% dz; define a triple
(2,7, €") holomorphic in CP(2)\S which gives a projective structure for F in CP(2)\S
and this projective structure coincides with the one given in CP(2)\(S U C x {y = 0})
by (2,n,£). The 1-form 7 is closed if and only if a = 0. Therefore F is transversely
affine in CP(2)\(S U C x {y = 0}) if the projective line {y = 0} is invariant (see I
Proposition 1.1). A Riccati foliation can also be seen as the suspension of a Kleinian group
(see Example 1.5 below and [23]).

Example 1.2. — Let F be a transversely projective foliation on M as in Proposition
1.1. Let m: N — M be a holomorphic map transverse to F, then the foliation 7*(F) is
transversely projective in N (see I Example 1.2).

Example 1.3. — Let o be a closed meromorphic 1-form on M and let f: M — C be
a meromorphic function. Define (2, 7,&) by: Q = df — f?a, n=2fa and £ = 2a.
Then (£2,7,&) is a projective triple and therefore Q2 defines a holomorphic foliation on
M, transversely projective in the complement of the analytic invariant codimension one
set S C M, S = (@)oo U (f)oo. The same conclusion holds for 2, = Q + A, where
A € C. The foliation F(£2)) is also transversely affine in some smaller open set of the
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form M\S’ where S’ D S, 8" = SU(f2— X =0). (In fact ?g—’fx = f—}l% — « is closed
and holomorphic in M\S’).

Example 1.4. — Let h: M — C* be holomorphic such that d¢ = —% A € where £ is
holomorphic. (We can write this condition as d(v/h.§) = 0). Let F be any holomorphic
function and write (for A € C) Q = F - (4F — 14h) _ (%2 - 2h)&n=3% 4+ F.C
The triple (2,7,&) satisfies the conditions of Proposition 1.1 and then F = F(1Q) is a

transversely projective foliation on M.

Example 1.5. — Suspension of a foliation by a group of biholomorphisms. A well
known way of constructing transversely homogeneous foliations on fibered spaces,
having a prescribed holonomy group is the suspension of a foliation by a group of
biholomorphisms. This construction is briefly described below: Let G be a group of
biholomorphisms of a complex manifold N. We can regard G as the image of a
representation h:m (M) — Bih(NV) of the fundamental group of a complex (connected)
manifold M. Considering the universal holomorphic covering of M, 7: M — M we have
a natural free action 7y: 71 (M) x M — M, i.e., m1(M) C Bih(M) in a natural way. Using

—~

this we define an action H:m (M) x M x N — M x N in the natural way: H = (y, h).

The quotient manifold £ ;(IN = M), is called the suspension manifold of the representation

h. The group G appears as the global holonomy of a natural foliation Fj, on M), (see [17]).

Proposition 1.1 is stated (for the real non-singular case) with an idea of its proof, in [17]
(see Prop. 3.20, pp. 262). However, it seems that the suggested proof uses some triviality
hypothesis on principal fiber-bundles of structural group Aff(C), over the manifold M
(see [17] Prop. 3.6 pp. 249-250). In our case this is replaced by the existence of the form
7 in the statement. On the other hand, since some of its elements will be useful later, we
supply a proof for Proposition 1.1. We will use the two following lemmas whose proofs
are straighforward calculations left to the reader:

Lemma 1.1. — Let ,y,Z,5: U C C® — C be meromorphic functions satisfying: (i)

e e o an a b
ydx — xdy = ydz — Tdy; (u)% = CI:ZZ’ (c d)e (2,C).
Then T = e.(ax + by) and § = €.(cx + dy) for some € € C, €% = 1.

LemMma 12. — Let z,y,%,53:U C C" — C be meromorphic functions satisfying
7 = ax + by, y = cx + dy for some (? 2)6 (2,C). Then xdy — ydx = Tdy — ydz.

Proof of Proposition 1.1. — Suppose F is transversely projective in M™, say, {f;: U; —
C} is a projective transverse structure for F in M\ s(F). In each U; we have = —g; df;
for some holomorphic g; € V(U;)*. In each U; NU; # ¢ we have: g;df; = g, df;
and (1) f; = % as in Definition 1.1. Since d§) = d(—g; df;) = % A 2 we have
n = ig% — h;Q  for some holomorphic h; in U;. We define xz;,y;,u;,v;: U; — C in the
following way: (2) y? = gi, “;— =fi, h;= 21% and x;v; — y;u; = 1. Thus we have:
Q= x;dy; — y; dx; and (3)n = 2(v; dx; — u; dy;). This motivates us to define local
models (see [17] Section 3.18 pp. 261): & = 2(v; du; — u;dv;) in U;. It is easy to
check that we have d¢; = & An, dn=QAE in U;. We can assume that dz; and dy;
are independent for all ¢ € I. In fact dx; Ady; =0 = dQ|Ui =2dx; Ndy; =0=dQ2 =0
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in M (we can assume M to be connected) = we have 0 = df) = 1A Q so that 7 = hf)
for some holomorphic function A: M — C = we can choose £ = hTQ + hn + dh which
satisfies the relations dn = QA€ and d€ = E A 1.

CLamm 1. - & = & in each U; NU; # ¢ and therefore the &;’s can be glued into a
holomorphic 1-form £ in M\s(F) satisfying the conditions of the statement.

Proof. — From (1) and (2) we obtain ; = %;Z—Iﬁ% Therefore according to Lemma
1.1 we have (4) z; = e.(ai;z; + bi;x;), ¥ = e.(cijz; + dijy;) €* = 1. Using (3) and (4)
we obtain: (a;jv; — ciju;)dr; + (bijv; — dsju)dy; = €.(v; dx; — ujdy;) and therefore:
(5) v; = E(G,ij U; — Cij u,'), U; = 6(—bij v; + d,‘j ’le). It follows form (5) and Lemma 1.2
that v; du; — u; dv; = v; du; — u; dv; which proves the claim.

CLaM 2. — We have ¢ = gi = h2?2 4 h;n + dh; in each U;.

Proof. — We have h?Q) = T (:I?l dy; —y; dx;), hin = (vl dz;—u; dy;), dh; = 2d(“’)
RIQ | hin

=+ =+ ‘—i;‘— = Edrci (xlvl - 1)dy, dl:'.

On the other hand a straightforward calculatlon shows that 52— = v;du; — u; dv; =

Z—z dz; — 2(zivi — 1)dy; + ‘Zf . And thus Claim 2 is proved. Since cod s(F) > 2 it follows
that ¢ extends holomorphically to M. This proves the first part. Now we assume that
(Q,n,€) is holomorphic as in the statement of the proposition:

CramM 3. — Given any p € M\s(F) there exist holomorphic z,y,u,v: U — C defined
in an open neighborhood U 5 p such that: Q@ = zdy — ydz, n = 2(vdz — udy) and
¢ = 2(vdu — udv).

Proof. — This claim is a consequence of Darboux’s Theorem (see [17] pp. 230), but
we can give an alternative proof as follows: We write locally Q = —gdf = zdy — ydz
and n = figﬁ — hQ} = 2(vdx — udy) as in the proof of the first part. Using Claim 2
and the last part of Proposition 2.1 below we obtain locally & = th + hn + dh + £.82;
for some holomorphic function ¢ satisfying =; A @ = df). This last equality implies

that d(v£.Q) = 0 and then ¢ = —;f—) for some holomorphic function 'r(z) Now we

look for holomorphic functions f g and h satisfying: Q@ = —'g?if, = 7 — hQ and
£ = th + in] + dh. We try f U(f) for some holomorphic non-vanishing U(z). Using

_gdf_—gdf we get § = 5= R Usmgn_ —dQ =% — K we geth h—U—"
Using ¢ = 22 4 hyp 4 dh 4+ 40 = B2 4 by + dh we get d(‘é,((){;) = r(f)df.

Therefore it is possible to write €2, and ¢ as in the statement of the claim: define xz = fy

Y= \/57_ v = % and u = l””y—"l as in the first part of the proof. This proves Claim 3.

Using Claim 3 we prove that F is transversely projective in M\s(F), that is in M.
The last part of Proposition 1.1 can be proved using the relation stated above between
the projective structure and the local trivializations for €2, 5 and £. For instance we prove
the following.

CLaM 4. — (2,1,€) and (fQ,n + ‘;—f, % €) define the same projective structure for F,
for any holomorphic f: M — C*.
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Proof Using the notatlon of the first part we define #; = \/_f zi Ui = VT v
U; = .u; and v; = .v;. Then: fQ = z,;dy; — y; dz;, + 4 _2v,dx1—uld1
\/- \/— f Yi — Y nr ¥ ( )

— _ $¢ — T az]-’l:]""bz]y] —_ at]x]+bljy]
and 1 § 2(0; diu; — 1; do;). Furthermore we have T T oy Py g

and thls proves the claim and finishes the holomorphlc part of the’ proof Now we only
have to observe that if (£2,7) is a pair of meromorphic 1-forms and if F is transversely
projective in M, then the same steps of the first part of the proof apply to construct a
meromorphic 1-form £ satisfying the relations of the statement. [

2. Meromorphic projective triples
Motivated by Proposition 1.1 we make the following definition:

DEerINITION 2.1. — Let F be a codimension one foliation on M. A meromorphic triple
(2,m,&) of meromorphic 1-forms in M is called a projective triple if it satisfies the
projective relations: dQ) =nAQ, dn=QAE, d€ = € An. We say that this is a projective
triple for F if F is given by Q outside (Q)oo.

In the following proposition we investigate the relation between two projective triples
for the same foliation:

PROPOSITION 2.1. — Let (2,1, &) and (¥, n', &') be (meromorphic) projective triples for F
in M. Then we have Q' = fQ, 7' = n+%+ZgQ’, ¢ = %(£—2dg—29.(77+%)—2929')+ZQ
for some meromorphic f, g and { satisfying dY = :‘% A SY. In particular if (2,n,&) and
(2, n,&’) define projective triples for F then &' = & + £.Q for some meromorphic { with
= FEAQ

Proof. — First we consider the case Q' = Q, ' = 7, that is, (2,7n,£) and (Q,7,’) are
projective triples for F in M.

Cramm 1. — We have ¢ = & + £.Q for some meromorphic ¢: M — C satisfying
Q= -£ rq.

Proof. — We have (£ — ') AQ = —dn — (—dn) = 0 and therefore ¢’ = £ + £.Q for some
meromorphic £. Using d€é = £ An and d¢' = &' An we obtain d€ + d¢ A Q + £dQ = dE’' =
EHFLDAR=EAR+LQAAN=dE+ QA nand thus dEAQ+ 4dQ = LQ A7 = —£dQ
and therefore 2¢d? = —d¢ A © which proves the claim.

Now we prove the general case. Since €2 and €' define the same foliation we
have ' = f.Q for some meromorphic f. Since d(fQ) = (%’i + 77) A fQ, we have
[ = (n+ ‘1})] ASY =0 and therefore ' = n+ gf’: + 2g§Y’ for some meromorphic g. Now,
substituting (', 7,&’) by (IQ’ n - ﬁ, f 5’) we can assume that f = 1 so that Q' = Q

and 7" = n + 29€Q2. In this case we observe that if we define { € — 2dg — 2gn — 29°Q
then we have dn’ = /\f df = { A 1'. Using the first part of the proof we conclude
that ¢’ = €+ £. for some holomorphic ¢ satisfying dQ¥' = gﬁ A §Y'. Therefore we have

=fQ,7 =n+ ‘—ifi +29gQ0,¢ = %(f —2dg — 2g(77+ %) - 2g2§2’) + £ as stated. [J

Remark 2.1. — In the situation above if F is supposed to be non-affine in any M\S,
S C M a codimension one analytic invariant set, then £ is identically null (in fact since
Q) = —g% A € it follows from Proposition 1.1 of I that F is transversely affine outside
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S = (¢ =0)U(f = 00)) and thus we have ¢ = %(f —2dg —2g(n+ gfﬁ) - 2¢°fQ).
Therefore using Proposition 2.1 above we conclude that, in this case, F has at most one
projective structure. Also motivated by the statement of Proposition 1.1 we make the
following definition:

DErINITION 2.2. — Let Q2 be a meromorphic integrable 1-form on M with singular set
s(92) (possibly of codimension one). A meromorphic 1-form 7 is called a logarithmic
derivative for Q if dQ2 = n A Q in M.

Two logarithmic derivatives for Q are related by 7' — n = h{2 for some meromorphic
function h in M. The next proposition assures the existence of logarithmic derivatives
in complex projective spaces.

PROPOSITION 2.2. — A codimension one foliation on CP(n), n > 2, can be described in
any affine chart (z1,...,%,) € C* — CP(n) by a polynomial integrable 1-form Q which
admits a rational logarithmic derivative.

Proof. — Suppose n = 2. In this case we have 2 = Pdy — Qdx for some

polynomials P, @ in C2. Define n = &dw + %dy. Now we assume that n = 3.

Write 3 = Adx + Bdy + Cdz for %olynomials A, B, C in C3. The integrability

condition 2 A df2 = 0 implies (*) e t+ S Co 4 Be ABAy = 0. Choose any rational

functions R, S and T such that g = B—ABi‘i and R g = gﬂ% Then we obtain
i _ T _ Cy=

5= BC as a consequence of (*). Now we deﬁne n=Rdr+ Sdy+ Tdz to
obtaln dQ2 = n A Q2. The case n > 3 is proved in the same way that the case n = 3. [

We can assure the existence of holomorphic logarithmic derivatives in the following case:

PrOPOSITION 2.3. — Suppose that the additive (or first) Cousin Problem has always a
solution on M . Let Q be an integrable holomorphic singular 1-form in M defining
a foliation F satisfying: 1) The singular set of F, s(F), has codimension > 2; ii) any
singularity p € s(F) admits a holomorphic first integral.

Then 2 admits a holomorphic logarithmic derivative 1) in M.

Proof. — Since Q A dQ2 = 0 we can obtain an open cover |JU; of M\s(F) such that
in each U; we have () = g; dy; for some holomorphic g¢;,y;: U; — C. By hypothesis we
can extend this open cover and the local trivializations above to M. Define now 7; = do;
in each U;. Clearly 7; is holomorphic and satisfies dQ2 = n; A €. In each U; N U; # ¢
we have 7; — n; = a;; Q for some holomorphic a;;:U; N U; — C. Clearly the a;;’s
satisfy the additive cocycle condition: a;; + ajr = a;; in each U; NU; N U, # ¢. By
the hypothesis this cocycle is trivial, i.e., we can find holomorphic a;: U; — C such that
a;; = a; — a; and therefore 7; — a;Q = n; — a; Q2 if U;NU; # ¢. Thus we define 7
in M by "|U, =9 —af. O

CoROLLARY 2.1. — Let F be codimension one foliation on CP(n), n > 2, which is
transversely projective and has non-dicritical singularities outside an algebraic codimension
one invariant set S C CP(n). Then any polynomial 1-form §2 which defines F in some
affine space C"* — CP(n) admits a holomorphic logarithmic derivative n) defined in C™\ S.

(") We write H' (M) = 0 in the language of the Dolbeault cohomology [20].
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Proof. — In fact put M = C™"\S = CP(n)\(SUCP(n — 1)), then it is well-known
that M is a Stein manifold and a fortiori we can always solve the additive Cousin problem
in M. Furthermore since F is transversely projective and non-dicritical in M it follows
(Example 1.0) that given any singularity p € M N s(F) we choose an open polydisc A 3 p
contained in M such that there exists a holomorphic first integral for F | A in A. Thus we
have showed that we are under the hypothesis of Proposition 2.3. Therefore any polynomial
1-form §2 which defines F in C™ admits a holomorphic logarithmic derivative n in M. O

Using Proposition 1.1 and Proposition 2.2 we obtain:

PROPOSITION 2.4. — Let F, S be as in Corollary 2.1. Then there exists a triple (2,m,&) of
meromorphic 1-forms in CP(n)\S satisfying: (1) Q and n are rational on CP(n), (ii)
defines F in CP(n)\(2)o, (ill) d2 =n A Q, dn = QA& d€ = € A n. Furthermore given
any affine space C™ — CP(n) we can choose S polynomial in C™.

Thus it only remains to extend £ meromorphically to CP(n). This is what we are
concerned with in the next section. In the following remark we introduce the transverse
foliation associated to a projective triple (€2,7,£) where € is not transversely affine as
in I (that is outside some invariant S).

Remark 2.2. — The transverse foliation associated to a transversely projective foliation:
Suppose (2,7, &) is a projective triple for F in M. We assume M to be connected. We
have two cases:

Case 1. — dn = 0. In this case we have that F is transversely affine in M\S,S =
(Moo U (2) o0, notice that (7). \(2)eo is invariant (see I Proposition 1.1).

Case 2. — dn # 0. In this case £ Z 0 and since E Adé = EAnAE =0 the 1-form
¢ defines a holomorphic codimension one foliation, say =, in M. The foliation F is
transverse to F in M\{p € M | dn(p) = 0}. We can assume that F* has singular set of
codimension > 2: In fact according to Proposition 1.1 we can replace (locally) if necessary
& by %5 where f is a function so that -}-{ has (locally) a codimension > 2 singular set.
Finally we observe that clearly (¢, —n,$2) is also a projective triple, so that F* is also
transversely projective in M\ S as F. This also shows the existence of a duality between
F and F+ so that we can suppose, if necessary, that F is defined by ¢ and F+ by (.
According to Proposition 1.1 this transverse foliation may not be uniquely determined by
the projective transverse structure.

3. Extending a transverse projective structure to an analytic invariant set

In this section we will consider a holomorphic foliation 7 on M of codimension one
and S C M an analytic invariant set of codimension one. Our main tool in the problem of
extending “meromorphically” a projective structure for F in M\S to S is the following
proposition:

PROPOSITION 3.1. — Suppose F is defined in M\(), by the meromorphic 1-form
having 1 as a logarithmic derivative. Assume that F is transversely projective in M\S.
Then there exists a meromorphic 1-form & in some neighborhood V' of S such that (Q, 1, &)
is a projective triple for F in V\S.
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Proof. — According to Proposition 2.4 there exists a meromorphic 1-form ¢ defined on
M\S, such that (2,7,€) is a projective triple.

CLAM. — There exists a 1-form &' meromorphic in a neighborhood V of S such that
(Q,n,&") is a projective triple for F in V and such that £ = &'+ £-Q) for some meromorphic
function £ in V\S satisfying % A Q = dQ. The claim clearly proves the proposition.

Proof of the Claim. — Given any point p € M \s(F) we can find an open set U > p and
meromorphic functions f, g, h:U — C such that in U we have: Q = —gdf, n = %‘l — hSd.

Using these functions we define {y = "ZTQ + hn 4+ dh in U and obtain a meromorphic
projective triple (©2,7,&y) in U (see the proof of Proposition 1.1). Using Proposition 2.1
we conclude that we have & = £y + {y - §2 for some meromorphic function £ = £y; defined
in U\(SNU) satisfying 4 A Q = dQ.

Suppose now that p € M\s(F) is another chosen point and choose U, f. 3 h, &
and £ = {5 in the same notation. Suppose also that we have U N U # ¢. Then in
UNU we have &y +£-Q = ¢ = §[~]+Z~Q so~that & = §U+(€—Z)-Q which

implies, by the use of Proposition 2.1, that _A?ff% A Q = d2. We can rewrite the

properties of £, £ and £ — £ as: d(vZ-Q) = 0, d(\/?Q) =0,dVE—2-Q) =0.If
UNS # ¢ # UNS, this implies that £/ ¢ is constant equal to 1: in fact, define § = v/¢/ \/?
in a multiform way. Since /¢ and \/27 are integrating factors for 2 it follows that 6 is a
multiform first integral for 2, that is, dd A Q@ = 0. But V£ — (= \/27 /62 =1 so that
0=d(VeE—1-9) =dVI VEE-1-Q) = \/92*(1\/:9)+\/_~d\/02__9

\/_ £-d \/-07— 1-2). Moreover d \/07_2——11 2) - 20 dO A+ /62 — 1 dS) therefore

VIVE—T1.d0=0.1f{=0and U NS # ¢1t follows that €| = &5 +£-Q = & so
that £ extends meromorphically to U and therefore to any irreducible component of .S that

intersects U. Thus we can assume that V02 —1.dQ) = 0. Since the case d) = 0 is trivial
we can assume that €2 is not closed and it follows that v/62 — 1 = 0 and therefore 62 = 1

so that %E land £ = in UNU. Thus we have (=& inU N U and this allows us
to define £ in Uynsy, U = V(S N s(F)) by §’|U = {y. The meromorphic 1-form &’
extends meromorphically to V and satisfies the required conditions. [

Since M = CP(n) satisfies the hypothesis of Proposition 3.1 we can use the Generalized
Levi’s Extension Theorem (see I Remark 4.1) to obtain:

PROPOSITION 3.2. — Let F be a foliation on CP(n), n > 2, which is transversely projective
in CP(n)\S for some algebraic codimension one set S C CP(n); which is invariant. Then
there exists a rational projective triple (2,1,&) in CP(n).

4. Partial classification of the transversely projective foliations on CP(n)

In this section we give a partial classification of the foliations on CP(n) which are
transversely projective on CI’(n)\S for some codimension one algebraic invariant set
S C CP(n). Since a Riccati foliation (and therefore its rational pull-backs) always admits
a transverse foliation which is a foliation by level curves, this is a necessary condition
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for a projective foliation as above to be a rational pull-back of a Riccati foliation (see
Example 1.1). We will show that this condition is in fact enough to assure the pull-back
existence. We also study some other cases.

PROPOSITION 4.1. — Let F be a holomorphic foliation on CP(n), n > 2, having singular
set of codimension > 2. Then F is transversely projective in CP(n) if and only if F admits
a rational first integral.

Proof. — This is a straighforward consequence of Example 1.0 and of the fact that
CP(n) is simply-connected and any meromorphic function f: CP(n) — C is a rational
function (Liouville-Weierstrass Theorem). [

Now we consider a foliation F on CP(n), n > 2, having singular set s(F) of
codimension > 2. Let S C CP(n) be an algebraic codimension one invariant set which
is a finite union of algebraic hypersurfaces. We will assume that: (1) F is transversely
projective in CP(n)\S, (2) F is not transversely affine in CP(n)\S.

Using Proposition 3.2 we obtain a rational projective triple (2,7,¢) in CP(n). Let us
denote by F* the transverse foliation defined by ¢ on CP(n) (see Remark 2.3). Using
this notation we can state:

THEOREM 4.1. — Let F, F+, (2,n,&) and S be as above. Then:

(i) if F*+ has a meromorphic first integral then F is a rational pull-back of a Riccati
foliation on CP(2),

(i) if FL as a meromorphic integrating factor, say, & = h.a for some meromorphic h,
a, da = 0, then we have (i) or F is given by w = df — (f* — \)a for some meromorphic
fand X € C,

(iii) if FL is transversely affine on CP(n)\S then we have d(vh.€) = 0 for some
meromorphic h and therefore F is given by (i), (ii) or w = ﬂgf = (f = A)¢ for some
meromorphic f and g and \ € C such that h = g*/f.

Proof. — (i): Since F~* has a meromorphic first integral we can assume that £ = gdf for
some rational functions g and f. But if we replace (£2,n,&) by (92,7 + dg 16) then we
can assume that ¢ = 1 and therefore £ = df. Since 0 = dé = £ A we have n = hdf
for some meromorphic h. Now we define ' by Q' = h f + hn + dh. Then (',7n,¢) is a
projective triple in CP(n)\S and therefore it follows from Proposition 2.1 that 2 = Q'+ £¢
for some rational function ¢ where 0 = d§ = —%; /\§ and then d¢ A df = 0. Now, since
the leaves of 1 are connected we can assume that f has connected fibers using Stein’s
Fatorization Theorem ([19]) and the remark that we can replace the triple (€2,7,&) by
triples (g€, n + g 5) as in the beggining. Now the relation d¢ A df = 0, says that
¢ is constant along the fibers of f, which is primitive, therefore by Stein’s Fatorization

Theorem once again, we conclude that we have { = R(f PU) for some rational
= an

function R(z) = ggj; P and @) polynomials. Therefore £ = h2df h2df + dh + 3&}% df =

—3h?df + dh + gg’;; df = 7 (- 3yPdz + dy + ggg dz), where m: CP(n) — CP(2)

is the rational map 7(x1,...,%,) = (f(21,...,2,),A(x1,...,2,)). This proves (i) in

Theorem 4.1.
(ii): Let (€2, 7, &) be a meromorphic triple, projective for F in CP(n)\S. We can assume
that £ = 2« for some closed meromorphic 1-form «. Since 0 = d§ = £ A n we obtain
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1n = 2fa for some meromorphic f. Using Proposition 2.1 and Example 1.3 we conclude
that Q = df — f%2a + Lo for some meromorphic /£ satisfying _d—,fz A& = d€ = 0. And then
¢ is a meromorphic first integral for L. If £ is non-constant then we have (i). If £ is
constant, say £ = A € C, then we have (ii).

(iii): Let (2,7, &) be as in (ii). Since F* is transversely affine in CP(n)\S, there exists
a meromorphic closed 1-form 7, in CP(n)\S such that d§ = £ A 7, (see 1 Proposition
1.1). Since £ A (n—1n,) = d§ — d€ = 0 we have n = n, + f£ for some meromorphic f. We
have dn, = 0, so that QA & = dnp = d(f€) = (df — fn) A€ and then Q = df — fn+ g¢
for some meromorphic g.

CLAM. — We have dé = —1%% A ¢ where b = f? — 2g.

Proof of the claim. — We have dQ = d(df — fn+g&) = —df An— fdn+dgAN€+ gd€ and
we have n AQ = nA(df — fn+g€) = nAdf + gnA§. Therefore, — fdn+dgA§ = —2gd€

and since dn = d(f€) we get d§ = —%%ff_‘fg” A € which proves the claim. [J

Observe that the claim means that d(v/h.€) = 0 always that v/ is well defined.

Since (n — )AL = —dé+dE = 0 it follows that p = 142+ F.£ for some meromorphic
F. Define now Q' = F(4F — 14dh) _ E;i then it is easy to prove that (£',7,€) is a
projective triple (see Example 1.4). Using Proposition 2.1 we conclude that Q@ = Q' + £.£
for meromorphic ¢ with d¢ = —% A €. Since V2 and Vh are integrating factors for & it

follows that % is a meromorphic first integral for £ and therefore we have two cases:

Case 1. — % is non-constant. In this case we have (i).

Case 2. — & A

_ dF
Q=F(F -

be given by w =
d(%g) —0. O

5. Applications

5 € C for some constant A € C. In this case we have
— (FTZ - 3.h)E-3{L. d(FTQ) — h(FT2 — A).£}. Therefore F can
— (z — X).£ where z = FT h = f are meromorphic and we have

A. Irreducible components of spaces of foliations
In this section we are concerned with the following problem.

PROBLEM. — Describe the irreducible components of the space F(k,n) of foliations of
degree k in CP(n), n > 3 (see [12]).

Next we describe some known irreducible components of F(k,n), n > 3.

Example 5.1. — Logarithmic components: Let f1,..., f,, be homogeneous polynomials
in C"*1, m >3, Ay,..., Am € C*. The form w = f1... fm Y7; A; % is integrable. If
> j=1>Ajdeg(f;) = 0 then w is well defined in CP(n) and defines a loéarithmic foliation
F = F(w) on CP(n). Define Log(dy,...,d,) C F(k,n) as the set of logarithmic
foliations F(w) where w is as above, d; = deg(f;), k = deg(w) = Z;n:l d; — 2 and
fi,--., fm are irreducible, relatively prime and \;/\; ¢ R, Vi # j.

Tueorem 5.1 ([2], [12]). — If n > 3, m > 3 then Log(dy,...,dy) is an irreducible

component of F(k,n) where k = Z;nzl d; — 1.

4° SERIE — TOME 30 — 1997 — N° 2



TRANSVERSELY AFFINE FOLIATIONS 199

Example 5.2. — Rational components: Let f and g be homogeneous polynomials in
C"*! such that: (a) deg(f) = m, deg(g) = £ and % = £ where (p,q) = 1. (b) The
hypersurfaces {f = 0} and {g = 0} meet transversely in C"**\{0}. (c) The hypersurfaces
7({f = 0}) and w({g = 0}) are smooth in CP(n). Define w = q gdf — pf dg. Then the
foliation F(w) has the first integral ¢ = f9/g? (considered as a function in CP(n)). The
foliation F(w) has degree k = m + £ — 2.

Let R(m,¥) denote the set of all foliations in F(k,n) of this type.

THEOREM 5.2 [18]. — The closure R(m, £) is an irreducible component of F (k,n), ifn > 3.

In order to study the irreducible components of F(k,n) we need to study the stability
of a generic type of singularities. Given any integrable polynomial homogeneous 1-form
w on C"*! with singular set of codimension > 2. We define the Kupka singular set of w
as K(w) = {p € C"*\0 | w(p) = 0,dw(p) # 0}. The Kupka singular set of the foliation
F = F(w) is K(F) = n(K(w)). The main properties of the Kupka set are summarized
in the following result:

THEOREM 5.3 ([18],[21],[26]). — Let n > 3, F, w, K(F) be as above:

(i) The Kupka set K (F) is a locally closed codimension 2 smooth submanifold of CP(n).

(i) The Kupka set has the local product structure: Given a connected component
K C K(F) there exist a holomorphic 1-form n, called the transversal type of K, defined
on a neighborhood of 0 € C? and vanishing only at 0, a covering {U,} of a neighborhood
of K in CP(n) and a family of holomorphic submersions ¢,:U, — C? satisfying:
021(0) = K NU,, ¢kn defines F in U,.

(iii) K (F) is persistent under small perturbations of F, namely, fixed any p € K(F)
with defining 1-form @*n as above, and for any foliation F' sufficiently close to F, there
is a holomorphic 1-form 7' close to 1 and a submersion ¢’ close to ¢, such that F' is
defined by (¢')*n' near the point p.

(iv) Let K C K(F) be a connected compact component such that the first Chern
class of the normal bundle of K in CP(n) is non-zero, then the transversal type of K is
n(z,y) = prdy —qydx, p,q € Z and this transversal type is constant through <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>