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RIGIDITY OF HYPERSURFACES
IN COMPLEX PROJECTIVE SPACE

BY GARY R. JENSEN AND EMILIO MUSSO

ABSTRACT. — Using the method of moving frames, we prove that if two nondegenerate hypersurfaces in
projective space have the same quotient of cubic to quadratic forms, then they are projectively congruent.

Keywords: Projective geometry, quadratic and cubic forms, moving frames, complex conformal structure,
Cartan connection.

1. Introduction

In a series of papers dating from 1916, G. Fubini studied the deformation of hypersur-
faces in projective space P"+1. For his notion of deformation he generalized to projective
space Gauss's notion of applicability of surfaces in Euclidean space. Gauss had conside-
red the problem of when there can be a correspondence preserving distances between
two surfaces. A formulation of this which generalizes to any homogeneous space is the
following (c/. [8] and [11]). Let G be the Euclidean group of motions acting on Euclidean
space E3. Two immersed surfaces, /,/: X -> E3 are applicable if there exists a smooth
map a: X -> G such that for every p e X, the Taylor expansions about p of a (p) °f and /
agree through first order terms. This is equivalent to the condition that the induced
metrics agree: {df, df}=dsl=( df, df}.

In the case of projective space Pn+l=G/Go, where G is the full group of projective
transformations of Pn+l, Fubini's generalized notion of applicability must go to the
second order. Two immersed hypersurfaces, /, /: X -^ Pn+1 are applicable if there exists
a smooth (holomorphic in the complex case) map a: X -> G such that for every /? e P^1,
the Taylor expansions about/? of a (p) °f and / agree through second order terms.

In his analysis [4] of the projective deformation problem in P3, Fubini introduced a
quadratic form cp and a cubic form \|/ on X, defined by the immersion. These forms
are symmetric, and in the complex case they are holomorphic. He showed that if the

AMS classification: 53 A 20.
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228 G. R. JENSEN AND E. MUSSO

two immersions are applicable, then

(1.1) ^AP^AP

(cf. §3). Conversely, he showed that (1.1) implies applicability in the case of surfaces
inP3 .

In [5] Fubini defined the quadratic and cubic forms for hypersurfaces in P"^. He
characterized hypersurfaces for which (p is identically zero (hyperplanes) and those for
which \)/ is identically zero (quadrics and developables). He gives an unsatisfactory
proof of the claim that two nondegenerate (see § 2) hypersurfaces are applicable if and
only if (1.1) holds. He promises a more satisfactory proof in a forthcoming paper,
which we assume to be [6]. The proof in [6] remains unsatisfactory. Finally, in the
book [2] (p. 605-629) a readable proof appears that uses a normalization of the forms
which is valid only in the real case.

In 1920 E. Cartan [1] applied his method of exterior differential systems to a study of
the projective deformation problem. He rightly pointed out that Fubini's resolution of
the problem in terms of the forms (p and \|/ failed to answer the basic question of whether
there actually exist any nontrivial (i.e., the map a:X->G is noncontrast) projective
deformations. (See Fubini's response in the note [7]). He showed that for generic,
nondegenerate surfaces in P3, there are no nontrivial deformations. He also showed
that there do exist special families of surfaces which allow nontrivial deformations. He
showed that, when n>2, no nontrivial deformations exist for hypersurfaces in p""^1 for
which the quadratic form has rank ^ 2 at every point. Using his method of moving
frames, Cartan proved Fubini's Theorem in the case of n = 2: two nondegenerate surfaces
in P3 are applicable if and only if (1.1) holds.

In this paper we use Cartan's method of moving frames to give a simple, elementary
proof of the remaining doubtful case in Fubini's Theorem: If (1.1) holds for two
nondegenerate hypersurfaces in CPn+l, then the hypersurfaces are projectively
congruent. Although the paper is written exclusively for the complex case, the same
proof works in the real case without change, except that one must assume that certain
zero divisors are sufficiently thin that the complement of their union is a connected,
dense, open subset of X.

Our proof is constructive in the sense that it gives an algebraic procedure, involving
only the diagonalization of a symmetric bilinear form and the solution of linear equations,
by which one can find the projective group element which brings the one hypersurface
into congruence with the other. In more detail, we show in section 2 how to construct
a local fourth order frame field e along/. In Proposition 3.2 we show, by a process
involving only the solution of linear equations, how to construct a local fourth order
frame field e along/, from an arbitrary fourth order frame field along/ such that (3.4) of
Proposition 3.2 is satisfied. By Proposition 3.3 we then have ae=e for some constant
aeG. That is, a=e(p)e(p)~1 for any peX, and this a is the element ofG sending
/(X)onto/(X).

We became aware of this problem while reading the paper [9], in Appendix B of which
Griffiths and Harris formulate (not quite correctly) Fubini's Theorem, and indicate the
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RIGIDITY OF HYPERSURFACES IN COMPLEX PROJECTIVE SPACE 229

part remaining in doubt. To a close approximation, their proposed idea of a proof
provided us with the conceptual framework in which to find our proof. In fact, the
original version of our proof was more conceptual than what appears here, but it was
also four times as long. It involves interpreting the quadratic form (p as a complex
conformal structure on X in the sense of LeBrun [12]. Such a structure possesses an
analogue of the bundle of orthonormal frames in Riemannian geometry, called the
Mobius bundle, on which there is a unique normal, conformal connection (cf [13]).
More details of this conceptualization are given at the end of section 4.

Our direct proof eschews the need to develop this complex conformal structure
theory. We use four frame reductions, in the sense of the method of moving frames
(cf. [1L [8] or [10]). These reductions were first considered by Musso in [15] for the real
case. We are able to show directly that the condition (1.1) implies that for each local
fourth order frame field along/ there exists an essentially unique local fourth order
frame field along / such that the pull-backs of the Maurer-Cartan form of G coincide
for the two frame fields. The projective congruence then follows from the uniqueness
part of the Cartan-Darboux Theorem (cf. [14]).

Throughout this paper we will use the Einstein summation convention on repeated
indices (even when both are up or both are down). We will also adhere to the following
index ranges:

O^I,J^+1
1^;,7, k, l , p , q, s^n

The first author wishes to express his gratitude for the invitation and support to spend
two months of 1991 at the Istituto Matematico "Ulisse Dini" in Florence, where most
of this work was done.

2. Hypersurfaces in complex projective space

Projective frames. — Let G=SL(72+2, C) act on CPn+l in the usual way: given a
point [z]eCPn+l represented by the non-zero vector zeC^2, and given AeG, then
A[z]=[Az]. This action is transitive and almost effective and gives all the projective
transformations of CPn+l. Its Lie algebra ^=sl(^+2C) is identified with the Lie
algebra of all left invariant holomorphic vector fields on G.

The holomorphic Maurer-Cartan 1-form of G is denoted co=A~ 1 dA. The entries of
CD are denoted ©i, for I, J=0, . . .72+ 1. They give a holomorphic coframing on G and
satisfy the structure equations

(2.1) clw}=-(^A(£^.

Let So, . . ., £„+! denote the standard basis of Cn+l. Designate the origin of CPn+l

by [So]' The (1, 0) tangent space of CP"^ at [sj is naturally identified with the span
of { £ i , . . . , £ „ + 1 } . For any A e G let A, == A £i denote the I-th column of A. Then the
(1, 0)-tangent space ofCP^1 at A [sj == [AJ has a basis { A ^ , . . ., A^ }.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



230 G. R. JENSEN AND E. MUSSO

The isotropy subgroup at [So] is the closed complex subgroup

Go={b(r,B,v)=(r ^VBeGL^+l.C^eC^.reC.rdetB^l}.
\0 B/

The projection map
K: G-^CP^1

is then a holomorphic principal Go-bundle.
A projective frame field in CP"^ is a holomorphic map

e: U-^G,

from an open subset UcCP^1 , such that n°e=[eo\', that is, a local section of
n: G -> C P"+1. The columns e^ of e are C"+ 2-valued functions satisfying

de^=e^e*(£f^.
Let

f: X^CP^1

be an immersed, connected, complex holomorphic hypersurface. A local projective
frame field along/is a holomorphic map

e: V -> G,

where U is an open subset of X, such that

/^o]^0^

For any such frame field we put

9=(?*o)=(9l).

Then

(2.2) ^e^o+eo^+es^n+r
Given a projective frame field e: U -> G, any other on U is given by

(2.3) ?=^,

where b: U -> GQ is a holomorphic map. If 8 = ?* ®, then

(2.4) Q=b-16b^b-ldb.

The totality of projective frames on X is the holomorphic principal Go-bundle
^o: ̂ o CO -^x. where

^o(/)={(^A)eXxG|/(x)=7i(A)}.

4eSERIE - TOME 27 - 1994 - N° 2



RIGIDITY OF HYPERSURFACES IN COMPLEX PROJECTIVE SPACE 231

First order frames. — The projective frame field e: U —> G is of first order if

(2.5) es^o.
It is easily seen that first order frame fields exist locally. This follows from the fact

that the linear isotropy representation of Go acts transitively on complex hyperplanes,
which means geometrically that e can be chosen so that e^, . . ., e^ span the holomorphic
tangent space ofX at each point. By (2.2), such a frame field is of first order.

If e is a first order frame field, then any other on U is given by (2.3), where b'. U -> G^
is a holomorphic map, and

J ( r ty ' \ ^G,=\ b===b(r,s,B,x,y,t)=\ 0 B x jeGo
O O s

where

r , s , t e C ' , x.^eC"; BeGL(^:C); ^detB=l.

The totality of first order frames is the holomorphic principal G^-bundle n^.
^i(/)^X, where

^iCO-K^^eXxG},

where e is any local first order frame field along/. Then ^i(/) c ̂ o(/) ^d is an
integral manifold of the exterior differential system on ^o CO given by

co^^O

^COS-^EE -(^+1 A ©o mod^1).

Fubini's quadratic form. - If e is a first order frame field along /, then
differentiating (2.5), and applying the structure equations and Cartan's Lemma, we have
that

(2.6) er^A
where h^h^ are holomorphic functions on U c X. Fubini's quadratic form is the
holomorphic symmetric bilinear form defined on U by

(2.7) (P^-M.

It depends on the choice of e.
lf^==eb is any other first order frame field on U, where b=b(r, s, B, x, y , t): U -> G^,

then

(2.8) 9o=r(B-1)}^

(2.9) n^^h^.
rs

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



232 G. R. JENSEN AND E. MUSSO

From these transformation formulas it follows that if (p denotes Fubini's quadratic
form with respect to ?, then

(2.10) (p='(p.
s

It is easily seen that (p=0 on X if and only if/(X) is a hyperplane (Fubini). If we
define det (p = det (/ .̂), then det (p = 0 on X if and only if /(X) is the dual of a lower
dimensional variety (Griffiths-Harris). If det (p 7^ 9 at every point ofX, then (p defines a
complex conformal structure on X in the sense of LeBrun.

We shall say that/is non-degenerate if det (p 7^0 at every point ofX.

Fubini's cubic form. — If e is a first order frame field along /, then differentiating
(2.6), and applying the structure equations (2.1) and Cartan's Lemma, we have that

(2.11) -^,,+^9^+^9?-^,(9g+9^i)=F^efco,

where the F^ are holomorphic functions on U symmetric in /, j and k.
Fubini's cubic form is the holomorphic symmetric cubic form \|/ defined on U by

(2.12) ^=F^9oM.

It depends on the choice of first order frame field e.
Any other first order frame field on U is given by ?= eb where

^&(r , ^ ,B ,x ,^0 :U-^Gi

is a holomorphic map. The components of the cubic form then transform by

(2.13) F^=^BfBJB^F^+-^-^B5^B^+3;,^^B?+^^^Bj]
r s i s

- -^ [B? h,, x" W, A, B;; + BJ A,, x" Bf /;„ B[ + B^ h^ x" Bf A,, B;.].
/ S

It follows then that

(2.14) v|/= rL+(^.(B-^- \.^o)(p1
s\_ s J

=r(\|/+a(p),
s

where a is the holomorphic 1-form defined on U by

(2.15) ^.(B-1)^-^^.
s
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RIGIDITY OF HYPERSURFACES IN COMPLEX PROJECTIVE SPACE 233

It was shown by Fubini that v|/=0 on X if and only if/(X) is projectively congruent
to an open subset of the quadric

2zozn+l+^(z l)2=0.
o

Second order frames. — Under our assumption of nondegeneracy of /, and since we
are working over the complex numbers, it follows from the transformation formula (2.9)
that there always exist local first order frame fields e with respect to which

(2.16) A,,=8,,.

A first order frame field e is of second order if it satisfies (2.16) at every point of U.
By our comment above, a second order frame field exists on a neighborhood of any

point of X. Computing the isotropy of the action of G^ defined in (2.9), we find that
if e is a second order frame field on U, then any other is given by e = eb, where b: U -> G^
is a holomorphic map and

Gz={b=b(r, s, B, x, y , t)eG^ ^BB^^I, r5detB=l}.

Notice that then (rs)n+l= 1.
The totality of second order frames is the holomorphic principal G^-bundle

^2 : ̂ i (/) -> x^ where
^CO-K/^O^XxG},

where e is any second order frame field defined about p. Then ^\ (/) c= ̂ \ (/) and is
an integral manifold of the exterior differential system on e^o CO given by

o^^O

co^-co^O

AD^EEOmod^1, o)^1-^)
^(^^-(Dy^K+co^-aKco^+co^i)] A < modK^, co^-coo).

If e is a second order frame field, then (2.16) implies that (2.11) becomes

(2.17) e}+9^-8,,(9g+9^i)=F^eko.

Any other second order frame field on U is given by e = eb, where

& = Z ? ( r , ^ , B , x , ^ 0 : U ^ G 2 .

Fubini's cubic forms with respect to e and ? are related by (2.14) where now (2.15)
becomes

(2.18) o^-'f-^.Bf-^V
s\r )

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



234 G. R. JENSEN AND E. MUSSO

The action of G^ defined by (2.13) seems too complicated to analyse directly.
In (2.17) we set i=j and sum on i. Recalling that 9}=0, we find that

(2.19) eg+e;;:}=--—W
n~r 2

Writing (2.13) for second order frame fields, we find that these contracted components
transform by

(2.20) F,,= ^-F,,,B^+ ̂ (vr 1B^)
r s r \ s J

Third order frames, - A second order frame field e is of third order if, with respect
to it,

(2.21) eM:l=o.
From (2.19) and (2.20) it follows that third order frame fields exist on a neighborhood

of any point of X. In addition, if e is a third order frame field on U, then any other is
given by ^=eb, where b=b(r, s, B, x, y , t):\J ->G^ is a holomorphic map into the
complex subgroup of G^ given by

G^\b(r,s,B,x,y,t)eG2:ty=]-txB\.
[ s J

The totality of third order frames is the holomorphic principal G3-bundle 71:3:
^3 (/) -> X, where

^,(f)={(p,e(p))eXxG}

such that e is any local third order frame field about p . Then ^3 (/) c= ̂ \ (/) and is
an integral manifold of the exterior differential system on J^o CO given by

co^^O

(o^-cOo^O

o)M:i=o
AoS-^EEOmod^}

d(^^ 1 - ©0) = (co^ + o)^) A (OQ mod { I }
<o)g+co^i)=K^-G)0) A (Oomod{l},

where {1} denotes the algebraic ideal generated by the 1-forms on the left side of the
first three equations. The independence condition of this system is

Q A 0)3,

where Q=o)o A . . . A (DQ and 0)3 is any left-invariant volume element of 03.
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RIGIDITY OF HYPERSURFACES IN COMPLEX PROJECTIVE SPACE 235

If e is a third order frame field, then any other on U is given by e=eb, where
b=b(r, s, B, x, y , t):\J->G^ is any holomorphic map. From (2.18) it follows that
a=0, and that

(2.22) ^=^.
s

PROPOSITION 2.1. — Suppose that /2=dimX>2. Let e be a third order frame field
defined on a neighborhood of a point p e X. If \|/ (p) ̂  0, then (p (p) and v|/ (p) are relatively
prime in the symmetric algebra S(T^'°X).

Proof. - Since detcp^O and n>2, it follows that (p is irreducible. If v|/=(pa, for
some (1, 0)-form a=^9oCp), then by (2.12),

Ffjfc = . (^ 8/k + ̂  8ffc + ̂  §ij)-

Thus, by (2.19) and (2.20), 0=F,^=(^+2)^, for every 7, which means that a=0,
which is impossible when v\f(p)^0.

If e is a third order frame field along /, then differentiating (2.21), applying the
structure equations (2.1) and Cartan's Lemma, we have that

(2.23) e^-e^^M,,^
where M^=M^ are holomorphic functions on U. If ?==eb is any other third order
frame field on U, then

1 1 /r^ \ 1
M,,= -^B?B^+ -8,, —— -It - ̂ B^.F^x-

r r \^ s / r s

The action of G^ defined by this equation can be analyzed, but it has singular orbits,
so that a full reduction of this action would involve non-degeneracy assumptions which
we must avoid. As in the third order reduction we consider the contraction, M», which
transforms by

r n / x1 x1 \
(2.24) M,,=-M,,+- ( — — - I t .

s r\ s J

Fourth order frames. — A fourth order frame field along/is a third order frame field
e for which

(2.25) M,,=0.

From (2.24) it is clear that fourth order frame fields exist on a neighborhood of any
point, and that if e is a fourth order frame field on U, then any other is given by e = eb,
where b: U —> €4 is a holomorphic map and

(2.26) G^=Sb=b(r,s,B,x,y,t)eG^:t=ltxx\
[ 2s }
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236 G. R. JENSEN AND E. MUSSO

To be explicit, G^, is the set of all matrices
/ r ^ t

(2.27) b{r,s,^,x,y,t)=^ 0 B .v
V 0 0 s

where r, s, teC, BeGL(n; C), and x, yeC" satisfy

(2.28) ^BB^I, ^detB=l, ^=^xB, ^==-^-^x.
5' 2s

The totality of fourth order frames is the holomorphic principal G4-bundle

7l4: ^4(/)^X,

where
^(^{(^(/OeXxG}

such that <? is any local fourth order frame field about p.

PROPOSITION 2.2. — If e:\J —>G is a fourth order frame field along f, then

(2.29) e^^O
(2.30) e^^Go
(2.31) 9^+6^i=0
(2.32) 9}+9^F^
(2.33) 90-e^,=M,,9^

where F^ ^flf M^. ar^ holomorphic functions on U totally symmetric in their indices and
satisfying

(2.34) F^.=0=M«.

Furthermore, by the structure equations,

(2.35) ^=-6° A 9;)
(2.36) ^:i=-9o A 9^
(2.37) <=-(9}-8}9^)A9^
(2.38) ^9}= -9J, A 9^-9o A 99-9;.^ A 9^.
(2.39) d6^,= -9o A 9,°^-9} A 9^,-9^, A 9^:i.

M^ respect to e, Fubini's quadratic and cubic forms are given, respectively, by

(2.40) (P-IX)2 and vl̂ F^WS.

The reduced equations. - Let e be a first order frame field along /. For any point
qeX, [eo (q)} =/(<7), and the differential at eo(q) of the projection mapping
Cn+2-{0}->CPn+l sends ̂  (^), . . ., ̂  (^) onto a basis of the tangent space at/(^). It
follows that in a neighborhood off(q) our hypersurface/(X) is represented by the graph

46 SERIE - TOME 27 - 1994 - N° 2



RIGIDITY OF HYPERSURFACES IN COMPLEX PROJECTIVE SPACE 237

of a holomorphic function

(2.41) x"+l= -^xlxJ+ -^xlxJxfc4- —fl^x l^x f c^+ . . .,

where the coefficients are totally symmetric in their indices. As such a representation
holds for any point q in the domain of e, it follows that the coefficients in (2.41)
are functions of q. Thus we have a map F (q, x) defined on a neighborhood of
X x { 0 } c= X x C" given by

(2.42) F (q, x) = e^ (q) + x1 e, (q) + x^1 (q, x)e^, (q\

such that [F (^ x)]e/(X).
We can relate the coefficients in (2.41) to the invariants h^{q), ¥^(q) and M^.to) by

considering the equation [F(^, x)]=a constant point in CP"'1'1. This is expressed in
(^n+i ^y ^g differential equation

(2.43) rfF=^F,

for some 1-form ^ in XxC". In order to take the exterior derivative of (2.42), it is
convenient to introduce the notation

^y"+i
(2.44) dx^^——Ac^x^1,

8x1

where

(2.45) d^x^1^ l-^xl^+ i^xixJxfc+ . .

Substituting (2.42) into (2.43), we find that

(2.46) X(^+^^+^+l^+l)=^(^o+^^+^+l^+l)

=9^o+9;)^+^l^+^(9?^+9i^•+9?+l^+l)

+^+l^^+xn+l(9^^o+9^l^+^tl^+l).

Equating the coefficients of^o? e^ en+l ln (2.46), we have

(2.47) ^eg+x^+x^e^
(2.48) ^^eo+^+^e^+^-^e^i
(2.49) ^x^^^h^Q^dx^^x^^^.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



238 G. R. JENSEN AND E. MUSSO

The first 1 + n equations determine ^ and dx1. Using (2.44), we can substitute these
into (2.49) to arrive at

/ ^xn+l\ / ^xn+l\(2.50) (eg+^e^+^^e^o^^-x1^^^^
^y"+l ^Y"'^1

+rf,xB+l-^-^-9;.-x"+l-^9^l+^+le;:},

which is a power series in x1, . . ., x" whose coefficients are 1-forms in X.
We can easily read off the coefficient of xj on each side of (2.50). As these must

hold identically in X, we have

(2.51) 0=(^-^)9^.

As 9^, . . ., 95 are linearly independent at each point, it follows that

(2.52) ,̂= ,̂.

Suppose now that e is a second order frame field, so that /!^=5^. We calculate the
quadratic and cubic terms on each side of (2.50). For the left hand side these are

(2.53) -Is^eg^^-r^^eg+^^e^x1^^

and for the right hand side they are

(2.54) -^[a^-Wt^lQ^x1^

+^[-^9Jo+^+^9^1 3^-38,, ̂ ^xi^xk.
6

Equating the quadratic terms of (2.53) to those of (2.54), taking care to symmetrize
all coefficients in ; and j, we have

(2.55) MS=^9S-Wi+e}+9^.

Thus, from (2.11), we conclude that

(2.56) ^=-F^.

Suppose now that e is a third order frame field so that (2.21) and (2.23) hold, as
well as

(2.57) e^+e^F,,^.
4eSERIE - TOME 27 - 1994 - N° 2



RIGIDITY OF HYPERSURFACES IN COMPLEX PROJECTIVE SPACE 239

Taking the exterior derivative of (2.57), and using the structure equations, we find

[-^-F^9g+F,,X] A e^+ce^-e^) A 9o+(9?-e^) A %
=9; A 9^.+9^'A Q[
=(-9KF.«X) A 9;.+(-9i.+F^9feo) A 9;
——(F^.+F,^^^.

Thus, using (2.23), we find that

[̂  + F^ 6°o - F,,, 9J, - F^ 9 .̂ - F,,, 9;] 9^
=M,XA9 lo+MXA9 Jo
= [M,, a,, + M,, 8,, + M,, 8,,] 9^ A 9^,

where the last term is zero since M^==M^, and has been added in order to symmetrize
in f, j and k the left hand side of (2.58) below. By Cartan's Lemma we conclude that

(2.58) dF^ + F,,, 9g - F,,, 9J, - F^ Q1, - F,,, 9; - (M,, 8,, + M,, 8,, + M,, 8,,) 9^ = - A,,,, 9^

where
A = Aijkl ^ijik

are functions in X. In addition, since the left hand side of (2.58) is symmetric in ;', j
and fe, it follows that A^ is totally symmetric in all four indices.

Substituting (2.56) into (2.53) and (2.54), taking care to symmetrize the coefficients
of x'x7^, we can equate the cubic terms to arrive at

2 F,,, 9g - 8,, 9,° - 8,, 9,° - 8,, 9° = - ̂  9^ - ̂ ,,
-F^9;:}+F,^9^.+F,,9!,+F^9;.-8,,9^,-8,,9^,-8^9^,.

Substituting (2.58) into this, we conclude that

(2.59) ^fci==A^.

In summary, given a third order frame field e along/, then for any qeX there is a
local lift of/ given by

^(^^(^X^1^,

where x^1 is a holomorphic function of x1, . . ., x" whose power series expansion is
given by

^1= ̂ (x1)2- lF^)xl^+ ^A^to)xlx^fex!+0(4),

where F^ are given by (2.11) and A^ are given by (2.58).
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For a third order frame field e, we have F^=0 by (2.19) and (2.21), and thus,
contracting (2.58) on ; and j we have

(2.60) A^=F^F^+(/2+2)M^

The frame e is of fourth order if and only if Mj^ = 0, which by (2.60) holds if and only
if

^Ukk = ̂ imk ̂ imk'

3. Proof of FubinFs theorem

Fubini's hypothesis. — Let X be a connected complex manifold of dimension n>2.
Let

fJ'.X-^CP^1

be nondegenerate holomorphic immersions such that, calculated with respect to third
order frame fields,

(3.1) ^AP^AP
at every point of X. By (2.10) and (2.22), the quotient \|//(p is independent of the
choice of third order frame field used to compute \|/ and (p.

If \|/ is identically zero on X, then so is \J/, and then Fubini has shown that /(X) and
/(X) are congruent to a quadric. If \|/ is not identically zero, then let D denote its zero
divisor, which must be the zero divisor of \|/ as well. Then X — D is a connected, open
dense subset ofX. By continuity, if/(X—D) is congruent to/(X—D), then the same
is true of/(X) and/(X). Thus we may assume that D is empty.

PROPOSITION 3.1. - Let e,e:\J->G be third order frame fields along f and /,
respectively. Then (3.1) holds ifand only if

(3.2) v^=^, cp=^(p,

for some holomorphic function t'.U —>C— {0}.

Proof. — At every point of U we have (p\J/=(p\|/, and thus cp must divide (p by
Proposition 2.1. Hence (p = t (p for some nowhere zero holomorphic function t on U.
Cancelling (p, we have (3.2).

The condition (3.1) can be formulated in terms of first order frame fields. If (p and v|/
are calculated with respect to a first order frame field e: U -> G along/, then by (2.10)
and (2.14), with respect to another first order frame field e'=eb, where
b = b (r, s, B, x, y, t), we have

(p^-cp, \|//=-\|/+-a(p,
s s s

for some holomorphic 1-form a on U.
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Suppose that (p and vJ/ are calculated with respect to a first order frame field e: U -> G
along/. Suppose that e'^eb, where b=b(r, s, B, x, y , t), so that

(p'==^(p, v|/'= ̂ i/+ ^a(p.
^ ^ ^

In particular, these hold if e' and <? are third order frames fields, in which case, by (3.2),

(p^V, ^=t1^1,

for some holomorphic function t ' on U. Hence,

(3.3) (p=M(p, viir==Mv|/+a7q),

where u=st' rjrs is a holomorphic function on U and a" is a holomorphic 1-form on U.

DEFINITION. - The Fubini Hypothesis on holomorphic immersions /,/:X -> CPn+l is
that (3.3) holds with respect to any local first order frame fields. By the above discussion,
for non-degenerate immersions, this is equivalent to either (3.1) or (3.2) with respect to
third order frame fields.

Isomorphism of the bundles of fourth order frames

PROPOSITION 3.2. - Let //iX-^CP^1 be non-degenerate holomorphic immersions
for which (3.1) holds. Let e: U -> G be any fourth order frame field along f. Then there
exists a fourth order frame field e: U -> C P"+1 along f such that

(3.4) e^Oo and ^=9^.

Moreover, if U is connected, then e is unique up to multiplication by a constant r such
thatrn+2=\.

Proof. - If ?: U -^ G is any fourth order frame field along/, then by (2.40) and (3.2),

(3.5) ZW^Keo)2.
Thus S^B^o for some holomorphic, matrix valued function B=(B}) satisfying ^B^rl.

If we let b=b(\, t, B, 0, 0, 0): U -> G^, then e==^b is another fourth order frame field
along/ With respect to e, by (2.8),

(3.6) ^(B-1)}^^

(3.7) ^(^Keo)2^.

By(3.2),v|/=v|/.
Thus, we may assume that e was chosen so that

(3.8) cp=(p, \[/=v|/, 8o=9i)-
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Now any other fourth order frame field along/, for which (3.8) continues to hold, must
be given by e=eb, where

b=b(r,s,B,x,y,ty.\J-^G^

satisfies, by (2.8), B=rl , where I is the n^n identity matrix, and by (2.10), s=r.
Furthermore, 1 = rs det B = r" + 2. Thus

(3.9) b=b(r, r, rl, x, ^x, ^xx},
\ r 2r )

where x: U -> C" is a holomorphic map, and r is a constant satisfying rn+2=\. (To be
precise, r is constant if U is connected; otherwise, r is locally constant).

Using (2.4), we can calculate that

(3.10) 9^-^9o+^r r

_ao 1 yim—VQ -X VQ,
r

by (3.8) and the fact that dr=0 on U. Thus, we will have

(3.11) 9g=9g

provided that we take r= 1 and we let the x1 be determined by

(3.12) 9g-9^=^90,

which determines the holomorphic functions x1 because 9^, . . . , 9 5 give a basis of
holomorphic 1-forms on U and S^—9^ is a given holomorphic 1-form on U.

Thus, the frame field e satisfies the conditions of the Proposition. If e=eb is another
fourth order frame field along/on U satisfying (3.8) and (3.11), then b must be given
by (3.9), and by (3.10) we have

90 _ QO — SO ^ i QI
o — u o — y o — -x ^o

r

_ nO ^ i ni—VQ— -X VQ.
r

Hence, x=0 on U, and b==b(r, r, r, I, 0, 0, 0).

PROPOSITION 3.3. — Letf,f:X-> CPn+l be nondegenerate holomorphic immersions for
which (3.1) holds. Let e: U -> G be any fourth order frame field along /, defined on a
connected domain U c= X. Let e: U —> G be a fourth order frame field along f satisfy-
ing (3.4). Then there exists an element a e G such that

(3.13) ae (p) = e (p), for every p e U.
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Proof. - The idea of the proof is to show that Q\=Q\, for 9^1, J^+l, where
6\=e*w\ and Q\=e*w\. We then apply the Cartan-Darboux Theorem (cf. [14], p. 167-
168) to conclude (3.13). By Proposition 2.2 and 3.2 we have

g^l=Q^l=0

Ql _Ql
^o~vo

(3.14) < ef^e^1
9̂0 _ QOo^o

I nn + 1 _ r\n + 1
^ vn+l~un+l

Moreover, by (2.32) and (3.8) we have

(3.15) 9}+^=9}+^.

By (2.37) and the second equation in (3.14) we have

(3.16) 9}-9}=A}^,

where
A^-A^

are holomorphic functions on U. But then (3.15) implies that

^jk= ~ Affc

as well. Hence, A^ = 9 for all ?', j and k, and we have

(3.17) 0}=9}.

Differentiating the last two equations in (3.14), using (2.35) and (2.36), and applying
Cartan's Lemma, we have

(3.18) 9°-9°=R^o
(3.19) e^^^T^o,

where Rfj=R/i and T}==T^' are holomorphic functions on U. From (2.38) and (3.17)
we then have (s^+ns,̂ ^ ,̂
from which, by Cartan's Lemma, we conclude that

§^R,,-8iR,,+n8,,-T;8,,=9.

Contracting ;' and k we find

(3.29) (^-1)R,,-T^+T8,,=9,
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where T = T\, while contracting j and / gives

(3.21) (^-1)T^-R^+R8^=0,

where R = R». Contracting either (3.20) or (3.21) gives

(3.22) R+T=0.

Substituting (3.22) into (3.20) and (3.21), we find that R^.= -T}, for all ;' and 7, which
when substituted again into (3.20) and (3.21) gives

(3.23) R^S^-T),

for all i and j. Substituting this into (3.18) and (3.19), and using (2.33), we find that

2R8,,=M,,-M,,.

Contracting, and using (2.34), we conclude that R=0, and thus that R^==0==T^ for all
i and j by (3.23). Hence

f Q?=^(3-24) .
( U., + 1 — Un -i- 1 .^n+l~vn+l'

It now follows from (2.39) that

' (e^i-e^)AO^=o

for all L Since n> 1, it follows that

(3.25) e^-e^,.

Combining (3.14), (3.17), (3.24) and (3.25) we conclude that Q\=Q\ for all I
and J. This completes the proof.

FUBINFS THEOREM. — Let X be a connected complex manifold of dimension n>2. Let
f'.X-^CP"'^1 and /:X-^ CPn+l be holomorphic immersions for which none of detcp,
detcp, \J/ and \|/ is identically zero on X. IfFubini's Hypothesis holds for fand /, thenf(X)
is projecti-uely congruent to /(X); that is, there is an element aeG such that ^/(X)==/(X).

Proof. — Let X' be the complement of the union of the zero divisors of det (p, det (p,
\|/ and \J/. Then X' is a connected, open, dense subset of X. Fix a point po eX\ There
exists a connected domain U of X', containing PQ and on which there exists a fourth
order frame field e along/. Let e:\J -^G be a fourth order frame field along/given
by Proposition (3.2). By Proposition 3.3 there exists an element aeG such that
ae {p) = e (p) for every p e U.
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Suppose that V is another connected open subset of X7 on which there exists a fourth
order frame field e^ along /. Suppose also that there is a point q e U r\ V. Multiplying
ey on the right by the constant matrix e^(q)~1 e(q)eG^ we may assume that
Cy (q) = e (q). If ey : V -> G is a fourth order frame field along/given by Proposition 3.2,
then by Proposition 3.3, there is a constant matrix ceG such that ce^^e^. But then

(3.26) cey (q) = ey (q) = e (q) == ̂ (^).

On the other hand, restricted to U H V, both e and e^ are fourth order frame fields along
/ satisfying the conditions of Proposition 3.2. By Proposition 3.3, on the connected
component of U C} V containing q there must be a constant r, with rn+2=\, such that

(3.27) r^y = e.

In particular, (3.17) holds at q, which combined with (3.16) implies that c^=ar. But
by Proposition 3.2, we may replace ey by r^y, in which case we then have c = a. That
is, we have ae^ = e^ on all of V.

Any point peX' can be joined with PQ by a finite chain of open sets of X" such that
any adjacent pair U^ and U^+i has the same properties as the above pair U and V. By
induction up the chain, then, it follows that for each a, there exist fourth order frame
fields e^ e^:\J^->G along/and/, respectively, such that ae^=e^ for the same constant
matrix aeG. It follows then that af^=f^. By continuity, ^/==/on all ofX.

4. Complex conformal structures

For a nondegenerate hypersurface in CPn+l, Fubini's quadratic form (p defines a
complex conformal structure on X as defined by LeBrun in [12]. In this section we
briefly outline the theory of such structures in order to show the role they play in our
proof of Fubini's Theorem.

A complex conformal structure on X assigns to each local complex coordinate system
z1, . . ., z" on U c: X a holomorphic symmetric bilinear form (p == h^ dz1 dz\ where h^=h^
are holomorphic functions on U and det(A^)^0 at every point of U. In addition,
if ?, . . ., z" is another complex coordinate system on 0, with UOU^0, then on
UHU, (p=r(p, where r is a nowhere zero holomorphic function on LJOU. We will
denote such a structure on X by [(p].

Let

S=

/ 0
0

0
\-1

-1\
0

0
0 /
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Consider the representation of the complex orthogonal group

0(^+2; C)={AeGL(w+2; C):tASA=S},

and the closed complex subgroup

f / l / r ^zB rlVzz\
H(n, C)= ^ 0 B rz :0^reC, Be0(^, C), zeC1

1 v 0 0 r )

We observe that H (n, C) is a semidirect product of C 0 (n, C) by C".

PROPOSITION 4.1. - 7%^ exists a natural holomorphic principal H (n, C)-bundle
P -> X. It is called the Mobius bundle of the complex conformal space X, [<p].

Naturality here means that if X, [cp] is another complex conformal space, and if
F: X -> X is a biholomorphic map preserving the complex conformal structures, then F
induces a holomorphic bundle isomorphism from P -> X to P -> X.

A Car tan connection on P->X is a holomorphic 1-form on P taking values in
(9 (n + 2; C), the Lie algebra of 0 (n + 2; C). We refer the reader to [13] for the definitions
of Cartan connection and of what it means for such a connection to be torsion free.

PROPOSITION 4.2. - On the Mobius bundle P->X of a complex conformal space X, [(p]
there exists a unique torsion free Cartan connection v(/ whose curvature ̂  satisfies the
conditions

a) ^F takes values in the Lie algebra of H (n; C);
b) ^=0;

c) T^O^F}^ A ^o, where F^=0.

This Cartan connection is called the normal conformal connection ofX, [cp].

As a consequence of the uniqueness in Proposition 4.2, if F: X -> X is a biholomorphic
map preserving the complex conformal structures, then the induced bundle isomorphism
P -> P preserves the normal conformal connections.

Let/: X ->CPn+l be a nondegenerate holomorphic hypersurface with induced complex
conformal structure [(p]. Let G^ be the complex Lie group defined in (2.26), and
let ^4 (/) -> X denote the holomorphic principal G4-bundle defined in section 2. Let
e'••^4.(f)~>(J denote the projection onto the second factor in XxG, and let
91 = e* co;. Then equations (2.29) through (2.39) hold on ^4 (/).

PROPOSITION 4.3. - Let f'.X-^CP"'^1 be a nondegenerate holomorphic hypersurface
with induced complex conformal structure [(p]. Then €4 is isomorphic to H(n; C) and
«^4 (/) -> X is isomorphic to the Mobius bundle ofX, [cp]. Under this bundle isomorphism,
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the normal conformal Carton connection is given on ̂ 4 (/) by

' ^=9S,
v|/o=9^

(4.1) < 1^•=e^F,^,
v|/?=e°+M.,yo-s,,^

w/iere fAe Sy are holomorphic functions on ̂ 4 (/) defined by

sij= ~ 2(^2)M^- 4(^2)(FiAi- 2(«LT)F't""Ft""5u)•

The idea of our proof of Fubini's Theorem can now be expressed as follows.
If/, J\ X -> C P"4'1 are nondegenerate holomorphic hypersurfaces which satisfy the Fubini
Hypothesis of section 3, then the complex conformal structures induced by/and/are
equivalent. Thus, by Proposition 4.1, the corresponding Mobius bundles are isomor-
phic, and by Proposition 4.2 this isomorphism preserves the normal conformal
connections. Thus, by Proposition 4.3, the bundles e^CO and ^\(J} are isomorphic,
and under this isomorphism, equations (3.14) and (3.17) hold. The local version of
Fubinfs Theorem then follows by the proof of Proposition 3.3, and the proof of the
theorem itself is the same as that given in section 3.
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